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Synopsis

In this expository essay, we introduce some elements of the study of groups
by analysing the braid pattern on a knitted blanket. We determine that the
blanket features pure braids with a minimal number of crossings. Moreover, we
determine polynomial invariants associated to the links obtained by closing the
braid patterns of the blanket.

Keywords: Mathematics for non-mathematicians, Braid groups, Minimal cross-
ing number, Knot invariants.

For Leo.

Dear Leo, Michelle knitted this baby blanket1 for you which has an interesting
design of crossing strands, called braids. The blanket is shown in Figure 1.
Braids like these have a long history of being used as a decorative element,
for example, in Celtic art. In the Celtic tradition, braided patterns symbolize
continuity and endless braids (which we will refer to as knots) are said to
symbolize the eternity of life [5]. Braids continue to be appreciated for their
aesthetics in various cultures.

1Based on the pattern Levi’s Baby Blanket found in the following blog https:

//knittikins.wordpress.com/patterns/levis-baby-blanket/.
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In this text, we use mathematics to describe the artistic pattern of the blan-
ket. Mathematicians have developed a precise formalism to describe sym-
metries and patterns beyond the study of numbers. Such a formalism has,
for example, been developed for braids. Mathematicians have studied braids
for at least one century and their work has found surprising applications in
geometry and physics. The pattern of the blanket appears symmetric to the
eye and therefore feels aesthetically pleasing. This impression can be con-
firmed by analyzing the mathematical properties of the braid patterns in the
blanket, revealing interesting symmetries among the braids featured.

Figure 1: The blanket.

Mathematicians study braids through the more general concept of groups.
In mathematics, the word ‘group’ is used to describe the general features
of a collection of symmetries. This concept is ubiquitous in mathematics
and physics. Groups first emerged from the work of a French mathemati-
cian, Evariste Galois, in the 19th century and revolutionized mathematicians’
understanding of equations by making use of symmetries among solutions.2

2 The story of Galois is interesting in itself; it relates to the French revolution and
provides a thrilling read. But we will not discuss Galois’ contribution and the history of
groups and how they help in solving equations here. The book of Simon Singh [18] gives
an accessible account of the story of a mathematical problem that was solved after eluding
mathematicians for over 358 years and relates to the work of great minds throughout the
history of mathematics.
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Many believe that all important results in mathematics have already been
discovered. However, the opposite is true. While some old questions (like
Fermat’s Last Theorem) have been solved, many problems remain unsolved
and new questions continue to emerge. In fact, solutions to old problems
often present new problems that nobody imagined thinking about before.
We illustrate this phenomenon in Section 3.3 by discussing such problems
that emerged from the study of braids.

1. Groups

1.1. What are groups?
Groups provide a helpful way to describe symmetries of mathematical struc-
ture that appear in different contexts. To define the mathematical concept
of a group, key features that the collections of symmetries of several struc-
tures have in common are abstracted to so-called axioms. These axioms
capture certain fundamental aspects of the nature of a collection of sym-
metries. Mathematicians often approach defining an abstract concept this
way: They identify a list of fundamental axioms shared by many structures,
and then they refer to any structure having these properties by a name—in
this case, we call these structures groups. Other examples of such abstract
structures include number fields, functions, relations, differential operators,
or probability distributions. Thus, mathematics is a language that describes
abstract and systematic structures that can be used to describe the world by
giving a universally accepted name to each of these widely used concepts,

Certain groups can be described as collections of symmetries. Such a group
is a collection of symmetries of a mathematical structure, for example, a
geometric object, the set of solutions to an equation, or the possible states
of a physical system, may all display symmetries. As a first example, we
explain the group of symmetries of a hexagon depicted in Figure 2.

A symmetry of the hexagon is a transformation of the plane which sends
any point on the lines describing the hexagon to another (or possibly the
same) point on the hexagon. This means that any symmetry preserves the
shape even though the different points on the shape might be swapped. By
labelling the corners of the hexagon with numbers 1 to 6 as in Figure 2, we
can describe all of its symmetries effectively.

