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Subtle disturbances of visual and motor function are known features of schizophrenia and can greatly impact
quality of life; however, few studies investigate these abnormalities using simple visuomotor stimuli. In healthy
people, electrophysiological data show that beta band oscillations in sensorimotor cortex decrease duringmove-
ment execution (event-related beta desynchronisation (ERBD)), then increase above baseline for a short time
after the movement (post-movement beta rebound (PMBR)); whilst in visual cortex, gamma oscillations are
increased throughout stimulus presentation. In this study, we used a self-paced visuomotor paradigm and mag-
netoencephalography (MEG) to contrast these responses in patients with schizophrenia and control volunteers.
We found significant reductions in the peak-to-peak change in amplitude from ERBD to PMBR in schizophrenia
comparedwith controls. This effectwas strongest in patientswhomade fewermovements,whereas betawasnot
modulated by movement in controls. There was no significant difference in the amplitude of visual gamma
between patients and controls. These data demonstrate that clear abnormalities in basic sensorimotor processing
in schizophrenia can be observed using a very simple MEG paradigm.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Schizophrenia is a psychiatric disorder characterised by a range of
symptoms including hallucinations, delusions, disorganised thought
and behaviour, and reduced cognitive and emotional capacity. Research
tends to focus on these core symptoms; however, patients also experi-
ence impairments in more basic sensorimotor processes (Bombin
et al., 2005; Butler et al., 2001; Vrtunski et al., 1986). Abnormalities in
motor function have been noted since the earliest descriptions of the
disorder (Kraepelin, 1921) and are a well-accepted feature of schizo-
phrenia, with the vast majority of patients exhibiting at least one type
of motor symptom (Peralta et al., 2010; Walther et al., 2012). These
symptoms include involuntary movements, catatonia, Parkinsonism
and deficits in the production of both simple and complex movements
such as coordination, reflexes and motor sequencing (Bombin et al.,
2005; Kraepelin, 1921; Vrtunski et al., 1989). Similarly, patients with
schizophrenia exhibit deficits in low-level visual function, particularly
in processing stimuli of low spatial frequencies, as evidencedby reduced
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contrast sensitivity, centre-surround interference and abnormalmotion
perception (Butler et al., 2001; Cadenhead et al., 2013; Keri et al., 2002;
Slaghuis, 1998).

There is significant evidence that these subtle abnormalities in basic
sensorimotor processing are present in childhood, at the onset of core
symptoms and in relatives of individuals with schizophrenia (Chen
et al., 2000; Walther et al., 2012; Whitty et al., 2009), indicating that
they are likely to be inherent to the disorder rather than being a conse-
quence of long-term exposure to medication. Importantly, visual and
motor deficits, as well as other neurological abnormalities, correlate
with the primary symptoms of schizophrenia such as affective flatten-
ing, apathy and disorganisation (Bombin et al., 2005; Jahn et al., 2006;
Liddle, 1987; Peralta et al., 2010), and with illness severity (Jahn et al.,
2006), social functioning (Dickerson et al., 1996; Jahn et al., 2006;
Lehoux, 2003) and functional outcome (Boden et al., 2014; Javitt,
2009), suggesting that they could be used as a biomarker for the
disorder.

Understanding the neuronal basis of these symptoms could there-
fore ultimately contribute to development of treatments permitting im-
proved quality of life; however, at present the neuronal mechanisms
underlying sensorimotor processing deficits in schizophrenia are not
known. It is likely that different types of symptoms have different
aetiologies (Chen et al., 2000). Visual deficits have been reported to be
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
National Statistics Socio-economic Classification (NS-SEC) scores.

NS-SEC score 1 2 3 4 5 Mean SD

Number of participants Schizophrenia 13 1 4 1 4 2.2 1.6
Controls 11 2 5 3 2 2.3 1.4
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due to abnormalities in lower-level visual pathways, particularly
in magnocellular neurons (Butler et al., 2001). These neurons rely on
N-methyl-D-aspartate (NMDA)-type glutamate receptors, which may
show dysfunctional transmission in schizophrenia (Javitt, 2009). A
review of motor symptoms and their potential aetiology by Walther
and Strik (2012) describes reductions in volume of the anterior cingu-
late cortex and midbrain structures (putamen, caudate and thalamus),
and disturbed gamma-aminobutyric acid (GABA)-ergic neurotransmis-
sion in these areas and the primary motor cortex. Neuroimaging tech-
niques are of great use in measuring the structural and physiological
abnormalities that may contribute to sensorimotor abnormalities in
schizophrenia.

