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Abstract: The synchronous reluctance machine is well-known for its highly nonlinear magnetic
saturation and cross-saturation characteristics. For high performance and high-efficiency control,
the flux-linkage maps and maximum torque per ampere table are of paramount importance. This
study proposes a novel automated online searching method for obtaining accurate flux-linkage and
maximum torque per ampere Identification. A limited 6 × 2 dq-axis flux-linkage look-up table is
acquired by applying symmetric triangle pulses during the self-commissioning stage. Then, three
three-dimensional modified linear cubic spline interpolation methods are applied to extend the flux-
linkage map. The proposed golden section searching method can be easily implemented to realize
higher maximum torque per ampere accuracy after 11 iterations with a standard drive, which is a
proven faster solution with reduced memory sources occupied. The proposed algorithm is verified
and tested on a 15-kW SynRM drive. Furthermore, the iterative and execution times are evaluated.

Keywords: flux-linkage map; synchronous reluctance motors; magnetic saturation; golden section
searching method; three-dimensional modified linear cubic spline interpolation method; maximum
torque per ampere

1. Introduction

Synchronous reluctance motors (SynRMs) with high magnetic anisotropy have re-
cently attracted significant interest in industrial applications owing to their reliable rotor
structure and the absence of permanent magnets. Considering their high efficiency and easy
manufacturing, they are potential candidates to replace industrial induction motors in some
industrial fields, such as fans, pumps, and extruders. However, the SynRM exhibits highly
nonlinear inductance characteristics because of magnetic saturation and cross-saturation
effects. Even if it is straightforward to use constant inductance to realize linear torque
control by letting the d-axis stator current equal to the q-axis stator current, this method
does not fully exploit SynRM’s high-efficiency characteristics. The SynRM in maximum
torque per ampere (MTPA) operation can exhibit a higher efficiency, which spurs two
interesting topics: how to set up an accurate magnetic model and realize accurate MTPA
control for SynRMs.

With respect to the determination of the magnetic model, finite element analysis (FEA)
is usually employed during the design stage as it is required to estimate the torque capability
of the machine before manufacturing. In [1], a look-up table (LUT) of the inductances was
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used as a function of the dq-axis currents [1]. Additionally, an approximating function [2–4]
can replace the LUTs. The main issue resulting from FEA models is the accurate inclusion
of manufacturing effects (cutting/punching, stacking, tolerances, etc.), material property
deviations, and other complex 3D effects. Therefore, differences between the design and
prototype are expected. Additionally, the FEA model is not always applicable to electric-
drive engineers.

Hence, self-commissioning methods that allow the identification of the magnetic
model of an unknown machine are usually envisaged for high-performance electric drives.
The procedure is performed before the first motor operation and is required only once as
the motor map is stored for future use. Self-commissioning procedures were classified as
standstill methods in [5,6], constant speed methods (CSMs) in [7,8], and dynamic methods
(DMs) in [9–11]. In standstill methods, the motor rotor is often either standstill or locked.
In [5], stepwise or hysteresis voltage pulses were applied along the dq axis. Flux maps
were obtained via voltage integration and compared with the FEA results. In [6], the CSM
proposed identifying a magnetic model at a constant speed driven by another prime mover,
as discussed in [7,8]. The DMs in [9–11] use the acceleration and deceleration procedure
to identify the flux linkage map in which the prime mover is unnecessary and the shaft is
free to rotate. However, the applied current is higher, and the acceleration can be too fast
for sufficient data acquisition. To sum up, all the algorithms mentioned above require flux
linkage acquisition at every applied operating point, which could be time-consuming and
occupy a high amount of memory resources.

Accurate MTPA control is critical for exploiting the efficiency of the SynRM, which
can be mainly classified into three methods: the MTPA look-up table method (LUT) [1], the
high-frequency injection method [12–16], and the MTPA online searching method [17–21].
In the first two methods, engineers use a constant current to search for the minimum torque
point by changing the torque angle. Although this model does not require prior knowledge
of the motor parameters, it is time-consuming and can be repeated after manufacturing
variations. In the second method, a high-frequency current is injected into the machine,
which has been proven robust to noise. However, this can lead to torque ripples and
harmonics. The harmonics injected from the voltage are unsuitable at high speeds because
of the lower voltage utilization margin. The third method usually requires an accurate
LUT for inductance, regarded as parameter-dependent. For example, in [20–23], the
online searching method was used based on the understanding of all parameters from the
FEA results.

This implies that accurate MTPA and flux-linkage LUTs tend to be very large, require
considerable memory storage, and impose an additional computation burden, whereas
small LUTs can reduce the accuracy of high-performance control. It is essential to simultane-
ously shorten memory and at the same time obtain highly accurate control. It is particularly
in high demand for specific low-cost applications, such as household appliances and cheap
industrial drives with limited microcontroller storage capacity.

The algorithm was verified using a 15-kW SynRM. Our target focuses on a novel MTPA
online search solution with limited demand for experimentally obtained flux-linkage-map
information. The proposed method is characterized as follows:

(a) The only required flux-linkage-map information is a 6 × 2 LUT, which can be acquired
via simple experimental self-commissioning procedures.

