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Abstract

The Wilson–Cowan population model of neural activity has greatly influenced our
understanding of the mechanisms for the generation of brain rhythms and the emergence
of structured brain activity. As well as the many insights that have been obtained from its
mathematical analysis, it is now widely used in the computational neuroscience commu-
nity for building large scale in silico brain networks that can incorporate the increasing
amount of knowledge from the Human Connectome Project. Here we consider a neural
population model in the spirit of that originally developed by Wilson and Cowan, albeit
with the added advantage that it can account for the phenomena of event related syn-
chronisation and de-synchronisation. This derived mean field model provides a dynamic
description for the evolution of synchrony, as measured by the Kuramoto order parame-
ter, in a large population of quadratic integrate-and-fire model neurons. As in the original
Wilson–Cowan framework, the population firing rate is at the heart of our new model;
however, in a significant departure from the sigmoidal firing rate function approach, the
population firing rate is now obtained as a real-valued function of the complex valued pop-
ulation synchrony measure. To highlight the usefulness of this next generation Wilson–
Cowan style model we deploy it in a number of neurobiological contexts, providing un-
derstanding of the changes in power-spectra observed in EEG/MEG neuroimaging stud-
ies of motor-cortex during movement, insights into patterns of functional-connectivity
observed during rest and their disruption by transcranial magnetic stimulation, and to de-
scribe wave propagation across cortex.

New & Noteworthy: Here we review a new type of neural mass model that is derived
from an underlying spiking network with synaptic interactions. This mean field model
gives a macroscopic dynamical description in terms of a population firing rate and the
degree of within-population synchrony. We consider applications to understanding beta-
rebound observed in neuroimaging studies during movement, the effects of transcranial
magnetic stimulation on functional connectivity networks, and large-scale cortical wave
propagation.
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1 Introduction
To recognise that the neuroscience community is fascinated with the physiological ba-
sis of brain rhythms is an understatement. Indeed, the study and exploration of mecha-
nisms that coordinate such rhythms has generated many interesting discoveries in neuro-
science, including their strong correlation with cognitive processing, and that synchrony
between brain regions may regulate large scale neuronal communication [37]. A wonder-
ful overview of the ‘Rhythms of the Brain’ can be found in the book, of the same title,
by György Buzsáki [14]. Hand in hand with advances in knowledge gained from cellular,
systems, and cognitive neuroscience, has come complimentary work from the theoretical
neurosciences. After the Hodgkin–Huxley single neuron model, the population model of
Wilson–Cowan is perhaps the most well known [130, 131]. Building on earlier work by
Beurle [8] in the 1950s, the 1970s model of Wilson and Cowan developed a theory for
neural dynamics to describe populations of interacting excitatory and inhibitory neurons
with, or without, refractory states. Moreover, they introduced many ideas from dynamical
systems to the wider community, highlighting that switching, cycling, and information
storage could all be viewed using the framework of attractor dynamics. For a nice his-
torical perspective on the development of their ideas we highly recommend the interview
between Jack Cowan and Edward Rosenfeld that can be found in [4], as well as the paper
by Destexhe and Sejnowski [28] that covers some of the many theoretical developments
that the Wilson–Cowan model has inspired. Much of the development of Jack Cowan’s
work in the 1970s took place in the Cummings Life Science Center at the University
of Chicago, building on the activity of Nicholas Rashevsky’s mathematical biophysics
group that included Leon Glass, Stewart Kauffman, and Art Winfree*. Jack Cowan’s
work tapped into new mathematical results in catastrophe theory [23], dynamical systems
[31], and pattern formation [33], and was promoted to the experimental community at
events such as the Gordon Research Conferences on Theoretical Biology and Bioinfor-
matics in 1972 and 1973 (with speakers that include other well-known theoreticians such
as Wilfrid Rall, John Rinzel, René Thom and Walter Freeman).

The Wilson–Cowan model has now been used in a variety of incarnations: as a
single-node description of excitatory-inhibitory population dynamics, as a building block
for larger-scale brain network modelling studies, and as the underpinning of spatially-
extended models of neural dynamics at the tissue scale. These have provided insights
including the understanding of visual hallucinations [13, 32], binocular rivalry [129], trav-
elling cortical waves [97, 129], epilepsy [80, 110], cognitive dynamics of movement [30],
phase-amplitude coupling [91], and cortical resonant frequencies [68] to name but a few.
When considering variants of the Wilson–Cowan model this list expands even further to
include the interpretation of neuroimaging data [120], with the most well known of these
Wilson–Cowan style models being those of Zetterberg et al. [134], Jansen and Rit [57],
and Liley et al. [71]. Moreover, Wilson–Cowan style neural mass models are a key com-
ponent of the Virtual Brain project that aims to deliver the first simulation of the human
brain based on personalised large-scale connectivity [105].

A core part of the Wilson–Cowan modelling framework is the use of a sigmoid func-

*Apparently this was also a great time to play ping-pong on the 9th floor, and many thanks to Bard Ermen-
trout and John Rinzel for tales of Jack’s scientific and ping-pong exploits. The latter covering the gathering of
crowds at conferences to watch Jack play Bob May.
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tion to determine population firing rates in terms of population activity. Although the use
of a sigmoid is now ubiquitous throughout computational neuroscience, in the original
Wilson–Cowan model formulation this was assumed to arise via some form of averaging
over heterogeneity or noise in networks of simple threshold elements. Thus, although the
Wilson–Cowan model can be derived from an underlying microscopic dynamics, this does
not come from a biophysically detailed description of a spiking neuron. Nonetheless, in
the absence of a general mathematical methodology to develop a statistical neurodynam-
ics from networks of conductance based Hodgkin-Huxley style neurons with chemical
synapses, the Wilson–Cowan model has been a hugely popular phenomenological model
of cortical dynamics.

At the tissue level, the spatially extended Wilson–Cowan model can be conceived of
as a (spatially continuous) network of neural masses describing population activity, and
is often referred to as a neural field. There are now a variety of neural field models, dis-
tinguished by the type of neural mass model from which they are constructed. All of
them adopt a form of non-local spatial interaction to describe anatomical connections and
signalling along axonal fibre tracts. However, all modern neural field models of cortical
tissue trace their roots back to the seminal work of Wilson and Cowan [130, 131], recently
reviewed in the book ‘Neural fields: Theory and Applications’ [22], and their mathemat-
ical formulation has hardly changed since their original work. Since they describe neural
population activity at spatiotemporally coarse-grained scales, they invariably lack impor-
tant physiological mechanisms known to be fundamental in generating brain rhythms,
such as dendritic morphology and nonlinear ionic currents. Nonetheless their basic struc-
ture has been shown to provide a mechanistic starting point for understanding whole brain
dynamics, and such models form the backbone of many cortical modelling studies.