Magnetoencephalography (MEG) allows non-invasive inference of
currentflow in neuronal cell assemblies throughmeasurement of extra-
cranial magnetic fields. MEG signals are dominated by oscillations,
which result from rhythmic activity in large populations of neurons.
Neuronal oscillatory responses to visual and motor stimulation have
been well characterised in healthy volunteers: in motor cortex, the am-
plitude of beta (13–30 Hz) oscillations decreases during movement
(event-related beta desynchronisation (ERBD)) and increases above
baseline on movement cessation (post-movement beta rebound
(PMBR)), returning to baseline ~4 s after movement offset (Pfurtscheller
et al., 1999). In the visual cortex, a decrease in alpha (8–12Hz) oscillatory
amplitude occurs alongside a concomitant increase in gamma (30–70Hz)
oscillations (Siegel et al., 2010). Notably, individual differences in the am-
plitude of motor beta oscillations correlate with electromyogram mea-
sures of muscle control (Jain et al., 2013; Mima et al., 2000), whilst
visual gamma oscillations correlate with orientation discrimination per-
formance (Edden et al., 2009).Measurement of these electrophysiological
features is therefore likely to offer insight into the neuronal basis ofmotor
and visual deficits in schizophrenia.

Previous studies have identified electrophysiological visuomotor ab-
normalities in schizophrenia and related disorders: Wilson et al. (2011)
showed that adolescents with early-onset psychosis exhibit enhanced
ERBD and reduced PMBRwhilst conducting a motor task. Since beta os-
cillations are thought to reflect inhibition (Cassim et al., 2001; Gaetz
et al., 2011), reduced amplitudemay reflect a greater degree of process-
ing required to plan and execute movements in patients. In visual
cortex, either no change (Uhlhaas et al., 2006) or a reduction in ampli-
tude (Grutzner et al., 2013) and frequency (Spencer et al., 2004) of
gamma oscillations have been reported in schizophrenia. However,
available data are sparse and typically relate to complex stimuli (e.g.
faces or Gestalt stimuli) that require integration of visual features. The
question of whether patients with schizophrenia show abnormalities
in oscillations reflecting low-level visual and motor processing there-
fore remains. In this study, we measure ERBD and PMBR in sensorimo-
tor cortex and gamma oscillations in the visual cortex during a simple
visuomotor task, to test the hypothesis that these well characterised
phenomena are perturbed in schizophrenia.

2. Methods

2.1. Participants

The study received ethical approval from the National Research
Ethics Service and all participants gave written informed consent. The
patient group was recruited from community-based mental health
teams in Nottinghamshire, Derbyshire and Lincolnshire, United
Kingdom. Diagnoses weremade in clinical consensusmeetings through
a review of case files and a standardised clinical interview (Signs and
Symptoms of Psychotic Illness or SSPI; Liddle, 2002) in accordance
with the procedure of Leckman et al. (1982). All patients were in a sta-
ble phase of illness with no change in antipsychotic, antidepressant, or
mood- stabilising medications, nor a change of more than 10 points in
occupational and social function scored according to the Social and Oc-
cupational Function Assessment Scale (SOFAS) (APA, 1994), in the
6weeks prior to the study. Patients were taking a range of psychotropic
medication, with a mean defined daily dose (DDD) of 1.8 (SD 1.3)
(Table 2). Controls were selected to match the patient group in terms
of demographic variables. There were seventeen male and six female
patients with schizophrenia and the same number of male and female
controls. There was no significant difference between the ages of the
two groups (patients and controls3 mean ages 26.8 (SD 7.0) and 26.7
(SD 7.2), respectively; U = 264.5, p = 1.0). Groups were also matched
for socio-economic background using the National Statistics Socio-
economic Classification (NS-SEC) self-coded method. NS-SEC scores
are given in Table 1 and did not differ significantly between groups
(χ2(4, N= 46)= 2.3, p= .69). All participants had normal or corrected
to normal vision.

2.2. Symptom severity measurement

In order to derive a score for overall severity of psychotic illness in the
patient group, we followed the procedure employed by Palaniyappan
et al. (2013a). We computed the first principal component of: the scores
for the three characteristic syndromes of schizophrenia (reality distortion,
psychomotor poverty and disorganisation) assessed using the SSPI; speed
of cognitive processing assessed using a variant of the Digit Symbol Sub-
stitution Test (Wechsler, 1940); and scores from the Social and Occupa-
tional Function Scale (SOFAS; APA, 1994). Unlike Palaniyappan et al.
(2013b), who focussed on chronic symptom burden, we did not include
duration of illness in our measure of current illness severity.

2.3. Paradigm

The task comprised visual stimulation with a centrally-presented
maximum contrast vertical square wave grating (3 cycles per degree),
which subtended an 8° visual angle andwas displayed behind a red fix-
ation cross on a mean luminance background. The grating was present-
ed for 2 s followed by a 7 s fixation only baseline period. Participants
were instructed to press a button with their right index finger regularly
but as many times as they chose during the 2 s presentation of the grat-
ing, though ensuring that they did not press so vigorously as to cause
their arm to move. There were 45 trials, giving a total task length of
7min. A short practice of the taskwas given outside the scanner. Stimuli
were generated on a PC using MATLAB (The Mathworks, Inc., Natick,
MA) and were back-projected via a mirror system onto a screen inside
a magnetically shielded room at a viewing distance of 46 cm. All partic-
ipants were scanned in a supine position. Right index finger button
presses were recorded via a response pad (Lumitouch Photon Control
Response System).

