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Abstract

There is currently a worldwide effort to develop novel materials for solar energy harvesting which

are efficient, low cost and do not emit significant levels of CO2 during manufacture. Currently when

a researcher fabricates a novel device from a novel material system, it often takes many weeks of

experimental effort and data analysis to understand why any given device/material combination

produces an efficient or poorly optimized cell. The net result of this is that it can often take the

community tens of years to transform a promising material system (e.g. perovskites/small molecule

devices) to a fully optimized cell ready for production. In this work, we develop a new and rapid

approach to understanding device/material performance which uses a combination of machine

learning, device modeling and experiment. The method is able to provide a set of electrical device

parameters (charge carrier mobilities, recombination rates etc..) in a matter of seconds, rather

than days and thus offers a fast way to directly link fabrication conditions to device/material

performance, pointing a way to further and more rapid optimization of light harvesting devices.

We demonstrate the method by using it to understand annealing temperature and surfactant choice

and in terms of charge transport and recombination constants for organic solar cells made from

the P3HT:PCBM, PBTZT-stat-BDTT-8:PCBM and PTB7:PCBM material systems.
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INTRODUCTION

Over the last few decades, there has been considerable academic and industrial attention

focused on developing low cost and low carbon technologies to harvest the suns energy and

turn it into electricity[1]. Solar cells based on silicon currently dominate the market, however

these cells require silicon of 99.9999% purity or more. Obtaining this grade of silicon from

naturally occurring silicon dioxide, is a complex, expensive and multi-step process, involving

liquefaction of silicon, heating to temperatures in excess 1000 K, and numerous gasification

and purification steps [2]. This means, that significant amounts of energy have to be invested

[2, 3] before any financial returns are seen from a silicon based PV system, furthermore it

can often take years before a PV system can recoup the green house gases emitted during

its manufacture [4]. For these reasons, the last two decades have seen an intense search for

novel non-silicon based light harvesting materials [5].

Some of the more promising materials developed as alternatives to silicon include; semi-

conductors based on conducting organic molecules [6, 7], copper indium gallium selenide

(CIGS) [8, 9], and more recently perovskite [10, 11] based materials, which captured the

imagination of the community. Although, none of these material systems have yet become

a serious competitor to silicon[12, 13], there remains an intensive and on-going effort to

replace silicon, with a potentially as of yet undiscovered semiconductor [14].

Early in the development of a new material system it is not known how to optimize it

for use in solar cells. This means in dozens of labs around the world, device engineers and

scientists, build hundreds of thousands of candidate devices, trying to optimize the material

system and boost the solar energy conversion efficiency. Translating a promising solar cell

material to an optimized device can take upwards of ten years of worldwide scientific effort.

Key to this development process is the need to quantify and understand the physical mech-

anisms behind the solar cells operation [15] which in turn dictate its efficiency. Specifically,

charge carrier recombination [16], trapping [17], charge carrier mobility [18], and charge

generation [19] all have to be measured throughout the cells life time and understood. How-

ever, measuring these quantities is non-trivial, because often material parameters change

considerably as a function of film thickness, device structure, and deposition conditions [20].

Furthermore, many novel materials have high numbers of trap states thus changing the ap-

plied voltage bias or light intensity leads to significant changes in mobility and recombination
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rates [21] making it hard to benchmark one cell/device structure/material system against

another. In the more extreme case of a perovskite devices, a sea of ions within the device

slowly moves as a voltage is applied fundamentally altering the device’s behavior [22], and

making it yet harder to study and improve its operation.

Consequently, as the field of thin film solar technology has been developed, so has an array

of measurement techniques to probe the fundamental material properties of these materials.

Examples, are dark current density-voltage (JV ) measurements which have been used to

measure energetic disorder [23]; Charge Extraction by Linearly Increasing Voltage (CELIV),

which has been used to measure effective mobility [24]; Time of Flight (ToF) photocurrent

measurements for mobility and energetic disorder determination [25–27]; Transient Photo

Voltage (TPV) for charge carrier lifetime measurements [28]; Transient Photo Current (TPC)

again for effective mobility and energetic disorder [29]; Space-charge-limited current (SCLC)

for electron and hole mobility [30]; and Impedance Spectroscopy has been used to measure

recombination, mobility and contact quality [31].

In general, to extract a physical parameter from any of these measurements, one needs

to fit an analytical model to the experimental data. One simple example of this approach is

to use the slope of dark JV curve just after diode turnon to extract the diode ideality factor

(n), which in turn can be used as a measure for the disorder within a device. One usually

fits the Shockley equation,

J = J0
(
e

qV
nkT − 1.0

)
(1)

to the JV curve to extract this quantity. Where n is the ideality factor, V is the applied

voltage, J is the diode current, J0 is the reverse saturation current density, and all other

parameters take their usual meanings. However recently Würfel et al., demonstrated that

the ideality factor could also be strongly influenced by mobility [32], making it difficult to

fully trust the application of equation 1. Another example would be the CELIV technique

for determining charge carrier mobility. This was first demonstrated by Juška in 2000 [24],

Deibel et al. then revised the method with an updated equation [33], and since then there

have been other papers published either suggesting improvements on the method or ques-

tioning its validity in certain regimes [34]. In general, the drawbacks of this general approach

of fitting analytical models to experimental data are four fold; 1) The most elucidating mea-
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surements (i.e. ToF) can be time consuming and complex to perform; 2) analysis of the

results using analytical models can be time consuming; 3) it is not always clear if the ana-

lytical models are valid for a new material system and under what experimental conditions

they are valid (e.g. carrier densities, carrier gradients, light intensities etc..); and 4) often

non-standard devices have to be fabricated to perform the measurements (e.g. ToF), thus

there is uncertainty as to how the results relate back to a working solar cells.

Another approach to extract physical material parameters from experimental data is to

fit a Monte-Carlo or finite difference based drift-diffusion device model to the data. The

advantage of this approach over using analytical models, is that it can bring significant

insights into device operation: one can for example examine carrier profiles across the device

as a function of time or voltage. However to use these models again requires a significant

investment of both human and computational time , typically fitting such a model self

consistently to experimental data requires a week of computational time on a small cluster,

and a few days of time from a expert in device modeling to setup and understand the

simulation results (see supplementary information for a more detailed discussion of this

topic). This makes these methods unsuitable for a high throughput lab environment.

The factors outlined above often prevent scientists (especially in smaller labs) from carry-

ing out detailed analysis of their freshly fabricated devices and understanding which material

parameters (mobility, recombination rates, trap densites. . . ) are limiting device performance.

