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University of Nottingham, Nottingham, UK; eGallogly College of Engineering, University of Oklahoma, Norman, USA

ABSTRACT
Designing efficient biomass energy systems requires a thorough understanding 
of the physicochemical, thermodynamic, and physical properties of biomass. 
One crucial parameter in assessing biomass energy potential is the higher 
heating value (HHV), which quantifies its energy content. Conventionally, HHV 
is determined through bomb calorimetry, but this method is limited by factors 
such as time, accessibility, and cost. To overcome these limitations, researchers 
have proposed a diverse range of empirical correlations and machine-learning 
approaches to predict the HHV of biomass based on proximate and ultimate 
analysis results. The novelty of this research is to explore the universal applic
ability of the developed empirical correlations for predicting the Higher Heating 
Value (HHV) of biomass. To identify the best empirical correlations, nearly 400 
different biomass feedstocks were comprehensively tested with 45 different 
empirical correlations developed to use ultimate analysis (21 different empirical 
correlations), proximate analysis (16 different empirical correlations) and com
bined ultimate-proximate analysis (8 different empirical correlations) data of 
these biomass feedstocks. A quantitative and statistical analysis was conducted 
to assess the performance of these empirical correlations and their applicability 
to diverse biomass types. The results demonstrated that the empirical correla
tions utilizing ultimate analysis data provided more accurate predictions of HHV 
compared to those based on proximate analysis or combined data. Two specific 
empirical correlations including coefficients for each element (C, H, N) and their 
interactions (C*H) demonstrate the best HHV prediction with the lowest MAE 
(~0.49), RMSE (~0.64), and MAPE (~2.70%). Furthermore, some other empirical 
correlations with carbon content being the major determinant also provide 
good HHV prediction from a statistical point of view; MAE (~0.5–0.8), RMSE 
(~0.6–0.9), and MAPE (~2.8–3.8%).
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Introduction

Recent decades have seen a worldwide energy and climate crisis (Erdogan and Canbazoglu 0000) 
mainly caused by the fast depletion of fossil fuel reserves and political conflicts between countries. To 
mitigate both crises, many countries have attempted to handle this issue by promoting the use of 
biomass as a source of energy production (Güleç et al. 2022). Biomass/bioenergy has the potential to 
replace fossil fuels in various applications as a sustainable and renewable energy source (Rahib et al.  
2021). In biomass processes, organic compounds in biomass can be utilized/valorized through various 

CONTACT Mahmut Daskin Mahmut.Daskin@cranfield.ac.uk; Mahmut.Daskin@inonu.edu.tr Energy and Sustainability 
Theme, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; Mechanical Engineering, Faculty of Engineering, Inonu University, 
Malatya, Turkiye

Supplemental data for this article can be accessed online at https://doi.org/10.1080/15567036.2024.2332472

ENERGY SOURCES, PART A: RECOVERY, UTILIZATION, AND ENVIRONMENTAL EFFECTS 
2024, VOL. 46, NO. 1, 5434–5450 
https://doi.org/10.1080/15567036.2024.2332472

© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this 
article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0001-8349-0006
http://orcid.org/0000-0001-9045-4281
https://doi.org/10.1080/15567036.2024.2332472
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15567036.2024.2332472&domain=pdf&date_stamp=2024-04-10


processes including combustion, gasification, and pyrolysis to produce bioenergy (Aziz et al. 2024). 
Biomass has, therefore, gained substantial attention owing to its lower carbon footprint and avail
ability in recent years (Wei, Cheng, and Shen 2024). The physicochemical, thermodynamic, and 
physical properties of biomass resources play a crucial role in the design of energy systems (Ma 
et al. 2024). A significant parameter in determining the value of biomass is the higher heating value 
(HHV) (Nhuchhen and Afzal 2017; Nhuchhen and Salam 2012). HHV of a biomass can be determined 
by a bomb calorimeter, which is an experimental method, but this method has limitations in terms of 
time, accessibility, and cost (Güleç, Şimşek, and Tanıker Sarı 2022). Moreover, the small sample size 
typically used in bomb calorimetry (usually 1.0 g) may not adequately represent bulky feedstocks. To 
obtain a homogeneous HHV value, a significantly larger number of experiments would be required, 
posing practical challenges. These limitations have therefore led to developing the prediction methods 
using the physicochemical characteristics of biomass feedstocks (Li et al. 2024).

In addition to HHV, the bioenergy potential of biomass can be assessed using different character
ization methods. The elemental composition of biomass is analyzed by the ultimate analysis (UA) 
(Ozyuguran, Akturk, and Yaman 2018), which determines the composition of carbon (C), hydrogen 
(H), nitrogen (N), oxygen (O), and sulfur (S) (Lyons, Lunny, and Pollock 1985). Once C and H are 
oxidized, an exothermic reaction occurs, generating CO2 and H2O (Obernberger, Brunner, and 
Bärnthaler 2006). C and H have a positive impact on HHV since C is an essential component of 
solid biomass and H plays an important role in combustion (Demirbas 2002). It is seen that the 
concentration of N in biomass is an important parameter if the environmental effect of NOx is 
considered (Golgiyaz et al. 2022; Telmo, Lousada, and Moreira 2010). Proximate analysis (PA) reveals 
the contents of biomass such as volatile matter (VM), fixed carbon (FC), and ash content (Nunes, 
Matias, and Catalao 2017). The percentages of these contents have effects on the combustion of 
biomass. Unless nonvolatile matter is formed from noncombustible gases such as CO2 and H2 
O (Özyuğuran and Yaman 2017), the HHV increases with FC and VM (Vargas-Moreno et al.  
2012). Biomass comprises a different amount of cellulose, hemicellulose, and lignin (Zhang, Xu, and 
Champagne 2010) in addition to lipids, proteins, simple sugars, and starches albeit in various 
quantities. Detecting the components through structural analysis not only helps in predicting HHV 
but also plays a vital role in the production of derivative fuels and chemicals, as well as in analyzing 
combustion (Saidur et al. 2011).