Given the wealth of neuroscience data now accruing through projects such as the Brain
Activity Map in the US, seeking to establish a functional connectome of the entire brain,
there is now a community-wide need to develop the next generation of neural mass and
field models that have a stronger connection to biological reality. This is especially impor-
tant when one appreciates that many large scale neuroimaging modalities reflect not only
the underlying firing rate of a population of neurons, but also their degree of synchrony.
A case in point is the well known phenomenon of event related synchrony/de-synchrony
(ERS/ERD), as measured by changes in power at given frequencies in electroencephalo-
gram recordings [95]. The neural dynamics underlying ERD and ERS is most likely a
manifestation of a spiking network, with enhanced ERS being linked to an increase in
the coherence (synchrony) of spike trains. Thus, in view of their coarse-grained natures,
neural mass models in isolation are not natural candidates for modelling ERS/ERD; in
fact, one cannot model population synchrony with an isolated traditional neural mass
model. However, very recent progress in this area has been made for the case of a glob-
ally coupled network of quadratic integrate-and-fire (IF) neurons, making use of the Ott-
Antonsen ansatz to derive an exact reduced systems of equations (in the thermodynamic
limit) [16, 19]. This gives rise to a neural mass model with a derived firing rate that is a
real function of the complex valued Kuramoto order parameter Z for synchrony, and is
therefore a marked departure from the sigmoidal firing rate functions used by Wilson and
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Cowan. The relationship between synchrony and rate f takes the explicit form

f(Z) =
1

πτ
Re
(

1− Z∗

1 + Z∗

)
, (1)

where τ is the effective membrane time constant of the neurons and Z∗ is the complex
conjugate of Z. Here Z is governed by a nonlinear differential equation that couples to
the chosen model of the synaptic current. The use of the Kuramoto order parameter in
neuroscience is now very prevalent, especially as it relates to the original phase-oscillator
network model of Kuramoto [12]. However, its role in neural mass modelling has only
recently been realised [65, 76, 84]. The contribution of this paper is to give an introduction
to a new class of neural mass and field models that utilise (1), highlighting their benefits
to large-scale neuronal population modelling in neuroscience.

In §2–Neural mass model we give a full description of the dynamics that accounts
for the evolution of synchrony within a prototypical next generation neural mass model,
and how this couples to the dynamics of a conductance based model of a synapse. More-
over, we give an interpretation of all parameters and state variables within this mean-field
model in terms of the underlying spiking network dynamics from which it is derived.
This section effectively introduces a single node description of an excitatory-inhibitory
population in the spirit of Wilson and Cowan, that can either be studied in response to
stimulation, or used as a building block for large-scale brain network modelling studies.
Before turning to the latter, we first consider the usefulness of a single node model in
generating power spectrograms of the type commonly found in electro- and magneto-
encephalography (EEG/MEG) studies of movement. The model is relevant for under-
standing the differences in ERD/ERS observed between healthy controls and schizophre-
nia patients, and a simple extension to a two node model with bi-directional coupling can
model the disparities seen between contralateral and ipsilateral hemisphere responses to
motor commands. The use of a larger network of such next generation neural masses as
an in silico testing ground for ideas about the mechanism and control of brain states is
explored in §3–Neural mass network model. As well as using the model to probe the
link between structural and functional connectivity, we also explore the response of net-
works to stimulation (for networks built using human connectome data). We demonstrate
that this has major potential for the design of improved transcranial magnetic stimulation
protocols. Moving away from parcellated models of the cortex, we turn, in §4–Neural
field model, to continuum models of cortical surfaces. Here we illustrate how the rele-
vant neural field models, with realistic patterns of structured axonal interactions, can be
viewed in terms of a generalised brain-wave equation of Nunez type [90]. Numerical
simulations are used to illustrate the patterns of propagating waves that can be supported,
both with and without a form of adaptation that mimics local metabolic processes. Finally
in §5–Discussion we discuss the future steps for the development and further application
of next generation neural mass and field models.

2 Neural mass model
Neural mass models generate brain rhythms using the notion of population firing rates,
aiming to side-step the need for large scale simulations of more realistic networks of spik-
ing neurons. Although they are not derived from detailed conductance based models they
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can be motivated by a number of phenomenological arguments [22], and typically take the
form of systems of nonlinear ordinary differential equations (ODEs). The Wilson–Cowan
neural mass model describes the dynamics of two interacting populations of neurons, one
of which is excitatory and the other inhibitory. Interactions between the populations are
mediated by a nonlinear sigmoidal firing rate function. In its most simple incarnation it
consists of two nonlinear ODEs, and as such, has been widely studied using techniques
from phase-plane analysis and numerical bifurcation theory. Caricaturing the sigmoid
with a piecewise linear function also allows for a more explicit mathematical analysis,
including the construction of oscillations and the determination of their stability [20].

Building on work by Luke et al. [76], Laing [65], and Montbrió et al. [84], recent
studies at the intersection of theoretical neuroscience and self-organised systems have led
to the formation of a generalised neural mass model [16, 19]. The model takes a similar
form to that proposed by Wilson and Cowan in 1972 [130], and for clarity of exposition
we first write the model for a population of neurons with global self-feedback through a
set of synapses with overall conductance g. This conductance evolves according to the
dynamical system

Qg = κf(Z), (2)

with the firing rate f(Z) given by (1). Here κ is the strength of coupling and the dif-
ferential operator Q is chosen to best capture the temporal characteristics of synaptic
response. For the popular α-function synapse, with shape α2te−αt following the arrival
of an action-potential at time t = 0, we would choose

Q =

(
1 +

1

α

d

dt

)2

, (3)

and see [16] for other choices. The form of equation (2) is common in neural mass
modelling, albeit with a different form of closure, whereby Qg = κf(g), with f chosen
to be a sigmoidal function. The major modelling departure in the use of equation (2) is that
here f is a derived quantity and, additionally, it is a function of the dynamic synchrony
variable Z, with magnitude R and phase Ψ, so that Z = ReiΨ. Hence, we have a direct
link between the within-population synchrony and the synaptic activity. The synchrony
variable, known as the Kuramoto order parameter evolves as follows:

τ
d

dt
Z = F(Z; η0,∆) + G(Z, g; vsyn), (4)

where

F(Z; η0,∆) = −i (Z − 1)2

2
+

(Z + 1)2

2
[−∆ + iη0] (5)

G(Z, g; vsyn) = i
(Z + 1)2

2
vsyng −

(Z2 − 1)

2
g. (6)

To interpret the model parameters ∆, η0 and vsyn, we must examine the underlying spiking
model from which it is derived, namely the quadratic integrate-and-fire (QIF) network
model. A QIF neuron in a globally coupled synaptic network indexed by i = 1, . . . , N

evolves according to

τ
d

dt
vi = ηi + v2

i + g(vsyn − vi), Qg =
κ

N

N∑
j=1

∑
m∈Z

δ(t− Tmj ), (7)
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subject to reset vi → −∞ whenever vi reaches +∞ in finite time and fires. These
firing events occur at times Tmi , where m indexes the mth time that neuron i fires. The
background drives ηi are chosen from a normalised Lorentzian distribution with center
η0 and width ∆, and vsyn corresponds to the synaptic reversal potential of the neurons.
Here, the inputs ηi are “quenched”, though it is also possible to obtain similar model
behaviour (to that reported below) with identical neurons (ηi = η0 for all i) driven by
noise [84]. For a full description of how to derive (2) and (4) from (7) as N → ∞
see [16, 19]. Thus the mean-field description of a globally coupled QIF network with
a shunted synaptic current modelled using an α-function conductance change is given
by just four ODEs. Two of these, given by (4), describe the evolution of the complex
Kuramoto order parameter for synchrony, and the other two, given by (2), describe how
this couples to the dynamics of the synaptic conductance. For simplicity we now set τ = 1

throughout the rest of this paper (unless otherwise stated). Figure 1 demonstrates that the
dynamics of the order parameter Z and synaptic conductance g for a simulation of 500