Examples of symmetries of the hexagon are rotations. For instance, Fig-
ure 2(a) shows the rotation that rotates corners 1 to 2, 2 to 3, 3 to 4, etc.
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Figure 2: Symmetries of a regular hexagon: x is a rotation, y is a reflection, and
the product xy gives the reflection about the axis connecting 3 and 6.

For brevity, we can call this rotation x. But there are other rotations such
as the described by the following mapping of corners:

1 7→ 5, 2 7→ 6, 3 7→ 1, 4 7→ 2, 5 7→ 3, 6 7→ 4. (1)

If we apply the rotation x four times, we obtain the above rotation described
in (1).

Rotations are not the only symmetries of the hexagon; there are also reflec-
tions. For example, there is a reflection that interchanges corners 1 and 6,
2 and 5, 3 and 4. This reflection is displayed in Figure 2(b) where we call
this reflection y. It is the reflection about a vertical axis. Another reflec-
tion swaps corners 1 and 5, 2 and 4, while fixing corners 3 and 6—we may
name this reflection z. This reflection z is the reflection about the axis going
through the corners 3 and 6. In principle, we can reflect the hexagon at any
axis that has an angle which is a multiple of 360◦/6 = 60◦ degrees.

The collection of all symmetries of the hexagon is an example of a group,
a dihedral group, and is often denoted by D6 since it captures symmetries
of the hexagon which has six corners. One can demonstrate that there are
precisely six distinct reflections and six distinct rotations for this hexagon.

A group has a set of elements but also an operation that takes two elements
as input and gives a single element as output, the product of the two input
elements. We usually use the symbol x · y to represent the product of the el-
ements x and y of a group. In the case of D6, the group of symmetries of the
hexagon, the product of x and y is given by composition of symmetries, x ·y.
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This means that we first apply the symmetry x followed by applying the sym-
metry y. The result could have been achieved through a single symmetry—
their product x · y.

For an example of a product in D6, consider the product of, first, the rotation
x and, second, the reflection y, both of which we defined above. We can
compute the product, which is denoted by x ·y—like a product of numbers—
by tracing what happens to the corners of the hexagon. For example, x
sends corner 1 to corner 2, and then y sends corner 2 to corner 5. Hence,
the product x · y has sent 1 to 5. Similarly, x sends corner 2 to 3, and then
y sends corner 3 to 4. Therefore, the product x · y has sent corner 2 to
4. Continuing this way, the following Table 1 describes the product x · y
completely. Figure 2(c) shows us that this product is a reflection about the
axis passing through 3 and 6, which are therefore fixed points of x · y. We
observe that the previously defined reflection z coincides with the product
x · y and may write z = x · y. The order of x and y in the product x · y
is crucial here as y · x does not give the same resulting symmetry. The last
column in Table 1 shows the effect of the product y ·x on the six corners. For
instance, y sends corner 1 to 6, and y sends corner 6 to 1, so the symmety
y · x sends corner 1 to 1, meaning, it fixes corner 1.

x y x · y y · x
1 7→ 2 1 7→ 6 1 7→ 5 1 7→ 1
2 7→ 3 2 7→ 5 2 7→ 4 2 7→ 6
3 7→ 4 3 7→ 4 3 7→ 3 3 7→ 5
4 7→ 5 4 7→ 3 4 7→ 2 4 7→ 4
5 7→ 6 5 7→ 2 5 7→ 1 5 7→ 3
6 7→ 1 6 7→ 1 6 7→ 6 6 7→ 2

Table 1: Computing the products x · y and y · x in the dihedral group D6.

Another example of a product computation was shown earlier in (1). There,
we computed the product of x with itself four times. That is, we computed
x4 = x · x · x · x, and the outcome was the rotation shown in (1).

