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A B S T R A C T

Hyper-heuristics are general purpose search methods for solving computationally difficult problems. A selection
hyper-heuristic is composed of two key components: a heuristic selection method and move acceptance
criterion. Under an iterative single-point search framework, a solution is modified by selecting and applying a
predefined low-level heuristic, with a decision then taken to accept or reject the resulting solution. Designing a
selection hyper-heuristic is an extremely challenging task. In this study, we investigate computer-aided design
of a selection hyper-heuristic for the open vehicle routing problem. A time delay neural network is used as an
offline apprenticeship learning method. Our approach first observes the search behaviour of multiple expert
human-designed selection hyper-heuristics on a selected sample of training instances, before automatically
generating a selection hyper-heuristic capable of solving unseen instances effectively. The proposed approach
is tested on open vehicle routing problem instances of different sizes to examine the performance and generality
of the selection hyper-heuristics generated. Improved performance is demonstrated over a set of well-known
benchmarks from the literature when compared to using the existing expert systems directly.
1. Introduction

In recent years, the Open Vehicle Routing Problem (OVRP) has
received significant attention from researchers in the field of opera-
tional research. This is largely due to this variant of the vehicle routing
problem capturing various real-world complexities of importance in
practice [1]. OVRPs are often encountered when a business eliminates
the routing cost of the return path to the depot, allowing a vehicle’s
route to terminate at the last customer served. As a result, the solution
to an OVRP instance is a set of open routes, otherwise known as
Hamiltonian paths, rather than cycles [2]. This feature in the problem
formulation distinguishes the OVRP from the standard VRP. The OVRP
has become increasingly important in recent years, particularly as
the prevalence of the use of contractors with their own vehicles for
deliveries has grown substantially [3].

There are a number of exact algorithms proposed for solving OVRPs,
such as Branch-and-Cut [4] and improved Branch-Cut-and-Price [5].
However, despite their ability to obtain optimal solutions, such al-
gorithms typically require extensive computational time to execute.
The OVRP is proven to be an NP-hard optimisation problem [6].
Consequently, heuristic and metaheuristic optimisation algorithms are
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often deployed, producing high-quality solutions within acceptable
computational times, but with no guarantee of returning an optimal so-
lution. There are many previous studies applying various metaheuristic
approaches to OVRPs with some success, including variable neighbour-
hood search [7] and evolutionary-based methods [8]. A comprehensive
review of the algorithms used to solve OVRPs can be found in Li
et al. [3].

Hyper-heuristics have emerged as general-purpose search methods
which are capable of solving computationally difficult problems [9,10].
There are two main categories of hyper-heuristics: generation hyper-
heuristics that create heuristics using existing algorithmic components,
and selection hyper-heuristics that control a given set of predefined
low-level heuristics. A typical selection hyper-heuristic consists of two
main components that are critical to performance: the heuristic se-
lection method and a move acceptance criterion. At each step of a
search, the heuristic selection method chooses and applies a low-
level heuristic from a pool of available heuristics, with the resulting
solution considered to replace the original based on the move accep-
tance criterion. Designing these components effectively is a non-trivial
process. Although in most cases the paradigms of heuristic selection
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and heuristic generation are separate, some previous effort has been
dedicated to the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 of selection hyper-heuristics [10]. In this
aper we will present an approach to automatically generate these two
ey components of a selection hyper-heuristic.

There is evidence in the literature to support the improvement
f optimisation algorithms using machine learning approaches [11].
here are many ways of doing so in hyper-heuristics, including using
achine learning as a control mechanism, as a surrogate to accelerate

bjective value calculation, or to select the best optimisation algo-
ithm for a given situation. However, fewer studies exist that create
ptimisation algorithms directly, and in many of these cases Genetic
rogramming is typically used to do so [12]. This work substantially
xtends our previous work [13], exploring the use of a data science
echnique for computer-aided design of a selection hyper-heuristic.
sing the OVRP as a case study, we propose a novel offline-learning
eneral-purpose approach, based on the concept of apprenticeship
earning [14]. We employ a time-delay neural network as a gener-
tion hyper-heuristic, using apprenticeship learning to automatically
onstruct selection hyper-heuristics that control a set of predefined
ow-level heuristics for the OVRP. Although Tyasnurita et al. [13]
emonstrated the potential of generating selection hyper-heuristics in
his manner, only the heuristic selection component was generated,
ased on observing the behaviour of a single expert approach. Here, we
enerate multiple components, including heuristic selection and move
cceptance methods for each low-level heuristic, observing and learn-
ng from the behaviours of multiple existing expert approaches. We
erform extensive experiments using a large benchmark of well-known
VRP instances with different characteristics, using two state-of-the-art

election hyper-heuristics as experts to train the proposed method. The
mpirical results show that the proposed approach is indeed capable of
utomatically constructing effective selection hyper-heuristics, observ-
ng and improving upon how experts perform heuristic selection and
ove acceptance. An additional contribution is the introduction of a
ew approach to run-time analysis of hyper-heuristics, using a method
dapted from evolutionary activity plots.

Section 2 provides an overview of the relevant background lit-
rature, introducing selection and generation hyper-heuristics, data
cience techniques and hyper-heuristics, and time-delay neural net-
orks. Section 3 introduces the open vehicle routing problem, before
ection 4 provides the details of the proposed methodology. In Sec-
ion 5 we present a set of computational experiments and results,
ncluding an analysis of the proposed approach. Finally, Section 6
oncludes the work providing a summary and directions for future
esearch.

. Background

.1. Selection and generation hyper-heuristics

Hyper-heuristics are a set of approaches that operate at a higher
evel of abstraction than traditional computational search techniques
10]. Rather than operating over a set of solutions directly, hyper-
euristics operate in a search space of heuristics or heuristic compo-
ents. Burke et al. [9] identified two main classes of hyper-heuristics:
election hyper-heuristics and generation hyper-heuristics. Whilst selec-
ion hyper-heuristic choose between a set of existing low-level heuris-
ics which to apply at a given point in the search, generation hyper-
euristics aim to generate new heuristics from existing heuristics or
euristic components. A high-level overview of these two paradigms
s provided in Fig. 1.

Selection hyper-heuristics typically operate on a single solution,
sing a set of low-level heuristics from which a heuristic is repeat-
dly selected and applied, yielding a new solution each iteration. At
ach step a decision is made whether to accept the new solution
i.e. the move). This continues until a given termination criterion is
atisfied. Selection hyper-heuristics have been used to tackle a wide
2

variety of problems in the literature previously, including: exami-
nation timetabling [16], vehicle routing [17], nurse rostering [18],
knapsack [19,20], software testing [21] and scheduling problems [22,
23]. The first Cross-domain Heuristic Search Challenge (CHeSC 2011)
was a competition designed to provide focus to the growing interest
in selection hyper-heuristics, providing a standardised benchmark to
allow different methods to be compared fairly. The winner of this
international competition, AdapHH [24], was demonstrated to outper-
form 19 other entrants across six problem domains. AdapHH works
on the basis that the nature of the low-level heuristics available are
not known in advance. It attempts to identify which heuristics perform
well together in an online manner. AdapHH was shown to demonstrate
strong generalisation capabilities, adapting well to unseen problem
domains and instances, and was long considered the state-of-the-art
in selection hyper-heuristics. Multi-Stage Hyper-heuristic (MSHH) [25]
is a more recent selection hyper-heuristic that was demonstrated to
outperform AdapHH. MSHH utilises and invokes multiple interact-
ing hyper-heuristics cyclically, controlling the transition between the
hyper-heuristics available. In this paper, we use these two state-of-the-
art hyper-heuristics as ‘experts’ for apprenticeship learning, with the
hypothesis that learning behaviours from the combination of both of
these experts will deliver improved performance.