The HHV value of biomass can be estimated using either PA or UA alone or together. Based on 
only UA analysis, several studies have been conducted to estimate the HHV of biomass (Huang and Lo  
2020; Qian et al. 2021). Empirical equations have demonstrated how the rate of C, H, N, O, and S in 
biomass elementally affect HHV value, depending on the type of biomass. The major determinant of 
HHV in all empirical correlations based on UA is C content of biomass. A few empirical correlations 
consider only C (Channiwala and Parikh 2002) as the variable predicting HHV, while others take into 
account C, H, O, and N together (Demirbas et al. 1997). In addition to elemental composition, some 
studies have been conducted to predict the HHV level of biomass utilizing the results of the PA (Dashti 
et al. 2019). The empirical equations obtained with PA include one (Kathiravale et al. 2003), two 
(Callejón-Ferre et al. 2011), or all (Ahmaruzzaman 2008) of the proximate analysis results of FC, VM, 
and ash with various correlations. In addition to estimating HHV using the UA and PA analyses 
separately, there are also studies in which the estimation of HHV is carried out by using these two 
analyses together (Nhuchhen and Afzal 2017). It is the rapidly developing field of machine learning 
that provides a variety of approaches for optimizing biomass HHV predictions. Artificial neural 
networks decision trees, random forests, support vector machines, and deep learning are among 
these approaches. However, the limitations of machine learning are its inability to design proper 
models due to its lack of interpretability, the risk of overfitting or underfitting the data, the challenge of 
determining the optimal number of training epochs, the need for high-quality and diverse training 
data, systematic errors and outliers in the data, and the need for curated datasets that are accurate and 
accessible to machine learning (Dobbelaere et al. 2021). Despite the existence of a wide range of 
empirical correlations developed to predict the HHV of different types of fuels, there is a limitation on 
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their applicability to a wide range of biomass feedstocks. Moreover, the existing literature does not 
sufficiently show a comprehensive understanding of how parameters derived from both ultimate and 
proximate analyses impact HHV prediction. Consequently, there is a need for a thorough investiga
tion that explores the universal applicability and reliability of these empirical correlations across an 
extensive array of biomass feedstocks.

This study provides a comprehensive understanding of the generalizability of the developed 
empirical correlations to predict the HHV for two different type of biomass feedstocks. The ground
breaking aspect of this research resides in investigating the diverse application possibility of an 
empirical correlation for forecasting biomass HHV. This research focuses on three main objectives: 
(i) discerning the paramount empirical correlation for forecasting the HHV of biomass, (ii) probing 
the applicability of these correlations across varied biomass feedstocks, and (iii) isolating the superior 
empirical correlation that can uniformly predict the HHV across these two groups of biomass feed
stocks. This research covers the comparative quantitative and statistical analysis of 45 different HHV 
prediction equations using approximately 400 different biomass feedstocks categorized as woods 
(category-1), herbaceous and agricultural biomasses (category-2) using their characteristics of PA 
and UA. A quantitative and statistical analysis is conducted to assess the performance of these 
empirical correlations and their applicability to diverse biomass types. The main objective of this 
work is to present this analysis more clearly and concisely, emphasizing its significance in advancing 
our understanding of biomass HHV prediction.

Materials and methods

Dataset collection and analysis

As a data set, 391 different biomass feedstock data of proximate analysis, ultimate analysis, and 
experimental HHV were collected from the literature (Appendix A, Table A1) and used to investigate 
the generalizability of 45 different empirical correlations developed for the predicting of HHV. The 
data set consists of two main biomass feedstocks; 1st category is woody biomass consisting of soft and 
hardwoods with 137 different feedstocks, 2nd category is herbaceous and agricultural biomass feed
stocks with 254 different feedstocks. The biomass feedstocks are categorized as presented in Table 1. 
Additionally, the data distribution of proximate analysis, ultimate analysis, and HHV for the woody 
biomass data and herbaceous-agricultural biomass data are presented in Figure 1.

In this research, we distinguished between “woody biomass” and “herbaceous and agricultural 
biomass” based on their botanical characteristics and typical usage patterns. Woody biomass, 

Table 1. Biomass types and categorized collected for the generalizability of the developed equations to predict the 
HHV.