(b) Three-dimensional modified linear cubic spline interpolation method (3D-MLCSIM)
can extend the three-dimensional flux-linkage map to tune the accuracy as required.

(c) The proposed online golden section searching method (GSSM) has been proven to be a
faster solution with only 11 iterations to search for an optimal MTPA operating point.

The remainder of this study is organized as follows. Section 2 describes the magnetic
model and MTPA control for the SynRM. In Section 3, the flux-linkage acquisition procedure
with the triangle injection method is described. In Section 4, the GSSM-based MTPA search
method is explained. In Section 5, the experimental results are presented. In Section 6, the
conclusions, highlighting the outcomes and benefits of this study, are presented.
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2. Model of the Synchronous Reluctance Machine
2.1. SynRM Model with Magnetic Saturation and Cross-Saturation Effect

In the dq-axis frame, the voltage and flux linkage equations of the SynRM are described
as follows. ud = Rsid +

dψd
dt − ωeψq

uq = Rsiq +
dψq
dt + ωeψd

(1)

The torque equation can be described as

Te = 1.5p(ψdiq − ψqid) (2)

Owing to the magnetic circuit saturation effect, the dq-axis flux linkage cannot contin-
uously increase with an increase in the dq-axis current, as analyzed by FEA, as shown in
Figure 1a,b. The flux linkage entered the magnetic saturation region when the dq-axis cur-
rent was large enough. In addition, owing to the influence of the magnetic cross-saturation
effect, the d-axis flux linkage also declines slightly with an increase in the q-axis current,
and the q-axis flux linkage is subject to the same behaviors.
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Figure 1. FEA results of flux-linkage maps for 15 kW SynRM prototype: (a) d-axis flux linkage;
(b) q-axis flux linkage.

The FEA results of dq-axis inductance and mutual inductance as a function of the
dq-axis currents, respectively. Dq-axis inductance and mutual inductance can be expressed
as follows.

Ld(id, iq) =
ψd(id, iq)

id
(3)

Lq(id, iq) =
ψq(id, iq)

iq
(4)

Ldq(id, iq) =
∂ψd(id, iq)

∂iq
=

∂ψq(id, iq)
∂id

(5)

As shown in Figure 1, treating the dq-axis flux linkage and dq-axis inductance as
an analytical expression is challenging. Given the strong nonlinearity of the flux linkage,
the voltage equation in (1), inductance in (3)–(5), and torque equation in (2) also exhibit
strong nonlinearity.

2.2. MTPA Control

For a given operating condition corresponding to a defined torque demand, the MTPA
control method focuses on the minimum copper losses with maximum torque production,
which has attracted increasing interest in academia and industry.
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The MTPA solution was formulated to solve the copper-loss minimization problem.
The superscript “*” denotes the reference value of the current in the subsequent description.min Rs(i∗2

d + i∗2
q )

s.t. T∗
e = 3

2 p(Ld − Lq)i∗d i∗q
(6)

The Lagrange multiplier applied for minimum copper loss can be described as follows.

H(i∗d , i∗q , λ) = Rs(i∗2
d + i∗2

q ) + λ[T∗
e − 3

2
p(Ld − Lq)i∗d i∗q ] (7)



∂H(i∗d ,i∗q ,λ)
∂id

= 2Rsi∗d − λ 3
2 p((Ld − Lq)i∗q + ( ∂Ld

∂id
− ∂Lq

∂id
)i∗d i∗q ) = 0

∂H(i∗d ,i∗q ,λ)
∂iq

= 2Rsi∗q − λ 3
2 p((Ld − Lq)i∗d + ( ∂Ld

∂iq
− ∂Lq

∂iq
)i∗d i∗q ) = 0

∂H(i∗d ,i∗q ,λ)
∂λ = Te − 3

2 p(Ld − Lq)i∗d i∗q = 0

. (8)

By eliminating the parameter in (8).T∗
e − 3

2 p[(Ld − Lq)i∗d i∗q ] = 0

(Ld − Lq)i∗2
d − (Ld − Lq)i∗2

q + L2i∗2
d i∗q − L1i∗d i∗2

q = 0
(9)

where L1 =
∂Ld(id ,iq)

∂id
− ∂Lq(id ,iq)

∂id
, L2 =

∂Ld(id ,iq)
∂iq

− ∂Lq(id ,iq)
∂iq

.
If the magnetic saturation and cross-saturation effects are neglected, it is worth ob-

serving that the MTPA mathematical relationship in (9) can be simplified as a 45◦ control
(id* = iq* control). However, the issues related to MTPA control are as follows:

(a) Traditional motor parameters, such as the dq-axis inductance and flux linkage, are
considered constant and independent of the motor operating point. However, these
parameters change with the input current under actual operating conditions.

(b) Considering variable inductance, the dq-axis current along the MTPA curve can be
obtained by solving (9) with a given torque, as discussed in [19–21].

i∗d = S−
√

S2−4T
2

i∗q = S+
√

S2−4T
2

(10)

In (10), the MTPA curve consists of partial differential equations, LUTs, and square
root operation, which is a challenging task implemented directly in MCU.