There is also considerable research interest in generation hyper-
heuristics, which aim to automate the process of designing heuristics,
metaheuristics and hyper-heuristics. Creating heuristics is a challeng-
ing process, attempting to generate novel heuristics by searching the
space of potential heuristic components. Typically, rule abstractions
designed by humans representing move operators constitute the low-
level heuristic search space that a selection hyper-heuristic works with.
Several techniques in this area aim to construct heuristics which are
competitive with human-designed heuristics. Evolutionary algorithms,
such as Genetic Programming (GP), are often used to automatically gen-
erate heuristics [12]. Automated heuristic generation with GP has been
explored within the context of a range of problems including to create
strip packing heuristics [26], heuristics for project scheduling [27], and
evolving reusable constructive heuristics for the multidimensional 0-1
knapsack problem [28]. Alternative approaches to GP for automated
heuristic generation include Grammatical Evolution, previously used to
generate heuristics for various problem domains including bin pack-
ing [29], vehicle routing [30], and boolean satisfiability [31]. More
recently research focus has shifted towards generating selection hyper-
heuristics directly, rather than just the low-level heuristics they oper-
ate with, often incorporating ideas and techniques from data science.
Section 2.3 will discuss approaches that combine these concepts.

2.2. Information flow in selection hyper-heuristics

As shown in Fig. 1, the traditional hyper-heuristic framework con-
sists of an upper layer at the hyper-heuristic level where the low-level
heuristics are selected or generated, and a lower layer at the problem
domain level where the low-level heuristics are applied to the problem
domain. This basic framework was proposed by Cowling et al. [15],
under the assumption that generality and re-usability of algorithmic
components can be achieved by imposing a strict domain barrier con-
cept between these two layers. This barrier restricts the information
flow between layers, with only domain-independent information able
to pass through the barrier, such as objective function values and low-
level heuristic type details. Since it does not deal with the solution
space directly, the data provided is minimal or highly abstract. Swan
et al. [32] argued against this accepted notion of the domain barrier,
presenting a new framework that demonstrates the usefulness of al-
lowing some universal problem domain knowledge to pass through the
domain barrier, without the loss of generality.

The availability of an arbitrarily rich set of features is one of the

key ingredients to success when applying machine learning techniques.
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Fig. 1. High-level overview of the two main classes of hyper-heuristic based on the original framework of Cowling et al. [15].
Furthermore, several studies have shown that allowing some lower-
level information to pass through the domain barrier can significantly
improve the performance of hyper-heuristics [20,33,34]. This includes
our previous study [13], which exploited not only domain-independent
knowledge such as objective function values, but also general domain-
level knowledge in the form of the distance between solutions. The
empirical results indicated that allowing a richer information envi-
ronment can bring advantages to the learning process. We follow
this approach in our work here, allowing distance metrics to pass
through the domain barrier to be used by the components at the higher
hyper-heuristic level.

2.3. Data science techniques and hyper-heuristics

A close link exists between data analytics and optimisation algo-
rithms. Combining data science and optimisation approaches can offer
significant opportunities for improved performance in terms of the
quality of solutions found. Early work tended to focus on data mining
approaches. Thabtah and Cowling [35] presented associative classifi-
cation algorithms to predict the best heuristic for a selection hyper-
heuristic to choose. To identify an effective classification technique, the
authors compared six algorithms, consisting of three associative (CBA,
MCAR, MMAC) and three traditional classifiers (C4.5, RIPPER, PART),
in terms of their ability to extract useful rules for heuristic selection.
The experimental results showed that in general the associative classi-
fiers outperformed the traditional methods. Li et al. [36] used artificial
neural networks and boolean logistic regression to support graph-based
hyper-heuristics that construct solutions for exam timetabling prob-
lems. Tapia-Avitia et al. [37] also deployed artificial neural networks,
attempting to learn patterns in sequences of heuristics that lead to
strong performance in continuous optimisation problems.

A number of recent studies related to the area of data science
and hyper-heuristics have deployed tensor-based hyper-heuristics as
an advanced machine learning technique. Tensor analysis has been
applied to a range of problems, including the six CHeSC 2011 prob-
lem domains [38] and nurse rostering [18]. The empirical results
indicate that significant overall performance improvement is possible
using this approach. Another related technique is Case-Based Reasoning
(CBR), previously used as a hyper-heuristic for course timetabling prob-
lems [39]. This work stores previously encountered similar problems
in a source case, then adapts to fit a new problem based on these
cases. The source is then updated with the newly solved problems.
There is also work contributing to the hybridisation of Reinforcement
Learning (RL) with meta- or hyper-heuristics [40]. These RL approaches
3

learn to generate good heuristics by gathering experience whilst solv-
ing problems. The authors illustrated that using learning automata to
search the policy space in RL can boost the performance of meta/hyper-
heuristics. More recently, Q-learning has been used as an RL algorithm,
where each pair of state and action is given a total cumulative reward
value (Q-value) to guide the selection of appropriate components in a
hyper-heuristic [41,42].

Another data science technique which has been shown to gen-
erate selection hyper-heuristics effectively is apprenticeship learning.
Previous work has adopted apprenticeship learning to solve online
bin packing problems by using 𝑘-means clustering for policy genera-
tion [43], and for vehicle routing by a decision tree constructed from
a C4.5 classifier [44]. Our previous study [45] also investigated the
vehicle routing problem, with the learning component based on a
multilayer perceptron classifier taken from the field of artificial neural
networks. The computational experiments demonstrated the success
of the proposed approach, outperforming other previously suggested
methods, including C4.5 apprenticeship learning. Moreover, neural
networks were used by Smith-Miles [46] to model the relationships in
the meta-data between features extracted from problem instances and
algorithm performance. The models produced consist of rules which are
relevant to assisting with automated algorithm selection.

