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We present a framework to integrate tensor network (TN) methods with reinforcement learning (RL) for
solving dynamical optimization tasks. We consider the RL actor-critic method, a model-free approach
for solving RL problems, and introduce TNs as the approximators for its policy and value functions. Our
“actor-critic with tensor networks” (ACTeN) method is especially well suited to problems with large and
factorizable state and action spaces. As an illustration of the applicability of ACTeN we solve the
exponentially hard task of sampling rare trajectories in two paradigmatic stochastic models, the East model
of glasses and the asymmetric simple exclusion process, the latter being particularly challenging to other
methods due to the absence of detailed balance. With substantial potential for further integration with the
vast array of existing RL methods, the approach introduced here is promising both for applications in
physics and to multi-agent RL problems more generally.
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Introduction.—Tensor networks (TNs), routinely used
in the study of quantum many-body systems [1–7], are
increasingly being applied in machine learning (ML), see,
e.g., Refs. [8–20]. Both domains often deal with systems
with state spaces that are exponentially large in the number
of degrees of freedom, say the number of qubits in a
quantum system, or of pixels in images to be classified. In
such situations TNs provide a powerful way to represent
functions, vectors and distributions, while allowing for
efficient sampling and computation of quantities such as
inner products and norms.
To date, the intersection of TNs and ML has been

mostly in supervised and unsupervised learning, see,
e.g., Refs. [8–20]. In contrast, the combination of TNs
and reinforcement learning (RL) [21] has been more limited,
despite recent major advances in RL [22–26]. While some
promising related directions have been explored, such as the
approximation of Q functions in the context of large state
spaces [27], and/or large action spaces [28], the flexible
integration of TNs with RL remains an open problem, along
with demonstrating useful applications.
Here, we introduce the actor-critic with tensor networks

(ACTeN) method, a general framework for integrating TNs

into RL via actor-critic (AC) techniques. By combining
decision-making “actors” with “critics” that judge an
actor’s quality, AC methods are used in many state-of-
the-art RL applications. Using TNs as the basis for
modeling actors and critics within AC and RL represents
a powerful combination to tackle problems with both large
state and action spaces.
To demonstrate the effectiveness of our approach, we

consider the problem of computing the large deviation (LD)
statistics of dynamical observables in classical stochastic
systems [29–35], and of optimally sampling the associated
rare long-time trajectories [36–48]. Such problems are of
wide interest in statistical mechanics and can be phrased
straightforwardly as optimization problems that may be
solved with RL [49–52] and similar techniques [53–61].
For concreteness we consider two models: (i) the East
model, a kinetically constrained model used to study slow
glassy dynamics, and (ii) the asymmetric exclusion process
(ASEP), a paradigmatic model of nonequilibrium, in which
particles hop around a lattice while blocking each others
movement. In particular, and in contrast to the East model,
the ASEP (with periodic boundaries) does not obey
detailed balance [62], and thus evades straightforward
use of TNs to compute spectral properties of the relevant
dynamical generators. We demonstrate that ACTeN can be
applied to both problems irrespective of the equilibrium or
nonequilibrium distinction, by computing their dynamical
LDs for sizes well beyond those achievable with exact
methods. Given the vast array of options for improving the
RL algorithm that we use, our results indicate that the
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overall framework outlined here is highly promising for
applications more generally.
Background: Reinforcement learning and actor-critic

techniques.—A discrete-time Markov decision process
(MDP) [21] consists at each time t∈ ½0; T� of stochastic
variables Xt ¼ ðSt; at; RtÞ, named state, action, and reward.
We assume these are drawn from t-independent finite sets,
S, A, and R, where the action set may depend on the
current state, AðSÞ for S∈S. The action and state variables
are associated with the policy, πðajSÞ, and environment,
PðS0jS; aÞ, distributions. These are sampled in a sequence
of steps to generate a trajectory of the MDP, ω ¼
ðX0; X1;…; XTÞ, see Fig. 1(a). We assume that the reward
is a deterministic function of the state and action variables.
In the typical scenario of policy optimization, the

policy is controllable and known, while the environment
is fixed and potentially unknown. We focus on MDPs that
are “continuing” and admit a steady-state distribution
independent of X0. We can then define the average reward
per time step when following a given policy as rðπÞ ¼
limt→∞Eπ½Rt�, where Eπ½·� is the stationary state expect-
ation over states and over transitions from those states
according to policy π. The task of policy optimization is to
find the policy π� that maximizes rðπÞ.