Progress in the field is therefore slowed as scientists rarely fully understand why a device

functions as it does.

In this work, we propose a new approach to linking solar cell performance to microscopic

material parameters. Rather than attempting to analyze experimental data directly using

analytical or numerical models, we demonstrate a method based on machine learning and

deep artificial neural networks. We first use a numerical device model to generate simulated

JV , and transient current/voltage curves from nominally good and nominally bad solar

cells. We then use these curves to train deep artificial neural networks to identify the

physical reasons for performance bottlenecks in any given device and to extract material

parameters directly from the simulated data sets. We find the deep neural network is able

to calculate material parameters such as mobility, number of trap states, recombination time

constants and parasitic resistances from standard light and dark JV curves within a few

seconds, without the need for complex time domain measurements or analysis. We then use
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this new method to identify performance bottlenecks in devices made from P3HT:PCBM,

PTB7:PCBM and the novel PBTZT-stat-BDTT-8:PCBM material system. The result is a

general and efficient turnkey method for identifying factors limiting device performance in a

lab setting, this novel method will enable scientists to more quickly optimize novel material

systems and thus speed up the search for a replacement for silicon solar cells.

EXPERIMENTAL

Organic photovoltaic (OPV) devices were fabricated on pre-patterned ITO-glass sub-

strates, the substrates were cleaned using acetone, iso-propanol, and deionized-water in an

ultrasonic bath. A layer of commercially available aluminium zinc oxide (AlZnO, Nanograde)

was then applied as a uniform coating by doctor blade at 40 °C. The AlZnO was then

annealed at 100 °C for 10 minutes in air. The active layer material PBTZT-stat-BDTT-

8:PCBM was prepared by fully dissolving it in a solution of dichlorobenzene at 30 mg.cm−3,

this solution was then blade-coated in air to achieve a thicknesses of either of 150 nm or

350 nm, thickness values were obtained using a profilometer. A 2 minutes drying period

at 60 °C on a hot plate followed to ensure removal of any residual solvent. Next 0.1 ml

of PEDOT:PSS (Heraeus HTL 4083) was spread and uniformly coated by doctor blade at

70 °C. Finally, Ag (100 nm) cathodes were thermally evaporated through a shadow mask

to define the cell structure. The chemical structure of PBTZT-stat-BDTT-8 is depicted in

figure 1a, while the energy diagram of the device is shown in figure 1b, and the physical

structure of the device is depicted in figure 1c.

Current-voltage characteristics were measured using a Keithley 2400 SMU both in the

dark, and while cells were illuminated by a Newport Solar Simulator at 100 mW cm−2. The

corresponding JV curves are plotted as dots in figure 2. All characterization was performed

in a dry-nitrogen atmosphere.
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FIG. 1: a) The chemical structure of the light harvesting polymer PBTZT-stat-BDTT-8;
b) The energy level diagram of the device; and c) the physical structure of the device

including layer thicknesses.

FIG. 2: Experimental JV curves measured for the thick (350 nm) device and for the thin
(150 nm) device, also plotted on the same figure as lines are the fits to the experimental

data using a device model. The fitting of the model to the data is discussed later.
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METHOD

Over the last 20 years machine learning (ML) approaches have been increasingly used

to accelerate material science discovery [35–44], applications include screening crystal

structure[45], rapid searching for thermometric materials [46, 47], predicting material prop-

erties from their structure[48], predicting crystal structure [36], and screening polymers for

energy harvesting applications [49, 50].

Until recently however neural networks that mimic the learning process of biological neu-

rons have been a relatively unsuccessful class of machine learning algorithm, as they under

performed most other techniques for machine learning and data classification [51, 52]. This

changed recently with two important technological developments [53]. Firstly, the increased

availability of massive data sets on which the neural networks can be trained. These data

sets have become available due to the exponential growth in labeled (meaning categorized

by a human) images and audio data. For example, if one searches for the phrase teapot

in an on-line shopping portal, one will obtain hundreds of images of ’teapots’, which have

all be identified as such by humans. Large data sets such as these were not available only

few years ago. Secondly, to train large neural networks on these new large data sets, mas-

sively parallel computing platforms are needed, with the recent rise of Graphics processing

unit (GPU) computing, and more recently dedicated neural network chips, training large

networks on large data sets has become significantly easier [53].

At the heart of the artificial neural networks is the artificial neuron [54]; this is an attempt

to represent a biological neuron in mathematical notation, as shown in pictorial form in figure

3b. The artificial neural network has a set of input values, A1 . . . An into which data is fed,

and set of weights W1 . . .Wn by which the input values are multiplied. Finally the values

AnWn are summed. Thus, the value of x in figure 3b is given by

x =
n∑
1

AnWn. (2)

The value x is then acted upon by an activation function f(x), the simplest of which sets

the output of the neuron: to 1 if x is above a given value, and sets the output 0 if the value

of x is below a given value. In this way the neuron can make simple decisions based on the

input values it receives. In this work we use the rectified linear activation function which
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FIG. 3: A diagram of the neural network used to extract material parameters from the
data within this paper, the actual network used had ten times more neurons in each

hidden layer than the diagram depicts but otherwise the same structure. Visible on the left
hand side of the image is the experimental (or simulated) data, with the red dots on the

curves representing the points at which the curves were sampled to from input vectors for
the the neural network. In the diagram a light and a dark JV curve are each being

sampled at 6 places to provide 12 data points to the neural networks 12 input nodes. Any
number or combination of experimental measurements can be placed on the input to the
network, one simply has to extend the number of input neurons, and retrain the network.

The neural network its self has red input nodes, blue hidden layers and green output
nodes. Each output node corresponds to a device/material parameter such as charge

carrier mobility or trap density. Inset: A single neuron.

has a strong biological basis [54]. Just as in biological systems, these neurons are joined

together to form networks of neurons which can be used to classify data or make complex

decisions. The network we use in this work is depicted in figure 3a (to simplify the diagram

only one in ten neurons in each layer is drawn). Data in this network flows from left to right.

Data extracted from device measurements is presented to the network on the left hand side

at the input layer (red dots). The network works on this information using its neurons (blue

dots), and the estimated values of material parameters such as electron and hole mobility

(µe/h), number of trap states (Ne/h), or shunt resistance (Rshunt) are given on the output

layer (green dots).

