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BACKGROUND: The National Institute for Health and Care Excellence (NICE) recommends that people aged 60+ years with newly
diagnosed diabetes and weight loss undergo abdominal imaging to assess for pancreatic cancer. More nuanced stratification could
lead to enrichment of these referral pathways.

METHODS: Population-based cohort study of adults aged 30-85 years at type 2 diabetes diagnosis (2010-2021) using the
QResearch primary care database in England linked to secondary care data, the national cancer registry and mortality registers.
Clinical prediction models were developed to estimate risks of pancreatic cancer diagnosis within 2 years and evaluated using
internal-external cross-validation.

RESULTS: Seven hundred and sixty-seven of 253,766 individuals were diagnosed with pancreatic cancer within 2 years. Models
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included age, sex, BMI, prior venous thromboembolism, digoxin prescription, HbA1c, ALT, creatinine, haemoglobin, platelet count;
and the presence of abdominal pain, weight loss, jaundice, heartburn, indigestion or nausea (previous 6 months). The Cox model
had the highest discrimination (Harrell's C-index 0.802 (95% Cl: 0.797-0.817)), the highest clinical utility, and was well calibrated. The
model’s highest 1% of predicted risks captured 12.51% of pancreatic cancer cases. NICE guidance had 3.95% sensitivity.

DISCUSSION: A new prediction model could have clinical utility in identifying individuals with recent onset diabetes suitable for

fast-track abdominal imaging.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02693-9

INTRODUCTION

Pancreatic cancer has a very poor prognosis, with less than a
quarter of patients surviving past one year of diagnosis [1]. Most
patients are diagnosed with advanced disease. Improved pan-
creatic cancer outcomes could be attainable with earlier detection,
but in the absence of a screening programme this is challenged by
minimal or vague presenting symptoms in early-stage disease,
mandating the exploration of alternative approaches.

One approach could target the association between type 2
diabetes mellitus (T2DM) and pancreatic cancer—up to 1% of
adults with new-onset T2DM develop pancreatic cancer within 3
years [2], and 1 in 4 pancreatic cancer patients have diabetes [3].
Although this association’s directionality and mechanisms are
incompletely understood [4, 5], people with new-onset diabetes
represent an important opportunity for identifying high-risk sub-
populations suitable for further testing—new-onset ‘T2DM’ may in

fact in some cases be type 3c pancreatogenic diabetes caused by
an underlying pancreatic cancer.

Current guidance in the United Kingdom from the National
Institute for Health and Care Excellence (NICE) recommends 2-
week-wait abdominal imaging for people aged over 60 years with
new-onset T2DM and weight loss [6]. However, integrating
additional factors in the form of multivariable prediction models
could provide a more nuanced estimation of individual risks to
enrich referral pathways. These could include pre-existing condi-
tions, symptoms, or blood markers routinely measured in primary
care [7]. A recent population-based case-control study using
primary care data from England (over 28,000 individuals with
pancreatic ductal adenocarcinoma (PDAC)) reported significantly
increased odds of pancreatic cancer in those with recorded
comorbidities including acute pancreatitis and inflammatory
bowel disease, and that results from commonly used blood tests
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or body mass index (BMI) may have detectable changes or trends
up to 3 years prior to cancer diagnosis [7]. Related work using
primary care data has also shown that the symptom profiles for
PDAC and pancreatic neuroendocrine neoplasms (PNEN) overlap,
with both showing an association between T2DM and increased
risk [3].

Several groups have developed clinical prediction models that
estimate the risk of pancreatic cancer diagnosis in people with
recent-onset T2DM. These vary in sample size and analytical
approach, and some have significant limitations. The END-PAC
score that integrates age, change in weight and change in blood
glucose was developed and evaluated in a very small sample size
(64 cancer cases in development, only 9 in validation) [8]. The
study of Boursi and colleagues developed a prediction model
using data from 109,385 individuals with new-onset T2DM in The
Health Improvement Network (THIN) database, of which 390 were
diagnosed with pancreatic cancer within 3 years. This study
reported a final area under the curve (AUC) of 0.82 (95%
confidence interval (Cl): 0.75-0.89), but used logistic regression
to handle time-to-event data and did not assess model calibration.
This is rarely assessed in existing models, as is clinical utility [9],
rendering the potential usefulness of these tools uncertain [10].
Furthermore, there is interest in the potential scope for machine
learning in clinical prediction, but the relative performance and
incremental yield of these flexible techniques compared to
regression methods has varied across reports in low-dimensional
clinical settings [11].