Biomass types Details

Woody biomass – 
Softwood and Hardwood 
(137 data)

Softwood stems
Softwood bark
Softwood residues
Softwood leaves
Softwood seed/fruit
Hardwood stems
Hardwood bark
Hardwood twigs
Hardwood leaves
Hardwood residues
Hardwood seed/fruit/berry

Herbaceous and agricultural biomass 
(254 data)

Herbaceous and agricultural grasses
Herbaceous and agricultural stalks/stems/shrubs
Herbaceous and agricultural fibres
Herbaceous and agricultural shells/husks/processing residues
Herbaceous and agricultural seeds/fruits/grains
Herbaceous and agricultural leaf
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comprising softwood and hardwood, is primarily derived from trees and forests. Although it can be 
considered a part of agricultural biomass in a broader sense, for the purposes of our study, it is 
categorized it separately due to its distinct physical and chemical properties, which are notably 
different from those of herbaceous and agricultural biomass. The latter category is typically associated 
with non-wood plants, including grasses, crops, and residues from agricultural activities. This dis
tinction is crucial for our HHV prediction model as these two categories exhibit different combustion 
and energy properties.

Empirical correlations for the HHV prediction

In order to identify the best empirical correlations, about 400 different biomass feedstocks were 
comprehensively tested with 45 different empirical correlations developed to use ultimate analysis 
(21 different empirical correlations, Table 2), combined ultimate-proximate analysis (8 different 
empirical correlations Table 3) and proximate analysis (16 different empirical correlations Table 4) 
data of these biomass feedstocks.

Statistical analysis of the empirical models

To assess the performance of developed empirical correlations and their applicability to diverse 
biomass types (specially the defined two categories), a quantitative and statistical analysis was con
ducted using the statistical methods including mean absolute error (MAE), mean absolute percentage 
error (MAPE), correlation coefficient (R2), and root mean square error (RMSE). The statistical 
analysis of the results obtained from 45 distinct models holds great significance and shows the 
suitability of these models in the field. MAE, Equation (1), is a widely used standard statistical method 
to obtain model performance (Chai and Draxler 2014). It can be summarized the average value of sum 
of absolute errors (Boztepe et al. 2021). It is used to show the distance of the predicted data from the 
true value. RMSE, Equation (2), is the most widely used statistical method to analyze the prediction 
performance (Chai and Draxler 2014). The RMSE specifies the square root of the mean of the squares 
of the differences between the predicted and actual values. Furthermore, the MAPE as defined by 
Equation (3) and the correlation coefficient (R2) were also employed (Boztepe, Daskin, and Erdogan  
2022).  
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Figure 1. Data distributions of a) woody biomass feedstocks (137 data) and b) herbaceous and agricultural biomass feedstocks (254 
data) with proximate analysis, ultimate analysis, and experimental HHV. “db” represents dry basis.
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Table 2. Empirical correlations for the prediction of biomass HHV using UA data.

Equation 
Number

Developed empirical correlations for HHV prediction 
(HHV, kJ/g) Reference

Eq. 1 0:4373 � C � 1:6701 Channiwala and Parikh (2002), 
Sheng and Azevedo (2005)

Eq. 2 0:4373 � C � 0:3059 Channiwala and Parikh (2002)
Eq. 3 491:2 � C � 911:4 � Hþ 117:7 � Oð Þ=1000 Thipkhunthod et al. (2005)
Eq. 4 425:9 � C � 69:8 � Hþ 181:7 � O � 2277ð Þ=1000 Thipkhunthod et al. (2005)
Eq. 5 414:8 � C � 184:1 � H þ 178:9 � O � 2159:5ð Þ=1000 Thipkhunthod et al. (2005)
Eq. 6 0:3259 � C þ 3:4597 Sheng and Azevedo (2005), Yin 

(2011)
Eq. 7 0:34 � C þ 1:4 � H � 0:16 � O Zanzi, Sjöström, and Björnbom 

(2002)
Eq. 8 416:638 � C � 570:017 � H þ 259:031 � Oþ 598:955 � Nþ 5829:078ð Þ=1000 Kathiravale et al. (2003)
Eq. 9 0:301 � C þ 0:525 � H þ 0:064 � O � 0:763 Channiwala and Parikh (2002), 

Sheng and Azevedo (2005)
Eq. 10 3:55 � C2 � 232 � C � 2230 � Hþ 51:2 � C � Hþ 131 � Nþ 20600ð Þ=1000 Friedl et al. (2005), Yin (2011)
Eq. 11 5:22 � C2 � 319 � C � 1647 � Hþ 38:6 � C � Hþ 133 � Nþ 21028ð Þ=1000 Friedl et al. (2005)
Eq. 12 1:87 � C2 � 144 � C � 2820 � Hþ 68:3 � C � Hþ 129 � Nþ 20147ð Þ=1000 Friedl et al. (2005)
Eq. 13 4:18 � 103:34 � C � 73ð Þ=1000 Demirbas (2004)
Eq. 14 33:5 � C þ 142:3 � H � 15:4 � O � 14:5 � Nð Þ=100 Demirbaş (1997), Demirbas et al. 