2.4. Data acquisition and analysis

MEG data were obtained using a 275 channel whole head CTF sys-
tem (MISL, Coquitlam, Canada), with four channels switched off due
to excessive sensor noise. Twenty-nine reference channels were also re-
corded for noise cancellation purposes and the primary sensors were
analysed as synthetic third order gradiometer measurements (Vrba
et al., 2001). Data were acquired at a csampling frequeny of 600 Hz
with a 150 Hz low-pass anti-aliasing hardware filter. The position of
the head within the MEG helmet was measured continuously during
the recording by energising three electromagnetic head position indica-
tor coils located at the nasion and left and right pre-auricular points,



Table 2
Details of patients3 pharmacological treatment including the drug, its dose and the total
defined daily dose (DDD) of psychotropic medication for each participant. Doses are per
day unless given as a depot, in which case the frequency is specified.

Participant Drug (dose) Total
DDD

1 Risperidone (25 mg/1–2 weeks); Citalopram (20 mg) 1.66
2 Risperidone (2 mg) 0.4
3 Diazepam (2 mg); Mirtazapine (45 mg); Aripiprazole

(20 mg); Zopiclone (7.5 mg)
4

4 Amisulpride (200 mg); Clozapine (275 mg) 1.42
5 Olanzapine (15 mg) 1.5
6 Olanzapine (25 mg); Sertraline (50 mg) 3.5
7 Lofepramine (70 mg) 0.67
8 Paliperidone (100 mg/month); Risperidone (3 mg) 1.15
9 Mirtazapine (45 mg); Aripiprazole (20 mg); Pregabalin

(150 mg)
3.3

10 Clozapine (400 mg) 1.3
11 Olanzapine (5 mg) 0.5
12 Aripiprazole (20 mg) 1.33
13 Quetiapine (200 mg) 0.5
14 Clozapine (350 mg), Sulpiride (200 mg) 1.42
15 Aripiprazole (5 mg) 0.33
16 Risperidone (2 mg), Sertraline (100 mg) 2.4
17 Clozapine (400 mg), Sulpiride (400 mg) 1.8
18 Sertraline (200 mg), Lithium (1 g), Clozapine (200 mg) 5.77
19 Zuclopenthixol (20 mg) 2.86
20 Olanzapine (20 mg) 2
21 Quetiapine (200 mg), Procyclidine (5 mg), Venlafaxine

(75 mg), Modecate (25 mg/2 weeks)
2.45

22 Clozapine (300 mg) 1
23 Aripiprazole (10 mg) 0.67

Mean 1.82
SD 1.34
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allowing continuous head movement tracking throughout the acquisi-
tion. A 3-dimensional digitisation of the head shape and fiducial loca-
tions was obtained using an Isotrak (Polhemus Inc., Vermont) system
prior to the MEG measurement. All participants also underwent an an-
atomical MRI scan, acquired using a Philips Achieva 7 T system with a
volume transmit and 32 channel receive head coil. A 1 mm isotropic
image was obtained using an MPRAGE sequence (TE/TR = 3/7 ms,
FA= 8°). Coregistration of theMEG sensor geometry to the anatomical
MR image was achieved by fitting the digitised head surface to the
equivalent head surface extracted from the anatomical MR image.

Initially, MEG data were inspected visually. Common sources of in-
terference, for example the magnetomyogram, magnetooculogram
andmagnetocardiogram, havewell characterised neuromagnetic signa-
tures which are easily identified by an experienced operator. Here, any
trials deemed to contain excessive interference generated via such
sources were removed from that individual3s data (see also Gross
et al., 2013). Head movement was assessed via continuous head
localisation and any trials in which the head was found to be more
than 7mm (Euclidean distance) from the starting positionwere exclud-
ed. This left an average of 42 trials (SD 3.6) in controls and 38 (SD 4.9)
trials in patients. Leadfieldswere computed individually for each partic-
ipant using amultiple-local-sphere headmodel (Huang et al., 1999) and
the dipole model derived by Sarvas (1987). A scalar beamformer (syn-
thetic aperture magnetometry; Robinson et al., 1998) was used to pro-
ject extracranial field signals into source space. Images showing the
spatial signature of task induced oscillatory power change were com-
puted in the beta (13–30 Hz) and gamma (30–70 Hz) ranges. In both
cases, an active window of 0.5–1.8 s was compared to a control window
spanning 7.0–8.3 s, relative to stimulus onset. Covariance matrices for
beamformer reconstruction were calculated individually for the active
and control windows, giving even amounts of data and thus ensuring
equivalent accuracy (Brookes et al., 2008). The resulting pseudo-
t-statistical images were used to derive the locations of the peak
decrease in beta band oscillations in the left motor cortex and the
peak increase in gamma oscillations in the visual cortex in each partici-
pant, whichwere used for further analyses (see Fig. 1e and f for a repre-
sentative example). Note that since both peaks were identified from the
active period contrasted with the baseline, the motor cortex (ERBD)
peak was also used for analysis of the PMBR.