This study aimed to use large-scale, population-representative,
linked electronic health record datasets to develop and robustly
evaluate clinical prediction models to estimate individual-level
risks of developing pancreatic cancer within 2 years of T2DM
diagnosis. Using the QResearch database, this study is the largest
of its kind, leverages national dataset linkages to improve
outcome ascertainment, and considers the broadest range of
clinically relevant symptoms, comorbidities and measurements
yet. The study compares three modelling approaches and
compares the results against the current referral criteria recom-
mended by NICE.

METHODS

We undertook an open cohort study. We compared three modelling
strategies to predict the 2-year risk of pancreatic cancer diagnosis
following a new diagnosis of T2DM in people aged 30-85 years: Cox
proportional hazards modelling, and two machine learning approaches
(XGBoost and artificial neural networks). The protocol is available
elsewhere [12] and this study is reported in accordance with TRIPOD
guidelines [13]. As discussed above, in some cases T2DM may, in actuality,
be type 3c diabetes, but as the initial diagnosis made in primary care is
likely to be considered and recorded as T2DM, this case definition is used.
The prediction horizon of 2 years was deemed clinically meaningful by the
study group and aligns with previous prediction model development and
validation research using the QResearch database [14]. The prediction
horizon and the age range of the model’s target population were agreed
with the funder (Pancreatic Cancer UK) and patient and public involvement
panel members. Further, the age range of the target population is similar
to that of previous studies (e.g. those aged 35 and older) [15] and
recognises the increasing incidence of diabetes mellitus in adults before
middle age.

Data sources and study population
The QResearch database (version 46) was used, which has collected
anonymised, routine clinical data from over 1500 general practices in the
United Kingdom including diagnoses, clinical measurements and prescrip-
tions. This is linked at the individual level to NHS Digital’s Hospital Episodes
Statistics (HES), the national cancer registry and the Office for National
Statistics’ mortality register.

Adults aged 30-85 years registered with a general practice contributing
data to the QResearch database between 1 January 2010 and 1 July 2021
were identified. Patients were eligible from the latest date of: their 30th

birthday (since diagnoses under this age are extremely rare), the date on
which their general practice had contributed data to QResearch for at least
1 year, or the date on which they had been registered with their practice
for 1 year.

Using SNOMED codes, a cohort of individuals that received a new
diagnosis of ‘T2DM’ in primary care were identified. Those with previous
recorded diagnoses of pancreatic cancer on GP, HES, or cancer registry
records were excluded. Those that had recorded prescriptions for anti-
diabetes medications prior to their recorded date of T2DM were excluded.
Cohort derivation is summarised in Supplementary Fig. 1.

Outcomes and candidate predictors

The outcome of interest was diagnosis of pancreatic cancer of any
histological type (e.g. ductal adenocarcinoma, neuroendocrine neoplasm),
recorded on any of the linked datasets. Follow-up was calculated from the
prediction date (i.e. the intended point of model use, which is the date of
T2DM diagnosis plus 2 weeks) until date of pancreatic cancer diagnosis or
censoring (reached 2 years without event, left practice, or died from
another event). This prediction date of 2 weeks from diabetes diagnosis
was chosen to align with the clinical scenario where general practitioners
may request additional blood tests once a diagnosis has been made. Blood
test results were considered as candidate predictors—this permitted use of
most recent data available at the point of the model’s intended use during
model development and validation. Candidate predictors were identified
from review of clinical and epidemiological literature [12], see Table 1.
Clinical codes used in this study are available at https://
www.qresearch.org/qcode-group-library/.

Missing data

There were missing data for smoking status, self-reported ethnicity, alcohol
intake, Townsend deprivation score, BMI, and the selected blood markers.
Under the missing-at-random assumption, multiple imputation with
chained equations was used to generate 10 imputed datasets. The extent
of missing data for candidate predictors is summarised in Table 1, where
relevant. The imputation model included the outcome, all candidate
predictors, and the Nelson-Aalen cumulative hazard estimate [16]. BMI was
imputed on the log scale for normality and back-transformed for
modelling. Multiply imputed data were used for model fitting and all
subsequent analyses.

Descriptive analyses

Percentages of individuals that underwent an abdominal computed
tomography (CT) scan or abdominal ultrasound (USS) within one month
of T2DM diagnosis (as recorded in the HES database) were calculated to
assess compliance with NICE guidance. Crude incidence rates of the
outcome of interest were estimated (overall and by geographical region).