(c) The LUT method is commonly used, and these LUTs tend to be large with large
memory because it is necessary to create separate MTPA tables based on inductance
variation. Estimating MTPA with parameter variation requires considerable posting
fitting work, which is time-consuming.

3. Flux Linkage Map Self-Identification

Many types of inductance and flux linkage self-commissioning methods are proposed
in the literature [5–11], which can be divided primarily into dynamic and standstill methods.
The method to correctly obtain the experimental values of flux linkage and inductance in
this study is not in the scope of discussion. A detailed and time-efficient triangle current
injection is discussed in [7]. The dq-axis flux linkage can be calculated from (11). The
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experimental results were compared with the FEA results, and the maximum normalized
dq-axis flux differences are 2.8% and 8.3%, as shown in Figure 2a,b.ψd(id, iq) =

uq−Rsiq
ωe

ψq(id, iq) = − ud−Rsid
ωe

(11)

Machines 2024, 12, x FOR PEER REVIEW 5 of 18 
 

 

(11). The experimental results were compared with the FEA results, and the maximum 
normalized dq-axis flux differences are 2.8% and 8.3%, as shown in Figure 2a,b. 

( , )

( , )

q s q
d d q

e

d s d
q d q

e

u R i
i i

u R ii i

ψ
ω

ψ
ω

−
=




− = −
  

(11) 

 

(a) (b) 

Figure 2. Experimental flux-linkage maps: (a) d-axis flux linkage; (b) q-axis flux linkage. 

More accurate steps can be added to increase the accuracy of the operating point, as 
described in [7,8], which can be used to expand the number of points for the LUT. How-
ever, an increase in the number of operating points prolongs the total time of the self-
commissioning procedure and occupies more memory resources in the microcontroller. 
For example, a 61 × 61 single float data LUT occupies approximately 15 kBytes, whereas a 
21 × 21 single float data LUT occupies about 1.76 kB. If the dq-axis flux-linkage LUTs are 
considered, then the memory is doubled. To shorten the memory usage, in our case, only 
a 6 × 2 single float data LUT (marked as ◆ in Figure 2) was used, with only 48 Bytes of 
memory usage. 

4. Proposed GSSM for MTPA 
A golden section search method was proposed to realize a highly accurate flux-link-

age LUT and MTPA based on a simple dq-axis 6 × 2 flux-linkage LUT. 

4.1. MTPA Curve on Polar Coordinates 
MTPA is defined as the maximum torque to current ratio control: 

( )
2 2

1.5p( )
, d q q de
d q MTPA

s d q

i iTf i i
i i i

ψ ψ−
= =

+
 

(12) 

The torque overcurrent can be defined as an MTPA function, and the MTPA curve is 
used to determine the optimal dq-axis current to satisfy the maximum MTPA function. 
This simplifies the calculations. The function can be redefined as follows. 

( ) ( )* *

2 2max
, , d q q d
d q d q

d q

i i
find i i f i i

i i

ψ ψ−
→ =

+
 

(13) 

If the above expression is converted to polar coordination through (14), 
cos
sin

d s

q s

i i
i i

γ
γ

=
 =  

(14) 

Then, the MTPA function can be expressed as follows. 

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

id(A)

d-
ax

is
 fl

ux
(W

b)

 

 

iq=0A-EXP
iq=40A-EXP
iq=0A-FEA
iq=40A-FEA

0 10 20 30 40 500

0.1

0.2

0.3

iq(A)

q-
ax

is
 fl

ux
(W

b)

 

 

iq=0A-EXP
iq=40A-EXP
iq=0A-FEA
iq=40A-FEA

id
id
id
id

Figure 2. Experimental flux-linkage maps: (a) d-axis flux linkage; (b) q-axis flux linkage.

More accurate steps can be added to increase the accuracy of the operating point,
as described in [7,8], which can be used to expand the number of points for the LUT.
However, an increase in the number of operating points prolongs the total time of the
self-commissioning procedure and occupies more memory resources in the microcontroller.
For example, a 61 × 61 single float data LUT occupies approximately 15 kBytes, whereas a
21 × 21 single float data LUT occupies about 1.76 kB. If the dq-axis flux-linkage LUTs are
considered, then the memory is doubled. To shorten the memory usage, in our case, only
a 6 × 2 single float data LUT (marked as ◆ in Figure 2) was used, with only 48 Bytes of
memory usage.

4. Proposed GSSM for MTPA

A golden section search method was proposed to realize a highly accurate flux-linkage
LUT and MTPA based on a simple dq-axis 6 × 2 flux-linkage LUT.

4.1. MTPA Curve on Polar Coordinates

MTPA is defined as the maximum torque to current ratio control:

f
(
id, iq

)∣∣
MTPA =

Te

is
=

1.5p(ψdiq − ψqid)√
i2d + i2q

(12)

The torque overcurrent can be defined as an MTPA function, and the MTPA curve
is used to determine the optimal dq-axis current to satisfy the maximum MTPA function.
This simplifies the calculations. The function can be redefined as follows.

f ind
(

i∗d , i∗q
)
→ f

(
id, iq

)∣∣∣
max

=
ψdiq − ψqid√

i2d + i2q
(13)

If the above expression is converted to polar coordination through (14),{
id = is cos γ

iq = is sin γ
(14)
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Then, the MTPA function can be expressed as follows.

f (γ)|max = ψd(i∗s cos γ, i∗s sin γ) sin γ − ψq(i∗s cos γ, i∗s sin γ) cos γ (15)

The problem can be restated to find the optimal angle γ at the maximum value of the
function f(γ) with different given currents.