In addition to hyper-heuristics, data science and machine learning
methods can be used to enhance the performance of other optimisation
techniques [11]. In particular, data mining approaches have been used
to extract patterns from a population of solutions, which are then
used to guide the search process of evolutionary algorithms. Early
work by Le and Ong [47] used frequent pattern mining to identify
‘building blocks’ within genetic algorithms, in order to provide insight
into the search process over time. Chia et al. [48] used frequent itemset
mining to inform the mutation operator within a memetic algorithm,
identifying promising sub-regions of the domain of each variable in
real-valued optimisation problems. More recently, Zhou et al. [49]
presented a frequent pattern-based search (FPBS) method, which also
used data mining to guide the generation of new solutions in the
evolutionary process of a memetic algorithm. A similar approach was
proposed by Zhou et al. [50], which used frequent itemset data mining
to drive the recombination process in a memetic algorithm for the
𝛼-separator problem.

2.4. Time delay neural networks

Time delay neural networks (TDNN) are an artificial neural network
architecture often used for data classification [51,52]. TDNNs are sim-
ilar in structure to Multi-Layer Perceptrons (MLP), consisting of three
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layers: input, hidden, and output, and all connections are feedforwards.
A TDNN is a multi-layer feedforward network whose hidden and output
neurons are replicated across time [53]. Because of the similarities
between the structures of MLPs and TDNNs, backpropagation can be
used to train a TDNN. Backpropagation is measured as the gradient
descent of the mean-squared error of the difference between the desired
output and the observed network output. The derivative of the error
is propagated back through the network, and the weights adjusted
accordingly. This operation is repeated several times for all training
data until the network yields the desired output [54]. The only aspect
that distinguishes training a TDNN is that the connection weights are
updated according to the average rather than the independent error
signal [55]. Although TDNNs were initially designed for speech recog-
nition tasks, they are capable of strong performance when dealing with
any sequential data (e.g. time series), by supplementing the input with
time-delayed copies of previous inputs. Previous work in the literature
covers a wide range of applications, such as traffic flow prediction [56]
and image sequence analysis [57].

Compared with models based on MLPs, TDNN model prediction can
be more accurate and robust [58,59]. The complexity of implementing
a TDNN is moderate compared to Recurrent Neural Networks (RNN),
and does not require extensive memory storage requirements [60].
In TDNNs, the inputs to any neuron/node i can include the outputs
of earlier nodes, both for the current time step t and some defined
number d of previous time steps (𝑡 − 1, 𝑡 − 2,… 𝑡 − 𝑑). This is done
using tap-delay lines [61] which affect the input–output mapping.
Previous work by Peddinti et al. [62] indicated that TDNNs can ef-
fectively model long-term temporal dependencies via this mechanism,
particularly when addressing large data scenarios. As the weights in
TDNNs are vectors, selecting the length of the weight vector is a crucial
decision. If the length is too long, the model cannot respond to the input
changes in a timely manner. While if it is too short, the model cannot
represent the large-time-delay property of the system. The optimal
weight length depends on the application and the computational budget
available [63].

Based on the properties above, and our own previous success gen-
erating the heuristic selection component of a selection hyper-heuristic
with TDNNs [13], in this paper we use TDNNs to model the heuristic
selection and move acceptance behaviour of two expert selection hyper-
heuristics, generating complete selection hyper-heuristics for the OVRP
via apprenticeship learning.

3. Open Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a field of study with a broad
definition and a large number of variants [64–67]. The VRP literature
has increased significantly over time since it was first proposed by
Dantzig and Ramser in the late 1950s [68]. For the interested reader,
a comprehensive review of the VRP and its variants can be found in
Eksioglu et al. [69]. A solution to the VRP aims to provide an optimal
distribution of deliveries from a central depot to some customers with
known demands, subject to a particular set of constraints. The typical
main objective in a VRP is to minimise the cost of vehicle routes, such
as route length, total driving costs or driving time, while the general
constraints of VRP relate to the vehicle capacities or type, and number
of customers to be served. In a standard VRP, the solution approach
needs to identify a sequence of deliveries to customers for a fleet of
fixed capacity vehicles based at a single depot, where each vehicle must
leave from and return to the same depot.

The Open Vehicle Routing Problem (OVRP) was introduced by
Schrage [70], who described certain characteristics of some real-life
VRPs. In the OVRP variant, vehicles are not required to return to
the depot at the end of a route, so a route ends after servicing the
last customer. OVRPs often relate to cases where private vehicles are
used, since these vehicles tend to have a higher cost when forced to
return to the depot. Another issue is that the vehicles available may
4

be unable to satisfy the customer demand when the cost of returning
to the depot is included. Bodin et al. [71] presented an OVRP case
study within the FedEx Express company. Following this, interest in the
OVRP was limited for a number of years until the work of Sariklis and
Powell in 2000 [72], who presented a sequential two-phase method
called Cluster-First Route-Second (CFRS), using a minimum spanning
tree with penalties procedure. Brandão [73] presented improved results
on the same benchmarks, using a Tabu Search based approach which
utilised insertion and swap operators between two routes in a solu-
tion. Fleszar et al. [7] implemented a variable neighbourhood search
algorithm which explored different neighbourhoods, allowing segments
to be exchanged between routes and subroutes within a single route to
be reversed. Li et al. [3] deployed a record-to-record travel algorithm
(ORTR), providing a comparison to a number of existing approaches, in
addition to introducing a new benchmark set of larger OVRP instances.

Following the introduction this new benchmark, interest in ap-
plying metaheuristics to the OVRP increased considerably. Repoussis
et al. [8] introduced a hybrid evolution strategy (HES), integrating a
memory-based trajectory local search algorithm within an evolutionary
algorithm framework, achieving some new best solutions. Subrama-
nian et al. [74] hybridised Iterated Local Search and Set Partitioning
(ILS-RVND-SP), showing strong performance over benchmarks from
a variety of VRP variants. The guided local search method (GELS)
of Hosseinabadi et al. [75] was demonstrated to offer very strong
results, matching or outperforming HES on all but two of the large
instances tested. Ozcetin et al. [76] considered a real-world distribu-
tion problem, combining truck loading with vehicle routing. An exact
approach was used to plan the deliveries of fully-loaded trucks, whilst
a hybrid genetic algorithm was used to solve the open vehicle routing
problem for partial loads.

Although many previous studies have tended to solve relatively
small problem instances, recent research trends have shifted towards
larger real-world problems [77]. In this study, we consider three sizes
of OVRP instances taken from different sources (Standard (S) [73],
Large (L) [3], and Very Large (VL) [78]), as shown in Table 1. For
the instances with the same number of customers, number of vehicles,
and vehicle capacity between instances, the service time and maximum
route time differs.

The objective of the OVRP is to minimise the total travel 𝑐𝑜𝑠𝑡, as
efined for a solution 𝑆 in Eq. (1):

𝑜𝑠𝑡(𝑆) = 𝑐 × 𝑣 + 𝑑 (1)

his objective function includes the cost of the number of vehicles
sed (𝑣) and the distance travelled (𝑑). We assume that any benefit
f reducing the distance travelled is outweighed by the operating
ost of an extra vehicle [3]. A weighting coefficient 𝑐 (set to 1000
n our work) is used to emphasise the importance of reducing the
umber of vehicles, which is much more costly than the overall distance
ravelled. The primary objective is to minimise the number of vehicles

required, completing all deliveries within the least total distance
ravelled possible 𝑑.