Model development and performance assessment

The analysis strategy was to fit models to the entire study cohort, and then
assess their performance using internal-external cross-validation (IECV)
[17] accounting for clustering by practice. For IECV, the dataset was non-
randomly split by geographical region in England (n = 10), then the model
was iteratively fit to data from all-but-one region and evaluated on the
held-out region. This was repeated for each region, so that predictions
were generated for all individuals whilst ‘held out’. IECV can provide a
stronger assessment of the performance and transportability of a model to
new samples than a single random split. Random splitting yields two non-
independent sub-datasets with similar distributions of predictors and
outcomes, reduces the sample size for fitting a model and provides only a
small portion of data for evaluation [15]. In contrast, IECV enables use of all
the available data to fit a model and evaluate it, and emulates the process
of fitting a model and applying it to a new, structurally different population
[15].

Using the complete case data, the best functional forms for continuous
variables (i.e. age, HbA1c, platelet count, ALT, bilirubin, haemoglobin and
serum creatinine) were explored using fractional polynomials (FPs) with up
to two powers [18]. FPs are a flexible approach to modelling non-linearities
in continuous variables, and ‘two powers’ refers to up to two coefficients
being used to model the variable-outcome relationship, potentially raised
to powers that are integers or fractions. These FP terms were used in the
Cox modelling. A Cox model was fit using all candidate predictors,
including pre-specified interactions between age and sex. Continuous
variables and interactions associated with p <0.01, and binary variables
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Table 1. Characteristics of the study cohort.

Parameter

Total

Age at diagnosis of type 2 diabetes

Sex

Townsend deprivation score fifth

Ethnicity

Smoking status

Alcohol intake

BMI

Acute pancreatitis

Chronic pancreatitis
Venous thromboembolism
Family history of Gl cancer
Asthma

H. pylori infection
Gastro-oesophageal reflux
Gallstones

Family history of diabetes
Hypertension

Breast cancer

Prostate cancer
Abdominal pain®

Back pain®

Constipation®

Diarrhoea®

Heartburn®

Indigestion®

Jaundice®

Nausea®

British Journal of Cancer

Category

Number

Mean (SD)
Female

Male

1 (most affluent)
2

3

4

5 (most deprived)
Not recorded
White

South Asian
Black

Other

Not recorded
Non-smoker
Ex-smoker

Light smoker (1-9/day)

Moderate smoker (10-19/
day)

Heavy smoker (20+/day)
Not recorded
Non-drinker

Trivial <1 u/day

Light 1-2 u/day
Moderate 3-6 u/day

Heavy or very heavy 7+ u/
day

Not recorded
Not recorded
Mean (SD)

Pancreatic cancer diagnosed
(Col %)

767

70.1 (9.1)
339 (44.2)
428 (55.8)
234 (30.51
210 (27.38
134 (17.47
122 (1591
67 (8.74)
0

582 (75.9)
20 (2.6)
17 (2.2)
20 (2.6)
128 (16.7)
353 (46.0)
270 (35.2)
80 (10.4)
39 (5.1)

)
)
)
)

22 (2.9)
<10

302 (39.4)
195 (25.4)
114 (14.9)
108 (14.1)
17 (2.2)

31 (4.0)
125 (16.3)
29.5 (5.7)
22 (2.9)
14 (1.8)
52 (6.8)
17 (2.2)
106 (13.8)
27 (3.5)
100 (13.0)
41 (5.3)
143 (18.6)
423 (55.1)
24 (3.1)
17 (2.2)
83 (10.8)
53 (6.9)
21 (2.7)
18 (2.3)
18 (2.3)
17 (2.2)
14 (1.8)
11 (1.4)

Pancreatic cancer not diagnosed
(Col %)

252,999

60.1 (12.5)
108,558 (42.8)
145,208 (57.2)
56,942 (22.51)
53,423 (21.12)
52,495 (20.75)
47,308 (18.70)
42,263 (16.70)
568 (0.22)
166,675 (65.7)
27,312 (10.8)
12,801 (5.0)
14,941 (5.9)
32,027 (12.6)
126,840 (50.0)
81,121 (32.0)
22,327 (8.8)
12,846 (5.1)

10,117 (4.0)
515 (0.2)
112,447 (44.3)
64,131 (25.3)
28,223 (11.1)
30,108 (11.9)
5465 (2.2)

13,392 (5.3)
42,482 (16.7)
32.7 (6.7)
3092 (1.2)
1695 (0.7)
8908 (3.5)
4867 (1.9)
38,698 (15.2)
11,365 (4.5)
32,720 (12.9)
12,690 (5.0)
72,791 (28.7)
119,653 (47.2)
4505 (1.8)
3586 (1.4)
8012 (3.2)
1997 (5.5)
2392 (0.9)
2820 (1.1)
2877 (1.1)
2517 (1.0)
122 (<0.1)
838 (0.3)
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Table 1. continued
Parameter Category
Tiredness®
Weight loss®
Proton pump inhibitor use
Bisphosphonate use
Aspirin use
Statin use
Calcium channel blocker use
Digoxin use
HbA1c (mmol/mol) Mean (SD)