1.2. Examples of groups

Symmetry groups are a type of group, but the concept of a group is much
more universal. The range of numbers we usually compute with, called the
real numbers, form a group where the binary product operation is the ad-
dition of numbers. If a and b are numbers, then a + b is also a number.
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Mathematicians call this group R. Similarly, the whole numbers form a
group called the integers which is denoted by Z. Here, the product is also
given by addition. There are many other groups. One of the easiest ones
has exactly two elements, 0 and 1. The product operation, indicated by the
symbol + instead of · as it is a form of addition, is specified by the following
list:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0.

This might seem surprising, but as there are only two elements, we have no
choice but to set 1 + 1 = 0. This can be thought of as addition of whole
numbers but only retaining the information whether a number is odd or
even, also referred to as the parity of the numbers. Then, even numbers are
represented by 0 and odd numbers are represented by 1. This is justified by
0, 2, 4, . . . being even numbers and 1, 3, 5 being odd numbers. You can test
the following rules of parity for the addition of numbers:

even + even = even, even + odd = odd,

odd + even = odd, odd + odd = even.

This two-element group is denoted by Z2 among mathematicians. It is like
the integers Z but only has two elements.

A different way to describe the same group Z2 with two elements is by denot-
ing one element by 1 and the other element by −1. The product operation
works like the multiplication of integers and is indicated with the symbol ·.
The following list describes all products for this two-element group:

1 · 1 = 1, 1 · (−1) = −1, (−1) · 1 = −1, (−1) · (−1) = 1.

This is another incarnation of the same group Z2 because we can match the
element 1 with 0 and −1 with 1 and the values of the operations · and +
correspond to one another under this matching.

1.3. The axioms of a group

Axioms are used to provide a universal definition of what constitutes a group.
These axioms are a short list of three rules that can be checked to determine
if a given structure constitutes a group. If a statement about groups can be
derived from the these fundamental axioms alone, it will hold for all examples
groups at once. This idea of axiomatic logic enables mathematicians to prove
statements with absolute certainty.
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The definition of a group involves three axioms. The first axiom is called
associativity. It states that for a product of three elements x, y, and z of a
group, we can ignore brackets. In formulas, this is expressed by the equality

(x · y) · z = x · (y · z).

It does not matter whether we form the product x · y and then form the
product of x · y and z, which is (x · y) · z, or first form the product y · z and
then the product of x and y · z, which is x · (y · z).

However, the order of elements appearing in a product does matter. In
many groups, like the symmetries of the hexagon, x · y is not the same as
y · x. You can see this by comparing the last two columns of Table 1. In
some groups, such as the integers Z, the real number R, or the group Z2

with two elements, however, we have a + b = b + a. This property is called
commutativity. Commutativity is not an axiom of a group. Groups satisfying
commutativity are rather special, and we often use the addition symbol + to
denote a commutative product.

The second axiom of a group states that any group contains a special ele-
ment called the identity element. This element is neutral with respect to the
product operation in that forming the product with the identity element has
no effect. In formulas, this means that for any element x of a group,

x · e = x, and e · x = x.

For example, when adding numbers, adding 0 has no effect: 0 + a = a =
a+0. Therefore, 0 is the identity element of numbers with addition. For the
dihedral group of symmetries of the hexagon discussed earlier, the neutral
element for the composition of symmetries is the rotation by an angle of zero
degrees. This trivial rotation fixes all corners. Hence, applying this symmetry
before or after applying another symmetry has no effect. Therefore, this
trivial symmetry is the identity element of the dihedral group. We usually
denote the identity element of a group by e. For instance, for the group Z of
integers with addition, e = 0.

The third fundamental axiom of a groups is called invertibility. This axiom
implies that group operations are reversible. Thinking about the symmetries
of the hexagon again, we can undo each rotation by rotating back in the
opposite direction. We can undo each reflection by applying it once again.
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This property of invertibility can be expressed, more generally, as follows.
For a given element x of a group, there exists an element called the inverse
of x which is denoted by x−1. This inverse element satisfies the equations

x · x−1 = e, and x−1 · x = e,

where e is the identity element of the group discussed before. For example,
the reflection y that we discussed earlier is equal to its own inverse, i.e.,
y−1 = y. This is the case because applying a reflection twice returns the
hexagon to its previous configuration of corners. In the notation of groups,
y · y = e. The inverses for addition of integer numbers are the negatives of
the given numbers. In fact, for any integer a, we have that

a+ (−a) = 0, and (−a) + a = 0.