Compared with the (12) dq-axis current, the proposed new function (15) on polar
coordination, only one parameter, optimal angle γ, should be determined. The dq-axis flux
linkage LUTs ψd

(
i*scosγ, i*ssinγ

)
and ψq

(
i*scosγ, i*ssinγ

)
in polar coordinates are difficult

to handle and require interpolation and trigonometric operations, which require a long
execution time.

4.2. Modified Linear Cubic Spline Interpolation Method for Magnetic and Cross Saturation Effect

To decrease the measurement time and memory occupation, two 6 × 2 single float data
LUTs (dq-axis flux-linkage) with averaged values from the experimental measurements in
Figure 2 were used in practice. In this case, two 6 × 2 LUTs can only be divided into four
two-dimensional LUTs. As in Figure 3, LUT1 and LUT3 only consider the effect of magnetic
saturation, whereas LUT2 and LUT4 consider the impact of strong cross saturation.
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Figure 3. Sample points relationship: (a) d-axis flux-linkage 6 × 2 LUT; (b) q-axis flux-linkage
6 × 2 LUT.

It should be noted that magnetic saturation exhibits a highly nonlinear characteristic,
whereas the effect of cross-saturation is less. The hybrid interpolation method can be
applied to reduce the calculations and memory occupation as follows:

• The d-axis flux-linkage LUT was interpolated using the cubic spline interpolation
method (CSIM) along the d-axis current input.

• The q-axis flux-linkage LUT was interpolated using the cubic spline interpolation
method (CSIM) along the q-axis current input.

• The d-axis flux-linkage LUT was interpolated using the linear interpolation method
(LIM) along the q-axis current input.

• The q-axis flux-linkage LUT was interpolated using the linear interpolation method
(LIM) along the d-axis current input.

The proposed hybrid interpolation method is referred to as 3D-MLCSIM.
The d-axis flux linkage is detailed as an example. As shown in Figure 4a, the blue

points denote the four known points listed as Q11 = z(x1,y1), Q12 = z(x1,y2), Q21 = z(x2,y1),
and Q22 = z(x2,y2), while the red points denote unknown points P(xp,yp). If a value is
required from the unknown function z = f (x,y) at point P(xp,yp), 3D-MLCSIM is expressed
in the following steps.
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Step 1. Linear interpolation is used in the y direction in Figure 4bf (R1) ≈
y2−yp
y2−y1

f (Q11) +
yp−y1
y2−y1

f (Q21)

f (R2) ≈
y2−yp
y2−y1

f (Q12) +
yp−y1
y2−y1

f (Q22)
(16)

Step 2. cubic spline interpolation is used in the x direction in Figure 4c.
Considering that xp is within the range of [xj,xj + 1], cubic spline interpolation is

used to obtain flux-linkage results at given points, and the online solution is provided in
Appendix A, which is obtained via LU factorization and iterative method.

z(P(xp, yp)) ≈
(xj+1−xp)

3

6(xj+1−xj)
Mj +

(xp−xj)
3

6(xj+1−xj)
Mj+1 + A + B

A =( f (R1)−
Mj
6 (xj+1 − xj)

2)
x2−xp

(xj+1−xj)

B =( f (R2)−
Mj+1

6 (xj+1 − xj)
2)

xp−xj
(xj+1−xj)

(17)

Figure 5 shows the simulation results after the interpolation operation. The direction
of the green arrow corresponds to a LIM, whereas the red arrow shows the CSIM.
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(b) q-axis flux-linkage.

4.3. Golden Section Searching for MTPA

The GSSM is an interval contraction method, which gradually reduces the interval
containing the optimal solution until the interval length is zero.

For example, to determine the minimum value point of function f (x) in the interval
[a,b], any two points x1 and x2 can be selected within the range of [a,b] by comparing
the function value or derivative value of function f (x) at these two points. Part of the
interval [a,x1] or [x2,b] is removed to decrease the length of the search interval. The method
continues to iterate until the interval shrinks to one point or the interval length is less than
a given accuracy ε. The optimal x is determined.

2ρ − 1 = ρ(1 − ρ) (18)

The interval contraction is repeated as [a0,b0] → [a0,b1] → [a2,b1], as shown in Figure 6.
The mathematical relationship is provided in (18). By solving (18), the interval compression
ratio ρ corresponds to 0.618. In particular, a1 and b1 denote the golden section point of the
interval [a0,b0], whereas a2 and b2 denote the golden section point of the interval [a0,b1].
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Figure 6. Golden Section interval.

The function f (γ) in (15) exhibits the following characteristics. The function equation
f (γ) is a unimodal function with respect to angle γ. The unimodal function refers to the
function f (γ) on the interval [a,b], which exists only at one point γ* within the interval [a,b].
Thus, the function f (γ) increases (decreases) strictly monotonically on [a,γ*] and decreases
(increases) strictly monotonically on [γ*,b].