Not recorded (%)
Haemoglobin (g/L) Mean (SD)

Not recorded (%)
Bilirubin (pmol/L) Mean (SD)

Not recorded (%)
ALT (units/L) Mean (SD)

Not recorded (%)
Creatinine (pmol/L) Mean (SD)

Not recorded (%)
C-reactive protein (mg/dL) Mean (SD)

Not recorded (%)
Erythrocyte sedimentation rate (mm/h) Mean (SD)

Not recorded (%)
Platelets (billion platelets/L) Mean (SD)

Not recorded (%)
White blood cell count (10°/L) Mean (SD)

Not recorded (%)

Pancreatic cancer diagnosed Pancreatic cancer not diagnosed

(Col %) (Col %)

33 (4.3) 8615 (3.4)
29 (3.8) 1570 (0.6)
260 (33.9) 65,881 (26.0)
43 (5.6) 5845 (2.3)
174 (22.7) 34,213 (13.5)
360 (46.9) 88,485 (34.9)
204 (26.6) 56,602 (22.3)
13 (1.7) 4723 (1.9)
66.9 (24.1) 61.7 (20.4)
117 (15.5) 34,241 (13.5)
140.1 (14.2) 1429 (15.2)
55 (7.2) 30,284 (11.9)
10.8 (6.0) 10.1 (5.2)

45 (5.9) 21,486 (8.5)
27.4 (15.3) 34.5 (19.3)
89 (11.6) 34,044 (13.4)
81.2 (22.6) 79.8 (20.7)
17 (2.21) 9926 (3.9)
11.8 (19.6) 10.8 (19.8)
451 (58.8) 171,022 (67.4)
19.2 (19.8) 16.8 (16.8)
474 (62.6) 176,814 (69.7)
240.5 (73.3) 255.3 (70.0)
55 (7.2) 30,675 (12.1)
7.8 (2.4) 7.8 (2.2)

56 (7.4) 30,283 (11.9)

Candidate predictor variables that had fewer than 10 recorded events were deselected from the modelling due to considerations of model stability and
precision. This included cholangitis, pancreatic cyst, coeliac disease, Cushing’s syndrome, Hepatitis C, HIV/AIDs, fever, flatulence, abdominal mass, bowel
change Gl bleeding, dark urine, vomiting, tiredness, H2 blocker, steatorrhea, itching, dysphagia, appetite loss, abdominal distension. Medication exposure is
defined as at least 3 prescriptions within 12 months prior to the prediction date. BMI and blood test values are latest recorded within the 3 years preceding the

prediction date. Numbers are n (%) unless otherwise indicated.
2Symptom recorded within 6 months prior to the prediction date.

associated with an exponentiated coefficient (hazard ratio) >1.1 or <0.9
with p<0.01 were selected for inclusion in the final model where they
were clinically plausible. This predictor selection approach considers both
the statistical and clinical significance of predictor-outcome associations.
The final Cox model was then fit using these selected predictors. Rubin’s
rules were used to combine coefficients and the baseline survival function
at 2 years across the imputed datasets [19].

To permit benchmarking, the same variables selected for the Cox model
were used for the machine learning modelling. Jack-knife pseudo-
observations [20, 21] for the Kaplan-Meier failure probability at 2 years
were estimated in the full cohort data. For each individual, these pseudo-
observations can be interpreted as their ‘contribution’ to the Kaplan-Meier
failure function at the time of interest, and can be used as the outcome
variable in models that output probabilistic predictions using time-to-
event, censored data. In the machine learning analyses, these were used as
a continuous outcome variable for both the XGBoost and neural network
models [21]. As Rubin’s rules cannot be applied to machine learning
models, the XGBoost and neural network models were fit to the stacked
imputed datasets. Continuous variables were left on their regular scale
(XGBoost), or min-max scaled (neural network). For both, categorical
variables were converted to dummy variables. The XGBoost model had a
‘reg:squarederror’ objective and a root mean squared error evaluation
metric. The neural network was feedforward network with fully connected
layers, ReLU activation functions in each hidden layer, used the Adam
optimiser, and had a single output node with a linear activation function.
The root mean squared error between observed and predicted pseudo-
observations was used as the loss function [21]. Hyperparameter tuning
used Bayesian Optimisation (50 iterations) and fivefold cross-validation—
the optimal configurations (Supplementary Table 1) identified were used
to fit the XGBoost and neural network models to the entire data.