Virtual sensor timecourseswere constructed for thesepeak locations
also using a beamformer spatial filter. Beamformingwas applied to data
filtered into the 1–150 Hz band and the covariancematrix was generat-
ed using data spanning the entire experiment. The spatially filtered (vir-
tual sensor) timecourseswere sequentially filtered (temporally) into 23
overlapping frequency bands in the range of 1–100 Hz using a firls filter
implemented in NUTMEG (http://nutmeg.berkeley.edu). For each band,
the Hilbert envelope was calculated and averaged across task trials. A
resting baseline signal was estimated as the mean Hilbert envelope
within the 7.0–8.3 s window, relative to stimulus onset, and the per-
centage difference in signal from this baseline was calculated across
the trial averaged timeseries for all frequency bands. These individual
frequency bands were then concatenated to generate time frequency
spectrograms, which were averaged across participants in the patient
and control groups (Fig. 1). The percentage change from baseline for
the beta desynchronisation was taken from the 0.5–1.8 s window, dur-
ingwhich participants weremoving, but which allowed time for partic-
ipants to react to the stimulus onset. The beta rebound signal was taken
from the 2.3–4.3 s window, based on the observed signal in a time fre-
quency spectrogram averaged over all patients and controls. In both
cases a 13–30Hz frequency rangewas used. To test gammaband ampli-
tude in the visual cortex, the percentage change frombaselinewas com-
puted in the 30–70 Hz frequencywindow in the 0.5–1.8 s timewindow,
in order to obtain only the sustained gamma response and not the initial
gamma spike. These data are shown in Fig. 2. Pseudo t-statistical images
for Fig. 1 were visualised using mri3dX (Singh, CUBRIC, Cardiff). Statis-
tical analysis was carried out in SPSS (Armonk, NY: IBM Corp.) and
MATLAB (The Mathworks Inc., Natick, MA).

3. Results

The taskwaswell tolerated by all patients and controls. Across all 46
participants, two patients and two controls failed to show a well local-
ised beta desynchronisation peak in the motor cortex and one patient
did not show a clear gamma peak in visual cortex. These participants
were excluded from analysis of these voxels, giving a total of 21 patients
and controls contributing to analysis of motor beta, and 22 patients and
23 controls for visual gamma.

Fig. 1 shows time frequency spectrograms, averaged across task
trials and participants, for patients and controls at the motor and visual
locations of interest. Both groups exhibit the expected changes in oscil-
latory power in the beta and gamma bands throughout the trial: in the
motor cortex, beta amplitude decreases during stimulationwith a PMBR
on movement cessation; and in the visual cortex, there is a decrease in
alpha oscillatory amplitude and a concomitant increase in gamma
amplitude during stimulation. As hypothesised, there were differences
between patients and controls in features of these typical response
profiles.

Figs. 2a and 2b show the timecourses of percentage signal change in
oscillatory amplitude from baseline (7.0–8.3 s) for the beta band
(13–30 Hz) in the motor cortex (a) and the gamma band (30–70 Hz)
in the visual cortex (b) for patients (red) and controls (blue). The
mean percentage changes during ERBD, PMBR and visual stimulation
are shown in Fig. 2c for both groups. ERBDand visual gammaweremea-
sured in the 0.5–1.8 s window, the PMBR was measured from 2.3–4.3 s.
Note that the largest difference between patients and controls is in the
PMBR, which shows a 30% increase from baseline in controls, and only
a 14% increase in patients.

Interestingly, behavioural data indicated that on average, patients
made more button presses per trial (mean 6.83 presses, between sub-
jects standard deviation (SD) 2.18, within subjects SD 1.03) than

http://nutmeg.berkeley.edu


Fig. 1. Time frequency spectrograms. Percentage change from baseline in the trial-averaged signal at the locations of individuals’ peak decrease inmotor beta (a&b) and increase in visual
gamma(c& d)during stimulation.Data are averaged across controls (a& c) and patients (b&d). Visual stimulation andmotor responseswere from0–2 s. On the right are example pseudo
t-statistical images from a single representative subject showing the spatial signature of the beam-formed signal in the stimulus window (0.5–1.8 s) contrasted with a baseline window
(7–8.3 s) in the beta (13–30 Hz) band (e) and gamma (30–70 Hz) band (f).
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controls (mean 5.27 presses, between subjects SD 2.02, within subjects
0.60). This difference in these ‘button press counts’was statistically sig-
nificant (t(44)=−2.52; p= .016). However, the mean time of the last
button press in each trial was similar for patients (1.92 s, SD 0.34) and
controls (1.89 s, SD 0.19) (U = 33; p = .156). These results indicate
that on average, patients with schizophrenia pressed the button more
frequently in the allocated time period than controls but not for longer;
therefore patients tended to press faster than controls. In order to inves-
tigate MEG data from groups with comparable behaviour, participants
who pressed on average between four and eight times per trial were se-
lected for initial analyses, based on the overlap of the distributions of
button press counts from the two groups. This criterion gave groups of
12 controls and 13 patients. Responses from these subgroups are pre-
sented in Fig. 3. Note that the difference between groups in the PMBR
remains, suggesting qualitatively that this effect is not simply accounted
for by the different numbers of button presses in the two groups.