QIF neurons described by (7) (red) and the mean field model, given by (2) and (4) (blue),
are closely matched. It is very straightforward to extend the above to treat populations of
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Figure 1. Validation of mean field reduction. Comparison of dynamics for mean field model
(blue) (2)–(4) and simulation of 500 coupled QIF neurons (red) (7). (a) Phase plane of the
Kuramoto order parameter Z = ReiΨ. (b) Synaptic conductance g vs rate of change of synaptic
conductance g′. Parameter values: η0 = 20, ∆ = 0.5, vsyn = −10 , κ = 1, α = 0.95.

interacting excitatory and inhibitory neurons. In this case each neuronal population has
two types of synaptic conductances associated with it, one to describe inhibition and the
other for excitation. If each synapse has a conductance change modelled as an α-function
then eight first order ODEs are needed to model the four populations of synapses, with
a further four required to model the degree of synchrony in the excitatory and inhibitory
neuronal populations respectively. This gives a minimal model of a patch of cortex in
terms of twelve first-order ODEs, which can be reduced in number by dropping cross-
interactions (such as self-inhibition), and / or choosing a first order differential operator
for Q, such as (1 + α−1d/dt), describing a fast synapse with an exponential decay rate
α−1. The form of this minimal model of cortex as a single node, encapsulating local
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interactions of both excitatory and inhibitory type, is generalised from (2) and (4) as

Qabgab = κabf(Zb), τa
d

dt
Za = Fa(Za; ηa0 ,∆

a) +
∑
b

G(Za, gab; v
ab
syn), (8)

where a, b ∈ {E, I} represent labels for excitation (E) and inhibition (I), Qab is obtained
from (3) under the replacement α → αab (so that the time course of synaptic responses
can differ), and vabsyn is the reversal potential mediating the current from population a to
population b.

Neural oscillations, as observed using EEG/MEG, are thought to be the result of neu-
rons synchronising their firing times to create coherent high amplitude oscillations. To
better understand these oscillations and how certain tasks can modulate their amplitude,
it is important to examine the synchronisation properties of the underlying neurons. Next
we explore how the model can be used to explore ERD/ERS and other changes in neural
synchrony.

2.1 Beta rebound

Neural activity in the beta-band (13–30 Hz) has long been associated with movement.
In particular, execution of a movement results in a decrease of beta power in the motor
cortex, termed movement-related beta decrease, (MRBD), followed by an increase above
baseline upon movement termination (post-movement beta rebound; PMBR) (Fig. 2(a)).
It is hypothesised that this event-related modulation corresponds to changes of synchrony
within motor cortex [115]. Given that the neural mass model described above can track
within-population synchronisation (and that standard neural mass models cannot), it was
deemed an ideal candidate for modelling this phenomena by Byrne et al. [16]. Simulating
a single inhibitory population with a time dependent drive (2)–(4), the authors linked
changes in synaptic activity to changes in the underlying synchronisation (Fig. 2(c) &
(d)). In the absence of drive the model oscillated at∼ 15 Hz. When the drive was switched
on (movement initiation), the beta-band oscillations disappeared. After the drive was
removed (movement termination), the spectral power in the beta-band rebounded above
baseline, before it settled back to its original value (Fig. 2(d)). Examining the phase plane
of the order parameterZ (Fig. 2(c)), they showed that after the drive is switched off (green
curve) the order parameter is attracted to the edge of the unit disc (maximal synchrony
R = 1) before spiralling back to the original limit cycle.
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Figure 2. Beta rebound. (a) Time frequency spectrogram showing percentage change from
baseline of a trial averaged signal from the motor cortex during a motor task. We see stereotypical
movement related beta decrease (MRBD) from 0− 2 s and the post movement beta rebound
(PMBR) at roughly 2.5 s. (b) Time frequency spectrograms for schizophrenia patients doing the
same task. There is a significant decrease in PMBR. (c) Model results for the Kuramoto order
parameter during a simulated movement. Synchrony is maximal along the dashed circle and
minimal at the centre of the disk. The red curve shows the behaviour during the simulated
movement, while the green corresponds to the time after movement termination. After movement
termination there is an increase in synchrony (curve approaches dashed line), before the system
returns to its original behaviour. (d) Time frequency spectrogram for the synaptic current, showing
qualitatively similar properties to the experimental results in (a). There is a reduction in beta power
at movement onset (0 s), followed by a sharp increase in power shortly after movement termination
(0.5 s). Parameter values: η0 = 21.5, ∆ = 0.5, vsyn = −10, κ = 0.105, α−1 = 35 ms, τ = 31

ms. Data for panel (a) and (b) from [99].

Human MEG studies reveal beta rebound on both sides of the motor cortex during
movement. The strongest rebound is seen in the contralateral hemisphere, with a weaker
rebound in the ipsilateral hemisphere. Contralateral refers to the side of the brain that
sends and receives the motor commands, while the ipsilateral hemisphere receives the
input indirectly from the contralateral hemisphere, through bi-lateral coupling. In the
above we considered a single node, assumed to represent the contralateral motor cortex.
To examine the interplay of the contralateral and ipsilateral hemispheres, we introduce
a second identical node. The coupling between the two is bi-directional, with a long
synaptic timescale. This two hemisphere model successfully produces MRBD and PMBR
in both populations with a larger PMBR in the contralateral (driven) hemisphere (Fig.
3(a)) than the ipsilateral hemisphere (Fig. 3(b)).

The presence of the second population leads to the emergence of co-existing oscilla-
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Figure 3. Two hemisphere model. Response of the system to a temporally filtered square pulse of
length 0.4 s and magnitude 10 µA. As in experimental findings, the contralateral hemisphere
shows a larger rebound than the ipsilateral hemisphere. Different initial conditions were used for
each row, resulting in different magnitudes and lengths of the rebound in oscillatory amplitudes.
Parameter values: η0 = 23, ∆ = 0.5, viisyn = −10, vijsyn = −10, κii = 4.5, κij = 5.4, α−1

ii = 30

ms, α−1
ij = 75 ms, τ = 30 ms, were we use ii to denote intra-hemisphere connections and ij for

inter-hemisphere connections.

tory solutions, i.e. different initial conditions can lead to different behaviours. Depending
on which of the two states the system is in, it will react differently to the motor command.
The magnitude and length of PMBR is also heavily dependent on the phase of the oscilla-
tion when the drive is applied (Fig. 3(a)-(h)), as well as the oscillatory state it is in. This
variability in the model response is akin to MEG recordings, where individual trials show
large variability in the magnitude and length of PMBR. It is only upon averaging over
many trials that we see the stereotypical MRBD and PMBR, as shown Fig. 2(a).