. Proposed approach

Motivated by the work described in Section 2 above, the work in
his paper further investigates the potential of exploiting neural net-
ork architectures for automated selection hyper-heuristic design. The
roposed approach is based on the concept of Learning from Demon-
tration (LfD). LfD is a technique that derives policies from gathering
emonstrators examples and mapping their actions [79]. By labelling
ach recorded movement, a library of samples which can be used for
earning from is built. Our approach is also inspired by the concept of
pprenticeship learning (AL), developed by Abbeel and Ng [14]. AL is
branch of Machine Learning within which an ‘apprentice’ learning

gent can observe another ‘expert’ agent’s behaviour, and has been
uccessfully applied in the fields of robotics and control, including
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Table 1
OVRP benchmark instances used to test our approach.

Instance ID Customers Vehicles Vehicle capacity

S1 50 5 160
S2 75 10 140
S3 100 8 200
S4 150 12 200
S5 199 16 200
S6 50 5 160
S7 75 10 140
S8 100 8 200
S9 150 12 200
S10 199 16 200
S11 120 7 200
S12 100 10 200
S13 120 7 200
S14 100 10 200

L1 200 5 900
L2 240 9 550
L3 280 7 900
L4 320 10 700
L5 360 8 900
L6 400 9 900
L7 440 10 900
L8 480 10 1000

VL1 560 10 1200
VL2 600 15 900
VL3 640 10 1400
VL4 720 10 1500
VL5 760 21 900
VL6 800 11 1700
VL7 840 21 900
VL8 880 10 1800
VL9 960 10 2000
VL10 1040 10 2100
VL11 1120 10 2300
VL12 1200 10 2500

for flight simulation programs [80], and robot control [81]. In such
approaches, supervised learning is used to find a parameterised policy
from the examples provided by the experts. Previous works in AL have
shown the effectiveness of using expert demonstrators [44,80,81].

With this previous work in mind, we explore the promising concept
of LfD/AL for automated design of computational search algorithms.
Although this study does not follow the structure of these approaches
directly, the idea of student and teacher learning is represented by the
generated selection hyper-heuristic and the expert hyper-heuristic(s)
respectively. The proposed approach aims to generate new selection
hyper-heuristics which are able to offer improved performance com-
pared to the existing expert approaches used as demonstrators.

Fig. 2 illustrates the general process flow of the proposed approach.
The overall framework consists of three successive phases, follow-
ing a train and test structure. The first phase constructs datasets to
use for model training. These datasets consist of the relevant actions
and solution features obtained from the expert hyper-heuristics while
solving a set of selected problem instances. In the second phase, the
datasets are fed into a Time Delay Neural Network (TDNN) to create
classifiers for heuristic selection and move acceptance to form a new
selection hyper-heuristic. Finally, the third phase applies and tests the
generated selection hyper-heuristic to unseen problem instances. These
three phases are explained in detail in the subsequent subsections.

4.1. Phase I – Dataset construction

In this study, we use two state-of-the-art expert hyper-heuristics,
Adaptive Hyper-heuristic (AdapHH) [24] and Multi-Stage
Hyper-heuristic (MSHH) [25]. We will observe their search behaviour
as they select a low-level heuristic and make move acceptance de-
cisions, recording them as actions. The expectation is that by col-
5

lecting this data and learning from the combination of these two
expert approaches, the generated hyper-heuristics can deliver improved
performance.

The two actions of an expert recorded correspond to the two main
components of selection hyper-heuristics: heuristic selection and move
acceptance. The input and output features of these actions are as
follows:

Input features: There are two main input features to these actions,
consisting of the change in the objective value (𝑜𝑏𝑗𝐷𝑖𝑓𝑓 ) and the
distance between the solutions before and after the application of a
heuristic. The distance metric used is the adjacency-based distance
as defined by Kubiak [82], which counts the number of mismatched
positions in a route. This metric was chosen as solutions to the VRP
are represented as a permutation of customers, so the position of a
customer within a route is directly related to the quality of the solution.
Assuming a simple example of a single vehicle visiting three customers
{𝑐1, 𝑐2, 𝑐3}, ⟨𝑐1, 𝑐2, 𝑐3⟩ represents a route with a cost of 10 where the
ehicle starts from the location of the first customer, then goes to the
econd customer and finally visits the third one. The vehicle then stays
here. Applying a swap operator randomly, a new route ⟨𝑐1, 𝑐3, 𝑐2⟩ is
enerated, with a cost of 6. In this case, the difference in cost would
e 4 and the distance between solutions would be 2.

Output features: In addition, there is an output feature for each
ction. For heuristic selection, the output is simply the low-level heuris-
ic (LLH) selected. For the move acceptance criteria, as both expert
yper-heuristics always accept improving solutions, identifying a policy
o handle non-improving (i.e. either equal or worsening) solutions
s important in order to avoid becoming trapped in local optima.
ence, the output feature recorded for move acceptance is whether
non-improving solution was accepted (Equal Accepted, Worsening

ccepted).
We execute each of the experts on a set of selected instances from a

enchmark problem, collecting data to train effective heuristic selection
nd move acceptance strategies with. A separate dataset is maintained
or each action, with data only collected if the expert accepts a solution.

hile a single dataset is constructed for heuristic selection, for move
cceptance a dataset is constructed for each separate LLH. This will
nable the methods trained on the dataset to learn appropriate accep-
ance decisions following the application of a particular heuristic. Eight
LHs are employed in this study, the details of each will be explained
ubsequently below. Consequently, there are eight datasets collected
or move acceptance criteria, with input saved every eight consecutive
teps (𝑡). An overview of the data collection process is provided in
ig. 3.

We use the HyFlex implementation of the VRP for our experi-
ents [83], which contains ten LLHs (LLH0, . . . , LLH9). However,

ince our hyper-heuristics operate under a single-point based search
ramework, we exclude the crossover operators LLH5 and LLH6. The
emaining eight LLHs can be grouped based on their type, consisting
f local search (LS), which conduct iterative search within the neigh-
ourhood to improve the incumbent solution, mutation (MU) which
erturb a solution randomly, and ruin-recreate (RR) which partially
estroy then repair a given solution. To ensure consistency, we use
he same LLH indexing as our previous work [45], more details on the
mplementation of each LLH can be found in Walker [84]. The mutation
nd local search LLHs in our study are:

• LLH0 (MU0): two-opt mutation swaps two adjacent customers
within a single route.

• LLH1 (MU1): or-opt mutation moves two adjacent customers to a
different location within a single route.

• LLH4 (LS0): shift local search moves a customer from one route
to another provided that the new position yields an improvement.

• LLH7 (MU2): shift mutation moves a single customer from one
route to another.