Statistical analysis of these behaviourally comparable data was con-
ducted with a repeated measures analysis of variance (ANOVA), the re-
sults of which are shown in Table 3a. This analysis indicated that when
beta amplitude was summed across both stages of the response,
patients showed a slightly lower amplitude response than controls.
However, the difference in beta amplitude between the groups was de-
pendent on the stage (ERBD or PMBR) of the response, in that the two
groups showed very similar ERBD but the PMBR was significantly re-
duced in patients. As expected, the PMBR was significantly greater
than the ERBD in both groups. The difference in gamma amplitude be-
tween groups was analysed using a Mann–Whitney U-test, because
these data were not normally distributed. There was no significant
difference in gamma amplitude in the visual cortex between the two
groups (U = 83; p = .810).

The difference between groups in the mean number of button
presses made per trial (the button press count) warranted further in-
vestigation in relation to its impact on theMEG data from the full cohort
of participants. An analysis of covariance was therefore conducted on
the beta responses of all participants with button press count included
as a covariate. The results of this analysis are presented in Table 3b. In
this analysis, the overall difference between groups in the sum of beta
amplitude across the two stageswas not statistically significant; howev-
er, again there was a difference between the way in which the two
groups responded at the two stages of the beta response (shown by
the significant group by stage statistical interaction). Follow-up univar-
iate ANCOVAs were conducted on each group separately and on each
stage separately. They indicated that whilst the mean amplitudes of
ERBD and PMBR were not significantly different between the groups,
controls showed a significant increase from ERBD to PMBR (the peak-
to-peak ‘beta difference’), irrespective of the number of button presses,
whereas in patients, the beta difference was related to button press
count. Individuals who pressed the buttonmore often showed a greater
increase from ERBD to PMBR (correlation between beta difference and
button press count R2 = 0.23; p = .029). This effect can be observed
in Fig. 4, which shows that for patients in the lowest quartile of mean
button press counts, there is little change between the two beta stages,
but as button press count increases, the beta difference in patients
increases and the timecourse becomes more similar to controls. Controls

Image of Fig. 1


Fig. 2.Beta and gamma band responses.Mean timecourse of beta band amplitude inmotor cortex (a) and gamma band amplitude in visual cortex (b),measured as a percentage difference
from baseline (7–8.3 s); shaded areas show standard error of the mean (SEM) across participants. c) Mean percentage signal change from baseline in motor cortex during event-related
beta desynchronisation (ERBD; 0.5–1.8 s) and post-movement beta rebound (PMBR; 2.3–4.3 s); and in visual gamma oscillations during stimulation (0.5–1.8 s). Error bars represent SEM.
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show similar timecourses regardless of how many times they press the
button (correlation of beta difference with button press count R2 =
0.02; p = .494). Fig. 4 again suggests that the PMBR is more affected by
schizophrenia than ERBD; however there are insufficient numbers of par-
ticipants to statistically test the group difference on the two stages across
different button press counts.

Visual gamma was analysed using a univariate ANCOVA with mean
button presses as a covariate. There was no significant difference
Fig. 3. Timecourses for groups with equivalent numbers of button presses. Meanmotor beta (a)
N = 13) who made similar numbers of button presses (mean of 4–8 presses per trial). Shaded
between patients and controls3 visual gamma amplitude (F(1,41) =
.08; p = .780) and the button press count did not influence visual
gamma (main effect of button presses: F(1,41)=1.45; p= .236, and in-
teraction between group and button presses: F(1,41) = .64; p = .428).

To investigate the influence of medication on the electrophysiologi-
cal measures obtained, in a separate analysis of only the patient group,
defined daily dose (DDD;WHOCCfDSM, 2012) of psychotropic medica-
tion was considered as an additional covariate in the contrast between
and visual gamma (b) timecourses in groups of patients (red, N=12) and controls (blue,
areas are SEM across participants.

Image of Fig. 2
Image of Fig. 3


Table 3
Results of a repeatedmeasures ANOVA on beta amplitude in the subgroup with comparable behavioural responses (a), with the between subjects factor of group (patients and controls)
andwithin subjects factor of beta stage (ERBD and PMBR). The same contrasts butwith the covariate ofmean button press count are presented in the ANCOVA results, which includes data
from all participants (b). * Denotes significance at 5% level (p b 0.05); ** denotes significance at 1% level (p b 0.01).

(a)

ANOVA on beta amplitude

Main effect: group ERBD
Controls vs patients

PMBR
Controls vs patients

F(1,23) = 4.95; p = .036* t(23) = .34; p=.740 t(23) = 2.77; p = .011*

Follow-up contrasts (t-tests)

Controls
ERBD vs PMBR

Patients
ERBD vs PMBR

Main effect: beta stage Interaction: group by stage

t(11) = −9.56; p b .001** t(12) = −7.62; p b .001** F(1,23) = 151.65; p b .001** F(1,23) = 7.01; p = .014*

(b)

ANCOVA on beta amplitude, covariate of mean button press count

Main effect: group Main effect:
beta stage

Main effect:
button press

Interaction:
group by stage

Interaction: group
by button press

Interaction: group by stage
by button press

F(1,38) = 0.83;
p = .368

F(1,38) = 10.61; p = .002* F(1,38) = 0.17;
p = .679

F(1,38) = 6.29; p = .017* F(1,38) = 0.01;
p = .937

F(1,38) = 3.19; p = .082

Follow-up contrasts (univariate ANCOVAs, covariate of mean button press count)