Beta decrease (MRBD) and rebound (PMBR) are special cases of ERD and ERS, re-
spectively. Event-related changes in synchrony are observed in many different brain areas
for a range of different frequencies. By modifying the model parameters, we can change
the frequency of oscillation of the population and explore other types of ERS/ERD, such
as the attenuation of the alpha rhythm upon eye opening. We emphasise again that stan-
dard neural mass models, based on Wilson-Cowan style descriptions, cannot describe
ERD/ERS because their level of coarse-graining does not allow one to interrogate the
degree of within-population synchrony.
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2.2 Beta burst

Recent experimental evidence suggests that beta-band activity is stochastically transient,
rather than steady and sustained as previously thought [34, 77]. Electrophysiological
recordings, such as EEG and MEG, are typically trial averaged to produce clear time-
frequency spectrograms. Transiently occurring bursts of beta activity could present as a
sustained rhythm in a trial averaged regime, leading experimentalists to search for these
beta bursts in single trial EEG and MEG data. At a single-trial level, spontaneous brain
activity in motor areas indeed shows transient bursts of beta-band activity lasting ∼ 150

ms [108]. When trial-averaged, this same activity appears sustained with a relatively
constant power level.

As well as sustained beta oscillations, the model can also support beta bursts when
pink noise is added to the system. Using an excitatory-inhibitory pair, and setting the pa-
rameter values close to the boundary between oscillatory and stationary behaviour, noise
can perturb the system temporarily into the oscillatory state. When the system is per-
turbed into the oscillatory state, we see bursts of high amplitude activity, lasting ∼ 200

ms (Fig. 4(a)). The bursts seen in single simulations occur every few seconds, but when
averaged over multiple simulations there is a constant power at roughly 20 Hz consistent
with trial averaged data (Fig. 4(b)). Interestingly, the time scale of the noise changes the
occurrence of the bursts. If the noise frequency is above alpha-band (8 Hz), there is no
effect, but for frequencies lower than ∼ 8 Hz the number of bursts decreases with noise
frequency. Should beta bursts in electrophysiological recordings be characterised by fre-
quency of occurrence in various situations, this model could be used to explore the types
of noise responsible for the bursts.

0

0.04

0.08

0.12

0.16

(a) (b)

Figure 4. Beta burst. (a) Beta burst in single trial data, (2.5 s simulation). There is a peak peak in
beta-band power at roughly 800 ms, lasting ∼ 200 ms. (b) Steady beta-band activity in trial
averaged data (average spectral power over 20 1 s simulations). Parameter values: ηE0 = 1.6,
ηI0 = 1, ∆E = 0.2, ∆I = 0.2, vEsyn = 10, vIsyn = −12, κEE = 1, κIE = 1.5, κEI = 2, κII = 1,
α−1
EE = 3 ms, α−1

EI = 3 ms, α−1
IE = 10 ms, α−1

II = 10 ms, τE = 12 ms, τI = 18 ms.

2.3 Neurological disorders

Given the prevalence of EEG/MEG in neuroscience, researchers have begun to ask if these
recordings could provide biomarkers for neurological disorders [74]. Abnormal beta os-
cillations were recently identified as a biomarker of a number of neurological disorders,
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such as schizophrenia and Parkinson’s disease. Among these abnormalities is a reduc-
tion in magnitude of beta rebound. Schizophrenia patients show a similar MRBD, but a
reduced PMBR when compared to healthy controls (Fig. 2(a)-(b)), and the severity of
the reduction in PMBR is directly correlated to severity of the disease [99]. Byrne et al.
[17] recently demonstrated that this result could be reproduced using the next generation
neural mass model described above with a longer synaptic timescale for the glutamater-
gic receptor responsible for processing the motor input. This result reaffirms the belief
that schizophrenia is an information processing disorder, demonstrating that reducing the
synaptic transmission rate reduces the magnitude of PMBR.
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Figure 5. Healthy versus epileptic oscillations. For a large window in parameter space the E-I
population model (8) is multi-stable, i.e. different initial conditions can lead to different
behaviours, and small perturbations can also lead to a change in behaviour. (a) Regular “healthy”
oscillations. (b) Pathological seizure-like oscillations. (c) A small perturbation to the E→E
synaptic conductance gives rise to a transition from healthy to pathological behaviour. Parameter
values: ηE0 = 10, ηI0 = 21, ∆E = 0.5, ∆I = 0.5, vEsyn = 10, vIsyn = −10, κEE = 1.5,
κIE = 1.5, κEI = 4.5, κII = 2.4, α−1

EE = 6.5 ms, α−1
EI = 20 ms, α−1

IE = 5 ms, α−1
II = 7 ms,

τE = 3 ms, τI = 3 ms.

Recent work on dementia has shown that EEG/MEG power in the delta (< 4 Hz) and
theta (4−7 Hz) frequency range is notably higher, and alpha (8−12 Hz) and beta markedly
lower, for dementia patients when compared to normal elderly subjects [6] . In particular,
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the dominant oscillatory frequency of the EEG spectrum for dementia patients was found
to be lower than for healthy controls [94]. Given that dementia is believed to arise from
the deterioration of synaptic connections, the synaptic time scale was increased in order to
model these effects. As in the schizophrenia study, increasing the synaptic time scale has
the effect of reducing the synaptic efficacy and slowing down signal transfer. In the model,
increasing the time scale decreases the population synchrony and in turn the amplitude of
the oscillations, for a range of spectral frequencies. The increased synaptic processing
time was not enough to decrease the oscillatory frequency, however this decrease may be
due to an interplay between the different frequency bands, which was not considered here.

Epilepsy is a neurological disorder characterised by seizures, periods of high ampli-
tude and highly synchronised brain oscillations. Extensive research has been carried out
to design treatments and preventative care for epileptic patients. However, the underlying
cause of the disorder is still unclear. Previous theoretical studies of epilepsy typically
use the Jansen-Rit model [58], as there are parameter windows for which the model can
exhibit low amplitude or high amplitude oscillations depending on the initial conditions
[2, 43, 119, 128]. However, unlike the model presented here the Jansen-Rit model can-
not track neuronal synchrony. The excitatory-inhibitory two population model, given
by (8), exhibits multi-stability similar to the Jansen-Rit model. For the same parameter
values, the model can exhibit fast low-amplitude oscillations (Fig. 5(a)) or bursts of high-
frequency activity at a slow burst rate (Fig. 5(b)). Both states are stable, but perturbations
can drive transitions between the states, such as a brief synaptic input to the excitatory
population (Fig. 5(c)). Low frequency bursts of high frequency activity (as seen in Fig.
5(b)) are typical of epileptic seizures, providing further evidence that this is a suitable
model for theoretical studies of epilepsy. The presence of the synchrony variable should
also allow the exploration of how changes in population synchrony can lead to seizures,
and help uncover protocols that would lead to seizure termination.