Using the individual-level predictions generated during IECV, region-level
estimates of the Harrell's C-index, calibration slope, and calibration-in-the-
large for each model [22] were pooled using random effects meta-analysis
with the Hartung-Knapp-Sidik-Jonkmann method [23]. This also provided
a 95% prediction interval (Pl), which provides an estimate of the range of
performance that may be expected if the models were applied to a similar
population. For the Cox model, Royston & Sauerbrei’s D statistic and R?
were estimated [24]—these are not estimable for the machine learning
approaches. In each iteration of IECV, hyperparameter tuning was repeated
for the machine learning models to provide ‘nested’ cross-validation.

Pooled predictions generated from IECV were used to generate
calibration plots (based on ‘risk groups’ and smoothed) and perform
decision curve analysis, which compared the clinical utility of all models.
The sensitivity and specificity of each model was assessed based on using
cut-offs at the highest 1%, 5%, and 10% of their predicted risk distributions.

Minimum sample size

Before the study, we determined that with a target prediction horizon of 2
years, assuming a conservative 0.3% diagnosis rate of pancreatic cancer,
100 candidate predictor parameters, a Cox-Snell R? of 0.0105 (15% of
maximum permitted, 0.07), and a mean follow-up of 2 years, a minimum of
85,214 individuals with type 2 diabetes were required (5.11 events per
predictor parameter) to fit the Cox proportional hazards prediction model
[25]. No clear guidance exists regarding minimum sample size for machine
learning models.

Statistical software
Data management, statistical analyses and model evaluation steps were
performed using Stata V17. Machine learning model building and IECV
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used R (packages: keras, xgboost [both with GPU support], and
ParBayesianOptimization).

Patient and public involvement

Pancreatic Cancer UK Research Involvement Network (RIN) lay members
who have a lived experience of pancreatic cancer or have cared for
somebody affected helped to develop research questions and assisted in
the writing of lay summary for this study.

RESULTS

Baseline characteristics and incidence rates

The final study cohort comprised 253,766 individuals with a new
diagnosis of T2DM—baseline characteristics are summarised in
Table 1. Restricting follow-up to a maximum of 2 years after the
prediction date (diagnosis plus 2 weeks), there were 767 incident
pancreatic cancer diagnoses within 442,347.8 person-years, with a
crude incidence rate of 17.34 per 10,000 person-years (95% Cl:
16.16-18.61). Crude incidence rates for females and males were
17.88 (95% Cl: 16.08-19.89) and 16.93 (95% Cl: 15.40-18.62) per
10,000 person-years, respectively. The yield of using multiple
linked databases for outcome ascertainment is shown in
Supplementary Table 2. Ethnic group- and region-specific crude
incidence rates are summarised in Supplementary Tables 3 and 4,
respectively.

Of the 253,766 individuals included, 1570 (0.62%) had weight
loss recorded in their primary care record within the preceding
6 months (SNOMED codes); 763 (0.30% of cohort) were aged 60+
years and had weight loss recorded and would therefore meet
NICE criteria for referral for urgent imaging. Of the study cohort,
415 (0.16%) underwent an USS (standard external, or endoscopic
ultrasound of the pancreas) within the 30 days of the prediction
date, and 998 (0.39%) underwent CT imaging within the same
timeframe. In the sub-group meeting NICE criteria (n =763), 10
(1.31%) underwent an ultrasound, and 17 (2.23%) underwent CT
within 30 days of the prediction date. Within 1 year of the
prediction date, 1924 individuals (0.76%) had an USS (median time
to scan 126 days, IQR: 52-236 days), and 7013 (2.76%) had an
abdominal CT (median time to scan 158 days, IQR: 74-264 days).

AK. Clift et al.

Model development

Non-linear (FP) terms were selected for age and HbA1c in the Cox
proportional hazards model (Supplementary Fig. 2). There were no
significant interactions between age and predictor variables
included in the final model. The final model included age, sex,
BMI, prior venous thromboembolism, digoxin prescription, HbA1c,
ALT, creatinine, haemoglobin, platelet count, and the presence of
the following symptoms within 6 months prior to the prediction
date: abdominal pain, weight loss, jaundice, heartburn, indigestion
and nausea.

The final Cox model is displayed as its exponentiated
coefficients (hazard ratios, with 95% Cls) in Fig. 1. The full model
(as coefficients, including baseline survival term) is summarised in
Supplementary Table 5.

Model evaluation
Summary performance metrics estimated after IECV for all models
are shown in Table 2. Region-level and meta-analysis pooled
estimates of Harrell's C-index and calibration slope for all models
are summarised in Fig. 2 and Supplementary Fig. 3, respectively.