(1997), Sheng and Azevedo 
(2005), Thipkhunthod et al. 
(2005)

Eq. 15 33:5 � C þ 142:3 � H � 15:4 � Oð Þ=100 Demirbas et al. (1997)
Eq 16 0:2949 � C þ 0:825 � H Yin (2011)
Eq. 17 � 5:29þ 0:493 � C þ 5:052=H Callejón-Ferre et al. (2011)
Eq 18 5:736þ 0:006 � C2 Callejón-Ferre et al. (2011)
Eq. 19 � 3:393þ 0:507 � C � 0:341 � Hþ 0:067 � N Callejón-Ferre et al. (2011)
Eq 20 � 2:907þ 0:491 � C � 0:261 � H Callejón-Ferre et al. (2011)
Eq. 21 � 3:147þ 0:468 � C Callejón-Ferre et al. (2011)

Table 3. Empirical correlations for the prediction of biomass HHV using combined PA and UA data.

Equation Number
Developed empirical correlations for HHV prediction 

(HHV, kJ/g) Reference

Eq 22 � 1:3675þ 0:3137 � C þ 0:7009 � H þ 0:0318 � 100 � C � H � Ashð Þ Sheng and Azevedo 
(2005)

Eq. 23 23:668 � 7:032 � H � 0:002 � Ash2 þ 0:005 � C2 þ 0:771 � H2 þ 0:019 � N2 Callejón-Ferre et al. 
(2011)

Eq 24 4:622þ 7:912 � H� 1 � 0:001 � Ash2 þ 0:006 � C2 þ 0:018 � N2 Callejón-Ferre et al. 
(2011)

Eq. 25 9:756 � 309:454 � VM� 1 þ 6:164 � H� 1 þ 0:006 � C2 Callejón-Ferre et al. 
(2011)

Eq 26 � 0:417 � 0:012 � VM � 0:035 � Ashþ Cð Þ þ 0:518 � C þ Nð Þ � 0:393 � H þ Nð Þ Callejón-Ferre et al. 
(2011)

Eq. 27 � 1:642 � 0:024 � Ash � 0:475 � C þ Nð Þ � 0:376 � H þ Nð Þ Callejón-Ferre et al. 
(2011)

Eq 28 � 0:465 � 0:0342 � Ash � 0:019 � VMþ 0:483 � C � 0:388 � H þ 0:124 � N Callejón-Ferre et al. 
(2011)

Eq. 29 � 1:563 � 0:0251 � Ashþ 0:475 � C � 0:385 � H þ 0:102 � N Callejón-Ferre et al. 
(2011)
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Here, �X is the mean value of the sample, z is the value of the confidence level, s is the standard 
deviation of the sample, n is the sample size, and i is the sample index. yi and xi are the predicted and 
measured HHVs for the ith sample.

Results and discussions

Analysis with a mixed biomass feedstock

Figure 2 presents the HHV prediction results of mixed biomass feedstocks using the empirical 
correlations based on ultimate analysis data (Eqs. (1)-(21)). Tables 5–8 summarize the results of the 
statistical analysis aimed at assessing the performance of the developed empirical correlations for 
HHV prediction of biomass feedstocks. To derive these values, the MAE, RMSE, MAPE, and R2 were 
applied as primary statistical tools. Each of these statistical methods offers a different perspective on 
the accuracy and reliability of our predictive models:

● MAE (Equation (46)): This was calculated as the average of the absolute differences between the 
predicted and measured HHVs. It provides a straightforward measure of prediction accuracy 
without considering the direction of errors.

● RMSE (Equation (47)): This metric was computed as the square root of the average of the 
squared differences between the predicted and actual HHVs. RMSE is sensitive to larger errors, 
making it a valuable tool for understanding the variability in prediction performance.

● MAPE (Equation (48)): We calculated MAPE as the average of the absolute percentage errors. 
This metric is particularly useful in contexts where it is important to understand the error relative 
to the magnitude of the values being predicted.

● Correlation Coefficient (R2): This statistical measure was used to determine the strength of the 
linear relationship between the predicted and actual HHVs.

The data for these calculations were derived from our extensive dataset of biomass feedstocks. For each 
model, it was applied the aforementioned statistical methods to the entire dataset to evaluate the 

Table 4. Empirical correlations for the prediction of biomass HHV using PA data.

Equation 
Number

Developed empirical correlations for HHV prediction 
(HHV, kJ/g) Reference

Eq. 30 255:75 � VMþ 283:88 � FC � 2386:38ð Þ=1000 Thipkhunthod et al. (2005)
Eq. 31 259:83 � VMþ FCð Þ � 2454:76ð Þ=1000 Thipkhunthod et al. (2005)
Eq. 32 19:914 � 0:2324 � Ash Sheng and Azevedo (2005)
Eq. 33 � 3:0368þ 0:2218 � VMþ 0:2691 � FC Sheng and Azevedo (2005)
Eq. 34 4:183 � 10� 3 � 8000þ VM � 70 � 1:65 � VMð Þð Þ Majumder et al. (2008)
Eq. 35 0:3536 � FC þ 0:1559 � VM � 0:0078 � Ash Ahmaruzzaman (2008), Majumder et al. (2008), Sheng and 

Azevedo (2005), Yin (2011)
E. 36 356:047 � VM � 118:035 � FC � 5600:613ð Þ=1000 Kathiravale et al. (2003)
Eq. 37 356:248 � VM � 6998:497ð Þ=1000 Kathiravale et al. (2003)
Eq. 38 � 10:81408þ 0:3133 � VMþ FCð Þ Ahmaruzzaman (2008), Cordero et al. (2001), Jiménez and 