Reinforcement learning (RL) refers to the group of
methods that aim to discover optimal policies by using
the experience gained from sampling trajectories of an
MDP. In policy gradient methods, the policy is approxi-
mated by a function πwðajSÞ with parameters w, and
optimized using the gradient of rðπwÞ with respect to w.
Building on this, actor-critic methods then assess πwðajSÞ
by computing the value, vπðSÞ, of the states that result when
following the policy. This value is defined as the difference
between rewards in the future of a given state and the
average reward, vπðSÞ ¼ Eπ½

P∞
τ¼t ½Rτ − rðπÞ�jS�. The gra-

dient of rðπwÞ can be written exactly in terms of these
values as

∇wrðπÞ ¼ Eπ½δπt∇w ln πwðatjStÞ�; ð1Þ

where we have introduced the temporal difference (TD)
error, δπt ¼vπðStþ1ÞþRtþ1−rðπwÞ−vπðStÞ [21,49], which
quantifies if a resultant state is better than the current one.
AC methods use this information to alter the probability of
taking that action in the future.
In reality, calculating the true value of every state under

the current policy is impractical, and thus an auxiliary
approximation for the value function, vψ ðSÞ with param-
eters ψ , is introduced, the so-called critic. To optimize the
critic, we note that the value of a state is related to the value
of states reachable from it, as encoded in the differential
Bellman equation [21],

vπðStÞ ¼ Eπ½vπðStþ1Þ þ Rtþ1 − rðπwÞjSt�: ð2Þ

Minimizing the error in the Bellman equation when
substituting the critic for the true values can be done by
updating the weight as ψ 0 ¼ ψ þ αEπ½δt∇ψvψðSÞðStÞ�,
in terms of the approximate TD error, δt ¼ vψðStþ1Þ þ
Rtþ1 − rðπwÞ − vψðStÞ, and a learning rate α. Intuitively,
the estimated expected reward before a transition occurs,
vψðStÞ, is compared to the expected reward afterwards plus
the true reward for that time step, vψ ðStþ1Þ þ Rtþ1 − rðπwÞ,
and vψ ðSÞ adjusted to make these closer. The policy is then
updated by following the gradient in Eq. (1) with the exact
TD error δπ replaced by the critic’s approximate TD error δ.
Analytic example: Two-site East model.—To illustrate

these ideas, consider two spins, s1;2 ¼ 0, 1, evolving with a
constrained set of transitions as in the East model studied
below, such that a spin can flip only when its left neighbor
(in this case simply the other spin due to periodic
boundaries) is 1. The states are S ¼ f00; 01; 10; 11g.
The dynamics of this model can be implemented as an
MDP using a policy that (stochastically) selects which
spins to flip. Denoting no-flip or flip by 0 or 1 and requiring
at most one spin flip per time step, the action sets for this
model are then Að10Þ ¼ f00; 01g, Að01Þ ¼ f00; 10g, and
Að11Þ ¼ f10; 01g, with the state 00 being disconnected
from the rest. An example policy that selects from all

(a)

(b)

(c)

FIG. 1. Actor-critic with tensor networks. (a) Sketch of a
Markov decision process. (b) In actor-critic RL, the state is
passed to an actor, which chooses the action, and to a critic, which
values the state given the reward. This value is used to improve
the actor’s policy. In ACTeN, the function approximators for
actor and critic are tensor networks. (c) Top: typical trajectory of
the ASEP at half-filling and L ¼ 50 sites with one particle
highlighted (blue), shown for 3000 steps. Bottom: trajectory with
a current large deviation, sampled from the ACTeN solution for
biasing (counting) field λ ¼ −3. See the text for details.
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possible actions equally would assign a probability of
1=2 to each of these, e.g., πða ¼ 00jS ¼ 10Þ ¼ πða ¼
01jS ¼ 10Þ ¼ 1=2 and similarly for the other states. The
transition to a new state is then enacted by the environment.
We can choose this to be deterministic, and simply apply
the spin-flip operations selected by the actor to the current
state, si → ð1 − aiÞsi þ aið1 − siÞ. Finally, an example
reward can be defined via the function RðS; a; S0Þ ¼
−λð1 − δS0;SÞ, which awards −λ every time a spin flip
occurs (a ≠ 0), encouraging activity or inactivity for
negative or positive λ. For this reward, the optimal policy
for negative λ will maximize activity, flipping a spin at
every step, requiring going from 10 and 01 to 11 with
probability 1, i.e., π�ð01j10Þ ¼ 1, etc.
Method: Actor-critic with tensor networks.—We now