ERBD PMBR

Main effect: group Main effect: button press Interaction: group by button press Main effect: group Main effect:
button press

Interaction: group by
button press

F(1,38) = 1.40;
p = .244

F(1,38) = 0.63;
p = .432

F(1,38) = 2.96;
p = .094

F(1,38) = 3.21; p = .081 F(1,38) = 0.91;
p = .346

F(1,38) = 0.66; p = .422

Controls Patients

Main effect: beta stage Main effect:
button press

Interaction: beta stage by
button press

Main effect:
beta stage

Main effect:
button press

Interaction: beta stage by
button press

F(1,19) = 17.72;
p b .001**

F(1,19) = 0.13;
p = .725

F(1,19) = 0.06;
p = .815

F(1,19) = 0.28; p = .606 F(1,19) = 0.06;
p = .816

F(1,19) = 6.11; p = .023*
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beta stages. Taking DDD into consideration did not alter the results:
patients with lower button press counts showed a smaller beta differ-
ence than those with higher button press counts, regardless of their
dose of antipsychotic medication (significant beta stage × button
press count interaction (F(1,17) = 5.04; p = .038); non-significant
main effects of beta stage, button press count and DDD, and all other in-
teractions between these variables (all F(1,17) b 1.89); p N .187). To as-
sess the relationship between DDD and gamma, the correlation
between 10,000 randomly paired gamma and DDD values was obtain-
ed, and the measured correlation was compared with the upper and
lower 2.5% of values in the resulting distribution of correlations, to
assess the probability of obtaining a correlation of the measured
strength. DDDdid not relate significantly to gamma amplitude in patients
(R=−0.07; p=ns; 95% CI [−0.367 and 0.486]). These findings indicate
that medication did not have a significant effect on motor beta or visual
gamma oscillations.

Scores of overall severity of persisting psychotic illness exhibited a
significant negative Pearson correlation with the PMBR in the patient
group (R=−0.52; p= .015; Fig. 5),with no correlation between illness
severity and ERBD or visual gamma (R = −.18 and .06 respectively;
p= ns). The scores for the three core syndromes of schizophrenia load-
ed positively on the illness severity measure, whilst social, occupational
and cognitive function loaded negatively on it (see Table 4), so those pa-
tients with higher severity scores had stronger core symptoms and
lower levels of function. These were also the patients who showed the
smallest beta rebound.

An additional interesting feature of the time–frequency spectrograms
(Fig. 1) was the apparent difference in theta oscillations between groups.
These were not part of our hypothesis, but were contrasted in non-
planned post-hoc comparisons of the stimulation period (0.5–1.8 s).
Patients showed significantly reduced theta in motor cortex (U = 78;
p b .001), whilst the difference in visual cortex was not significant
(t(43) = .62; p = .542).

In summary, the results indicate that in groups of participants
matched for performance on a self-paced button press task, the ampli-
tude of post-movement beta oscillations is reduced in patients with
schizophrenia compared with controls. Beta reactivity, reflected in the
change from the desynchronisation during movement to synchronisa-
tion followingmovementwas reduced in patients who pressed the but-
ton less often. Visual gammadid not differ significantly between groups.
Theta oscillationswere reduced in patients3motor but not visual cortex.
4. Discussion

Deficits in sensorimotor function have been a well-established
feature of schizophrenia since the earliest descriptions of the disease;
however, despite their prevalence and impact, few studies have probed
the neuronalmechanisms underlying these symptoms. In this study, we
measured the electrophysiological signature of visual and motor pro-
cessing in patients with schizophrenia and matched healthy control
subjects using MEG. Our results show that the characteristic profiles of
oscillatory responses to visual and motor stimulation are preserved in
schizophrenia. However, significant differences in neuronal dynamics
are observed in patients relative to controls. Specifically, the well-
characterised temporal signature of beta oscillations in motor cortex
during finger movement differs between the two groups: when
matched for behaviour, patients showed a reduced PMBR, whilst their
ERBD was relatively preserved. Interestingly, patients who pressed the
button infrequently in our self-paced motor task showed significantly



Fig. 4. Effect of number of button presses. Mean beta timecourses for groups of patients (red) and controls (blue), defined by the quartiles ofmean button press count across all volunteers,
from lowest (a) to highest (d). Shaded areas represent SEM across all trials.

Fig. 5. Correlation between PMBR and severity of persisting psychotic illness. The ampli-
tude of the post-movement beta rebound showed a significant negative correlation with
a measure of overall psychotic illness severity persisting during a stable phase of illness
in the patient group.
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less of a difference between the ERBD and PMBR stages of the trial than
those who pressed very rapidly. Patients who pressed rapidly showed
beta timecourses that were similar to controls, in whom clear ERBD
and PMBR responses were present regardless of their mean button
press count. Therewas no significant difference in visual gamma oscilla-
tions between groups. Our results therefore indicate abnormalities in
basic sensorimotor processing in patients with schizophrenia.