González (1991), Majumder et al. (2008), Parikh, Channiwala, 
and Ghosal (2005)

Eq. 39 0:312 � FC þ 0:1534 � VM Ahmaruzzaman (2008), Demirbaş (1997), Sheng and Azevedo 
(2005), Thipkhunthod et al. (2005)

Eq. 40 0:196 � FC þ 14:119 Demirbaş (1997), Majumder et al. (2008), Parikh, Channiwala, 
and Ghosal (2005), Thipkhunthod et al. (2005)

Eq. 41 0:3543 � FC þ 0:1708 � VM Ahmaruzzaman (2008), Cordero et al. (2001), Majumder et al. 
(2008), Parikh, Channiwala, and Ghosal (2005), 
Thipkhunthod et al. (2005)

Eq. 42 0:1905 � VMþ 0:2521 � FC Yin (2011)
Eq. 43 � 2:057 � 0:092 � Ashþ 0:279 � VM Callejón-Ferre et al. (2011)
Eq. 44 � 13:173þ 0:416 � VM Callejón-Ferre et al. (2011)
Eq. 45 20:086 � 0261 � Ash Callejón-Ferre et al. (2011)
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model’s performance across different types of biomass. This comprehensive approach ensured that the 
results reflected the general applicability of the models to diverse biomass types. The values presented 
in Tables 5–8 are the culmination of these calculations, reflecting a thorough statistical analysis of the 
model’s performance. This methodology not only demonstrates the robustness of our approach but 
also provides a clear and quantifiable way to compare different models.

Figure 2. The HHV prediction results of mixed biomass feedstocks (391 data in total) using the empirical correlations based on 
ultimate analysis data (eqs. (1)-(21)).
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Among these 21 different empirical correlations (provided in Table 2), Eq. (10) and Equation (11) 
demonstrate the lowest MAE (~0.49), RMSE (~0.64), and MAPE (~2.70%) (Table 5). Both these 
empirical correlations include coefficients for each element (C, H, N) and their interactions (CH) that 
potentially reflect the energy of the corresponding chemical bonds in the biomass. The empirical 
correlation Eq. (10) includes a power function, which reflects the non-linear relationship between the 
HHV and the elemental composition of the biomass. Since the non-linearity may limit the accuracy of 
the equation for some types of biomasses, especially those with unusual chemical compositions. 
Equation (11) exhibits distinct leading coefficients for each element (C, H, N, and C*H) as well as 
constants within the empirical correlations. Similarly in this study, Eq. (10) has been tested and 
validated for various types of biomass, including agricultural residues, energy crops, woody biomass, 
and biochar (torrefied) and has shown reasonable accuracy in predicting their HHV (Friedl et al. 2005; 
Nhuchhen and Afzal 2017).

In addition to these two equations, eight different empirical correlations (Eq. (1), Equation (6), Eqs. 
(16)-(21)) also show relatively low MAE (~0.5–0.8), RMSE (~0.6–0.9), and MAPE (~2.8–3.8%) 
(Table 5). Unlike the best two empirical correlations (Eqs. (10) and (11)), these eight empirical 
correlations (Eq. (1), Equation (6), Eqs. (16)-(21)) focus on the content of C and H, not N in the 
biomass. Considering the low N content of biomass resources, the impact of nitrogen in the HHV was 
evaluated much lower compared to C and H. On the other hand, the empirical correlations include the 
oxygen (O) content in addition to C, H, and N, which shows higher error for the prediction of biomass 
HHV. The ultimate analysis of HHV prediction correlations i.e., Eq. (10) and Equation (11), presented 
in Table 2 can be a useful tool for predicting the HHV of wood, herbaceous, and agricultural solely on 
their elemental composition. In addition to ultimate analysis, the predictions with Eq. (1) and 
Equation (6) appear to be reasonably accurate HHV predictions for wood, herbaceous, and agricul
tural biomasses using only carbon (C) content.

Figure 3 presents the HHV prediction results of mixed biomass feedstocks using the empirical 
correlations based on combined ultimate and proximate analyses data (Eqs. (22)-(29)). Table 6 
also shows the statistical error analysis for the prediction of HHV of mixed biomass feedstocks 
using combined ultimate-proximate analyses based on empirical correlations. Among these 8 
different empirical correlations (provided in Table 3), Eq. (22) is a simple linear regression 

Table 5. Statistical analysis for the prediction of HHV of mixed biomass feedstocks using empirical correlations 
(eqs. (1)-(21)) based on ultimate analysis.