Figure 7 shows the flow chart of the entire GSSM. The detailed search algorithm is
described in the following steps.
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Figure 7. Flow chart of the proposed golden section search algorithm interval.

Step 1 Initialize the interval [a,b] as random [a0,b0] and set the search error ε > 0. In
this particular case, the interval upper and lower limits, a0 and b0, are set as 45◦ and 80◦,
respectively, and the error limit ε is set as 0.1◦. It is noted that the MTPA angle is within
[45◦,80◦] in all the current operating points. The random initial interval limits of 45◦ and
80◦ can be selected as the maximum interval range to cover all optimal MTPA angles. Since
the torque is 0 N.m, the dq-axis current reference usually equals the 45◦ MTPA angle.
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Step 2 Define two golden section checkpoints: γ1 = a + 0.382 (b − a) and γ2 = a + 0.618
(b − a).

Step 3 Calculate four flux-linkage values at given γ1 and γ2 using 3D-MLCSIM
Ψd1 Ψq1 Ψd2 Ψq2; further, calculate f (γ1) f (γ2) using Equation (15) and divide the search
interval into two cases:

1. If f (γ1) ≤ f (γ2), then the optimal solution (i.e., γ*) when the function takes the maximum
value can only be located in the interval (γ1,b). In this case, a is denoted as γ1, and b
remains unchanged. Additionally, γ1 is assigned as γ2, and new γ2 is calculated using
the expression γ2 = a + 0.618(b − a). Furthermore, update f (γ2) using (15).

2. If f (γ1) > f (γ2), then the optimal solution (i.e., γ*) can only be located in the interval
[a,γ2). In this case, a remains unchanged, b is assigned as γ2, and γ2 is assigned as γ1.
Calculate new γ1 using the formula γ1 = a + 0.382 (b − a) and update f (γ1) using (15).

Step 4 Calculate the new interval (b − a) in Step 3: if the interval length is less than the
searching error ε, stop the iteration and return to Step 5; otherwise, return to Step 3.

Step 5 Use the midpoint γ* = (a + b)/2 of the last interval as the approximate optimal
solution and obtain MTPA dq-axis current.

The Interval compression ratio ρ is 0.618. The accuracy is defined as follows.

(b0 − a0)ρ
N < ε (19)

The final iterations are expressed as follows.

N > log
ε

(b0 − a0)
/ log(ρ) (20)

The proposed method has the following characteristics listed as follows.

(a) The proposed online method does not require curve fitting. Only limited information
is required, and it is easier to access these using self-identification methods.

(b) Function equation f(γ) is a unimodal function, and only one maximum value is
determined within the range [45◦ to 80◦].

(c) If the search error ε is set to 0.1◦, then the maximum iteration can be calculated from
(20) as 11. If the searching error ε is set to 0.5◦, then the maximum number of iterations
is 8.

(d) 3D-MLCSIM can be used only once during each iteration to save the calculation.
(e) The flux linkage and torque values can be calculated simultaneously for the benefit of

the high-performance control method, for example, sensorless control, which relies on
the parameters.

5. Experimental Results

Figure 8a,b show the experimental test bench and DSP-based controller. The machine
under test (SynRM 15 Kw prototype) is on the left-hand side, and the parameters are listed
in Table 1. A torque transducer (Kistler 4503A200WA2B100, Winterthur, Switzerland) is
mounted between the two shafts. The induction machine on the right-hand side can be
used as a prime mover or dynamometer. The speed and angle were measured using a
resolver (TAMAGAWA, 52AXU7102D, Nagano, Japan, TMS320F28377, DSP, Dallas, TX,
USA). Digital signal processing (DSP Type: TMS320F28377, Dallas, TX, USA) was used as
the core device for the controller. An RS485 communication cable was used to obtain real-
time data from the DSP. The phase currents were sampled by three current sensors (Type:
LEM), the DC-link voltage was also sampled, and all entered the DSP’s analog-to-digital
(AD) channels.
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Table 1. 15-Kw SynRel machine parameters.

Synrm Parameters Values Units Parameters Values Units

Rated power 15 Kw Shaft diameter 60 mm
Rated torque 96 Nm Stack length 205 mm
Rated speed 1500 Rpm slots 48

Rated phase current 33 A-RMS poles 4
Rated phase voltage 210 V-RMS Tooth width 5 mm
Stator outer diameter 260 mm Slot height 20.3 mm
Rotor outer diameter 169 mm Air gap 0.5 mm

Table 2 lists the convergence procedure of the proposed GSSM at 30 A current input.
As shown in Table 2, the total iterations at 30 A are 10. Considering the search accuracy ε

as 0.1◦, γ1 or γ2, a or b, f(γ1), or f(γ2), only one of the values is updated at each iteration,
whereas the other values maintain the value from the previous step. Each search interval
(γ2 − γ1) shrinks by 0.618, as shown in (19) and (20). The final steps required are fixed as
log ε

(b0−a0)
/ log(ρ). The final γ* is selected as 55.36◦.