The differences in beta oscillatory response profiles between pa-
tients and controls provide a potential neuronal correlate of known
motor disturbances in schizophrenia. There are various theories as to
the roles that beta desynchronisation and rebound play in the genera-
tion and inhibition of movement. At rest, beta oscillations in motor
Table 4
Loadings on the first factor derived from factor analysis of clinical features hypothesised
to reflect current severity of illness: reality distortion, psychomotor poverty and
disorganisation syndromes from the Signs and Symptoms of Psychotic Illness (SSPI) scale
(Liddle, 2002); and scores from theDigit Symbol Substitution Test (DSST;Wechsler, 1940)
and the Social and Occupational Function Assessment Scale (SOFAS; APA, 1994).

Illness severity measure Loading on severity of persisting illness factor

Reality distortion 0.72
Psychomotor poverty 0.61
Disorganisation 0.58
DSST −0.37
SOFAS −0.67

Image of Fig. 4
Image of Fig. 5
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cortexmay control tonic contractions involved inmaintenance of posture,
whilst simultaneously inhibiting additional movements (Gilbertson et al.,
2005). Decreases in beta synchronyduring or preceding amovementmay
therefore reflect a switch to a state in which a greater range of move-
ments can be made, since reduced synchrony allows greater flexibility
to encode information in cellular assemblies (McIntosh et al., 2008). The
increase in beta power following a movement has been suggested to re-
flect inhibition of motor activity: voluntary movements are slowed both
during periods of beta oscillations asmeasured using electrocorticograms
(Gilbertson et al., 2005), and when beta rhythms are entrained using
transcranial alternating-current stimulation (Pogosyan et al., 2009). This
post-movement inhibition may facilitate motor control by preventing
repetition or generation of further movements and returning postural
stability. Evidence for this theory comes from findings that the PMBR is
almost absent in young children but increases through development
(Gaetz et al., 2010); whilst in individuals with Parkinson3s disease
whose movements are limited and poorly controlled, both ERBD and
PMBR are reduced in amplitude compared with controls (Heinrichs-
Graham et al., 2014; Pollok et al., 2012). Beta oscillations may also reflect
long-range communication between brain regions, whereas gamma
oscillations reflect more local processing (Donner et al., 2011). In the
context of these theories, the reduced reactivity ofmotor cortex in schizo-
phrenia observed in this study may reflect maintenance of tonic contrac-
tions and reduced flexibility of responses during movements; reduced
inhibitory control allowing efficient termination of the movement; and/
or limited ability to switch between long-range and local communication
between neurons.

Growing evidence suggests that both beta and gammaoscillations in
the cortex depend upon a delicate balance between excitation and inhi-
bition (Brunel et al., 2003; Kopell et al., 2000), governed largely but not
exclusively by glutamate and gamma-aminobutyric acid (GABA), which
are the principal excitatory and inhibitory neurotransmitters, respec-
tively. There is a large amount of evidence for disruption to this balance
in schizophrenia caused by GABAergic abnormalities (Lewis, 2014;
Rowland et al., 2008), including reductions in levels of GAD, the enzyme
necessary for synthesis of GABA from glutamate, and in the mRNA that
codes for GAD and for the GABA transporter and receptors (Shin et al.,
2011). There are also reductions in the volume of pyramidal neurons
(Sweet et al., 2004) and in the number of parvalbumin expressing
GABAergic inhibitory interneurons, which are involved in the generation
of gammaoscillations (Lewis, 2014). Deletion of a gene coding for a recep-
tor for neuregulin molecules, which are involved in regulating neuronal
development in parvalbumin interneurons, causes reorganisation
of cortical networks, increases oscillatory activity particularly in
the gamma frequency and leads to schizophrenia-like symptoms in-
cluding disruption of emotional and social behaviour and cognitive
function in mice (Del Pino et al., 2013). Restoring normal levels of
neuregulin reverses these symptoms (Marin et al., 2013). These animal
studies strongly suggest a link between abnormalities in parvalbumin in-
terneurons and schizophrenia.

In contrast with previous findings (Grutzner et al., 2013; Shin et al.,
2011; Spencer et al., 2004; Sun et al., 2013), our study did not show sig-
nificant reductions in gamma oscillations in the visual cortex of patients
with schizophrenia, although the difference observed was in this direc-
tion. The link between GABAergic inhibition and beta oscillations has
been assessed by an in vitro study showing generation of beta oscilla-
tions in neuronal assemblies of cortical layer V (Roopun et al., 2006), a
magnetic resonance spectroscopy (MRS) study showing a positive
correlation between GABA and PMBR power (Gaetz et al., 2011) and a
pharmacological study showing that blocking GABA uptake increases
ERBD and decreases PMBR amplitude (Muthukumaraswamy et al.,
2013). Impaired GABAergic neurotransmission in schizophrenia may
therefore contribute to thedecrease in amplitude of beta oscillations ob-
served in patients in our study.