Equation MAE STDEV* RMSE MAPE (%) R2

Eq-1 0.530 0.40 0.665 2.887 0.821
Eq. 2 1.465 0.65 1.604 8.004 0.821.
Eq. 3 3.995 1.00 4.118 21.865 0.602
Eq. 4 6.539 1.03 6.618 35.765 0.549
Eq. 5 5.334 1.03 5.433 29.241 0.535
Eq. 6 0.517 0.42 0.663 2.849 0.821
Eq. 7 1.453 0.96 1.738 7.969 0.734
Eq. 8 15.110 1.34 15.169 82.532 0.279
Eq. 9 0.801 0.64 1.024 4.525 0.723
Eq. 10 0.490 0.41 0.636 2.693 0.818
Eq. 11 0.491 0.41 0.637 2.699 0.817
Eq. 12 1.244 0.61 1.383 6.808 0.826
Eq. 13 1.253 0.62 1.397 6.860 0.821
Eq. 14 1.402 0.94 1.685 7.697 0.739
Eq. 15 1.307 0.92 1.597 7.166 0.732
Eq. 16 0.548 0.47 0.724 3.038 0.768
Eq. 17 0.590 0.47 0.752 3.213 0.810
Eq. 18 0.714 0.54 0.893 3.842 0.818
Eq. 19 0.670 0.56 0.875 3.650 0.792
Eq. 20 0.611 0.50 0.789 3.324 0.799
Eq. 21 0.553 0.43 0.698 3.013 0.821

*STDEV of MAE. MAE, STDEV, MMAPE.
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model that includes variables for C, H, and Ash. It does not include N or VM content. 
Furthermore, Eqs. (23)-(25) include terms for C, H, Ash, and/or N content, as well as additional 
terms such as VM or Ash squared. These equations demonstrate higher errors; MAE (~0.81–1.82), 
RMSE (~0.99–2.17), and MAPE (~4.3–9.7%), in the prediction of HHV. The complexity of these 
equations may be more prone to overfitting and not generalize as well to new data. On the other 
hand, Eqs. (26)-(29) include terms for multiple variables, such as Ash, C, H, N, and/or VM 
content, and appear to be more complex than Equation (22) but less complex than Eqs. (23)-(25). 
These equations show a good balance between complexity and generalizability and provide better 
HHV prediction with lower errors. Eq. (26) shows the best prediction with the lowest MAE 
(~0.65), RMSE (~0.83), and MAPE (~3.5%). However, the correlation developed for the combined 
ultimate-proximate analyses demonstrated higher errors (Table 6) for the prediction of HHV 
compared to the eight different empirical correlations developed for ultimate analysis data sets 
(Table 5).

Figure 4 shows the experimental and predicted HHV of mixed biomass feedstocks using the 
empirical correlations developed for proximate analyses data (Eqs. (30)-(45)). The statistical errors 
are shown in Table 7 for the prediction of HHV of mixed biomass feedstocks using proximate analyses 
based on empirical correlations. Among these 16 empirical correlations, none of them shows better 
prediction (lower errors) compared to the promising empirical correlations developed for ultimate 
analysis and combined ultimate analysis. The lowest errors (MAE ~0.96, RMSE ~ 1.27, and MAPE ~  
5.27%) were observed with Eq. (32) (Table 7), while these errors are much higher than those of many 
other correlations developed for ultimate analysis (Table 5) and combined ultimate-proximate ana
lyses (Table 6). Although these empirical show better predictions in (Sheng and Azevedo 2005) and 

Figure 3. The HHV prediction results of mixed biomass feedstocks (391 data in total) using the empirical correlations based on 
combined proximate-ultimate analyses data (eqs. (22)-(29)).

Table 6. Statistical analysis for the prediction of HHV of mixed biomass feedstocks using empirical 
correlations (eqs. (22)-(29)) based on both proximate and ultimate analyses.

Equation MAE STDEV* RMSE MAPE (%) R2

Eq. 22 1.674 0.65 1.795 9.213 0.803
Eq. 23 1.815 1.19 2.167 9.759 0.672
Eq. 24 0.807 0.58 0.992 4.324 0.803
Eq. 25 1.360 0.80 1.574 7.277 0.808
Eq. 26 0.655 0.51 0.831 3.550 0.778
Eq. 27 0.677 0.59 0.898 3.687 0.787
Eq. 28 0.714 0.63 0.949 3.888 0.774
Eq. 29 0.670 0.59 0.891 3.651 0.784

*STDEV of MAE.
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Figure 4. The best four empirical correlations based on average confidence intervals to predict the HHV of mixed biomass feedstocks 
using proximate analysis data; a)Eq. (32), b) equation (33), c) equation (42), d)Equation (45).

Table 7. Statistical analysis for the prediction of HHV of mixed biomass feedstocks using empirical 
correlations (eqs. (30)-(45)) based on proximate analysis.

Equation MAE STDEV* RMSE MAPE (%) R2

Eq. 30 3.673 1.35 3.913 20.236 0.326
Eq. 31 3.522 1.32 3.761 19.430 0.336
Eq. 32 0.961 0.83 1.272 5.278 0.321
Eq. 33 0.995 0.89 1.336 5.464 0.320
Eq. 34 5.514 3.67 6.622 29.591 0.089
Eq. 35 1.368 1.23 1.837 7.451 0.209
Eq. 36 2.420 1.97 3.119 13.253 0.034
Eq. 37 2.541 1.70 3.057 13.972 0.094
Eq. 38 1.153 1.00 1.526 6.366 0.336
Eq. 39 1.681 1.31 2.129 8.959 0.224
Eq. 40 1.664 1.13 2.009 8.892 0.063
Eq. 41 1.422 1.09 1.791 7.932 0.059
Eq. 42 1.094 0.87 1.400 6.111 0.062
Eq. 43 1.506 1.26 1.960 8.212 0.088
Eq. 44 1.879 1.66 2.503 10.223* 0.020
Eq. 45 0.998 0.88 1.332 5.487 0.082

*STDEV of MAE.
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(Callejón-Ferre et al. 2011), they are not well-suited to the specific data being used in this study and do 
not capture the full range of variability in the data.