Since e = 0, this means −a is the inverse of a for the addition operation.

To summarize, a group is a collection of elements with a product operation
that is associative, comes with an identity element, and inverse elements.
There are many examples of groups. We already encountered some of them.
Another fundamental example of a group is given by the set of all non-zero
fractions. A fraction a

b
is described by two integer numbers, a and b, and we

require both of them to be non-zero. The product of fractions is given by

a
b
· c
d
= ac

bd
.

One can check that this is an associative operation. In fact, commutativity
also holds for this product:

a
b
· c
d
= ac

bd
= ca

db
= c

d
· a
b
.

The fraction 1
1
is the identity element for this product since

1
1
· a
b
= 1a

1b
= a

b
.

Inverses are given by reversing fractions, namely(
a
b

)−1
= b

a
.

You can verify this by using cancellation rules for fractions. Indeed,

a
b
· b
a
= ab

ba
= a

a
= 1

1
.
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What is interesting about the group of fractions is that we require non-zero
fractions in order to have inverses of elements with respect to the multipli-
cation operation. For instance, if a is an integer, we can identify it with the
fraction a

1
. The inverse of a is

a−1 =
(
a
1

)−1
= 1

a
.

This shows that a cannot be zero as the fraction 1
0
is ill-defined. This example

also indicates that the set of non-zero integers is not a group with respect to
multiplication as there are no multiplicative inverses for integers other than
1 and −1. For example, we cannot find an integer a such that 2 · a = 1. We
know that this equation is correct when a = 1

2
which is not a whole number

and therefore not an integer.

Now we have encountered some of the most well-known groups. There are two
more remarkable series of groups that we will consider: the braid groups and
the symmetric groups. These groups also describe fundamental structures
appearing in everyday life in concise and systematic ways.

1.4. The symmetric groups

Consider the sequence of the first n numbers (1, 2, . . . , n). The symmetric
group contains all possible ways to rearrange the order of these n numbers.
For example, if n = 5, an element of the symmetric group on 5 numbers is
given by the sequence

(2, 3, 1, 5, 4).

Here, we have reshuffled the order of the numbers to start with 2, followed
by 3, etc. The symmetric group on n numbers is usually denoted by Sn.
Consequently, the above sequence (2, 3, 1, 5, 4) is an element of S5. We can
treat such a sequence like a function. For example, (2, 3, 1, 5, 4) corresponds
to the function sending 1 to 2, 2 to 3, 3 to 1, 4 to 5, and finally 5 to 4.

For the purpose of studying braids later, it helps to visualize the symmet-
ric groups as pictures of crossing strings. Here, it does not matter which
string crosses above and which one crosses below. These string pictures are
read from top to bottom. The above sequence (2, 3, 1, 5, 4) corresponds to
the picture in Figure 3(a). To read such a diagram, start at one of the
numbered strands at the top (say, the first one) and trace the corresponding
string through the picture along the direction of the arrow. Then record the
number at which this strand terminated (in this example, the number 2).
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1 2 3 4 5

1 2 3 4 5

(a)

1 2 3 4 5

1 2 3 4 5

(b)

Figure 3: The element (2, 3, 1, 5, 4) of the symmetric group S5, displayed in two
distinct ways.

Then, we record this number in the first entry of the sequence. To verify
the entire sequence, we trace all numbers from the top to the bottom along
the direction of the arrows of the respective strands. There is always some
ambiguity about how to draw a certain sequence as a picture of crossing
strings. For example, Figure 3(b) is a valid picture for the same sequence
(2, 3, 1, 5, 4).