Table 2. GSSM at 30 A.

i a b γ1 γ2 f (γ1) f (γ2) γ2 − γ1

1 45.00 80.00 58.37 66.63 0.6343 0.5709 8.26
2 45.00 66.63 53.26 58.37 0.6390 0.6343 5.11
3 45.00 58.37 50.11 53.26 0.6300 0.6390 3.16
4 50.11 58.37 53.26 55.21 0.6390 0.6401 1.95
5 53.26 58.37 55.21 56.42 0.6401 0.6389 1.21
6 53.26 56.42 54.47 55.21 0.6399 0.6401 0.75
7 54.47 56.42 55.21 55.67 0.6401 0.6399 0.46
8 54.47 55.67 54.93 55.21 0.6401 0.6401 0.28
9 54.93 55.67 55.21 55.39 0.6401 0.6401 0.18

10 55.21 55.67 55.39 55.50 0.6401 0.6401 0.11
11 55.21 55.50 55.32 55.39 0.6401 0.6401 0.07
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The 20 A and 40 A peak currents are selected as inputs for the GSSM to show the
algorithm’s search process. Figure 9a,b show the algorithm convergence process in the
dq-axis current and polar coordinate planes, respectively. Figure 9a is torque are the
torque, current, and MTPA curves in the dq-axis current plane. The dq-axis current plane is
well known to describe the torque, current constraint, voltage constraint, MTPA, etc., as
discussed in [14–18]. The red quarter circle represents the amplitude of a given current.
We selected 20 A and 40 A as case studies. A series of curves with color contour lines
represent torque sensor values with 20 N.m as a step. The red solid line denotes the MTPA
experimental curve. The steps of the interval shrinking are denoted by 1⃝– 4⃝.
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Figure 9b is the polar coordination form of Figure 9a, using

{
i∗d = i∗s cos γ

i∗q = i∗s sin γ
. The

proposed search algorithm can continuously shrink the interval for optimization, and it
finally converges to the MTPA curve.

Figure 10 shows the data relationship between the MTPA angle error and current
amplitude using different interpolation algorithms. The experimental MTPA procedure
is: by providing a constant current, the current angle changes slightly until the maximum
torque point is determined via the torque sensor. The current angle we find is defined as

Machines 2024, 12, x FOR PEER REVIEW 12 of 19 
 

 

selected 20 A and 40 A as case studies. A series of curves with color contour lines represent 
torque sensor values with 20 N.m as a step. The red solid line denotes the MTPA experi-
mental curve. The steps of the interval shrinking are denoted by ①-④. 

   
(a) (b) 

Figure 9. GSSM searching procedure: (a) in dq-axis current plane; (b) in polar coordination. 

Figure 9b is the polar coordination form of Figure 9a, using 
* *

* *

cos
sin

d s

q s

i i
i i

γ
γ

 =


=
. The pro-

posed search algorithm can continuously shrink the interval for optimization, and it fi-
nally converges to the MTPA curve.  

Figure 10 shows the data relationship between the MTPA angle error and current 
amplitude using different interpolation algorithms. The experimental MTPA procedure is: 
by providing a constant current, the current angle changes slightly until the maximum 
torque point is determined via the torque sensor. The current angle we find is defined as 

exp MTPAϒ ， , and the MTPA we obtained from GSSM is defined as ,MTPAGSSMϒ . 

 
Figure 10. Experimental comparison for MTPA angle error for proposed GSSM with 3D-MLCSIM 
in red (6 × 2 LUTs) and green (11 × 11 LUTs), and MTPA with linear interpolation in blue (6 × 2 
LUTs). 

The MTPA angle error in Figure 10 is calculated as: 

exp,MTPA ,MTPAGSSMErrϒ = ϒ − ϒ
 (21) 

(45°,40) (80°,40)

(80°,20)(45°,20)

①
②

③④

①
②
③

④

Current Circles

MTPA

Torque curves

exp,MTPA, and the MTPA we obtained from GSSM is defined as

Machines 2024, 12, x FOR PEER REVIEW 12 of 19 
 

 

selected 20 A and 40 A as case studies. A series of curves with color contour lines represent 
torque sensor values with 20 N.m as a step. The red solid line denotes the MTPA experi-
mental curve. The steps of the interval shrinking are denoted by ①-④. 

   
(a) (b) 

Figure 9. GSSM searching procedure: (a) in dq-axis current plane; (b) in polar coordination. 

Figure 9b is the polar coordination form of Figure 9a, using 
* *

* *

cos
sin

d s

q s

i i
i i

γ
γ

 =


=
. The pro-

posed search algorithm can continuously shrink the interval for optimization, and it fi-
nally converges to the MTPA curve.  

Figure 10 shows the data relationship between the MTPA angle error and current 
amplitude using different interpolation algorithms. The experimental MTPA procedure is: 
by providing a constant current, the current angle changes slightly until the maximum 
torque point is determined via the torque sensor. The current angle we find is defined as 

exp MTPAϒ ， , and the MTPA we obtained from GSSM is defined as ,MTPAGSSMϒ . 