• LLH8 (LS1): two-opt local search takes the end sections of two

routes and swaps them to create two new routes.
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Fig. 2. Proposed apprenticeship learning framework to generate selection hyper-heuristics with Time Delay Neural Networks.
Fig. 3. Data collection from an expert hyper-heuristic while solving a problem instance.
• LLH9 (LS2): GENI local search takes a customer from one route
and places into another route, in between the two customers of
that route which are closest to it.

Examples of the neighbourhood moves that are made by each of the
mutational and local search low-level heuristics are provided in Fig. 4.
We also include the following ruin-recreate LLHs:

• LLH2 (RR0): location-based radial ruin-recreate operator selects a
number of customers to remove from the solution based on their
proximity to a given location.

• LLH3 (RR1): time-based radial ruin-recreate operator selects a
number of customers to remove from the solution based on the
proximity of their arrival time to a given time.

There are two parameters which control the behaviour of low-level
heuristics: Intensity of Mutation (IoM) for mutational and ruin-recreate
heuristics, and Depth of Search (DoS) for local search heuristics. The
6

values for both parameters influence the number of move steps and are
in the range of [0,1]. A higher DoS setting will lead to a local search
heuristic searching a larger number of neighbouring solutions for an
improving move. Higher values of IoM denote that more variables in
the solution are modified during mutation. In the case of ruin-recreate
heuristics, higher values of IoM indicate that more parts of a solution
will be destroyed and rebuilt. This study uses fixed values of 0.8
and 0.4 for DoS and IoM respectively, based on the parameter tuning
experiments by Gümüş et al. [85] for the vehicle routing problem
domain in HyFlex.

4.2. Phase II – Generating classifiers

The current state of the search is a critical factor when deciding
how to proceed in the search process using a selection hyper-heuristic.
The objective value measured at a step t depends directly on the
previous objective values at steps 𝑡 − 1, 𝑡 − 2, etc. A previous study by
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Fig. 4. Illustration of OVRP perturbative low-level heuristics.
Peddinti et al. [62] showed the effectiveness of TDNNs to model long-
term temporal dependencies, when dealing with large data scenarios.
Their results are in line with our need to learn from several previous
time steps in the search process (long dependencies) to solve large-
scale OVRPs. Hence, in the second phase, we generate classifiers from
each dataset using TDNNs. The first and second phases complement
each other, constituting the whole learning process, including data
collection and training. The output from the second phase is a model
representing a selection hyper-heuristic, which generalises what has
been learned from the datasets, combining the heuristic selection and
move acceptance classifiers together.

A TDNN model is determined by three essential factors, consisting of
the network architecture, the input and activation functions of the unit,
and the weight of each input connection [86]. As the first two elements
are fixed, the behaviour of the TDNN is defined by the values of the
weights of each connection. During training, these weights are initially
set to random values, before the training set instances are repeatedly
exposed to the network. Then the network output is compared with the
desired output for the particular instance at hand. A minor adjustment
is made to all weights in the network in the direction that would bring
the observed network output values closer to the desired output.
7

A TDNN has certain parameters that can influence performance, in
particular, the number of hidden nodes, learning rate, and momentum.
We used the same parameter settings as presented in our previous
study [13], which were tuned using the Taguchi design of experiments
method: 24 hidden nodes, 0.07 learning rate, and 0.9 momentum.

4.3. Phase III – Applying the generated hyper-heuristic

In the final phase, we apply the generated TDNN classifiers to
unseen instances from the OVRP benchmarks, independent of the in-
stances used by the expert hyper-heuristics in the first phase. The
pseudo-code of the final phase is illustrated in Algorithm 1. Firstly, a
starting solution to the current problem 𝑆 is initialised (Line 1). Then a
number of steps are iteratively completed until a maximum time limit
is reached. A heuristic ℎ is selected and applied to the current solution
based on the TDNN classifier (Lines 4–5). In the case that an improving
solution is found following the application of a heuristic chosen by
the TDNN classifier, it will always be accepted (Line 8). If there is
no improvement found, the decision whether to accept or reject the
new solution is made by the move acceptance method based on the
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TDNN classifier (Line 13). The procedure will stop at the maximum
time allowed and return the best solution found (Line 16).
Algorithm 1 Application of the generated TDNN hyper-heuristic
1: initialise feasible starting solution 𝑆
2: 𝑆𝑏𝑒𝑠𝑡 ← 𝑆
3: while maximum time allowed is not exceeded do
4: select a heuristic ℎ using TDNN Heuristic Selection
5: 𝑆′ ← apply heuristic ℎ to solution 𝑆
6: 𝛿 = 𝑐𝑜𝑠𝑡(𝑆) − 𝑐𝑜𝑠𝑡(𝑆′)
7: if 𝛿 > 0 then
8: 𝑆 ← 𝑆′ ⊳ Improving solution is accepted automatically
9: if 𝑐𝑜𝑠𝑡(𝑆) < 𝑐𝑜𝑠𝑡(𝑆𝑏𝑒𝑠𝑡) then

10: 𝑆𝑏𝑒𝑠𝑡 ← 𝑆 ⊳ Update best solution found if necessary
11: end if
12: else
13: TDNN Move Acceptance criteria is applied ⊳ if 𝑆′ is

accepted, 𝑆 ← 𝑆′

14: end if
15: end while
16: return 𝑆𝑏𝑒𝑠𝑡

5. Computational experiments

All experiments are performed on an Intel(R) Core(TM) i7
(3.40 GHz) with 16 GB RAM. For each of the selection hyper-heuristics
generated, 30 trials on each instance are executed, with each trial
terminating after 600 nominal seconds based on the benchmark time
limit for these instances used in previous work in the literature [13,87].
Firstly we compare the apprenticeship learning hyper-heuristic trained
using both experts to selection hyper-heuristics trained using only the
datasets yielded from an individual expert. Additional performance
comparison to the performance of each individual expert executed
independently is also provided. This comparison is done based on
models trained and tested on the same type of instance (either S, L or
VL), before cross-class training and testing experiments are performed
(i.e. training on one type of instance, then testing on another) to
assess the generalisation capability of the proposed method. Then we
analyse the prediction accuracy and average accuracy per class for
the TDNN apprenticeship learning hyper-heuristic trained using both
experts, providing the receiver operating characteristic (ROC) curves
for each low-level heuristic. Finally, we assess the performance of
individual low-level heuristics and different low-level heuristic types
within the generated method, comparing the selection trends to those
that can be observed from the two expert hyper-heuristics.

5.1. Comparison of TDNN selection hyper-heuristics with different training
sets

In this section, we first compare the performance of the pro-
posed TDNN apprenticeship learning hyper-heuristic trained using both
experts (TDNN-ALHH-Both), TDNN-ALHH based on a single expert
(TDNN-ALHH-AdapHH and TDNN-ALHH-MSHH), and the individual
expert hyper-heuristics (AdapHH and MSHH) applied separately. These
results were obtained by training on a sample set of a single size of
OVRP instances (either S, L or VL), then tested on unseen instances
in the same group of problem size. The training set used three sample
instances arbitrarily chosen with differing numbers of customers and
vehicle capacities. The results of testing over different sets of instances
(Standard, Large, Very Large, All) are summarised in Fig. 5. The
average rank out of the five methods for each set of instances is
provided, with a lower rank indicating better performance. For each
individual instance, the average rank based on performance over 30
runs is used for this comparison.