The Cox model showed the highest discrimination with a
Harrell's C-index of 0.802 (95% Cl: 0.787-0.817, 95% PI:
0.766-0.839) compared to XGBoost (0.723, 95% Cl: 0.689-0.756,
95% PI: 0.628-0.817) and the neural network model (0.650, 95% Cl:
0.516-0.784). The Cox model was well calibrated on summary
metrics: calibration slope 0.980 (95% Cl: 0.897-1.062, 95% PI:
0.778-1.182), and appeared well calibrated on the risk group
calibration plot (Fig. 3). The smoothed calibration plot showed
some over-estimation of those at the very highest predicted risks.

The XGBoost model appeared systematically miscalibrated on
summary measures (e.g. slope 1.180, 95% Cl: 1.056-1.305, 95% PI:
0.781-1.580), which was also visible on the calibration plots
(Fig. 3). The neural network had unstable performance during the
IECV process—this manifested as low point estimates for Harrell's
C and summary calibration metrics for individual regions, with
wide confidence and prediction intervals for the pooled meta-
estimates.

The Cox model had a Royston & Sauerbrei’s D-statistic of 1.880
(95% Cl: 1.768-1.993, 95% PI: 1.629-2.131), and it explained 46.0%

Cox proportional hazards model
Includes FP terms for age (—1), HbA1c (—2) (not shown)

Hazard ratio

(95% Cl)

Male sex —— 1.16 (0.97, 1.38)
Body mass index (kg/m2) * 0.77 (0.72, 0.83)
Prior venous thromboembolism —— 1.60 (1.21, 2.13)
Recent abdominal pain <> 3.93 (3.11, 4.97)
Recent weight loss + 3.21 (2.18,4.72)
Recent heartburn * 1.98 (1.23, 3.17)
Recent indigestion <> 1.87 (1.15, 3.05)
Recent nausea <> 3.05 (1.67, 5.56)
Recent digoxin use —_—— 0.41 (0.24,0.71)
ALT * 0.87 (0.82,0.92)
Creatinine * 0.93 (0.90, 0.97)
Haemoglobin * 0.93 (0.88, 0.98)
Platelet count < 0.97 (0.96, 0.99)

| | | |

0.5 1 2 4 6

Fig. 1 Forest plot demonstrating the final Cox proportional hazards model as its exponentiated coefficients (hazard ratios, with 95%
confidence intervals). The full model including the baseline survival term is detailed in the supplement. The term for jaundice is not plotted
due to the magnitude of the hazard ratio affecting visualisation on similar scale as the other predictors. The hazard ratios for body mass index
correspond to a per-5 unit increase, whereas the hazard ratios for ALT, creatinine, haemoglobin and platelet count correspond to a per-10 unit

increase.
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Estimate (95% confidence interval) [95% prediction interval]

XGBoost Neural Network

Table 2. Performance metrics with corresponding 95% confidence intervals for each model.
Metric

Cox proportional hazards model
Harrell’s C index 0.802

(0.787 to 0.817)
[0.766 to 0.839]

0.980
(0.897 to 1.062)
[0.778 to 1.182]

—0.020
(—0.103 to 0.062)
[-0.222 to 0.182]

Royston & Sauerbrei’s D 1.880
(1.768 to 1.993)
[1.629 to 2.131]

46.0%
(43.1% to 48.9%)
[39.3% to 52.7%)]

Calibration slope

Calibration-in-the-large

Royston & Sauerbrei’s R?

0.723 0.650
(0.689 to 0.756) (0.516 to 0.784)
[0.628 to 0.817] [0.202 to 1.000]

1.180 1.855
(1.056 to 1.305) (—0.945 to 4.654)
[0.781 to 1.580] [-7.552 to 11.261]

0.180 0.855
(0.056 to 0.305) (—1.945 to 3.654)
[-0.219 to 0.580] [-8.552 to 10.261]

For the Cox and XGBoost models, these were estimated using random-effects meta-analysis following internal-external cross-validation, which also provided a

95% prediction interval.

of variation in time to pancreatic cancer diagnosis (95% Cl:
43.1-48.9%, 95% PI: 39.3-52.7%)—see Supplementary Fig. 4.

Model sensitivity and clinical utility
The top 1%, 5% and 10% of the predicted risks from IECV for the
Cox model comprised 12.51%, 31.02%, and 44.06% of all
pancreatic cancers diagnosed within 2 years, respectively. This
was higher than for the XGBoost model (Supplementary Table 6):
the top 10% of predicted risks from IECV for the XGBoost model
captured 38.72% of all events. The current decision rule suggested
by NICE (refer if aged 60+ years with recent weight loss) had a
sensitivity of 3.53% overall, and a sensitivity of 3.95% in the over
60s (Supplementary Table 7). Specificity was similar at each
threshold examined for the three models (Supplementary Table 6).
Decision curve analysis compared model clinical utility up to a
threshold probability of 0.05 (5%, Fig. 4). The Cox model was
associated with the highest net benefit—this was also better than
the ‘test all’ strategy, which is clinically unfeasible due to logistical
issues inherent to obtaining fast-track abdominal imaging in all
individuals newly diagnosed with T2DM. This suggests that the
Cox model was the most clinically useful model and could be
beneficial in decision making regarding referrals for further
investigation.