 
Figure 10. Experimental comparison for MTPA angle error for proposed GSSM with 3D-MLCSIM 
in red (6 × 2 LUTs) and green (11 × 11 LUTs), and MTPA with linear interpolation in blue (6 × 2 
LUTs). 

The MTPA angle error in Figure 10 is calculated as: 

exp,MTPA ,MTPAGSSMErrϒ = ϒ − ϒ
 (21) 

(45°,40) (80°,40)

(80°,20)(45°,20)

①
②

③④

①
②
③

④

Current Circles

MTPA

Torque curves

GSSM,MTPA.

Machines 2024, 12, x FOR PEER REVIEW 12 of 18 
 

 

selected 20 A and 40 A as case studies. A series of curves with color contour lines represent 
torque sensor values with 20 N.m as a step. The red solid line denotes the MTPA experi-
mental curve. The steps of the interval shrinking are denoted by ①-④. 

   
(a) (b) 

Figure 9. GSSM searching procedure: (a) in dq-axis current plane; (b) in polar coordination. 

Figure 9b is the polar coordination form of Figure 9a, using 
* *

* *

cos
sin

d s

q s

i i
i i

γ
γ

 =


=
. The pro-

posed search algorithm can continuously shrink the interval for optimization, and it fi-
nally converges to the MTPA curve.  

Figure 10 shows the data relationship between the MTPA angle error and current 
amplitude using different interpolation algorithms. The experimental MTPA procedure is: 
by providing a constant current, the current angle changes slightly until the maximum 
torque point is determined via the torque sensor. The current angle we find is defined as 

exp MTPAϒ ， , and the MTPA we obtained from GSSM is defined as ,MTPAGSSMϒ . 

 
Figure 10. Experimental comparison for MTPA angle error for proposed GSSM with 3D-MLCSIM 
in red (6 × 2 LUTs) and green (11 × 11 LUTs), and MTPA with linear interpolation in blue (6 × 2 
LUTs). 

The MTPA angle error in Figure 10 is calculated as: 

exp,MTPA ,MTPAGSSMErrϒ = ϒ − ϒ
 (21) 

(45°,40) (80°,40)

(80°,20)(45°,20)

①
②

③④

①
②
③

④

Current Circles

MTPA

Torque curves

Figure 10. Experimental comparison for MTPA angle error for proposed GSSM with 3D-MLCSIM in
red (6 × 2 LUTs) and green (11 × 11 LUTs), and MTPA with linear interpolation in blue (6 × 2 LUTs).
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The MTPA angle error in Figure 10 is calculated as:

Err
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Herein, the blue line denotes the MTPA observation angle error curve constructed by
the linear interpolation method under 6 × 2 LUTs (Method I), the red line indicates the
MTPA observation error curve constructed by 3D-MLCSIM under 6 × 2 LUTs (Method II),
and the green line denotes the MTPA observation error curve constructed by 3D-MLCSIM
under 11 × 11 LUTs (Method III). As shown in Figure 10, the maximum MTPA angle error
points approximately corresponded to 4.7◦ at 21 A for Method I, 4◦ at 15 A for Method II,
and 2.3◦ at 19 A for Method III.

Figure 11 depicts the torque error in MTPA from three methods, and the maximum
torque error points approximately located at −4.37 N.m at 29 A for Method I, −1.72 N.m at
37 A for Method II, and −0.49 N.m at 19 A for Method III.
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Method III presents higher accuracy with larger LUTs. In Method II, it should be noted
that most of the error peaks are close to the range from 15 A to 20 A, which approximately
corresponds to 1/3 to 2/5 of the rated current. Given the low current range, the motor
copper loss is not very high, and the error does not decrease efficiency. However, in the
higher current range, Method I still exhibited higher angle error and lost around −4.3 N.m
available torque, denoted as −4.4◦ at 29 A. Compared with Method I, Method II and
Method III exhibited better accuracy with maximum errors of 2.5◦ and −0.75◦, respectively.

The proposed method has been tested under acceleration dynamic conditions without
load and with rated load, as shown in Figure 12a,b, respectively. The 3D-MLCSIM under
6 × 2 LUTs combined with GSSM is used for testing. It can be seen that the proposed
method shows quite good dynamic performance covering from no load to full load.
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Figure 12. Acceleration from 100 rpm to 1500 rpm: (a) without load; (b) with rated load.