Before a neural network can be used to analyze device data it must be trained. Key to

successfully training neural network is to have a large data set. Using experimental data for

training is problematic for two reasons; a) tens of thousands of JV curves measured from

different devices will be needed; and b) it is often very difficult to know what the mate-

rial parameters such as mobility, recombination rates really are for any given device. For

8



these reasons we use a Shockley-Read-Hall based drift-diffusion model (the General-purpose

Photovoltaic Device Model - gpvdm) to produce the training data [20] . We set up the

device layer structure as described in the experimental section of the paper. The Highest

Occupied Molecular Orbital (HOMO)/Lowest Unoccupied Molecular Orbital (LUMO) lev-

els, and real/imaginary parts of the refractive index were manually entered into the model

for each material layer. Using this base structure, we then generated a set of 20, 000 devices,

each with randomly assigned electrical parameters, including random recombination time

constants, carrier trapping rates, trap densities, energetic disorder and parasitic resistances.

For each one of these randomly generated devices we use the model to calculate the corre-

sponding dark and light JV curve, CELIV transient, TPV transient, TPC transient at short

circuit and TPC transient at reverse bias. Example curves generated by the device model

are shown in figure 4.

In a lab setting a light JV and dark JV curve would almost always be measured on a

newly fabricated device however, more complex time domain measurements such as CELIV

or TPC would only be performed on a few selected devices to extract extra information as

these measurements are more complex and time consuming to perform. By simulating a

range of steady state and transient experimental measurements we will be able to choose

which ones are used to train the neural network and understand which experiments provide

most accurate device/material parameters.

Each JV curve or transient from a simulated measurement is effectively two columns of

numbers containing one hundred to a few thousand data points. To cut down the amount of

data the neural network has to process, we turn each measurement into a series of 6-12 data

points. For the JV curves, this means sampling the current at 0.0 V , 0.1 V , 0.2 V ,. . . , 0.7 V

and storing the values in a vector before it is fed into the neural network. The process of

sampling the JV curves, and feeding the values into the neural network is shown on the left

hand side of figure 3, where both a light and dark curve are being fed into the network. In a

similar way any combination of time domain or steady state measurements can be fed into

the neural network, one simply has to adjust the number of input nodes accordingly. We

chose the number of data points to represent each measurement by balancing the need to

have a small data set which is fast to train, and the need to have enough points to describe

each curve accurately. Finally, we should point out that for this process to be effective,

the device model must be a fair representation of a real device, the device model we use
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FIG. 4: Example steady state and transient curves produced by the model for training the
neural network. These are a sample of 10 curves from a set of 20,000 simulated devices.

For each device the structure is kept the same as in the experimental section, then random
electrical parameters generated, for each device we simulate a dark JV curve (a), a light
JV curve (b), a TPC transient at −1V , a CELIV transient and a TPV transient. The
training data was split into five blocks, and in turn one of the five blocks was used for

testing the network while the other five blocks were used for training. In this way every
member of the data set is used for both training and testing, this approach is called

five-fold cross-validation.

has previously been validated against multiple experimental data sets and proven to be

predictive [20, 55–57]. More details on the implementation can be found in the SI.

The key advantage to using this Neural network/Machine learning approach is that once

the neural network is trained, it can be applied to an unlimited number of similar devices with

minimal computational overhead, where as with approaches base on fitting physics based

device models to experimental data, significant computational resource is required each time

a new device is examined. We are in effect paying the computational cost once up front

rather than repeatedly at the time of use (This is discussed at length in the SI). A further

advantage of our approach is that it separates the task of running device models/training

neural networks from their point of use in the lab environment. One could therefore envisage

an open on-line database where scientists could exchange their pre trained networks so they

could be reused.
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RESULTS

Table I displays how accurately the neural network can extract a given material parameter

from a set of experimental data. The first column on the left displays the parameter extracted

from the material system. Both electrons and holes are present in the devices, thus there

will be two possible values of free carrier mobilities which could be extracted from the data.

However, unless special electron or hole only devices are fabricated and measured, it will

not be possible to assign a measured mobility to one carrier species. Therefore the neural

network outputs three values for mobility, a maximum value (µfree
max), a minimum value (µfree

min )

and an average value µfree
avg . The maximum and minimum values can be assigned to either

the electron or hole mobilities, but from our approach we cannot determine which one,

unless we have a priori knowledge, as to which material is likely to be more mobile. Often

in polymer:fullerene blends one can assume the electron transporting fullerene will be more

conductive than the hole transporting polymer. Both tail slopes (EU
e,h, where U stands for

Urbach) and trap densities (Ne,h) are treated in the same way with the network outputting

maximum, minimum and average values.

The value of mobility can vary by up to five orders of magnitude in an organic semicon-

ductor device, therefore to describe the networks ability to extract mobility from any given

data set, we give its accuracy using a log scale. Thus a value of 1.0 in the top three rows

of the table would means the mobility can be extracted from the experimental data within

one order of magnitude, where as smaller values mean more accurate extraction. A similar

approach is taken for values of trap density which can vary by up to 20 orders of magnitude

in a real device and shunt resistance which can vary by up to six orders of magnitude in a

device. Contact resistance and tail slope are not calculated on a log scale.

By looking at table I, it can be seen that the network extracts average and maximum

free charge carrier mobility (µfree
avg , µfree

max) within less than half an order of magnitude from a

dark/light JV curve, and over one order of magnitude from a CELIV/TPV transients. Of the

measurement techniques investigated transient photocurrent is able to extract the minimum

free charge carrier mobility (µfree
min ) most accurately to within half an order of magnitude.

When JVdark, JVlight, TPC−1V , TPV, and Suns − V oc measurements are combined as

inputs to the network the values of mobility can all be extracted to within half an order of

magnitude.
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It might be somewhat surprising that the network finds it difficult to extract mobility

from a CELIV transient, however there has been some discussion in the literature suggesting

CELIV is a difficult way to measure mobility [34]. Values of tail slope (Emin, Emax) can

be extracted from most measurements within around 14 meV, while values of trap density

can be extracted to within about 1.5 orders of magnitude. Unsurprisingly, the network

can extract the value of shunt resistance almost exactly from a dark JV curve. The final

two parameters at the bottom of the table, µPmax
avg , τPmax

avg , represent the average mobility,

and average recombination time constant at the maximum power point under AM1.5 solar

radiation. It is interesting to note that the network can extract the value of τPmax
avg quite

reliably even from the dark JV curve alone.