DISCUSSION

This study developed three clinical prediction models to estimate
the 2-year risk of pancreatic cancer diagnosis in people aged 30-
85 years with newly diagnosed T2DM (which as aforementioned,
may in some cases be type 3c). The Cox model offered the highest
discrimination, was well calibrated on summary metrics, explained
46% of variation in time to pancreatic cancer diagnosis, and was
associated with the highest net benefit. The top 1% and 10% of
predicted risks from the Cox model captured 12.51% and 44.06%
of all subsequent pancreatic cancer cases within 2 years,
respectively, compared to a 3.95% sensitivity with age and
weight-loss-based decision rules currently recommended by
NICE [6].

The ability to establish a pancreatic cancer diagnosis up to 2
years or even months earlier could have significant impacts. If
disease was detected at an earlier, resectable stage, FOLFORINOX
plus surgical resection has been shown to offer a 5-year survival of
approximately 40% [26]. Furthermore, patients that are detected
earlier with a more favourable performance status may be more

able to tolerate cytotoxic chemotherapy, more able to tolerate
multiple lines of therapy, and those with a lower burden of stage 4
disease could be eligible for multimodal therapy [27]. This is
important as up to half of pancreatic cancer cases are not suitable
candidates for chemotherapy due to performance status.

A strength of the study is the use of the population-
representative QResearch database and its linkages to national
cancer registry, secondary care, and mortality register data; this
enabled the derivation of a large cohort and improved ascertain-
ment of predictor values and outcomes. This use of routinely
collected general practice data avoided recall, selection and
respondent biases. Another strength was the IECV framework,
which enabled use of all available data for model development,
evaluation, and comparisons between modelling methods, as well
as estimating model transportability.

Limitations of the study include the nature of data in routinely
collected primary care databases such as QResearch, and the way
in which this is obtained. The completeness and ascertainment of
measurements, diagnoses and prescriptions data points are reliant
on clinical coding by individual healthcare practitioners. As we did
not have access to the full ‘free text’ clinical notes, the reliance on
practitioners entering SNOMED codes to define such variables
needs to be considered. For example, weight loss may be
mentioned by an individual during a consultation, but this may
not be coded in the notes. There may be variation in the proclivity
of individual practitioners to input clinical codes. Further, there
may be misclassification bias in the use of such data, eg.
medication being prescribed by a clinician which was not taken by
the recipient, as well as information bias. The study is also limited
by the lack of formal adjudication of outcomes. Other limitations
include the potential bias from missing data, although multiple
imputation was used to minimise this. Missing data also presents
considerations for potential later model deployment—while
multiple imputation offers a principled approach for model
development and validation, this may not be plausible for clinical
deployment. If the final model was to deployed clinically,
considerations include whether missing data is not permitted
(i.e. the clinician would need to ask the patient/obtain measure-
ments for the missing values), or if missingness would be
permitted (i.e. the model would be run ‘in the background’, in
which case, regression imputation could be considered, or use of
age- and sex-standardised reference values used). Markers of
genetic predisposition such as polygenic risk scores [28] were not
possible to include given the nature of the routinely collected
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Harrell’s C Weight
Region (events/total) with 95% CI (%)
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North East (23/8,375) = 0.81[0.73, 0.90] 3.95
North West (160/52,578) — B 0.80[0.77, 0.84] 16.22
South Central (89/28,089) —i— 0.82[0.78,0.86]  13.52
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South West (121/26,901) —— 0.80[0.76, 0.84] 13.02
West Midlands (82/28,887) —— 0.81[0.78,0.85]  14.01
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Overall —Pp— 0.80[0.79, 0.82]
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South Central (89/28,089) = 0.78 [0.74, 0.82] 10.08
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South West (121/26,901) i} 0.51[0.50, 0.52] 10.21
West Midlands (82/28,887) & 0.76 [0.71, 0.80] 10.06
Yorkshire & Humber (48/12,007) . 0.70 [0.62, 0.78] 9.72
Overall . ~0.65 [0.52, 0.78]
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Fig. 2 Regional-level estimates and pooled overall meta-estimates for Harrell’s C-index for each model. The green diamond refers to the
95% confidence interval for the pooled meta-estimate, the horizontal lines through these correspond to the 95% prediction interval.