focus on applying AC to solve problems with large state
and action spaces. For example, we may wish to find the
optimal dynamics of a system of L binary components,
resulting in 2L states, with individual agents and their
actions associated to each component. To ensure optimal
choices for a given task, actions may need to be
correlated not only with other agents states, but also
the actions other agents are about to take. In such
problems, simple approaches such as tabular RL fail
due to exponentially large memory requirements and
sampling costs, and a common alternative is to use neural
networks (NNs) when defining πwðajSÞ and vψðSÞ. TNs
offer another approach, with polynomial memory and
computational costs, and showing state-of-the-art perfor-
mance in many settings; see, e.g., the review [6].
Motivated by this, we define a general framework (which
we call ACTeN) that exploits TNs to efficiently represent
πwðajSÞ and vψ ðSÞ.
A TN is a set of tensors, T ¼ fT ½1�

i1j1k1���; T
½2�
i2j2k2���;…g,

contracted in some pattern, cf. Fig. 1(b). This results in a
single tensor that can be viewed as defining a multivariate
function, φðxÞ ¼ Tx, Tx ¼ C½T �, where C indicates the
chosen contractions and x all remaining uncontracted
indices. For a given problem, the selection of an appropriate
TN depends on factors such as dimensionality and geom-
etry. Here we consider applying ACTeN to study one-
dimensional (1D) systems with periodic boundaries (PBs)
and L components, such that a state is S ¼ ðs1;…; sLÞ with
si taking d values. To represent the value function vψðSÞwe
use a translation invariant matrix product state (MPS)
which mirrors the chain geometry of the system. This
TN is built from a single real-valued tensor Asij of shape
ðd; χ; χÞ (or equivalently d square χ-dimensional matrices
½As�ij ¼ Asij) whose elements encode the parameters of
vψðSÞ, ψ ¼ fAsijgds¼1. For a given S ¼ ðs1;…; sLÞ this TN
is defined as

φðSÞ ¼ Tr½As1As2…AsL �; ð3Þ

i.e., for each site we select the corresponding matrix Asi ,
multiplying the L matrices together with a trace to produce
a real scalar. To take advantage of translation invariance and
apply approximations from smaller L to larger L systems,
we then define the value function in terms of φðSÞ after the
additional application of a square and log, which prevents
the exponential growth or decay of values as L is changed
for fixed Asij. Hence,

vψðSÞ ¼ log ½φðSÞ2�: ð4Þ

To define πwðajSÞ we use a matrix product operator
(MPO). This TN is built from a single real-valued
ðdS; dA; χ; χÞ-shaped tensor, Aasij, equivalent to ds × dA
χ-dimensional square matrices ½Aas�ij ¼ Aasij, i.e., one
matrix per combination of local state and action. Given
a state S ¼ ðs1;…; sLÞ and actions a ¼ ða1;…; aLÞ, the
contraction is given by the traced matrix product,

φða; sÞ ¼ Tr½Aa1s1Aa2s2…AaLsL �: ð5Þ

To use this to define a policy, we need to ensure positivity
and normalization, as well as preventing the policy from
producing invalid actions. To achieve this we define

πwðajSÞ ¼ Cða; SÞ½N ðSÞ�−1φða; SÞ2; ð6Þ

where N ðSÞ ¼ P
ajCða;SÞ¼1 φða; SÞ2 is the (state-

dependent) normalisation factor and Cða; SÞ returns one
if an action a is possible in state S or zero otherwise [63].
Application: Dynamical large deviations.—To test

ACTeN we consider the problem of computing the large
deviations (LDs) of trajectory observables [29,31,33] in the
East model and the ASEP in 1D with PBs. Both models are
many-body binary spin systems with large state-spaces for
large L, S ¼ fsigLi¼1, with si ¼ 0, 1 (see the Appendix for
details on the models). The dynamics of these systems
are subject to local constraints that lead to rich behaviors
in their trajectories, ωT

0 ¼ fStgT0 . This can be observed
in the time integrals of time-local quantities, OðωT