Fig. 5 shows that the proposed method trained by observing both
expert hyper-heuristics (TDNN-ALHH-Both) clearly outperforms the
8
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other methods. The average rank (out of 5) for this method across the
entire benchmark is 1.62. Based on a Tukey test (within a 95% confi-
dence interval), there is a statistically significant difference between the
performance of TDNN-ALHH-Both and three of the four methods tested.
However, the difference in performance between TDNN-ALHH-Both
and the second best method (TDNN-ALHH-MSHH, average rank 2.12) is
not statistically significantly different. For both of the individual expert
methods tested (MSHH and AdapHH), there is a statistically significant
difference between the performance of the apprentice trained by ob-
serving that method (TDNN-ALHH-MSHH and TDNN-ALHH-AdapHH
respectively), with the apprentice outperforming the expert in both
cases. The relative performance of AdapHH is particularly striking
(average rank 4.50, no best performance), as this has historically been a
state-of-the-art method, winning the CHeSC 2011 competition for selec-
tion hyper-heuristics. As AdapHH contains a number of online learning
mechanisms, it is likely that it has to spend a lot of computational time
learning effective strategies for heuristic search that are subsequently
exploited by the apprentice hyper-heuristics from the beginning of the
search.

In order to analyse the generalisation capability of the proposed
apprenticeship leaning approach, we will also test various combinations
of different size problem instances for training and testing. We test
five different combinations. The first three are trained on small sized
instances, then tested on Standard, Large and Very Large instances
respectively. This will provide insight into whether training on smaller
instances is sufficient for high performance in larger scale problem in-
stances. The fourth combination trains on Large instances, and is tested
on Very Large instances, to see if increasing the size of the training
instances also increases performance. The final combination consists of
a training set that includes both Standard and Large instances, and is
then tested on the Very Large instances.

A performance comparison for using different size instances of
OVRP in training and testing, based on Wilcoxon signed-rank tests,
are given in Table 2. The values in the table represent the number
of instances that a particular difference in performance is observed,
where ‘>’ indicates that Algorithm 1 performs better than Algorithm 2
(with a statistically significant difference in the performance within a
confidence interval of 95% over 30 runs), and ‘<’ indicates vice versa.

on-statistically significant differences in performance are denoted by
≈’. The total number of instances for each training-test set combination
iffers depending on the test set used, there are 14 Standard instances,
Large instances, and 12 Very Large instances.

Table 2 highlights the ability of the proposed method to generalise
ell, since statistically significantly better performance is observed

n more than half of the instances tested. This table shows that the
pprentices are able to consistently outperform the experts whose be-
aviour they observed. Again, this is likely due to the lack of overhead
equired to learn which heuristics are effective, and which to exclude,
emonstrating the advantage of learning these characteristics in an
ffline manner. The subsequent subsections provide additional analysis
n the behaviour and insight into the results obtained by the best
pproach observed in this section (TDNN-ALHH-Both).

.2. An analysis of the classifiers generated

Data classification tasks in the field of machine learning are divided
nto binary, multi-class, multi-labelled and hierarchical [88]. For each
f these classification sub-fields, the performance measure can be differ-
nt. A classifier’s evaluation is generally based on prediction accuracy,
hich is the percentage of correct predictions divided by the total
umber of predictions [86]. There are several methods for calculating
classifier’s accuracy, in this work we use cross-validation. The data

et is divided into equal-sized subsets, which are used for both training
nd testing. For each subset, the classifier is trained on the union of
he remaining subsets, then tested on the original subset. The average

f the error rate of each subset is therefore an estimate of the error
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Fig. 5. Average rank over different instance sets of TDNN-ALHH employing both experts (TDNN-ALHH-Both) to TDNN-ALHH employing a single expert (TDNN-ALHH-AdapHH
and TDNN-ALHH-MSHH) and the expert itself (AdapHH and MSHH).
Table 2
Performance comparison for different combinations of training and test set instance
types.

Algorithm 1 Algorithm 2 > < ≈

Standard (train) to standard (test)
TDNN-ALHH-Both TDNN-ALHH-AdapHH 10 1 3
TDNN-ALHH-Both TDNN-ALHH-MSHH 10 1 3
TDNN-ALHH-Both AdapHH 11 1 2
TDNN-ALHH-Both MSHH 10 1 3
TDNN-ALHH-AdapHH AdapHH 11 0 3
TDNN-ALHH-MSHH MSHH 10 0 4

Standard (train) to large (test)
TDNN-ALHH-Both TDNN-ALHH-AdapHH 5 0 3
TDNN-ALHH-Both TDNN-ALHH-MSHH 5 0 3
TDNN-ALHH-Both AdapHH 6 1 1
TDNN-ALHH-Both MSHH 6 0 2
TDNN-ALHH-AdapHH AdapHH 5 2 1
TDNN-ALHH-MSHH MSHH 5 1 2

Standard (train) to very large (test)
TDNN-ALHH-Both TDNN-ALHH-AdapHH 5 1 6
TDNN-ALHH-Both TDNN-ALHH-MSHH 5 0 7
TDNN-ALHH-Both AdapHH 5 1 6
TDNN-ALHH-Both MSHH 5 0 7
TDNN-ALHH-AdapHH AdapHH 6 1 5
TDNN-ALHH-MSHH MSHH 6 0 6

Large (train) to very large (test)
TDNN-ALHH-Both TDNN-ALHH-AdapHH 7 3 2
TDNN-ALHH-Both TDNN-ALHH-MSHH 7 1 4
TDNN-ALHH-Both AdapHH 7 0 5
TDNN-ALHH-Both MSHH 7 0 5
TDNN-ALHH-AdapHH AdapHH 7 1 4
TDNN-ALHH-MSHH MSHH 7 2 3

Standard + Large (train) to very
large (test)
TDNN-ALHH-Both TDNN-ALHH-AdapHH 7 1 4
TDNN-ALHH-Both TDNN-ALHH-MSHH 7 0 5
TDNN-ALHH-Both AdapHH 9 2 1
TDNN-ALHH-Both MSHH 9 1 2
TDNN-ALHH-AdapHH AdapHH 8 2 2
TDNN-ALHH-MSHH MSHH 8 1 3

rate of the classifier. Here, we will use cross-validation with ten folds
to evaluate the accuracy of the model trained using the datasets from
both expert hyper-heuristics (TDNN-ALHH-Both).

The heuristic selection classifier component of TDNN-ALHH-Both
has an exact match ratio (correctly classified instances rate) of 56.7%.
This performance is stronger than previous studies, which obtained an
9

Table 3
The per-class effectiveness of the heuristic selection classifier component of
TDNN-ALHH-Both.