3 Neural mass network model

Advances in non-invasive neuroimaging methods that allow detailed characterisation of
the brain’s anatomy and activity, together with developments in network science, have
supported a proliferation of network connectivity-based approaches, employing neural
mass models as building blocks, to understand large-scale brain function. These stud-
ies are especially relevant to elucidating the emergence of functional connectivity (FC)
networks that describe dynamic patterns of temporal coherence of activity between brain
regions. Important examples include archetypal brain networks that emerge under differ-
ent tasks or stimulants [117], and so-called resting state networks [11], whereby different
regions of the brain’s sensorimotor system oscillate slowly and synchronously in the ab-
sence of any explicit task. More generally, these FC networks are posited to support
high-level brain function—the divergence between dynamic functional activity and the
relatively static structural connections between populations is critical to the brain’s wide
functional repertoire, and may hold the key to understanding brain activity in health and
disease [92, 121, 123]. In particular, disruptions in structural and functional brain net-
works are linked to a variety of psychiatric and neurological diseases such as epilepsy and
schizophrenia [10, 81].
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Empirically, FC is typically derived from statistical analyses of time-series data from
MEG, EEG, or functional magnetic resonance imaging (fMRI). However, while FC is
widely employed in both empirical and theoretical studies, the specific link between the
brain’s anatomical circuitry and the varied and complex behaviour it exhibits is not fully
understood [50, 92]. A plethora of theoretical studies have therefore sought to elucidate
SC–FC relationships, employing neural mass models, alongside anatomical connecitiv-
ity networks, to simulate large-scale brain activity. These investigations have revealed,
for example, strong SC–FC correspondence on long time-scales, in comparison to those
observed over short time-scales [49, 51, 103] and close resemblance of structural and
functional networks when the neural dynamics is near a critical transition [114]. This
critical SC–FC correspondence is further highlighted in the work of Hlinka & Coombes
[48], using a combination of network graph analysis and dynamical systems theory to
expose the role of Hopf bifurcations in the Wilson–Cowan model in organising SC–FC
relations; in a similar vein, multiplex clustering measures have also been exploited to em-
phasise how SC–FC relations vary as a function of Wilson–Cowan model dynamics [24].
These ideas can be further extended to show how the organisation of FC is intrinsically
related to the dynamical state of the neural mass system, such that FC patterns can in large
parts be understood without recourse to specific connectome information [35, 116].

To develop a large-scale model incorporating interconnected neural populations across
the whole brain, we generalise equation (8) to consider N connected populations of ex-
citatory and inhibitory neurons, denoted E1, . . . , EN , I1, . . . , IN . Therefore, for each
network node m we define population order parameters Za → Zam and synaptic con-
ductances gab → gmnab for a, b ∈ {E, I} and n ∈ N (m), where N (m) denotes the
set of nodes connected to node m (n = m represents within-node excitatory-inhibitory
coupling). We note that since long-range connections in the brain mainly project from ex-
citatory pyramidal cells [41], we restrict inter-mass coupling to connections between exci-
tatory populations. Constants are denoted similarly, with (αab, κab, η

a
0 , ∆a, vabsyn, τa)→

(αmnab , κ
mn
ab , η

a
0,m, ∆a

m, v
ab
mn, τ

a
m). Structural connectivity between neural masses (κmnab ,

m 6= n) was estimated from diffusion MRI data from 10 subjects obtained from the Hu-
man Connectome Project [122]. Briefly, we explain how this data is post-processed to
derive connectomic data, though we direct the reader to [1] (for related work on Wilson-
Cowan neural mass networks) and the references therein for a more detailed overview.
60, 000 vertices on the white/grey matter boundary surface for each subject [42] were
used as seeds for 10, 000 tractography streamlines. Streamlines were propagated through
voxels with up to three fibre orientations, estimated from distortion-corrected data with a
deconvolution model [59, 112], using the FSL package. The number of streamlines in-
tersecting each vertex on the boundary layer was measured and normalised by the total
number of valid streamlines. This resulted in a 60, 000 node structural matrix, which was
further parcellated using the 68-node Desikan-Killiany atlas [26] (note that since each
brain region is on the scale of millions of neurons, they are each suitably modelled by
a single neural mass). Each element of the connectivity matrix κmnab (m 6= n) therefore
reflects the proportion of white matter fibres which bridge regions m and n.

Functional connectivity is obtained by direct simulation of this neural mass network,
and computing the pairwise synchronisation between time-series activity on each network
node, measured via the mean phase coherence (MPC; see, e.g. [85]), to provide a matrix
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describing the strength of functional connection between each brain region. Structure–
function relations are assessed by computing the Jaccard similarity coefficient [56] of
the non-diagonal entries of the binarised SC and FC matrices, which provides a natural
measure of matrix overlap, ranging from 0 for matrices with no common links to 1 for
identical matrices.

Results visualising both the structural and derived function networks are shown in Fig.
6; these show how FC patterns can differ significantly from the underlying connectome
structure that supports neural population activity. In the following, we describe how the
model and approaches described above can be employed to understand the influence of
brain stimulation treatments on network behaviour.

(a) (b)

Figure 6. Visual representation of (a) structural network and (b) simulated functional network for
68 nodes parcellated according to the Desikan-Killiany atlas. The surface of the brain
visualisations are coloured depending on nodal degree, which was normalised by the highest
element for easier comparison between SC and FC. The upper surface plots highlight the strong
differences between SC and FC patterns. The network graphs are shown on the bottom row.
Parameter values: αmn

EE = 1, αmn
IE = 1.4, αmn

EI = 0.7, αmn
II = 0.4, κmn

EE = 1.5, κnn
IE = 1,

κnn
EI = 2, κnn

II = 3, vEE = 10, vIEmn = 8, vEI
mn = −8, vIIsyn,mn = −12, ∆E

m = 0.5, ∆I
m = 0.5,

ηI0,m = −20, ηE0,m = 20, τam = 1; values of κmn
EE are obtained from MRI data (see text), scaled by

a global coupling strength ε = 0.025.

3.1 Transcranial magnetic stimulation

Transcranial Magnetic Stimulation (TMS) is a non-invasive therapeutic brain stimulation
technique whereby strong electromagnetic fields are used to induce a transient current
pulse in the brain, in order to influence neural activity, particularly in superficial regions of
cerebral cortex. TMS has potentially wide-reaching consequences for mental health con-
ditions, having provided positive outcomes for patients with Parkinson’s disease [9, 109],
schizophrenia [69, 70] and depression [36, 39, 63, 73]. Though its efficacy in treating
these conditions, in some cases, is evidential, the precise neurological effects of TMS
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are not understood. Previous studies highlight that TMS can influence neural activity
within populations in a range of ways. Initial synchronous depolarisation, followed by
longer-lasting GABAergic inhibition [111] impacts on neuronal excitability [67] and the
excitatory/inhibitory balance [55], can drive neural plasticity [38], and alter patterns of
coherence between brain regions, leading to the reorganisation of functional connectiv-
ity networks [55, 118]. Limbic structures have been identified as a critical component
of the pathophysiology of depression (see, e.g., [44, 54, 79]), and in particular, the in-
sula is a key part of abnormalities in [5, 53, 72], and interactions between [79, 82, 113]
functional networks implicated in depression. However, since TMS induces current on
surface regions, sub-cortical regions such as the insula must be influenced indirectly [55];
the mechanisms by which this occurs, and ideal stimulation protocols to achieve this re-
main unclear. Neural mass models — and, through its account of within-population syn-
chrony, the next-generation neural mass model described herein — are particularly suited
to providing an understanding of how such emergent FC patterns can be influenced by
TMS, and interrogating the influence of TMS protocols in silico, to inform more effective
treatment.