0 Þ ¼P
T
t¼1 oðSt; St−1Þ, the moments of which are contained

in derivatives of the moment generating function
(MGF), ZTðλÞ ¼

P
ωT
0
e−λOðωT

0
ÞPðωT

0 Þ, where PðωT
0 Þ ¼Q

T
t¼1 PðStjSt−1ÞPðS0Þ is the trajectory probability under

the dynamics.
In the long-time limit, the MGF obeys a large deviation

principle [29,31,33] with the scaled cumulant generating
function (SCGF), θðλÞ ¼ limT→∞ð1=TÞ lnZTðλÞ, playing
the role of a free-energy for trajectories. In principle, the
SCGF can be obtained by sampling methods. However,
this is exponentially hard (in time and space) using the
original dynamics. An alternative is to find a more efficient
sampling dynamics which may then be combined with
importance sampling to obtain unbiased statistics. This can
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be formulated as a RL problem as follows: can we find a
parametrized dynamics PwðStjSt−1Þ such that PwðωT

0 Þ ¼
e−λOðωT

0
ÞPðωT

0 Þ=ZTðλÞ, i.e., it reproduces a trajectory
ensemble biased towards rare trajectories of the original
dynamics. This dynamics is connected to an underlying
policy πwðajSÞ by a deterministic environment which
returns states after receiving an associated action, i.e.,
Pw½S0 ¼ fða; SÞjS� ¼ πwðajSÞ, where for each S, fða; SÞ
returns a unique S0 for each a. For example, in the East
model if we take the action a ¼ faigLi¼1 then sites with
ai ¼ 1 are flipped and those with ai ¼ 0 are not flipped; the
new state is then S0 ¼fða;SÞ¼fð1−aiÞsiþaið1−siÞgLi¼1.

Optimizing the KL divergence between the two trajec-
tory ensembles gives a regularized form of RL with a
reward depending on the policy [49]

Rt ¼ −λoðSt; St−1Þ − ln

�
PwðStjSt−1Þ
PorigðStjSt−1Þ

�
; ð7Þ

with its expected value becoming the SCGF at optimality
[49]. Intuitively, choosing actions (e.g., flips) to maximize
the first term increases the likelihood of rare events with
extreme values of the observable, while maximizing the
second term minimizes the difference between the para-
metrized and original dynamics, thus making the event
more probable. Maximizing this reward is a balancing act
between these two aims, resulting in dynamics biased
towards rare events in a way representative of their
occurrence in the original dynamics. In the appendices,
we illustrate ACTeN by solving explicitly the two-site East
model and showing how this can be exactly represented by
the TN ansatz.
(i) East model and dynamical activity: Figure 2 shows

the SCGF of the dynamical activity [total number of spin
flips in a trajectory, defined by oðSt; St−1Þ ¼ 1 − δSt;St−1],
calculated using ACTeN (symbols). Since the East model
obeys detailed balance, the SCGF is the log of the largest
eigenvalue of a Hermitian operator and can be estimated via
density matrix renormalization group (DMRG) methods,
cf. Refs. [64–70] (here we ITensors.jl [71]). Figure 2 shows
that the DMRG results (blue curve) coincide with ACTeN
(black squares) for size L ¼ 50, which is well beyond what
is accessible to exact diagonalization (ED). Note that
DMRG with PBs tends to be much less numerically stable
than for open boundaries. Nonetheless, ACTeN can reach
L≳ 50 without the need for any special stabilization
techniques.

FIG. 2. Dynamical large deviations in the East model using
ACTeN. Scaled-cumulant generating function for the dynamical
activity of the East model as a function of biasing field λ from
ACTeN (symbols), for L ¼ 50 and PBC. Our RL results coincide
with those obtained from the current state-of-the-art method
using DMRG, cf. Ref. [64] (which is possible since the East
model obeys detailed balance). Inset: Kinetic constraint of the
East model; a spin, si, can flip, si → 1 − si, only if the spin to the
left is up, si−1 ¼ 1.