As shown in Figure 13a–c, different sizes of dq-axis flux-linkage LUTs were compared
regarding memory occupation, calculation time, and time duration for the self-commissioning
procedure. As shown in Figure 13a, given the single float format of data saved in DSP memory,
the 6 × 2 dq-axis flux-linkage LUT only occupied 96 Bytes, as compared with 1.6 k Bytes
for the 20 × 20 dq-axis flux-linkage LUT. The calculation time for the proposed 3D-MLCSIM
was compared with that of the well-known bilinear interpolation method, and the results
are shown in Figure 13b. The proposed interpolation time in FOC was approximately four
times that of the bilinear interpolation method because the proposed interpolation exhibited
higher computational complexity. The maximum MTPA error changed from 4◦ to 0.4◦ when
the size of the table increased from a 6 × 2 LUT to a 20 × 20 LUT. However, the 6 × 2 LUT
exhibited good agreement in the MTPA curve under most operating conditions, as shown
in Figure 13c, which can be accepted in some low-cost MCUs. The two self-commissioning
methods, which are denoted as ‘triangle-pulses’ in [7] and ‘square pulses’ in [8] for flux-linkage
LUTs, were selected as the case study; the ‘three-triangle-pulses’ obtained the exact size of
the LUT faster than the ‘three-pulse’. When the LUT was chosen as 6 × 2, only 0.4 min was
required to conduct all possible points reported in [7]. The calculation time of the GSSM did
not change significantly with the increasing size of the LUT because the fixed 11 iterations were
used for every operating point. The total time for fast self-commissioning with a 6 × 2 dq-axis
flux-linkage LUT and MTPA searching was only 31.6 s.
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Figure 13. Experimental comparison of different LUT sizes, 6 × 2, 10 × 4, 10 × 10, and 20 × 20 of
dq-axis flux-linkage: (a) memory and number of points; (b) accuracy and calculation time in FOC;
(c) execution time for self-commissioning.

6. Conclusions

The study proposed an automated MTPA identification method for SynRMs with
limited flux linkage information. A limited dq-axis flux-linkage map, a 6 × 2 LUT, was
obtained by applying symmetric triangle pulses in the self-commissioning stage. The
hybrid interpolation method 3D-MLCSIM was used to extend the data. Golden section
searching was proposed to obtain the MTPA curve. The advantage of the proposed method
was observed in the high accuracy of MTPA curves with less calculation time and low
memory occupation under 11 iterations. This corresponds to a suitable and promising
solution for specific low-cost microcontroller applications, such as household appliances
and other industrial applications.
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Nomenclature

ud, uq dq-axis stator voltages
id, iq dq-axis stator currents
Ψd, Ψq dq-axis flux linkages
Ld, Lq, Ldq dq-axis self-inductance, mutual inductance
ωe, Te Electric angular frequency, Torque
Rs, p the stator resistance, pole pairs
λ, is Lagrange multiplier, total stator current
γ Torque sweeping angle along current circle
γ* Optimal MTPA angle after searching
ρ, ε Interval compression ratio, searching accuracy
a, b Upper and lower limit of searching intervals
ai, bi The ith iteration for upper and lower limit
N, i Total iterations, the ith step of the iteration
xi, yi The ith known dq-axis current point in LUT
xp, yp The unknown point to be interpolated

Appendix A
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Figure A1. Cubic spline functions for each point.

A cubic spline uses third-order polynomials to interpolate over each interval between
the data points. Considering finite interval [a,b] and known points a = x0 < x1 < · · · < xn = b,
the cubic spline functions Si(x) represent cubic splines on each subinterval [x0,x1], [x1,x2],
· · · , [xn−1,xn]. If Sj(x) is continuous in the interval [a,b] and there are n + 1 data points
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(x0, y0), · · · , (xn, yn) with n subintervals. Each cubic polynomial in the subinterval [xj,xj+1]
is defined as follows:

Sj(x) = f (P(xp)) ≈
(x2−xp)

3

6(x2−x1)
Mj +

(xp−x1)
3

6(x2−x1)
Mj+1 + A + B

A =( f (R1)−
Mj
6 (x2 − x1)

2)
x2−xp
(x2−x1)

B =( f (R2)−
Mj+1

6 (x2 − x1)
2)

xp−x1
(x2−x1)

, (A1)

where xp is the data to be decided and Mj denotes the coefficiency, which can be determined
by Matrix (A2) 

2 1 0 · · · 0

µ2 2 1 − µ2
. . .

...
...

. . . . . . . . . 0
...

. . . µn−1 2 1 − µn−1

0 · · · 0 1 2




M1
M2

...
Mn−1

Mn

 =


β1
d2
...

dn−1

βn

 (A2)

Considering xj < xp < xj+1, where

β1 = 6
(x2−x1)

( y2−y1
(x2−x1)

− y1)

βn = 6
(xn−xn−1)

(yn − yn−yn−1
(xn−xn−1)

)

µj =
hj−1

hj−1+hj
, hj = xj+1 − xj

dj = 6(
yj+1−yj

hj
− yj+1−yj

hj−1
) 1

hj−1+hj

(j = 2, 3, . . . n)

(A3)

To solve Mj, the diagonal elements of the coefficient matrix of these equations correspond
to two, and the sum of the non-unique diagonal elements corresponds to one. Therefore, the
coefficient matrix exhibits a strong diagonal advantage and is a unique solution. The coefficient
matrix can be obtained online by the combination strategy of LU factorization and the iterative
method and its implementation. The final cubic splines can be found in Figure A2.
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Step 1: Calculate the new matrix

q1 = 1
2

qi =
1−µi

(2−µiqi−1)
(i = 2, 3, . . . n − 1)

(A4)
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Step 2: Solve the matrix Ly = f

y1 = β1
2

yi =
di−µiyi−1
(2−µiqi−1)

(i = 2, 3, . . . n)
(A5)

Step 3: Solve the matrix Ux = y

Mn = βn

Mi = di − qi Mi+1(i = n − 1, n − 2, . . . 2, 1)
(A6)
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