JVdark JVlight CELIV TPC−1V TPV suns voc JVdark JVlight JVdark JVlight Units
TPC−1V TPV TPC−1V TPV

Suns− V oc
µeff
avg 0.3 0.2 1.3 0.8 1.0 0.6 0.1 0.1 log10(m

2/V s)
µeff
max 0.3 0.3 1.3 0.8 1.0 0.6 0.2 0.2 log10(m

2/V s)

µeff
min 1.3 0.7 0.8 0.5 0.5 0.9 0.3 0.3 log10(m

2/V s)
EU

avg 11.6 12.0 12.3 10.1 12.2 11.8 9.7 9.7 meV
EU

max 13.7 13.9 14.1 10.7 14.3 13.7 10.4 11.0 meV
EU

min 13.7 13.8 14.0 13.3 14.0 13.7 12.8 12.7 meV
Navg 1.1 1.1 1.8 0.7 1.6 1.2 0.6 0.6 log10(m

−3)
Nmax 1.1 1.1 1.8 0.7 1.6 1.2 0.6 0.6 log10(m

−3)
Nmin 1.7 1.7 1.9 1.6 1.8 1.7 1.6 1.6 log10(m

−3)
Rcontact 4.9 3.9 1.5 9.9 10.10 10.2 3.9 3.9 Ω
Rshunt 0.004 0.9 0.3 1.1 1.1 0.4 0.01 0.01 log10(Ω)
µPmax
avg 1.6 1.4 1.7 1.0 1.8 1.6 0.7 0.7 log10(m

2/V s)
τPmax
avg 0.8 0.7 1.3 0.4 1.3 0.8 0.3 0.3 log10(s

−1)

TABLE I: A summary of the neural network’s ability to extract material parameters from
dark JV curves, light JV curves, CELIV transients, TPC transients, TPV transients and a
combination of the aforementioned data sets. The numbers given are the average error the
network produces when estimating a material parameter. Material parameters which can

vary by multiple orders of magnitude are given on a log scale, (see the far right hand
column of the table for units.) Before learning commences it is usual to initiate a neural
network’s weights with random numbers, consequently there is some inherit noise in the
learning process and the final quality of the neural network. Therefore, we split the data
set into five parts and in turn train the network four of the five sets while testing on the
remaining part. This process is performed five times, and the average presented in the

table above, this is process is formally referred to as five-fold cross validation. This data
corresponds to the thick device. These are RMS errors to the figure caption. True v.s.

predicted curves can be found in the SI, along with detailed discussion.
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Figure 5 visualizes the results from the JVdark,JVlight,TPC−1V ,TPV , Suns− Voc column

of table I. The horizontal axis represents the true value of a given device parameter, while the

vertical axis represents the neural network’s prediction of the parameter, all 20, 000 devices

in the data set are plotted on the graphs. Ideally the plots should be a perfect diagonal, any

off diagonal elements represent non-perfect estimation of device parameters. If one examines

the curve for Rshunt, it can be seen that it is a near perfect diagonal meaning extraction

of this parameter is very good. The plots for mobility (µavg,max,min), recombination

constant (τavg) also lie close to the diagonal. More spread out but clustered around the

diagonal are Navg and Nmax. The tail slopes seem the hardest to extract from the simulated

data, Emax,avg appear to be broadly clustered around the x/y axis, while Emin, forms a

triangle in the upper left of the plot. Again extracting the most shallow tail slope would be

expected to be most physically difficult as any current from it will be masked by the current

from the trap states with the broader tail[58].
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FIG. 5: A visualization of the results from the JVdark,JVlight,TPC−1V ,TPV , Suns − Voc
column of table 1. The horizontal axis represents the true value of a given device parameter,
while the vertical axis represents the neural network’s prediction of the parameter, all 20, 000
devices in the data set are plotted on the graphs. Ideally the plots should be a perfect
diagonal, any off diagonal elements represent non-perfect estimation of device parameters
by the neural network.
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The trained neural network was then applied to the experimental data from both the

thick and thin PBTZT-stat-BDTT-8:PC61BM devices shown in figure 2. The extracted

material parameters are shown in Table II, it is interesting to note that the parameters

extracted for both devices are quite similar as would be expected as both devices are made

of the same material system, except for the values of mobility and recombination constant

at Pmax, which one would expect to be structure dependent. The minimum value for the

tail slope of the trap states is 53 meV, while the maximum value is 80 meV. Although these

are the first reports of energetic disorder in the PBTZT-stat-BDTT-8:PC61BM material

system, they compare well to previously reported values for other similar material systems.

For example, the tail slopes in P3HT:PC61BM have previously been reported as 35 − 40

meV for the LUMO, and 60 − 65 meV for the HOMO [29, 55]. We therefore attribute 53

meV to the electron tail slope and 80 meV to the hole tail slope.

Currently, there is only one previous report of charge carrier mobilites in the PBTZT-

stat-BDTT-8:PC61BM material system [30], where SCLC was used in electron and hole only

devices. Values of mobility were determined of around 1× 10−7 m2 V−1 s−1 and of around

1× 10−8 m2 V−1 s−1 for electrons and holes respectively. We determine the maximum and

minimum values of mobility as 9 ·10−7 m2 V−1 s−1 and 4×10−8 m2 V−1 s−1, while the value

of effective mobility at µP
max is estimated as 3 × 10−8 m2 V−1 s−1 for the thick device and

1 × 10−6 m2 V−1 s−1 for the thin device. A higher mobility would be expected for a thin

device, as the center of the device would be closer to the charge injecting contacts, and thus

the traps would be expected to be more filled. The values of trap density (N) are given

as 2 × 1024 m−3 as a maximum and 7 × 1020 m−3 as a minimum. These are comparable

to the values previously given for a P3HT:PCBM material system [29]. The given value of

Rshunt reproduces the low voltage region of the dark JV curve and thus can be considered

correct although the value is low for a highly efficient device. The values of Rcontact at 40 Ω is

reasonable although high for an organic solar cell. The other values in the table are discussed

in the next section, where we compare these results to detailed numerical modeling.