(a)
(b) (c) (d)

FIG. 3. Dynamical large deviations in the ASEP using ACTeN. (a) In the ASEP particles can only move to an unoccupied
neighboring site, with probability p to the left and q ¼ 1 − p to the right. (b) SCGF for the time-integrated particle current as a
function of biasing field. We show results from ACTeN for p ¼ 0.1 (squares) and p ¼ 1=2 (diamonds). The lack of detailed balance
for PBC and p ≠ 1=2 prevents straightforward application of DMRG, but for small sizes (here L ¼ 14) we can compare to exact
diagonalization (blue curve for p ¼ 0.1, green for p ¼ 1=2). (c) SCGF for p ¼ 0.1 from ACTeN for size L ¼ 50which is beyond the
scope of ED. Compared to L ¼ 14 (blue curve from ED), we see that ACTeN captures the flattening of the SCGF for larger sizes
indicative of a LD phase transition, cf. Ref. [32]. The inset shows the smooth convergence of our ACTeN numerics with L for two
values of λ. (d) Since ACTeN provides direct access to the optimal dynamics, observables such as the time-integrated current can be
evaluated directly (black squares for L ¼ 50). We show for comparison the numerical differentiation of the ACTeN SCGF (red
circles) and of the ED SCGF at L ¼ 14 (blue line).
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(ii) ASEP and particle current: Figure 3 presents the
LDs of the time-integrated particle current, defined by
oðst; st−1Þ ¼ 1

2

P
L
i¼1 s

i
t−1s

iþ1
t − sits

iþ1
t−1 . Figure 3(b) shows

the SCGF obtained via ACTeN (black squares or dia-
monds). Unlike the East model, for asymmetric hops
(p ≠ 1=2) Hermitian DMRG cannot be applied directly
to the ASEP, so for comparison we show results from exact
diagonalization for both p ¼ 0.1 (blue line) and p ¼ 1=2
for L ¼ 14. Beyond L ¼ 14 ED becomes prohibitive, while
ACTeN remains feasible. Figures 3(c) and 3(d), show the
expected phase transition behavior [32] and convergence
with L up to L ¼ 50. The optimal dynamics itself, i.e., the
learned policy, can be used to generate trajectories repre-
sentative of λ ≠ 0, see Fig. 1(c), and directly sample rare
values of the integrated current, see Fig. 3(d).
Outlook.—ACTeN compares very favorably with state-

of-the-art methods for computing rare events without
some of the limitations, such as boundary conditions or
detailed balance. From the corpus of research in both TNs
and RL, our approach has considerable potential for further
improvement and exploration. These include: numerical
improvements to precision via hyper-parameter searches;
stabilization strategies for large systems; integration with
trajectory methods such as transition path sampling or
cloning; integration with advanced RL methods such as
those offered by the DeepMind ecosystem [72]; generali-
zation to continuous-time dynamics; and applications to
other multi-agent RL problems, such as PistonBall [73], via
integration with additional processing layers particularly
those for image recognition.
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Appendix A: On kinetically constrained models.—
(i) East model: Flipping of a spin is constrained on the
spin to its left being in state 1 [31,82]. Dynamics then
amounts to two steps: first, select a random site i with
probability 1=L; second, if spin si−1 ¼ 1 then flip si.
Given N spins in state 1 and periodic boundary conditions,
the transition probability is Pðs0jsÞ ¼ ð1=LÞ for each
possible new state s0 ≠ s, and probability PðsjsÞ ¼
1 − ðN=LÞ for no flip occurring.

(ii) Asymmetric simple exclusion process: The con-
straint is particle exclusion: a particle at site i (si ¼ 1) can
move left or right only if the destination is unoccupied [83].
The movement of a particle to, say, the right thus
corresponds to 10 → 01, i.e., a flip of both spin variables.
The dynamics again amounts to two steps: first, select a
particle with probability 1=N, with N ¼ P

i si the particle
number; second, choose whether this particle hops right
or left with probabilities p or 1 − p, respectively, with
the hop occurring if the new site is unoccupied. The
transition probabilities are then Pðs0jsÞ ¼ p=N for a right
hop; Pðs0jsÞ ¼ ð1 − pÞ=N for a left hop; and, given the
number of neighboring particles Nnn ¼

P
L
i¼1 sisiþ1, with

sLþ1 ≔ s1, the probability of no change is PðsjsÞ ¼
1 − Nnn=N. In the main text, we consider the case of
half-filling, N ¼ L=2.