Considering these 45 different empirical correlations, the empirical correlations based on ultimate 
analysis and combined ultimate-proximate analysis can be useful tools for predicting the HHV of 
woody, herbaceous and agricultural biomass feedstocks. However, the predictive accuracy may be 
limited for some other types of biomasses with unusual chemical compositions. Therefore, the next 
section “3.2 Analysis with categorized biomass feedstocks” will provide the impact of these two groups 
on different types of biomass feedstocks with the herbaceous and agricultural biomass feedstocks (254 
data set) and woody biomass feedstocks (137 data set).

Analysis with categorised biomass feedstocks

In this section dataset was divided into two biomass groups; herbaceous and agricultural biomass 
feedstocks and woody biomass feedstocks to evaluate the performance of the empirical correlations. 
Since it is significantly important to understand whether the empirical correlations are good for some 
specific type of biomass feedstocks or generalizable for any type of biomass feedstocks. Figures 5 and 6 
show the best two empirical correlation results for the prediction of HHV of herbaceous and agricul
tural biomass feedstocks and woody biomass feedstocks using ultimate analysis data and combined 
ultimate-proximate analyses data, respectively. The HHV prediction results with the correlation devel
oped for only proximate analysis show relatively low prediction as in the previous section (Figure 4) and 
the results are presented in the Appendix B. In addition, Table 8 and 9 presented the statistical analysis 
results (MAE, MAPE, STDEV, RMSE, and R2) of the best empirical correlations for predicting the HHV 
of herbaceous and agricultural biomass feedstocks and woody biomass feedstocks with the correlations 
developed by either ultimate analysis or combination of proximate and ultimate analysis.

The characteristics of these two biomass types (herbaceous and agricultural biomass feedstocks and 
woody biomass feedstock) show some similarities in terms of ultimate analysis and proximate analysis 
characteristic distribution (Figure 1). That’s why the results seem to be close to each other. However, 
herbaceous and agricultural biomass feedstocks biomass have slightly wider characteristic ranges in 
terms of contents (C, H, O, N, VM, FC, Ash) compared to woody biomass feedstock. Therefore, there 
is a slight difference in terms of statistical results since woody biomass feedstocks show slightly better 
performance in terms of prediction using the same empirical correlations.

Both biomass feedstocks (herbaceous and agricultural, woody) demonstrate that the effect 
of C content is of the utmost importance in the prediction of HHV. Both biomass feedstocks 
groups provide the same empirical correlations (Eq. (10), Equation (11), Eq. (26), and 
Equation (29)) as the best candidates for the predicting of HHV. The only differences are 

Table 8. Statistical analysis of the best two empirical correlations for the prediction of HHV of herbaceous and agricultural biomass 
feedstocks (254 data set) and woody biomass feedstocks (137 data set) using either ultimate analysis or combined ultimate- 
proximate analyses data.

Biomass Feedstocks Equation MAE STDEV RMSE MAPE (%) R2

Herbaceous and Agricultural 
(254 data set)

Ultimate analysis
Eq-10 0.501 0.43 0.661 2.806 0.811
Eq-11 0.500 0.43 0.660 2.804 0.811

Combined proximate-ultimate analysis
Eq-26 0.684 0.55 0.877 3.763 0.760
Eq-29 0.743 0.65 0.986 4.102 0.765

Woody biomass 
(137 data set)

Ultimate analysis
Eq-10 0.469 0.35 0.587 2.482 0.805
Eq-11 0.474 0.36 0.593 2.506 0.800

Combined proximate-ultimate analysis
Eq-26 0.541 0.43 0.690 2.839 0.799
Eq-29 0.536 0.43 0.683 2.813 0.799

*STDEV of MAE. The statistical analysis for other empirical correlations is presented in the appendix (Table B1 and Table B2).
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from a statistical point of view, i.e., MAE was determined to be approximately 0.5 for 
Herbaceous and Agricultural biomass feedstocks and approximately 0.46–0.47 for Woody 
biomass feedstocks using Eqs. (10) and (11).

Starting with the best two empirical correlations based on ultimate analysis, Eqs. (10) and (11) have very 
similar performance across all metrics for both herbaceous and agricultural biomass feedstocks and woody 
biomass feedstocks. Table 8 shows that Eq. (10) and Equation (11) could potentially be the most reliable 
correlations for predicting HHV based on ultimate analysis data, with the lowest error and highest 
accuracy. On the other hand, Eq. (26) and Equation (29) which are obtained from combined proximate 
analysis, also show good performance for both biomass types with higher error rates compared to Eqs. (10) 
and (11).