VALIDATION OF NEURAL NETWORK OUTPUT

In order to understand how accurate our neural network’s values are in table II, we fit

the device model used in the first half of the paper directly to the experimental data shown
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Parameter 350 nm device 50 nm device Units

µeff
avg 2.4× 10−7 2.3× 10−7 m2V−1s−1

µeff
max 9× 10−7 1× 10−7 m2V−1s−1

µeff
min 4× 10−8 6× 10−8 m2V−1s−1

EU
avg 68 69 meV

EU
max 80 72 meV

EU
min 53 56 meV

Navg 2× 1023 5× 1023 m−3

Nmax 3× 1023 2× 1024 m−3

Nmin 7× 1020 1× 1021 m−3

Rcontact 44.33 43.93 Ω

Rshunt 3× 104 8× 105 Ω

µPmax
avg 3× 10−8 1× 10−6 m2V−1s−1

τPmax
avg 5× 10−5 2× 10−2 s−1

TABLE II: Material parameters the neural network extracted from the dark and light JV
curves for thick (350nm) and thin (50nm) devices plotted in figure 2 for the

PBTZT-stat-BDTT-8:PC61BM material system.

in figure 2. For both the thick and thin device we use the same parameter set, but simply

adjust the thickness of the active layer. It should be noted that in comparison to the neural

network method presented in this paper, fitting a device model to experimental data is

extremely computationally expensive, requiring a cluster of 50 CPUs. This is because to

evaluate each improved guess of the parameter set the model must be rerun. The results of

this fitting procedure are shown in table III.

If one compares the values in tables II and III, one can see the values are close, with

mobility values being given at around 1 × 10−7 m2V −1s−1, the trap density being given to

around 1× 1023 m−3, the shunt resistances agree to well within an order of magnitude, the

values for Rcontact disagree only by 8 Ω, but it is always hard from JV curves to distinguish

which part of the resistance should be attributed to the contact and which to the internal

resistance of the device. Both the recombination time constants (τpmax) and the mobility at

Pmax also agree well. Finally, the fit to the device model predicts a value of 50 meV for the

tail slope, which the neural network predicts a range from 53− 80 meV .
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Simulation parameter Extracted value

E
e/h
avg 50 meV

µ
e/h
avg 8× 10−8 m2V−1s−1

N
e/h
avg 8× 1023 m−3

Rcontact 36 Ω
Rshunt 2.8× 104 Ω
µpmax 8× 10−8 m2V−1s−1

τpmax 6× 10−5 s−1

TABLE III: Model parameters needed to fit the drift-diffusion model to the experimental
results from the PBTZT-stat-BDTT-8:PC61BM material system shown in figure 2. The

values in the table should be compared to those in table II

UNDERSTANDING THE INFLUENCE OF THERMAL ANNEALING AND AD-

DITIVES ON DEVICE FABRICATION.

After an organic solar cell is fabricated it is often thermally annealed, this allows the

crystalline domains to grow or shrink and for molecules to rearrange their orientation. Thus

thermal annealing represents a useful post fabrication method to optimize material micro-

scructure for higher efficiency devices. Another method used to increase device efficiency

is to introduce additives into the solution containing the active layer before it is deposited,

these additives typically act as selective solvents for the fullerene molecules and thus alter

the film formation process. Although the use of annealing and additives to improve device

efficiency are well documented within the literature, it is often difficult to understand how

methods change the electrical properties of the materials. To elucidate this, we fabricated

four organic solar cells, two made using the P3HT:PCBM material system and two made

from the PTB7:PCBM system (details of the experimental method can be found in the

appendix). One of the P3HT:PCBM cells was annealed, while the other was left as cast.

For the PTB7:PCBM cells one was cast with +%3 of the additive diiodooctane (DIO) in

the solvent of the active layer, while the other had no DIO present. Figure 6, plots the dark

JV, light JV and Suns-Voc curves for the fabricated cells.

It can be seen that the P3HT:PCBM cell which was annealed performed better than the

as cast cell, while the PTB7:PCBM cell with DIO added performed better that the one

without DIO. Table IV plots the device parameters extracted from the P3HT:PCBM data

set using a trained neural network. The value colored green on each row represents the
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FIG. 6: Left: Dark JV , light JV , and Suns-Voc curves for annealed and as cast
P3HT:PCBM cells. Right: Dark JV , light JV, and Suns-Voc curves for PTB7:PCBM cells

where 3% DIO was mixed with the diiodooctane solvent when forming the active layer.

parameter which would be expected to result in a more efficient device, the one colored red

represents the value which would be expected to result in a less efficient device. It can be

seen that annealing has increased the free carrier mobility (µfree
avg ), unchanged the energetic

disorder (EU
avg), increased the mobility at the maximum power point (µPmax

avg ) and increased

the recombination constant at the maximum power point (τPmax
avg ). Annealing also appears

to have reduced the shunt resistance, which can also be seen from the figure directly (more

current at low voltages), and increased the contact resistance.

Parameter As cast Annealed Units

µeff
avg 2× 10−8 1× 10−7 m2V−1s−1

EU
avg 68 69 meV

Navg 2× 1025 2× 1025 m−3

Rcontact 35 43 Ω
Rshunt 1.07× 107 1.01× 107 Ω
µPmax
avg 8× 10−9 4× 10−8 m2V−1s−1

τPmax
avg 5× 10−6 8× 10−6 s−1

TABLE IV: Device parameters extracted from the P3HT:PCBM devices depicted in figure
8.

Table V, plots the device parameters extracted by a neural network from the PTB7:PCBM

cells depicted in figure 6. It can be seen that, the cell with the additive has a higher free

carrier mobility (µfree
avg ) and a higher mobility at the maximum power point (µPmax

avg ). The
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recombination time constant (τPmax
avg ) was about the same for both devices and contact

resistance also slightly worse after the addition of DIO.

Parameter w/o DIO +3% DIO Units

µfree
avg 5× 10−10 1× 10−9 m2V−1s−1

EU
avg 57 69 meV

Navg 3× 1023 2× 1024 m−3

Rcontact 38 44 Ω
Rshunt 1.3× 107 1.1× 107 Ω
µPmax
avg 3× 10−9 1× 10−9 m2V−1s−1

τPmax
avg 1× 10−4 6× 10−5 s−1

TABLE V: Device parameters extracted from the PTB7 : PCBM devices depicted in
figure 8.