Appendix B: On analytical solution of the two-site East
model with tensor network ansatz.—An exact solution for
the optimal policy in the two-site East model can be
found by analytically constructing the so-called “Doob
dynamics” [34,84] as follows. First we define a “tilted”
evolution operator [29,31,33] PλðStjSt−1Þ ¼ e−λoðSt;St−1Þ ×
PðStjSt−1Þ, such that ZTðλÞ ¼ h−jPT

λ jPssi where h−j ¼P
ShSj and jPssi is the stationary state vector for P. In

the large T limit the SCGF is the log of the largest
eigenvalue of Pλ [29,31,33]. The corresponding left
eigenvector lλ is related to the dynamics that maximizes
the expected value of Eq. (7), given by the so-called
Doob (or optimal) dynamics PD

λ ðStjSt−1Þ ¼ ½lλðSt−1Þ×
PλðStjSt−1Þ=eθðλÞlλðSt−1Þ�. Applied to the two-site East
model, defining the function aðλÞ¼ ½4=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8e−2λ

p
Þ�,

we find θðλÞ ¼ − ln ðaðλÞÞ, with optimal dynamics

PD
λ ð10j10Þ ¼ PD

λ ð01j01Þ ¼
aðλÞ
2

;

PD
λ ð11j10Þ ¼ PD

λ ð11j01Þ ¼ 1 −
aðλÞ
2

;

PD
λ ð10j11Þ ¼ PD

λ ð01j11Þ ¼
1

2
:

We may then find the corresponding value function by
solving the differential Bellman equation (2). To do this,
note first that by symmetry the values of states 10 and 01
are identical, and second that Eq. (2) is invariant under an
overall shift of the value function by a constant. Therefore,
we may choose the value of states 10 and 01 to be 0, and
thus find Vλð11Þ ¼ −λ − θðλÞ.
These results are what is expected intuitively. Trajectories

biased towards enhanced activity (λ < 0) have aðλÞ < 1,
making PD

λ ð11j10Þ ¼ PD
λ ð11j01Þ > 1=2, i.e., the system is

more likely to transition to the state that is guaranteed to flip
at the next step rather than remain in 01 or 10. Furthermore,
Vλð11Þ > 0, i.e., the state guaranteed to flip is more
valuable. In contrast, trajectories biased towards reduced
activity (λ > 0) show the opposite behavior.
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To connect PD
λ to our policy ansatz Eq. (6), we first

rewrite it as an operator. Using projection operators P1¼
j1ih1j, P0 ¼ j0ih0j, and flip operators σþ¼j1ih0j, σ− ¼
j0ih1j, we define AðλÞ¼σ−þaðλÞσþþ½2−aðλÞ�P0. We
may thus write PD

λ ¼ 0.5ðP1 ⊗ AðλÞ þ AðλÞ ⊗ P1Þ.
The policy ansatz Eq. (6) involves the elementwise

square of an operator φðS0; SÞ: we thus seek the element-

wise square root of PD
λ . We define ½ÃðλÞ�ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½AðλÞ�ij

q
.

Because of their sparsity structures, we have
ÃðλÞ ⊙ P1 ¼ 0, where ⊙ is element-wise (Hadamard)
multiplication. Since ðA ⊗ BÞ ⊙ ðC ⊗ DÞ ¼ ðA ⊙ CÞ ⊗
ðB ⊙ DÞ, we find φ ¼ ffiffiffiffiffiffiffi

0.5
p ðP1 ⊗ ÃðλÞ þ ÃðλÞ ⊗ P1Þ is

such that φ ⊙ φ ¼ PD
λ . It remains to factor φ into an MPO

of the form of Eq. (5). We may rewrite this as φ ¼Pχ
d1;d2¼1 Td1d2 ⊗ Td2d1 where each Td0d is a 2 × 2 matrix

acting on the single site state space. This T can be
constructed by taking χ ¼ 2 with T11 ¼ T22 ¼ 0, T12 ¼
0.51=4P1, and T21 ¼ 0.51=4ÃðλÞ. We thus find this order-4
tensor T reproduces the exact Doob dynamics from our
translation invariant MPO-based ansatz.
For the value function, taking an exponential and square-

root element-wise of the value function to invert Eq. (4)
leads to the vector Ṽλ¼ðeVλð11Þ=2−1Þj1i⊗ j1iþj−i⊗ j−i.
Since this is already a sum of symmetric products, it is
easy to rewrite it as a translation invariant MPS with χ ¼ 2,
i.e., Ṽλ

s1s2 ¼
P

2
d1;d2¼1 v

d1d2
s1 vd2d1s2 , with order-3 tensor v such

that v111 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eVλð11Þ=2 − 1

p
, v221 ¼ v220 ¼ 1, and vd

0d
s ¼ 0

otherwise.