It is possible to achieve better results by using ultimate analysis-based empirical correla
tions for both biomass feedstocks. Considering the close error rates and the order of the 
equations that did not change in both groups, the four mentioned equations are applicable to 
the process of obtaining the HHV. Overall, only ultimate analysis data is sufficient to obtain 
the best HHV prediction process, even if the dataset includes both proximate and ultimate 
analysis results.
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Figure 5. The best two empirical correlations for the prediction of HHV of herbaceous and agricultural biomass feedstocks (254 data 
set) using ultimate analysis data a) equation (10) and b) equation (11) and combined ultimate-proximate analyses data; c) equation 
(26) and d) equation (29).
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Sensitivity analysis

Based on the prediction results for Eqs. 10 and 11, a single variable sensitivity plot was presented to 
evaluate the relationships between all the independent variables and predicted HHV. The plots can be 
found in the supplementary materials (Appendix C, Figure C1 and C2). It should be noted that the 
single variable plots display similar trends across all equations. Furthermore, the C, FC, VM and 
N contents of biomass shows progressive increase with HHV. A slight increase in C content of biomass 
from 14 wt.% to 24 wt.% led to an elevation in the HHV from 36 kJ/g to 56 kJ/g. Also, as the FC content 
of biomass rises from 17 wt.% to 24 wt.% the HHV values also increase up to a value of 40 kJ/g. Other 
parameters such as ASH and H content did not display a visible trend with HHV values while the 
O content displays a negative trend. HHV values increase with a decline in O contents. It should be 
mentioned that the HHV value increases with C content due to the role of carbon in combustion 
processes (Nhuchhen and Afzal 2017). Carbon atoms react with oxygen to form carbon dioxide, 
releasing significant amount of energy. The higher the carbon content in the biomass, the more carbon 
atoms are available to undergo this reaction, thus generating more heat (Maksimuk et al. 2021). 
Additionally, carbon-rich biomass tends to have lower moisture and oxygen content, which further 
enhances its combustibility and energy yield. On the contrary, biomass with lower carbon content 
often has higher proportions of noncombustible elements like oxygen and nitrogen, leading to lower 
energy release during combustion.
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Figure 6. The best two empirical correlations for the prediction of HHV of woody biomass feedstocks (137 data set) using ultimate analysis 
data a) equation (10) and b) equation (11), and combine ultimate-proximate analyses data; c) equation (26) and d) equation (29).
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Conclusions

This study aims to investigate the generalizability of empirical correlations for predicting the 
HHV of biomass, which is an essential parameter for assessing biomass energy potential. The 
study comprehensively analyzed 391 different biomass feedstocks, including wood, herbaceous, 
and agricultural materials, using 45 different empirical correlations. The goal was to identify the 
best empirical correlations for predicting HHV and assess their performance across diverse 
biomass types. For this reason, some statistics analysis has been applied using Matlab to real and 
estimated data to determine the best equation/equations for predicting the HHV of different 
biomass types.

The results indicated that

● Empirical correlations utilizing ultimate analysis data provided more accurate predictions of 
HHV (lowest MAE:0.49 and MAPE:2.70% - Equation-10) compared to those based on proximate 
analysis (lowest MAE:0.96 and MAPE:5.27% - Equation-32) or combined data (lowest MAE:0.65 
and MAPE:3.55% - Equation-26).

● Two empirical correlations (Eqs.. (10) and (11)), which consider coefficients for each element (C, 
H, N) and their interactions (C*H), showed the best HHV prediction with the lowest mean 
absolute error (MAE) of approximately 0.49, root mean square error (RMSE) of around 0.64, and 
mean absolute percentage error (MAPE) of approximately 2.70%. 

● Other empirical correlations that primarily relied on carbon content as the major determinant 
also provided good HHV prediction from a statistical perspective, with MAE ranging from 
approximately 0.5 to 0.8, RMSE ranging from around 0.6 to 0.9, and MAPE ranging from 
approximately 2.8% to 3.8%.

The advantages of these two empirical correlations are offering high accuracy in predicting HHVs 
for specific biomass types using their ultimate analysis results (C, H, N), as evidenced by their low 
MAE, RMSE, and MAPE. They are straightforward to use, requiring only the elemental composi
tion for calculation, making them suitable for quick assessments to predict the HHV in practical 
applications. However, these models may have limited generalizability beyond the specific types of 
biomasses tested in this study. Their accuracy heavily depends on precise elemental analysis, and 
they might oversimplify the complex processes governing HHV. There’s also a risk of overfitting to 
the dataset they were developed from, potentially reducing their applicability to other biomass 
types or conditions.

Future research endeavors exploring the HHV of various biomass feedstocks should notably focus 
on the expansion of datasets to improve the robustness and applicability of empirical correlations 
across a wide array of biomass types. A pivot toward developing novel empirical correlations 
specifically tailored for unique and outlier biomass types will enhance predictive precision, especially 
when synthesized with advanced machine learning and deep learning models. This hybrid approach, 
intertwining empirical and computational methodologies, promises to bolster prediction accuracy by 
seamlessly navigating through complex, multidimensional biomass characteristic spaces. Lastly, an in- 
depth study into technological and combustion dynamics will facilitate a practical transition, ensuring 
that theoretical HHV predictions effectively translate into optimized combustion and sustainable 
energy generation in real-world contexts. Consequently, these focused strands of exploration stand to 
fortify the interlink between theoretical predictability and pragmatic energy production efficacy in 
bioenergy research.
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