TMS pulses begin with a sharp peak to induce an electric field across the cortex,
causing electric currents to be generated across cell membranes. This is followed by
a slow dissipation, resulting in a much weaker electric field in the opposite direction
[101]. Pulses may be delivered as singular bursts, or in high-frequency trains referred to
as repetitive TMS (rTMS). Pulses are accommodated in our neural mass network model
by modulating the average population drive on each node (see equation (8)): ηa0 → ηa0,m+

Ha
m(t), and where a ∈ {E, I} and m ∈ {1, . . . , N}, where the function Ha

m(t) is chosen
to reflect the particular delivery protocol. For simplicity, in the following we assume that
the induced drive is identical for both inhibitory and excitatory populations, with each
pulse given by a damped sinusoid:

Ha
m(t) = Ipeak sin(ω(t− ti))exp((ti − t)/τ)Θ(t− ti)δm,M , (9)

where M indicates which node (or set of nodes) is stimulated, ti denotes pulse times,
Θ the Heaviside function, Ipeak = 100 is the pulse amplitude (in arbitrary units), ω =

20rad/ms is the wave frequency and τ = 0.08 ms characterises the pulse decay time
[104].

To highlight the utility of this approach to understanding the influence of TMS on
brain function, we stimulated in turn each of the 14 nodes corresponding to cortical brain
regions, and computed the resulting FC network from simulated time-series activity on
each node (as described above), paying particular attention to the influence on the right
anterior insula. In each case, we employed an rTMS stimulation protocol at 20 Hz [40].
TMS was applied for 50 seconds; functional connectivity was computed after a delay of 50

seconds post-TMS. We note that the stimulation and measurement protocol adopted here
was chosen for illustrative purposes rather than to mimic a TMS experiment, allowing for
computational efficiency and to allow for transient network activity to decay.

Figures 7 and 8 summarise our results. Fig. 7 shows a representation of the functional
network arising from stimulation of each cortical node, interpolated onto brain meshes
of the right hemisphere, together with the node corresponding to the insula (right hemi-
sphere). Here, the weighted degree of each node in the FC graph was calculated and
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(a) No TMS

J=0.1070

(b) L. Posterior cingulate

J=0.1556

(c) L. Isthmus Cingulate

J=0.1414

(d) L. Entorhinal

J=0.1328

(e) L. Caudal anterior cingulate

J=0.1701

(f) L. Lateral orbitofrontal

J=0.1467

(g) L. Medial orbitofrontal

J=0.1795

(h) L. Rostral anterior cingulate

J=0.1646

(i) R. Posterior cingulate

(ii) J=0.1418

(j) R. Isthmus Cingulate

J=0.1494

(k) R. Entorhinal

J=0.1611

(l) R. Caudal anterior cingulate

J=0.1443

(m) R. Lateral orbitofrontal

J=0.1573

(n) R. Medial orbitofrontal

J=0.1536

(o) R. Rostral anterior cingulate

J=0.1448

0 1

Figure 7. Normalised node degree of FC networks under rTMS stimulation of each cortical area.
FC matrices are interpolated on brain meshes of the right hemisphere. The node representing the
right anterior insula is also shown to depict the relative influence on stimulation of nodes on a
specific sub-cortical region. Figures created with BrainNet Viewer [133]. Parameters as in Fig. 6.
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normalised by highest degree. The global SC–FC similarity (measured by the Jaccard
similarity coefficient) is also shown. These results highlight the dramatic difference that
stimulating each cortical site can make to both the overall pattern of functional connectiv-
ity, and the resulting influence on the insula, in particular. This is explored in more detail
in Fig. 8, which shows the influence of each stimulated region on some exemplar graph-
theoretical properties, as discussed in [88, 102], of the insula node (specifically, the node
degree, eigencentrality and clustering coefficient), together with the path-length between
the stimulation site and the insula. These results reemphasise the strong dependence of
emergent FC on stimulation site indicated in Fig. 7, both in terms of global SC–FC sim-
ilarity, and specific influence on the insula. Moreover, the efficacy of stimulation is not
strongly predicted by proximity (as measured by shortest path length connecting the stim-
ulation site, and the insula), highlighting a non-trivial dependence on macroscopic brain
network architecture.

L. Entorhinal

L. Ist
hmus Cingulate

L. M
edial orbitofrontal

L. Posterior cingulate

L. Caudal anterior cingulate

L. Rostra
l anterior cingulate

L. Lateral orbitofrontal

R. Entorhinal

R. Posterior cingulate

R. Ist
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R. Rostra
l anterior cingulate

R. Caudal anterior cingulate

R. M
edial orbitofrontal

Degree

Clustering Coeff.

Eigencentrality

Distance

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 8. Graph properties of the right anterior insula in FC networks obtained under rTMS
stimulation of each cortical area. Shown is: the shortest path length between the stimulated area
and the right anterior insula; and the eigencentrality, clustering coefficient, and node degree of the
insula node. Parameters as in Fig. 7.

We have shown results from a range of target regions to show the variability of sim-
ulated TMS-induced FC states. However, more clinically relevant TMS protocols could
be implemented such as stimulation of the dorsolateral prefrontal cortex, which has fre-
quently been the subject of TMS studies related to the treatment of major depression
[66, 89].

4 Neural field model
The structure of the neocortex is well known to have a columnar organisation [86], built
from macrocolumns of ∼ 106 neurons with similar response properties, and that these
tend to be vertically aligned into columnar arrangements of roughly 1− 3 mm in diame-
ter. Intracortical connections can range over 1−15 cm, allowing communication between
distal cortical areas. Thus it is natural to view the human cortex as a dense reciprocally
interconnected network of roughly 1010 corticocortical axonal pathways that make con-
nections within the roughly 3 mm outer layer of the cerebrum [45]. Given the shallow
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depth of this wrinkled and folded cortical structure with a high neuronal density, it is
common from a modelling perspective to use a neural field description (not to be con-
fused with the neural mass model described earlier). This is essentially a coarse grained
description of neural tissue that describes the evolution of neuronal activity on a two di-
mensional surface, although theoretical analyses of such models are often carried out just
considering one spatial dimension for simplicity. See [22] for an overview. These models
can incorporate large scale anatomical knowledge, including the fact that most long-range
synaptic interactions are excitatory, with excitatory pyramidal cells sending their myeli-
nated axons to other parts of the cortex. Inhibitory interactions, on the other hand, tend to
be much more short-ranged. For excitatory connections it is now known that the weight
of connection between two areas decays exponentially with their wiring distance, with a
characteristic distance of ∼ 11mm (see [127] for a recent discussion). It is the combina-
tion of local synaptic activity (seen in the rise and decay of post synaptic potentials with
time-scales from 1 − 100 ms) and non-local delayed interactions within the cortex (of
up to 30 ms in humans) that is believed to be the major source of large-scale EEG and
MEG signals recorded at (or near) the scalp. Nunez, in particular, [64] has emphasised
the important role that delays arising from action potential propagation along corticocor-
tical fibres have in generating brain rhythms seen in the 1 − 15 Hz range. Moreover, he
has proposed a damped inhomogenous brain-wave equation describing the evolution of
neural activity at the tissue level that has played an important role in our understanding
of waves and patterns seen using EEG sensors [64, 90]. A recent study of the Nunez
model on a sphere can be found in [125], which includes an analysis of both standing and
rotating waves.