primary care datasets, however, the clinical prediction model study was not (and could not be) a formal comparison of
developed here is intended to only use such data. The added ‘statistical versus machine learning models’; rather, it sought to
‘yields' of such predictors beyond clinical variables are non- identify the best performing model from a set of techniques that

uniform across other integrated modelling studies [29]. Lastly, this either implicitly or have been adapted to handle censored,
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Fig. 3 Calibration plots demonstrating the alignment between predicted and observed risks for each model using two approaches: top
row = grouped by 20th of predicted risk; bottom row — smoothed plots generated by plotting a running smoother through predicted
values and observed pseudo-observations for the Kaplan-Meier failure probability at 2 years. Predicted probabilities are those generated
during internal-external cross-validation.
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Fig. 4 Decision curve analysis comparing the clinical utility (net
benefit) of each model developed, compared to ‘test all’ and ‘test
none’ strategies. These are plotted using the predictions obtained
through internal-external cross-validation.

time-to-event data, within a low-dimensional setting. There is
optimism in the literature that machine learning approaches could
offer benefits to clinical prognostication beyond ‘classical’ regres-
sion methods [30], but others have cautioned against ‘hype’ [31],
limitations of some techniques in handling time-to-event data or
those with rare outcomes, ‘spin’ in the reporting of some new
algorithms, and crucially, fairness of comparisons between
modelling approaches [32]. Not every clinical problem requires a
complex algorithm, and indeed, the Cox model selected for the
final risk prediction equation performed well using a relatively
small set of clinical predictors and can be reported transparently.

This study is the largest yet to develop and validate a risk
prediction model for estimating the risk of pancreatic cancer in
people with new-onset T2DM, but not the first to do so.

The ‘END-PAC’ 3-variable points-based score was developed
and internally validated using a small sample size, with only 64
pancreatic cancer cases in the development set, and only 9 events
in the validation set [8]. An external validation study used larger
datasets (up to 99 cancer cases) [15], reporting an AUC of 0.75,
and a sensitivity of 62.6%, specificity of 78.5%, and positive
predictive value of 2.0% in those with 3 points or higher.
Assessment of this points-based score has been focused on
sensitivity, specificity and predictive values on binning patients
into points-based ‘risk groups’, rather than our approach which
considered discrimination, calibration across the spectrum of
predicted risks, and clinical utility.

Prior to the current study, the largest other modelling paper
was that of Boursi, et al. [33] which included 109,385 patients with
new onset diabetes and 390 incident cases of pancreatic cancer.
Whilst this model was also developed using UK-based general
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practice data, it has some methodological limitations including its
incorrect use of logistic regression for a ‘binary outcome’ (the
model has a 3-year prediction horizon) [10]. The Boursi study used
data from 1995 to 2013, whereas the present study used a more
recent cohort from linked data sources offering more robust
outcome ascertainment, assessed a broader range of candidate
predictors, and considered non-linearities. The point estimate for
the discrimination metric was slightly higher in the Boursi study
(AUC 0.82, 95% Cl: 0.75-0.89)—this should be considered in the
context of the Boursi study not accounting for censoring, that the
Cls for Harrell's C in the present study overlap with the results of
Boursi et al. and that our study additionally considered calibration
and the usefulness of the models on clinical decision making
through decision curve analysis. The present study using the
QResearch database and linked data assets was not able to not
perform an external validation of the developed models—a
future, comparative external validation of the Boursi et al. model
with the Cox model from the present study in an independent
dataset, potentially by an independent group, could be of
interest.

Our analyses of model sensitivity and specificity were
performed at a relatively small number of thresholds. Naturally,
the trade-offs between true positives, false negatives and false
positives will vary as the model’s probabilistic predictions are
dichotomised to form different risk groups. These thresholds were
used to illustrate model performance in the context of a broad
range of metrics such as clinical utility and are not set or
recommended cut-offs for any future model use. The full
ramifications on clinical and cost-effectiveness of using different
thresholds should be explored in future health economic
modelling studies. Our study sought to explore a set of
algorithmic approaches to develop a clinically useful model for a
group at higher risk of pancreatic cancers—follow-on work from
cost-effectiveness analyses will be useful to identify the optimal
ways in which could be used.

By comparatively developing and validating models using three
methods, this study identified that the best model was obtained
using Cox proportional hazards modelling. This final clinical
prediction model could have utility in informing pathways for
expedited diagnosis of pancreatic cancers in adults with new-
onset T2DM and could do so more effectively than current ‘rules-
based’ referral guidelines. Further evaluation such as external
validation and health economic assessment is warranted prior to
implementation, such as modelling the effects of different risk
thresholds for triggering imaging referrals and the costs
associated therewith.
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