Symmetric groups have a product structure given by composition of reorder-
ings of the first n numbers. For an example, we again look at the sequence
(2, 3, 1, 5, 4) and view it as a function which, for example, sends 1 to 2. If
we are given a second sequence, say, (3, 5, 2, 1, 4), then we can compute the
product as the composition of the two functions. So, we apply the first se-
quence followed by the second one. In this example, first, 1 is sent to 2 by
the first sequence, and then 2 is sent to 5 by the second sequence. Hence,
the composition sends 1 to 5. Similarly, 2 is sent to 3 by the first sequence,
and 3 is sent to 2 by the second sequence. Therefore, the composition sends
2 to itself. Continuing like this we see that the product is the sequence
(5, 2, 3, 4, 1). Written as a formula,

(2, 3, 1, 5, 4)(3, 5, 2, 1, 4) = (5, 2, 3, 4, 1). (2)

Another example of a product of two elements of symmetric groups is carried
out using diagrams in Figures 4 and 5. Here, we start with the elements
a = (3, 1, 4, 2) and b = (2, 4, 1, 3) in S4 depicted in Figure 4. That is, we
consider two sequences of length four.



296 The Braids on Your Blanket

1 2 3 4

1 2 3 4

(a) a = (3, 1, 4, 2)

1 2 3 4

1 2 3 4

(b) b = (2, 4, 1, 3)

Figure 4: Two elements a and b of the symmetric group S4.

Visually, the product ab is given by stacking a on top of b and removing the
labels in the middle. Then we can simplify the resulting longer strings to
strings of the original length. All that matters here is the information of
where the input numbers come out in the string diagram. We see in Figure 5
how the product ab is computed graphically. The product ends up being the
identity element e = (1, 2, 3, 4) of S4 which permutes none of the numbers.
Given the discussion at the end of §§1.3, this means that b = a−1 and a = b−1,
i.e., a and b are mutually inverse elements in S4. In other words, applying b
after a undoes the rearrangement of the numbers 1, 2, 3, 4 caused by a.

The groups Sn appear quite different than groups of numbers (such as the
integer or real numbers with addition, or non-zero rational numbers with
multiplication) that we are familiar with from arithmetic. In some sense, the
symmetric groups Sn are much more like the dihedral groupD6 of symmetries
of the regular hexagon which we encountered in the previous section. In fact,
the group Sn can be interpreted as the group of all symmetries of a list of n
points. Another similarity between Sn and D6 is that these type of groups
are not commutative and only have a finite number of elements. To see that,
for example, S5 is not commutative, we compute

(3, 5, 2, 1, 4)(2, 3, 1, 5, 4) = (1, 4, 3, 2, 5), (3)

which is different from the product (2, 3, 1, 5, 4)(3, 5, 2, 1, 4) computed in (2).

The symmetric groups are universal. Every group with finitely many ele-
ments is contained in some symmetric group Sn as a subgroup. This means
that any group is a subset of Sn for some n which contains the identity
element and is closed under taking products and inverses.
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1 2 3 4

1 2 3 4

=

1 2 3 4

1 2 3 4

=

1 2 3 4

1 2 3 4

Figure 5: The product ab of the elements a = (3, 1, 4, 2) and b = (2, 4, 1, 3) of the
symmetric group S4 (see Figure 4) gives the identity element (1, 2, 3, 4).

2. The Braid Groups

2.1. What are the braid groups?

In the previous section, we studied some examples of groups. The main
groups of interest in this article, however, are the braid groups. Braid groups
can be seen as more complex symmetric groups as they track how the num-
bers were rearranged, rather than just the order of the numbers. If we look
at a picture like Figure 3(a), we see strings crossing, but in the crossings,
there is no distinction which strand overlaps above and which one lays below
at a crossing. But to study braids, the order of crossing strands becomes
important. The pictures in Figure 6 show this difference.