Here we describe a neural field model that generalises the basic neural mass model
given by (2) and (4) to include both the spatial extent of anatomical interactions and the
axonal delays that arise. Symbolically we write this in the form Qg = ψ, ψ = w⊗ f(Z),
where Q and Z are given as before, though here (g, Z) = (g(r, t), Z(r, t)), where r
indicates a position within the cortical surface (and for simplicity this is treated as a sheet
with no depth). The symbol ⊗ is used to describe spatial interaction within the neural
field model, whilst w represents structural connectivity. For example for an idealised one
dimensional setting with r = x ∈ R then we might consider

[w ⊗ f(Z)] (x, t) =

∫
R

dyw(|x− y|)f ◦ Z(y, t− |x− y|/v). (10)

Here the anatomical connectivity is described by the distance dependent function w, and
axonal transmission delays are prescribed solely in terms of this distance and a uni-
form axonal speed v. If the former has the normalised exponential dependence w(x) =

exp(−|x|/σ)/(2σ) then there is an equivalent partial differential equation [60][(
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)
f ◦ Z. (11)

The only difference between (11) and the original brain wave equation of Nunez [90]
is that here f is given by (1). The Nunez model of EEG respects the physiology and
anatomy described above and has been particularly successful for describing standing
EEG waves that arise by interference in a system with periodic boundary conditions.
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In a planar system with a rotationally symmetric anatomical connectivity described by
w(r) = exp(−r/σ)/(2πσ2) the corresponding brain wave equation is[(

1

σ
+

1

v

∂

∂t

)2

− 3

2
∇2

]
ψ =

1

σ2
f ◦ Z. (12)

Unlike (11), the wave equation given by (12) is only strictly valid for describing long-
wavelength solutions. In general we can avoid the assumptions that go into using brain
wave equations by working directly with the integral form of ψ. This can be posed on a
realistic cortical surface Ω and written as

ψ(r, t) =

∫
Ω

dr′W (r, r′)f ◦ Z(r′, t− τ(r, r′)), (13)

where the kernels W and τ allow for more general structural and delayed interactions.
In the above discussion we have only considered long range interactions that are ex-

citatory. However, in real cortical tissue metabolic processes would act to limit sustained
high firing rates. A simple model of such so-called spike frequency adaptation can be
developed by replacing the mean drive η0 by η0 − δa, for some positive strength of feed-
back δ > 0 coupled to an adaptation field a. This in turn is driven by the firing rate of the
tissue:

τA
∂a

∂t
= f ◦ Z − a. (14)

This form of feedback can also be interpreted as a form of localised synaptic inhibitory
feedback. In terms of its effect on a travelling wave the main action of this feedback
would be to turn an otherwise travelling front into a travelling pulse of neural activity. A
recent analysis of one-dimensional models of the type prescribed by (10) in the absence
of axonal delays and adaptation has been given in [15]. In this paper it was shown that the
model supports a Turing instability (of a homogeneous steady state), that can lead to the
formation of travelling waves, with properties not seen in standard neural field models.
The main one being the dynamic evolution of population synchrony within travelling
fronts and pulses, as typically seen in networks of spiking neurons. We now turn to the use
of the above models, with axonal delays and adaptation, in interpreting and understanding
the dynamics of cortical waves as observed in neuroimaging studies. However, it is well
to note that other reductions of spiking (linear IF) networks to neural field models are also
possible, typically assuming a ‘balance’ of excitation and inhibition, that can also give a
better account of network dynamics than phenomenological neural field models, and see
e.g. [96, 100].

4.1 Cortical wave simulations

Travelling waves at the scale of the whole brain have been studied ever since the advent of
EEG, with more recent studies progressing with the use of electrocorticography (ECoG),
in which arrays of electrodes are placed directly on the cortical surface. Both EEG and
ECoG indicate that wave speeds are typically in the 1− 10 m/s range (consistent with the
axonal conduction speeds of myelinated cortical white matter fibres). The development of
multi-electrode array and voltage-sensitive dye imaging techniques has brought us even
more information about their spatio-temporal properties and shown that they are present

19



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
v

0.0

0.1

0.2

0.3

0.4

0.5

c

c = v
Wave Speed

0

5

5 22
0

5
0

1

Rg

 
x

g

Figure 9. The speed of a travelling pulse in a one dimensional spatial model. The main plot shows
the wave speed as a function of the axonal velocity v, highlighting that causality is enforced so that
v < c, as expected. The figure also highlights that for large v the wave-speed saturates. The insets
show a spatial profile for g = g(x, t) at some fixed time t. Encoded on top of this are the values of
R and Ψ, where Z = ReiΨ, showing how the degree of synchrony R can vary quite rapidly within
a pulse, whilst the phase Ψ switches from just greater than −π outside a pulse to roughly π within
a pulse. Parameter values: v = 5, σ = 1, η0 = −3, ∆ = 0.5, vsyn = 5, κ = 5, τA = 30, α = 1,
and δ = 5.

during almost every type of cortical processing [132]. Waves can occur during both awake
and sleep states, and can range over both small and large cortical spatial scales. Moreover,
they can also occur during pathological states, such as seizures and spreading depression.
For a recent discussion of the mechanisms underlying cortical wave propagation, as well
as their role in computation, see [87].

The treatment of macroscopic cortical waves is best studied from a theoretical per-
spective with a wave equation describing the evolution of neural activity at the tissue
level. The next generation brain-wave equations given by (11) and (12) are ideal can-
didates. Here we present simulations of both of these coupled to the adaptation field
described by (14), with a focus on the speed and shape of localised travelling solutions.
In one spatial dimension we use equation (11) to study a travelling wave of activity. Fig-
ure 9 shows that the pulse speed increases linearly with axonal speed v for very small
v, and then saturates to a constant value relatively quickly. The shape of the wave is a
localised pulse in the conductance variable g, with interesting substructures in the order
parameter Z = ReiΨ within a pulse. The two insets show the variation of R (the degree
of synchrony) and Ψ (its phase) across the wave pulse.

In two spatial dimensions we instead use equation (12), and in this case expect to see
the radially symmetric counterpart of a travelling pulse in the form of a spreading circular
ring, reminiscent of an ictal wavefront [106], as shown in Fig. 10. This is initiated by a
localised and transient external input. The internal dynamics for Z within a radial cross
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section through the ring of activity shown is reminiscent of that seen in a one dimensional
travelling pulse.
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Figure 10. The spread of a travelling ring in a two dimensional spatial model. The images show
the magnitude of the synchrony order parameter |Z| = R(r, t) for different values of time t, with
r = (x, y). The wave is initiated with a localised spatial pulse input in the centre of a planar
domain. Parameter values: v = 10, σ = 1, η0 = −3, ∆ = 0.5, vsyn = 5, κ = 5, τA = 30, α = 1,
and δ = 15.