Finally, it should be noted that neural networks are not the only machine learning method

that can be applied to this data set to extract material parameters. In the supplementary

information we apply a k-nearest neighbour regression to the data set to produce a dupli-

cate of table 1, with the results being only marginally worse than those produced by the

neural network. We chose neural networks for this work because they are arguably currently

producing some of the most exciting advances in machine learning.
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CONCLUSION

We have demonstrated that a deep neural network can be used to quickly and robustly

extract material parameters from experimental data, reducing the time for device/material

parameter extraction from over a week using traditional modeling techniques to seconds. We

have verified the results against a more traditional strategy of fitting a device model to an

experimental data set. The advantage of using a deep neural network over more traditional

approaches, such as fitting a model or analytical expression is three fold; a) once trained the

network requires little interaction from the lab scientist to use; b) its use is instantaneous,

meaning that values of mobility, trap density and recombination rates can all be calculated

as soon as the experiment is over; and c) unlike the application of methods such as CELIV

there are no assumptions made in the application of the neural network. We anticipate this

work will be useful for those searching for more efficient 3rd generation solar cell materials.

Although, we applied this method to solar cells within the scope of this paper, the method

is equally applicable to other classes of devices such as sensors, light emitting diodes or

transistors, as long as one can reliably simulate a device using a device model, a neural

network can be trained to extract meaning from the experimental data.
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SUPPLEMENTARY MATERIAL

It is well known that the predictive power of any given neural network is strongly depen-

dent upon the amount of training data available. Indeed the recent progress made in neural

networks is in the main due to the increased amounts of training data available from the

world wide web. Therefore to investigate the influence of training data set size on the ability

of our network, we vary the number of dark JV curves our network is trained on and plot

the error in its ability to extract the shunt resistance. This is shown in figure 7. It can be

seen that there is a rapid drop in error from between 100-1000 devices, then there is a more

gradual drop in error. Even out to 10, 000 devices the error keeps dropping. Generating

training steady state and transient curves for 10, 000 devices took around 24 hours on a

work station grade computer. We did not go above this number of devices as the return in

improved recognition rate did not seem worth the additional computational overhead. One

should also note that not only would an enlarged data set take more time to generate, it

would consume more disk space and take longer to train the network with the data set.

FIG. 7: Recognition rates as a function of data set and neural network size.
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UNDERSTANDING THE RELATIVE DIFFERENCE BETWEEN DEVICES

When optimizing a new material system it is often less important to know the absolute

values of material parameters, but rather more important to understand how the material

parameters change relatively when fabrication conditions are varied. To understand how

well neural network can differentiate between two slightly different devices, the network was

trained on a previously published P3HT:PCBM device structure [55] for which experimental

data is available [55]. The device model was then used to generate a series of dark JV curves

where the mobility, density of trap states, trap tail slopes, and shunt resistances were all

systematically varied one parameter at a time. The Network was then asked to extract the

device parameters from the dark JV curves. The results are plotted in figure 8. For this

particular device, when only using a single dark JV curve as the input data, the Network

systematically overestimates free carrier mobility, underestimates the density of trap states,

perfectly extracts the shunt resistance, and underestimates the change in the tail slope.

However it is important to note that even with non-perfect extraction of device parameters

the network is still able to tell in which direction a parameter has been changed and thus

would be useful in understanding the changes in physical bottlenecks between two sets of

devices.

When manually interpreting experimental data it is often hard to attribute a change in

performance to any give device parameter. For example it is often hard to differentiate

between an increase in free carrier mobility and a reduction in the number of trap states,

both improve transport and boost device efficiency. To examine how easily the Network

confuses a change in one parameter for the change in another, we vary the density of trap

states over five orders of magnitude while keeping all other parameters constant. We then

ask the neural network if the values of free carrier mobility and tail slope change, ideally the

neural network should identify that only the density of trap states has changed. Figure 8e,

plots the result. It can be seen that the Network does not confuse a change in one parameter

for another.
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FIG. 8: In this figure a single device parameter is changed and the Network asked to extract
it from a single dark JV curve. The simulations were performed for a P3HT:PCBM device
[55]. Accuracy of extraction of; a) mobility; b) density of trap states; c) shunt resistance;
and d) energetic tail slope. e) The ability of the neural network to differentiate between
density of trap states, mobility and tail slope.
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PRACTICAL ASPECTS OF IMPLEMENTATION

The data sets for learning were generated with the gpvdm (General-purpose Photovoltaic

Device Model) solar cell simulation tool, this tool was developed by the authors and is

available for download here https://www.gpvdm.com. Gpvdm was configured to generate

200 solar cells simulations a time, with each cell having a random set of device parameters.

Each unique solar cell was given a random but unique 32 digit hex number to identify it.

From these 200 base solar cells, sets of JV and transient measurements were produced as

described in the main text of the document. After the simulations ended all but the essential

files were stripped form the simulation directories using a python script to minimize disk

usage and the resulting steady state/time domain curves converted into feature vectors. The

200 simulation directories were then zipped up and stored for future use. This process was

repeated around 100 times until we had around 20,000 devices. This took a period of around

24 hours on a single HPC node when running in RAM disk. Gpvdm its self is written in a

mixture of Python and C.

We used Googles TensorFlows (1.14) machine learning framework on a Nvidia Titan XP

GPU to perform the machine learning, on an otherwise standard desktop PC. TensorFlow

was controlled and driven using a series of Python 3.6 scripts.

Five-fold cross validation technique is employed to evaluate the performance of the neural

network. The data set consists of 24,000 samples. The data set was split into five equal,

non-overlapping, and mutually exclusive subsets. Cross validation is then performed five

times. In each round, one of the five subsets becomes the test set, while the remaining

samples are used to train the model. 10% of the training space is chosen as a validation

set which is later used for early stopping. The pre-training samples are also randomized for

each round. The scores are then averaged across the five test sets. This technique ensures

that every instance in the data set gets an opportunity to participate in the test set. Also,

the low variation in test scores across all folds and training on overlapping subsets on four

different models indicate better performance of the model on the data the model has not

been trained on.
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DATA SETS

Table VI, shows which data sets were generated for each type of device

Device Dataset size JV Dark JV Light TPC -1V TPV CELIV Suns - Voc
PBTZT-stat-BDTT-8 (thick) 23,411 X X X X X X
PBTZT-stat-BDTT-8 (thin) 23,996 X X X X X X
P3HT:PCBM (As cast) 24,085 X X X
P3HT:PCBM (Annealed) 24,085 X X X
PTB7:PCBM (w/o DIO) 23,698 X X X
PTB7:PCBM (+3% DIO) 24,098 X X X

TABLE VI: Data sets generated for this paper

WHY IS IT HARD TO FIT NUMERICAL DEVICE MODELS TO EXPERIMEN-

TAL DATA AND WHY DO WE A DIFFERENT APPROACH TO EXTRACT DE-

VICE PARAMETERS?