Similarly to the symmetric groups, braid groups form a series of groups
indexed by a positive integer number n. The braid group on n strands is
denoted by Bn. Its elements are pictures of n braided strands. For example,
Figure 7 shows an example of an element of B6. In this example, six strings
each connect one of the incoming labels 1, 2, 3, 4, 5, 6 to one of the outgoing
labels (reading from top to bottom). The strings are embedded into three-
dimensional space and cannot intersect. This way, the strings braid past one
another.
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←→

(a) left strand crossing above

←→

(b) right strand crossing above

Figure 6: Crossing strands and how they appear in the blanket

The product of two braids is computed similarly to the graphical computation
of the product in the symmetric groups. The difference is that we need to be
careful about the order of strands at each crossing. Take, for example, the
two braids σ and τ depicted in Figure 8.

To compute the product στ , we vertically stack the two braid pictures on
top of one another in the plane, σ on top of τ . This is shown in the left-
most picture in Figure 9. Then we remove the dots in the middle in the
second picture from the left in Figure 9. Finally, we simplify the picture, if
possible. When simplifying, we are not allowed to cut the strings or change
the positions of the endpoints. The rightmost picture in Figure 9 shows a
simplification of the product στ .

To simplify στ , we used the fundamental relation that crossing two strings
with the same string on top twice is the same as two parallel strings. This
relation is displayed in Figure 11(a).

1 2 3 4 5

1 2 3 4 5

6

6

Figure 7: An example of a braid on 6 strands.
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1 2 3 4

1 2 3 4

(a) The element σ in B4

1 2 3 4

1 2 3 4

(b) The element τ in B4

Figure 8: Two examples of braids on 4 strands.

Pictures of braids as used in this article are called planar projections be-
cause they project a three-dimensional object onto a two-dimensional plane.
Such pictures are a way to illustrate manipulations of braids and to give
an intuitive understanding. However, sometimes it is useful to have a more
compact methods to denote elements in the braid groups. To do this, we
introduce abbreviations for some fundamental braids that only braid two
neighboring strings and nothing else. These fundamental braids are called
generators of the braid groups. Remember that the braid group Bn con-
sists of pictures with n strands. We can choose i to be any number from
1 to n − 1 and abbreviate (or denote) the braid that only braids the i-th
strand over its right neighbor (the (i + 1)-th strand) by σi. In addition,
we have its inverse σ−1

i which braids the i-th under the (i + 1)-th strand.

1 2 3 4

1 2 3 4

=

1 2 3 4

1 2 3 4

=

1 2 3 4

1 2 3 4

Figure 9: The product στ of the elements σ and τ in the braid group B4.
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Any braid picture can be written by stacking braids σi and σ−1
i , where i

ranges between 1 and n− 1. Figure 10 contains a picture of the generator σi

and its inverse σ−1
i .

σi = . . .. . .

1 i− 1 i i+ 1 i+ 2 n

1 i− 1 i i+ 1 i+ 2 n

(a)

σ−1
i =

. . .. . .

1 i− 1 i i+ 1 i+ 2 n

1 i− 1 i i+ 1 i+ 2 n

(b)

Figure 10: The i-th generator σi of the braid group Bn and its inverse σ−1
i .

Every braid in B4 can be written as a product of (possibly multiple copies
of) some of the braids σ1, . . . , σn−1 and σ−1

1 , . . . , σ−1
n−1. To demonstrate this

idea, recall the two braids σ and τ from Figure 8. We find that

σ = σ2σ
−1
1 σ−1

3 σ−1
3 and τ = σ3σ

−1
2 σ−1

1 .

An expression of a braid in terms of the generators σi is by no means unique.
For example, we can write σ as such a product in multiple ways, for example,

σ = σ2σ
−1
1 σ−1

3 σ−1
3 = σ2σ

−1
3 σ−1

1 σ−1
3 = σ2σ

−1
3 σ−1

3 σ−1
1 (4)

are all valid ways to write the braid group element σ. They correspond to
slightly different pictures but all capture the essence of the same braid.