Class Exact match ratio (%) AUC

LLH0 98.25 0.781
LLH1 99.46 0.768
LLH2 91.58 0.864
LLH3 99.18 0.651
LLH4 75.99 0.743
LLH7 77.43 0.956
LLH8 64.32 0.805
LLH9 93.78 0.782

accuracy of 51.2% [13] and 50.3% [45] respectively for the heuristic
selection classifier. Although a classification accuracy of around 50%
may seem unimpressive at first glance, it is imperative to note that we
are working with multi-class classification. A previous study demon-
strated that it is more challenging to reach an accuracy of 50% for a
multi-class dataset, than to achieve an accuracy of 75% for a binary
dataset [89].

In addition to accuracy, multi-class domains typically also use
average-accuracy to assess the quality of the overall classification [88].
This is due to the fact that considering overall accuracy does not
separate between the number of correctly classified examples of dif-
ferent classes, especially in the context of imbalanced classification
problems. Table 3 shows the details on the exact match ratio for
every class (low-level heuristic) available for selection. The rate of
correctly classified instances for each class ranges between 64.32% and
99.46%. Based on average accuracy, the classification effectiveness of
the heuristic selection classifier is 87.5%. For move acceptance, the
trained model has fixed strategies based on the behaviour of the two
expert approaches for some of the low-level heuristics: equal moves are
always accepted for LLH0, LLH4, LLH8, and LLH9 and worsening moves
are always accepted for LLH7. For the remaining low-level heuristics,
the accuracies of the move acceptance classifiers for LLH1, LLH2, and
LLH3 are 85.2%, 89.1% and 87% respectively.

To further illustrate the predictive ability of classifiers for heuristic
selection, we also provide Receiver Operating Characteristics (ROC)
analysis with Area Under the Curve (AUC) score in Table 3. AUC is also
referred to as Balanced Accuracy [88]. This metric is often used in im-
balanced data classification [90], which is suitable for our datasets. In
imbalanced domains, it is necessary to combine the individual measures
from a confusion matrix to take into account the class distribution. A
well-known approach to unify these measures is to use the ROC curve,
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Fig. 6. Receiver Operating Characteristics (ROC) curves for different low-level heuristics, visualising the predictive ability of the heuristic selection classifier component of
TDNN-ALHH-Both.
shown for each low-level heuristic in Fig. 6. The ROC curve is created
by plotting the True Positive Rate (TPR) on the 𝑦-axis against the False
Positive Rate (FPR) on the 𝑥-axis. The TPR of a classifier is the number
of positive instances correctly classified (true positive) compared to the
total positive instances (true positive and false negative). While the
FPR is estimated as a number of negative instances falsely classified
(false positive) compared to the total negative instances (false positive
and true negative). A good classifier is reflected by a ROC curve
which lies in the upper left hand corner of the square. Therefore, a
perfect classifier is indicated by a ROC curve goes straight up the 𝑦-axis
(following the left-hand side of the square) then along the 𝑥-axis (across
the top boundary of the square). On the other hand, a classification
rule no better than chance is portrayed by a ROC curve which follows
the diagonal (from the lower left corner to the top right corner) of the
square, as illustrated by a red diagonal line in Fig. 6.

The AUC is simply the area under the ROC curve. For AUC, the
higher the score (approaching 1), the better the performance of a
classifier, while a score of 0.5 is comparable to random choice. It can
be seen from Table 3 that all of the classes have a score of more than
0.5 (between 0.651 and 0.956), demonstrating that the classifiers have
learnt some information about the class. Based on the criteria above for
identifying a good classifier, the best ROC curve is for LLH7, followed
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by LLH2 and LLH8, respectively. The following sections will analyse
the utilisation and activity of these low-level heuristics in more detail.

5.3. Analysis of low-level heuristic utilisation

This section provides some analysis on the success of individual low-
level heuristics during the search process. For this purpose, we trained
the hyper-heuristic on a set of arbitrarily chosen instances representing
different problem sizes (Standard, Large and Very Large). The instances
selected are S3, S7, S11, L1, L5, VL2, VL6 and VL10. We use the
same instances for both experts. We test the generated hyper-heuristic
on three sets of unseen instances consisting of a single problem size,
independent of the training instances chosen above. The behaviour for
the Large and Very Large instances is almost identical, so for brevity
we present the results from the Standard and Very Large instances.
Fig. 7 illustrates the average utilisation rate (ratio) for each low-level
heuristic by the apprentice trained using both experts (TDNN-ALHH-
Both) and the original expert hyper-heuristics AdapHH and MSHH. The
utilisation rate is calculated as the number of improvements that a low-
level heuristic yields over the best solution found, divided by the total
number of improvements. In order to capture the typical behaviour of
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Fig. 7. The mean low-level heuristic utilisation rate averaged over ten trials per problem instance for (left to right) the apprentice (TDNN-ALHH-Both), AdapHH, and MSHH.
the generated hyper-heuristics, each instance is run ten times, with the
average value used in the results.

The experimental results indicate that learning appropriate be-
haviours for different sizes of problem instance has been successful.
Comparing the generated hyper-heuristic to the experts it has learned
from in Fig. 7, the similarity between these charts shows that the
proposed algorithm benefits from using some of the same effective
low-level heuristics as the experts (LLH4, LLH7, and LLH8 tend to dom-
inate). The highest ratios tend to be hill-climber operators, followed by
mutational operators. From these charts, we note it becomes clear that
not all LLHs demonstrate an improvement in solution quality during the
search process in all hyper-heuristics. TDNN-ALHH-Both tends to follow
the behaviour of MSHH more closely, with improvements yielded from
using LLH2 and LLH3, even if this is only a small proportion of the
time. AdapHH did not utilise these two low-level heuristics to improve
solutions. This behaviour is perhaps to be expected, since MSHH is
a state-of-the-art approach, previously demonstrated to outperform
AdapHH across six problem domains [25]. Despite this, AdapHH still
seems to provide some contribution to the behaviour of the generated
hyper-heuristics. TDNN-ALHH-Both follows the behaviour of this expert
closely for some LLHs, utilising LLH4 and LLH7 at approximately the
same frequency as AdapHH.

From Fig. 7(a), we can see that LLH1 is not present at all for
the apprentice (TDNN-ALHH-Both) on the Standard instances. From a
machine learning perspective this is not too surprising, MSHH does not
utilise LLH1, while AdapHH very rarely utilises this heuristic. Compar-
ing Fig. 7(a) (Standard) and Fig. 7(b) (Very Large), TDNN-ALHH-Both
includes LLH1 for Very Large instances. It appears that pattern is recog-
nised from AdapHH, which utilises this low-level heuristic at a higher
rate for Very Large instances compared to the Standard instances.
This condition also helps TDNN-ALHH-Both to perform well, because
it increases the variation in the LLHs used, even though the larger
instances are considerably more challenging. From the hill-climber
operators, the generated hyper-heuristic and both experts all utilise
LLH8 most often. Where the generated hyper-heuristic differs from both
experts is the proportion of times LLH8 yields an improvement, and
to a lesser extent LLH9. These heuristics are utilised at a noticeably
different rate than by both of the expert approaches, although LLH8 is
still utilised significantly more often than any other low-level heuristic.