In the main body of the text we mention that it is technically challenging to fit device

models to experimental data for parameter extraction, and this is the reason device simu-

lations are today not performed routinely by experimentalists. There are six fundamental

reasons why fitting a device model self consistently to multiple sets of experimental data is

a challenging proposition:

• Each time the error function, f() = |DataExperimntal −DataSimulated|, is evaluated the

device model must be run this usually takes between 10 seconds to either calculate a

JV curve or transient curve. During a typical fit the error function must be evaluated

between 1000-5000 times, thus a typical time frame for a fit is on the order of hours.

• The device equations the model solves are inherently difficult (slow) to solve as they are

highly non-linear (especially when carrier traps are included), thus iterative approaches

are needed to solve them. The majority of the computational overhead is in inverting

the matrix containing the device equations.

• Charge carriers densities within the device can have a very wide range of values,

spanning from 1 × 10−3 m−3 in very deep trap states, to 1 × 1026 m−3 near the
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contact. This often results in numerical over/underflow, and thus for a given arbi-

trary device parameter set the device model can not be mathematically guaranteed

to converge even though the device parameters may be physically reasonable. Thus

f() = |DataExperimntal − DataSimulated|, can often be evaluated wrongly, introducing

error into the fitting process. This is a limitation of digital computers.

• The parameter space to be searched is big with parameters such as mobility, density

of states, shunt resistances often varying by up to 7 orders of magnitude. There are

often over 10 parameters to be searched.

• The fitting space has multiple false minima, which often require a human to spot as

being unphysical, and restart the fit.

• The fitting space has multiple false minima, which often require a human to spot as

being unphysical, and restart the fit.

• Due to the cost of evaluating the error function gradient decent methods are often

slow, as derivatives in more than one dimention have to be evaluated.

• If one wishes to fit n experimental measurements such as JV curves and TPC curves,

this will require n times more compute time.

Practically the only way to tackle this problem is to run a series of fits each starting

off at different initial conditions each on a different HPC node. Then let the nodes try to

find an answer for a few hours. If a few hours later a node has found a good fit, the fit

process is halted, if not the fits are restarted and the process repeated. In practical terms

the fits which are shown in Figure 2, took over a week to perform on a 50 core cluster. In

comparison, extracting material parameters from the same data set, by first generating a

fresh a training data set then training the neural network against the data took only 24

hours on a single compute node.

Furthermore, for fitting one requires a person who has a device physics/modeling back-

ground to run these simulations, often people who have this experience are not fabricating

devices. Even if a group has both experimental and modeling expertise, the time it takes to

perform the above descried process is prohibitive and can not be performed on every device

fabricated. This is why today experimentalitsts do not run fits as part of their every day

work flow.
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Once a neural network is trained for a device structure, extracting parameters requires

does not require a device physics/modelling background as fitting does. A trained neural

network can be applied again, and again to devices with the same structure, without the

need for re-training. One could envisage an on-line library of pre-trained neural networks,

from which one would select the most appropriate for a particular device structure, thus

removing the need for training in the day-to-day work flow of a lab scientist all together.

It should be noted that while fitting the algorithm will spend time exploring false minima,

the machine learning approach explores the whole search space, thus does not dispropor-

tionately spend time on false minima.

HYPER PARAMETERS USED FOR THE NEURAL NETWORK

Hyper parameter Value
Optimizer AdamOptimizer
Learning rate 0.001
Activation function Sigmoid
Network weight initialization xavier
Number of hidden layers 6
Number of neurons in hidden layer 1 200
Number of neurons in hidden layer 2 150
Number of neurons in hidden layer 3 50
Number of neurons in hidden layer 4 50
Number of neurons in hidden layer 5 50
Number of epochs Early stopping with initial number of epochs set to 5000
batch size 64
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THE RANGE OF SIMULATION PARAMETERS

Parameter Min Max Units
µPmax
avg 1×10−12 1×10−3.0 m2/(V · s)
EU

avg 30 90 meV
EU

min 30 90 meV
EU

max 30 90 meV
Navg 1×1018 1×1026 m−3

Nmin 1×1018 1×1026 m−3

Nmax 1×1018 1×1026 m−3

µeff
avg 1×10−10 1×10−3 m2/(V · s)
µeff
min 1×10−10 1×10−3 m2/(V · s)
µeff
max 1×10−10 1×10−3 m2/(V · s)
τPmax
avg 1×10−6 1.0 s−1

Rshunt 1×103 1×107.0 Ω
Rcontact 10 45 Ω

TABLE VII: The range of simulation parameters used by the drift diffusion model.

DETAILED DESCRIPTION OF FEATURE VECTOR GENERATION

For the neural network to perform efficiently the inputs to the network should be scaled

to within about an order of magnitude, usually the aim is to scale the data so that the input

and output values lie between 0.0 and 1.0. Therefore before the electrical curves are turned

into inputs to the neural network, they are scaled with the transforms given below in table

VIII. The values of αn, and βn were chosen so that all values within the training set fall

between 0 and 1.

As described in the main body of the text, a typical JV curve, or transient measurement

contains around 1000 data points. To reduce the amount of input neurons required, to

speed up the learning rate, and reduce memory consumption, we reduced the number of

data points representing each JV curve or transient to around ten, by sampling each curve

at the times/voltages given in the right hand column of table VIII. Furthermore, the output

parameters were also scaled. Any parameter which varied by over an order of magnitude (i.e.

the density of trap states or mobility) were taken as the log of the value, values containing

meV were multiplied by 1000.0 and series resistance was left unchanged.
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Electrical measurment Transformation
Time/Voltage
sampling intervals

JVdark α0 · log10 |JVdark|+ β0 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 V
JVlight α1 · JVlight + β1 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 V
TPC0V α2 · log10 |TPC0V |+ β2 1.1−6, 2× 10−6, 2× 10−5, 1× 104, 0.02,

0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2 s
TPC−1V α3 · log10 |TPC−1V |+ β3 1.1−6, 2× 10−6, 2× 10−5, 1× 104, 0.02,

0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2 s
TPV α4 · TPV + β4 0.14−6, 0.5× 10−6, 0.8× 10−6 , 1.0× 10−6,

1.5× 10−6, 2.2× 10−6, 10× 10−6, 20× 10−6

30× 10−6, 40× 10−6, 10−6, 60× 10−6

50×, 80× 10−6 ,90× 10−6, 100× 10−6s

CELIV α5 · CELIV + β5

0.9× 10−6 , 1× 10−6 , 2× 10−6 , 3× 10−6,
4× 10−6, 5× 10−6, 6× 10−6, 7× 10−6,
8× 10−6, 9−6

Suns− Voc α6 · log10(Suns− Voc) + β6 0.02, 0.04, 0.05, 0.1, 0.5, 0.7, 1.0

TABLE VIII: Transforming experimental data into feature vectors.