In many neuroimaging studies of brain waves, authors have reported interesting phase
relationships across cortical domains. For example, Alexander et al. [3] have observed
travelling phase waves at the level of the whole head using MEG (during an observer-
triggered apparent motion task), and Denker et al. [25] have used multi-electrode arrays
to quantify planar, synchronised, random, circular, and radial phase patterns in monkey
primary motor cortex. The establishment of phase relationships necessarily requires local
oscillations. These can be achieved within the modelling framework presented here in
one of two natural ways. The first exploits the fact that in known parameter regimes the
point neural mass model can oscillate, either via a Hopf bifurcation or through an isola of
limit-cycles [19]. The second utilises the fact that even for standard neural field models
with axonal delays that a mixture of short range inhibition and long range excitation can
lead to a dynamic Turing instability underlying the formation of periodic travelling waves
[21]. These generate a phase-relationship between oscillations at different points in the
cortical tissue. This second mechanism requires the coupling of brain wave equations,
one for each type of synaptic conductance mediating the interaction between excitatory
and inhibitory populations (using the population indexing of the mass models as typified
by equation (8)), though for brevity we shall not pursue this further here.
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5 Discussion
In the last 50 years there has been an active take-up of modelling approaches in the neu-
rosciences, with many of these inspired by the research activity of Jack Cowan. The
next generation neural activity models and their application presented here are a case in
point, and can trace their scientific roots back to the Wilson–Cowan model. In the spirit
of the original Wilson–Cowan model we have reviewed a recent neural mass model for
describing the population activity of mesoscopic collections of neurons, and its extension
to macroscopic large-scale networks, both discrete and continuum. The local model is
ideally suited to studying phenomenon such as event related synchrony/de-synchrony, the
discrete network can naturally address the link between structural and functional connec-
tivity, and the continuum model is suited to understanding the properties of cortical wave
propagation. In contrast to the Wilson-Cowan model, the one considered here can be de-
rived from an underlying microscopic description of a spiking cell. Admittedly, this is
for a specific choice of idealised quadratic integrate-and-fire model, for which the math-
ematical Ott-Antonsen reduction holds. However, as a common choice for a model of a
cortical cell (given its ability to fire at low rate) this is a fortuitous circumstance. Although
the search for other mean-field models linked to different choices of single neuron model
is of deep mathematical interest, there is clearly a lot of mileage yet to be had in the study
and application of the next generation models presented here. It is well to mention a few
of these possibilities below.

The first application considered in this paper was to post-movement beta rebound and
movement related beta decrease. For simplicity we assumed that these were both mediated
by the same type of synaptic receptor. However, Hall et al. suggest that movement related
beta decrease is a GABA-A mediated process, whilst post-movement beta rebound ap-
pears to be generated by a non-GABA-A receptor mediated process [46]. A further model
that distinguishes between receptors, may offer important insights into motor processes,
and can be readily accommodated within the framework that we have presented here. In
the simple two node hemisphere model, the magnitude and length of beta rebound was
heavily dependent on the oscillatory phase at which the motor command was applied.
This trial-by-trial variability is also true of MEG recording for beta-rebound. Current
analysis techniques often remove phase information from recorded MEG activity. How-
ever, it is possible to extract this information and test if there is a correlation between the
phase of the beta oscillations and the magnitude/length of beta rebound, on a trial-by-trial
basis. The phase coherence between the right and left hemispheres would also be an inter-
esting measure to test for correlations. Furthermore, for the beta rebound study we have
focused on simple networks built from one or a few nodes, and another intriguing study
would would be to explore the spread of beta rebound processes across the cortex, using
the neural field formulation.

The second application focused on the use of a neural mass network model (incorpo-
rating human connectome data) to relate structural and functional connectivity, and the
subsequent use of the same network framework to understand the influence of transcra-
nial magnetic stimulation (TMS) on brain dynamics. This modelling approach would
also seem relevant to developing an understanding of treatments for Parkinson’s disease.
This is a neurodegenerative disorder characterised by excessive synchronisation in the
basal ganglia. Deep brain stimulation, the most common surgical intervention for treat-
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ing Parkinson’s disease, acts to disrupt the high levels of synchrony in the basal ganglia
by administering brief pulses of electrical current through the implanted electrodes. This
has proven exceptionally powerful in treating the symptoms of Parkinson’s disease, yet
its success remains poorly understood [107]. Understanding how electrical pulses can
disrupt population synchrony and maintain the basal ganglia in an asynchronous state
could prove essential for fine tuning deep brain stimulation protocols and providing more
effective treatments to Parkinson’s patients. Given the ability of the model to track within-
population synchrony in a tractable way, it is an ideal candidate for a theoretical study of
deep brain stimulation. Similarly there is much further work to be done on using the net-
work model to gain further insight into the effectiveness of transcranial magnetic stimula-
tion protocols in influencing neural states, especially as regards transient neurodisruption
[111] and state-dependent effects [93]. Moreover, in this regard it is especially important
to consider the development of a sub-cortical model of the thalamus, and the inclusion of
thalamocortical connectivity. From a modelling perspective this would require a descrip-
tion of some of the important nonlinear ionic currents known to shape the firing pattern
of thalamocortical relay cells and reticular cells [27]. A neural mass that incorporates one
such important current, the slow T-type Calcium current, has previously been developed
in [18], and next steps could involve a hybrid network that couples this with the next
generation model presented here.

The third and final application considered was to whole brain dynamics, and specif-
ically to cortical waves using a generalisation of the brain-wave equation. The study of
waves, their initiation, and their interactions is especially pertinent to the study of epilep-
tic brain seizures. However, it is known that gap junctions are especially important in this
instance [78], and an important extension of the work presented here is their inclusion in
the modelling framework. Laing [65] has already made major inroads on this challenge,
and it would be extremely interesting to pursue the translation of this theoretical work to
understand how gap junctions may contribute to the generation of spatio-temporal neural
rhythms, both functional [7, 52] and pathological [29, 124].

Finally, it is well to mention that the work presented here has ignored any form of
plasticity [135], and this almost certainly has an impact on general aspects of brain dy-
namics such as synchronisation and travelling waves [75], and more specifically on the
extensions mentioned above that concern the brain response to transcranial magnetic stim-
ulation and the network dynamics that arise in epilepsy. Given that the next generation
model presented here incorporates a conductance based model of the synapse (with rever-
sal potential and bi-exponential temporal response) this can be modulated in a meaningful
way to describe various forms of plasticity. As well as incorporating long-term plastic-
ity, say following the route by Robinson for Wilson-Cowan models [98] (and already
realised for its importance in transcranial magnetic stimulation [38]), it is also possible to
augment the model to treat homeostatic plasticity as advocated by [47, 126] and already
implemented in [1] for Wilson-Cowan models. Short-term plasticity has previously been
incorporated into neural field models by several authors, mainly through a simple facilita-
tion/depression description as in [61, 62, 83], and can also be naturally included in future
studies.
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