We can see that machine learning is clearly working, finding hidden
patterns in these choices as the algorithm operates, based on the
11
Table 4
Percentage utilisation (%) comparison between types of LLH.

Algorithm Local search Mutation Ruin-recreate

Standard
TDNN-ALHH-Both 64% 27% 9%
AdapHH 75% 25% 0%
MSHH 61% 21% 18%

Very Large
TDNN-ALHH-Both 66% 29% 5%
AdapHH 76% 24% 0%
MSHH 62% 25% 13%

merged data from two experts. The ability to capture these hidden pat-
terns, in the form of transitions between different low-level heuristics,
leads to a more effective heuristic search method. Without knowing
where the data originates, the apprenticeship learning approach is able
to identify the best low-level heuristic to apply. The expert methods
used here have been previously deployed to solve other variants of
VRP. The performance of AdapHH when solving VRP with time win-
dows including a combination of elements from Personnel Rostering
have been reported in the literature [17]. While the performance and
behaviour of MSHH when solving VRP instances from CHeSC 2011
has been published by Kheiri et al. [25]. Both of these previous works
reported similar results regarding heuristic performance, with LLH8 the
most favoured low-level heuristic.

Table 4 presents the percentage utilisation between different types
of low-level heuristic for the apprentice hyper-heuristic trained using
both experts (TDNN-ALHH-Both), and for both of the experts executed
independently.

Table 4 shows a consistency between all three approaches, with
the majority of improving moves resulting from the application of
hill-climber (local search) heuristics, rather than mutational and ruin-
recreate. It is perhaps unsurprising that local search operators are
responsible for the vast majority of improving moves, as by their very
nature they are guaranteed to produce a solution that is at least as
good as the current solution. Interestingly, the mutation operators yield
many more improving solutions than the ruin-recreate operators. This
is perhaps unexpected, since the ruin-recreate operators incorporate a
significant amount of domain knowledge, and could be considered as
‘intelligent’ heuristics.
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Fig. 8. A sample activity plot of low level heuristics from generated selection hyper-heuristics over time (iterations in thousands) while solving instance S11, where the TDNN
was trained using the data from (a) both experts, (b) AdapHH and (c) MSHH.
5.4. An analysis of low-level heuristic selection

Fig. 8 provides low-level heuristic selection activity plots for the
generated hyper-heuristics trained using different expert datasets, to
illustrate the usage of different low-level heuristics over time in mul-
tiple runs. This plot is inspired by evolutionary activity plots [91] of
memes in memetic algorithms, which count the occurrence of each
meme considering all solutions in a given iteration (generation) of a
run. In our case, selection hyper-heuristics are based on single-point
based search, so we can use a similar count: the number of times a
low-level heuristic is selected at the given iteration considering multiple
runs. This generates monotonically increasing functions with respect to
the number of iterations. The gradient of the plot indicates whether
12
or not low-level heuristic is favoured consistently across multiple runs.
The more frequently a low-level heuristic is selected and invoked, the
steeper the slope is. The aim is to identify which low-level heuristics
are favoured at different stages of the search process. This analy-
sis can provide deeper insight into the behaviour of the generated
hyper-heuristics.

The low-level heuristic activity plots in Fig. 8 record the frequency
of selection of each low-level heuristic up until that point for every
iteration on Standard instance S11, chosen arbitrarily for this analysis.
Unlike Fig. 7, which identifies the overall percentage of global best
solutions generated by a low-level heuristic, the activity plots show how
often a particular low-level heuristic is selected at every decision point
over time. We limit each run to 15,000 iterations, the scale of the 𝑥-axis
values of the plots are in thousands.
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It can be seen for TDNN-ALHH-Both that early in the search, LLH2
is frequently selected, then after some time it begins to choose LLH4,
LLH8, and LLH9, followed by LLH3 and LLH7. A strategy of applying
ruin-recreate in the early stages, followed by hill-climbers later on
seems to be preferred. LLH7 tends to contribute more in the middle of
the search process, diversifying the search, before hill-climber heuris-
tics (LLH8, LLH4 and LLH9) are applied towards the end of the search
process. This is supported by the highest AUC score (showing effective
classifier performance) of LLH7 (followed by LLH8 as the third best)
previously shown in Table 3 and Fig. 6. Looking at Fig. 8, it becomes
clear that TDNN-ALHH-Both has its own policy that differs slightly
from the expert demonstrators. Nevertheless, it seems to incorporate
patterns of behaviour from both experts. TDNN-ALHH-Both mimics
the behaviour of MSHH with its use of LLH8 and LLH7, and shows
similarity to AdapHH by selecting LLH4 in the earlier stages of the
search. It is worth mentioning that the activity plots of the low-level
heuristics in Fig. 8 are aligned with Fig. 7 in terms of the low-level
heuristics that are not used. The TDNN trained using both experts did
not use LLH1, similar to MSHH which did not use LLH1 and LLH0,
while AdapHH did not use LLH2 and LLH3.

6. Conclusion

This work examines the interplay between data science and optimi-
sation, combining machine learning and hyper-heuristics. In this study,
a generation hyper-heuristic is introduced, which takes advantage of
a data science technique: apprenticeship learning using Time Delay
Neural Networks (TDNN). TDNNs were deployed as a machine learn-
ing algorithm to generate components of a selection hyper-heuristic,
learning from the demonstrations of two state-of-the-art ‘expert’ hyper-
heuristics solving selected instances. We have presented an approach
that exhibits learning from multiple experts, using the Open Vehicle
Routing Problem (OVRP) as a case study, solving problem instances
of various sizes. The proposed approach is used to generate the pri-
mary components of a hyper-heuristic: heuristic selection and move
acceptance. The experimental results on a benchmark of OVRP in-
stances show that observing and learning from multiple experts as
they solve the training instances is a better strategy than using a
single expert. In addition, improved performance when compared to
the performance of each individual expert applied independently is
demonstrated. The generated selection hyper-heuristic scales and gen-
eralises well, with improved performance observed even as the size
of the OVRP instances increase. Unlike most previous hyper-heuristic
studies, the higher level machine learning approach we use to generate
selection hyper-heuristics has additional information available to it, in
the form of the distance between solutions. Combining this information
from the search behaviour of two expert demonstrators was able to
yield improved performance over training using the information from
a single demonstrator, and over directly applying either of the experts
individually. The experimental analysis highlights the relationship be-
tween classification performance and the behaviour of the generated
hyper-heuristic. The results indicate that improving the classification
performance can in return enhance the heuristic optimisation process.
Future work will consider combinations of larger sets of expert systems
from which behaviour is learned, applied to a wider range of problem
domains and instances. In particular, we will focus on generalisation
from a cross-domain perspective, investigating the differences in per-
formance based on different combinations of intra- and inter-domain
learning [92].
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