BENCHMARKING THE NEURAL NETWORK ALGORITHM AGAINST K-NN A

CLUSTERING ALGORITHM

In table IX, we compare the neural network algorithm to a k-nn classifier, green corre-

sponds to the case where the neural network outperformed a k-nn classifier, blue corresponds

to both algorithms offering the same performance, and red corresponds to the case where

the k-nn algorithm out performs the neural network.
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JVdark JVlight CELIV TPC−1V suns voc JVdark JVlight JVdark JVlight Units
TPC−1V TPC−1V TPV
TPV suns voc

µeff
avg 0.3/0.4 0.2/0.3 1.3/1.1 0.8/0.9 0.6/0.7 0.1/1.4 0.1/0.3 log10(µ)

µeff
max 0.3/0.4 0.3/0.4 1.3/1.1 0.8/0.9 0.6/0.7 0.2/0.3 0.2/0.3 log10(µ)

µeff
min 1.3/1.4 0.7/0.9 0.8/0.9 0.5/0.5 0.9/1.1 0.3/0.5 0.3/0.5 log10(µ)
EU

avg 11.6/12.3 12.0/12.5 12.3/12.4 10.1/9.8 11.8/12.3 9.7/- 9.7/10.7 meV
EU

max 13.7/14.3 13.9/14.6 14.1/14.4 10.7/11.1 13.7/14.3 10.4/12.5 11.0/12.5 meV
EU

min 13.7/14.3 13.8/14.5 14.0/14.5 13.7/13.0 13.7/14.3 12.8/13.3 12.7/13.3 meV
Navg 1.1/1.4 1.1/1.3 1.8/1.8 0.7/0.9 1.2/1.3 0.6/0.9 0.6/0.9 log10(N)
Nmax 1.1/1.4 1.1/1.3 1.8/1.8 0.7/0.9 1.2/1.3 0.6/0.9 0.6/0.9 log10(N)
Nmin 1.7/1.8 1.7/1.8 1.9/1.9 1.6/1.7 1.7/1.8 1.6/1.7 1.6/1.7 log10(N)
Rcontact 4.9/5.8 3.9/5.1 1.5/2.9 9.9/9.2 10.2/10.7 3.9/6.5 3.9/6.6 Ω
Rshunt 0.004/0.04 0.9/1.1 0.3/0.5 1.1/1.2 0.4/0.5 0.01/0.1 0.01/0.1 log10(Rshunt)
µPmax
avg 1.6/1.7 1.4/1.6 1.7/1.7 1.0/1.0 1.6/1.7 0.7/1.4 0.7/1.4 log10(µ)
τPmax
avg 0.8/1.1 0.7/0.9 1.3/1.4 0.4/0.5 0.8/1.0 0.3/0.5 0.3/0.5 log10(τ)

TABLE IX: Benchmarking the neural network against a k-nn classifier, the table shows
RMS errors for both algorithms. In the form RMS error Neural Network/RMS Error k-nn

classifier, this was done with cross validation. Green corresponds to the case where the
neural network outperformed a k-nn classifier, blue corresponds to both algorithms offering

the same performance, and red corresponds to the case where the k-nn algorithm out
performs the neural network.

R2 SCORES FOR THE NEURAL NETWORK TRAINED ON THE 350nm PBTZT-

STAT-BDTT-8:PC61BM DEVICE.

Table X gives the R2 values corresponding to the RMS errors in table I, values above

0.5 are highlighted in green. It can be seen that different experiments are capable of pro-

viding different material parameters reliably, for example light and dark JV curves provide

significant information about the contact resistance while TPV provides little information.

Physically one would expect this because TPV is an open circuit measurement unaffected

by the contact resistance, while all current measured during a JV curve experiment flows

through the contacts of the device, and will thus be influenced by it. It can also be seen

that a wide range of experiments give reliable information on mobility and trap density

but tail slop energy is the hardest to obtain information about, with only TPC at negative

voltages giving an R2 value of 0.49, this again is not surprising as tail slope energies are

notoriously difficult to measure [58] due to multiple trapping/charge carrier recombination

events within a standard device. As one combines multiple types of measurements (two
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right hand columns), the R2 rise to close to one for all material parameters except for the

Nmin and the values of tail slope. Again, we would expect Nmin to be hard to measure as

it’s influence on current leaving the device would be swamped by the current from the Nmax

traps[58]. Finally, we note that the vales for the tail slope energy, improve considerably once

multiple measurements are combined, indicating the parameter space of possible answers is

being narrowed by providing multiple measurements to the neural network.

It is interesting to note that in general when the RMS errors are low one obtains good

R2 values (i.e. above 0.5).

JVdark JVlight CELIV TPC−1V TPV suns voc JVdark JVlight JVdark JVlight
TPC−1V TPV TPC−1V TPV

Suns− V oc
µeff
avg 0.96 0.98 0.36 0.73 0.80 0.84 0.99 0.99

µeff
max 0.96 0.97 0.34 0.72 0.83 0.86 0.99 0.99

µeff
min 0.38 0.80 0.78 0.92 0.65 0.71 0.97 0.97
EU

avg 0.07 0.00 0.00 0.49 0.00 0.06 0.47 0.44
EU

max 0.00 0.00 0.00 0.01 0.00 0.07 0.0014 0.47
EU

min 0.06 0.03 0.00 0.00 0.00 0.05 0.02 0.21
Navg 0.63 0.68 0.00 0.86 0.46 0.61 0.90 0.90
Nmax 0.63 0.67 0.00 0.85 0.43 0.58 0.90 0.90
Nmin 0.15 0.17 0.00 0.24 0.00 0.13 0.23 0.23
Rcontact 0.78 0.87 0.98 0.00 0.00 0.00 0.85 0.84
Rshunt 1.00 0.38 0.94 0.00 0.06 0.90 1.00 1.00
µPmax
avg 0.36 0.48 0.28 0.78 0.31 0.32 0.88 0.88
τPmax
avg 0.75 0.81 0.30 0.92 0.34 0.68 0.96 0.95

TABLE X: R2 scores for the PBTZT-stat-BDTT-8:PC61BM device.
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