In patients, the difference between beta desynchronisation and re-
bound was greater and more similar to controls when they pressed
the button at a faster rate (Fig. 4). PMBR in response to median nerve
stimulation is reduced by ERBD generated during simultaneous move-
ment, and this effect is greater as the amount ofmotor activity increases
(e.g. passive stretch compared with exploratory finger movement
(Salenius et al., 1997), or imagined compared with performed move-
ment (Schnitzler et al., 1997)), but direct measurement of the effects
of movement complexity or frequency on the movement-related beta
response have not to our knowledge been reported. The relative poverty
of motor responses in some of the patients with schizophrenia in this
study may arise from the observed abnormalities in beta reactivity.
Such an effect could be due to impaired communication between
motor cortex and higher order cortical regions, and/or to altered neuro-
transmission; however, these suggestions are speculative andwould re-
quire further study using measures of functional connectivity and
transmitter concentration or cycling rates. On average, patients tended
to exhibit a higher button press count compared with controls. It is
not clear why this was the case; it may represent a form of coping strat-
egy, given that with higher button press counts, the beta timecourse be-
came more similar to controls. This behaviour somewhat masked
abnormalities in beta oscillations that would likely have been more
striking had only one button press been required.

Use of a task with self-pacedmovements and subsequent analysis of
data taking into consideration the button press count has revealed in-
teresting differences in the beta oscillatory profiles between the two
groups thatwould not otherwise have been evident. Another significant
advantage of the paradigm presented here is that it is short, simple and
is suitable for individuals of all cognitive abilities. The ability tomeasure
differences between patients with schizophrenia and controls in such a
basic paradigm is promising for eventual translation of similar ap-
proaches into clinical practice. This MEG approach, which permits in-
vestigation of neuronal activity within brain networks of patients and
healthy volunteers, also reduces the need to conduct similar studies in
animal models of mental health disorders.

It is important to consider the effect of medication on the electro-
physiological measures obtained in this study. The patients were pri-
marily taking antipsychotics, which inhibit dopaminergic function
(Castle et al., 2013) and some were taking antidepressants, which en-
hance serotonergic or noradrenergic mechanisms (Feighner, 1999). Be-
cause dopamine has an inhibitory effect on cortical activity (Ciccone,
2015), antipsychotics tend to shift the balance of activity towards corti-
cal excitation. There is evidence frompreclinical studies that chronic ad-
ministration of antipsychotics can reduce steady state oscillatory power
in the gamma frequency (Anderson et al., 2014), whilst non-invasive
neuroimaging has shown enhanced steady state delta and theta but re-
duced alpha and beta amplitude after administration of antipsychotics
in healthy volunteers (Galderisi et al., 1996; Hubl et al., 2001). The ob-
servation that taking into account patients3 daily dose of psychotropic
medication did not alter the results, together with evidence from
other studies indicating that oscillatory abnormalities are present in un-
medicated patients with schizophrenia (Boutros et al., 2008; Gallinat
et al., 2004; Sun et al., 2013) and in first degree relatives (Hong et al.,
2012) suggests that the abnormalities observed in our study are unlike-
ly to be attributable to medication. Nevertheless, further investigation
into the impact of medication on the responses measured in this study
is warranted.

The PMBRwas inversely correlatedwith a score of overall severity of
psychotic illness assessed during a stable phase of the illness. The scores
for the three core syndromes of schizophrenia loaded positively on the
illness severity measure, whilst social, occupational and cognitive func-
tion loaded negatively on it (Table 4). The magnitude of the DSST load-
ing is lower than for the other items, but DSST score was retained
because the set of itemswere selected a priori as ameasure of illness se-
verity (Palaniyappan et al., 2013a) and a meta-analysis of cognitive im-
pairments in schizophrenia has shown that the DSST quantifies an
inefficiency of information processing that is an important feature of
schizophrenia (Dickinson et al., 2007).
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Similar to previous studies (e.g. Liddle, 1987b), the three syndrome
scores showed low mutual correlations (0.033–0.33; p b .05), but all
three loaded heavily on a single factor, along with the SOFAS and DSST
scores, indicating that they are associated with a latent variable likely
to reflect severity of illness. Scores on this composite measure of overall
current severity of psychotic illness exhibited a significant negative
Pearson correlation with the PMBR in the patient group (R = −0.52;
p = .015; Fig. 5), with no correlation between illness severity and
ERBD or visual gamma (R=−.18 and .06 respectively; p = ns). There-
fore, those patients with higher severity scores had stronger core symp-
toms and lower levels of function and these were also the patients who
showed the smallest beta rebound.

In conclusion, abnormalities in perceptual processing and psycho-
motor performance are key aspects of the pathophysiology that influ-
ences functional outcome in schizophrenia (Boden et al., 2014; Javitt,
2009). Electrophysiological biomarkers for these deficits can be identi-
fied using non-invasive neuroimaging techniques (Javitt et al., 2008)
and they can be modified using targeted training (Adcock et al., 2009).
We have used a simple visuomotor task and MEG imaging to show ab-
normalities in the dynamics of beta oscillations in motor cortex, giving
direct electrophysiological evidence to support theories of impaired corti-
cal inhibition in schizophrenia. Consistent with our current understand-
ing of GABA–glutamate dysfunction in this illness, our findings raise the
possibility of targeting the visuomotor system for behavioural training
and pharmacological treatments in patients with schizophrenia.
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