Appendix C: On training procedure.—We now provide
details on the procedure used to obtain the policies of the

main text. First, we outline the update step used to
improve the policy and value function approximations.
Second, we outline size annealing, where we apply
transfer learning using systems of increasing size. Finally,
we discuss policy evaluation and selection, whereby the
best policy is chosen from a set of candidates. Further
implementation details are provided in [85,86].
(i) Basic outline of training: We start by initializing the

parameters w0, ψ0, and r̄0, where r̄t is an estimate of the
average reward per-time step, rðπwÞ, after t training steps,
along with the environment and initial state s0. Choosing
the three learning rates απ , αv, and αr, for each step
t∈ ½0; T� we (1) Sample an action at ∼ πwð·jstÞ [where
x ∼ Yð·Þ stands for x sampled from Y], and from it get its
log probability and eligibility, ln πwðatjstÞ, ∇w ln πwðatjstÞ.
(2) Get the next state and reward given the current state and
action, ðstþ1; rtþ1Þ ∼ Pð·; ·jat; stÞ. (3) Get the temporal
difference error with the current value function, δtþ1 ¼
vψðstþ1Þ þ rtþ1 − r̄t − vψðstÞ. (4) Update the parameters
of the value function, ψ tþ1¼ψ tþαvδtþ1∇ψvψðstÞ.
(5) Update the parameters of the policy, wtþ1 ¼ wtþ
απδtþ1∇w ln πwðatjstÞ. (6) Update the estimate of the
average reward per time step, r̄tþ1 ¼ r̄t þ αrδtþ1.
(ii) Annealing and transfer learning: In the context of

machine learning, “annealing” (sequentially solving an
optimization problem reusing solutions to improve an
initial guess) can be considered a form of transfer learning.
In our case, we anneal the size of the system: the optimal
policies for two system sizes will be similar as long as
L0 ≳ L, and in the settings considered the optimal dynamics
should converge as L → ∞.
We first approximate the optimal policy for a small

system, L ¼ 4, starting from random initial weights. The

(a) (b) (c) (d)

FIG. 4. Training procedure and learning curves. (a) For each bias [we show λ ¼ −1 (top row), λ ¼ 1 (middle row), λ ¼ 2 (bottom
row)] TN-based policies and value functions are produced via actor-critic optimization. These are initiated at random for L ¼ 4 with
χ ¼ 16 and trained for 106 steps. Every 5000 training steps the average reward of the policy is evaluated over 104 steps (black squares)
and the weights of the policy (which we call a “snapshot” for that time) are stored. The evaluated values can be compared to the training
estimate of rðπÞ (red circles), which tends to overestimate rðπÞ initially. The policy snapshot with the highest evaluated r (blue dashed
line) is used to initiate the policy for higher values of L. This is repeated every ΔL ¼ 2 up to L ¼ 50, with L ¼ 14 shown here. (b) For
each bias, several policies (here six) are independently trained via the same procedure from different random initial conditions. This
produces a distribution of evaluated average rewards, here represented by the median (black squares) and interquartile range (red-shaded
region). The policy with the maximum average reward at each L is selected as the optimal dynamics (blue triangles). (c) Same as (a) for
L ¼ 50. The learning curves appear noisier than in (a) but note that the vertical scale is much smaller. The learning rate is kept fixed
throughout. (d) The distribution of r across parallel agents for L ¼ 50 is again much tighter than for L ¼ 14.
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weights after optimization at this size are then used as the
initial weights for L ¼ 6. This is repeated in steps of
ΔL ¼ 2, up to the maximum desired L. This process
ensures that effectively much longer training times are
used for larger systems, and produces smooth convergence
curves in L, which can be used both as diagnostic tools and
for extrapolation [cf. Fig. 3(c) inset].
(iii) Policy evaluation and selection: To determine the

quality of a policy, we use it to generate trajectories without
any change to the policy weights [cf. Fig. 1(c) of the main
text]. The set of rewards along these trajectories can then be
averaged to estimate rðπwÞ for the policy, allowing for
different policies to be compared.
To ensure that we obtain the best policies possible, we

then employ policy selection in two ways. First, throughout
training a given policy we store its weights periodically.
After some number of periods, these weight snapshots are
then evaluated and the best one is selected, ensuring that the
policy can only improve with more training. Second, we
run parallel policy optimisations and evaluations, starting
from different random initial weights, with the best one
selected.
The specific processes of policy evaluation and selection

used to produce the results in the main text are illustrated
for the ASEP in Fig. 4 (details in caption).
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