There are, in fact, three fundamental types of relations that can be used to
relate any two pictures (or, combinations of the elements σi, σ

−1
i ) that display

the same element of the braid group. These relations are found in Figure 11.
The relations can be translated into the following formulas:

σiσ
−1
i = 1n, for all i = 1, . . . , n− 1, Figure 11(a), (5)

σiσi+1σi = σi+1σiσi+1, for all i = 1, . . . , n− 2, Figure 11(b), (6)

σiσj = σjσi, for all j < i− 1 or j > i+ 1, Figure 11(c), (7)
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=

(a)

=

(b)

=

(c)

Figure 11: The three fundamental relations among braids, see Equations (5)–(7).

where in the third relation (7) we require that |j− i| > 1, so that i and j are
neither neigboring indices (which would be the case if |j − i| = 1) nor equal
(meaning |j − i| = 0). In Equation (5) the symbol 1n denotes the identity
element of Bn which only consists of n unbraided strands. Equation (6) is an
especially famous equation. It goes by the name of the 3rd Reidemeister move
(see Figure 22(c)) in knot theory and is called the Yang–Baxter equation3

in physics. For the study of braids, it is astonishing that that successive
application of these three types of relations is all that is required to relate
any two pictures that represent the same element of the braid group. For
example, we have seen how Equation (5) was applied in the computation in
Figure 9 and applying Equation (7) is used to relate the different ways to
write σ in Equation (4).

2.2. Passing from braids to permutations

The braid groups can be seen as an enhancement of the symmetric groups
that we discussed before. Given a braid, we can start with one of the top
vertices of a braid picture and trace it along the connected string, in the
direction of the arrow, to the bottom to see which number we end up with.

3 This equation appeared first as a consistency equation in a multi-body problem on a
line in quantum mechanics, and in statistical mechanics, see [8].
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Doing this for all top vertices, we associate an element of the symmetric
group Sn (a permutation) to an element of the braid group Bn.

For example, recall the braid σ from Figure 8(a), namely

σ =

1 2 3 4

1 2 3 4

.

We can start at the top vertex 1 and, tracing its arrow through the picture,
we end up at 2. Similarly, starting at 2, we end up at 3, etc. Therefore, the
braid σ corresponds to the permutation (2, 3, 1, 4) of S4 because there are
four vertices at the top of the braid.

This procedure of turning braids into permutations loses information at each
crossing, namely, the information of which strand crosses above and which
one crosses below is not retained in the symmetric groups. For this reason,
there are elements in the braid group that are non-equal but correspond to
the same element in the symmetric group. For instance, the elements σ1 and
σ−1
1 in B2 are not equal as we need to keep track of which strand crosses above

and which crosses below. However, both of these elements correspond to the
element (2, 1) of the symmetric group S2, which swaps 1 and 2. The braid
groups Bn each contain infinitely many elements while there are only finitely
many elements in Sn. Any permutation can be obtained from infinitely many
distinct braids.

Passing from the braid group Bn to the symmetric group Sn is compatible
with the corresponding products of the elements. This means that it does
not matter whether we first multiply two elements a, b in Bn and translate
the product ab to Sn, or first translate both a and b to Sn and then com-
pute the product in the group Sn. Mathematicians call this kind of map a
group homomorphism. We will make use of this observation when analyz-
ing the patterns of the blanket later. We can summarize this observation
in formulas. Let σ, τ denote braids, that is, two elements of Bn. We write
P(σ) and P(τ) for the resulting permutations obtained from these elements.
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This way, P defines a function with inputs from Bn and outputs in Sn. For
this function, the equation

P(σ)P(τ) = P(στ) (8)

holds true as an equality of permutation—both sides are exactly the same
reorderings of the set {1, 2, . . . , n}. You can check this property using the
product computation in Figure 9. First, we check that

P(σ) = (2, 3, 1, 4), P(τ) = (2, 3, 4, 1).

We can now compute the product two ways, once in B4 and once in S4, and
see that Equation (8) holds in this example. First, we compute the product
of permutations as in §1.4 which yields

P(σ)P(τ) = (2, 3, 1, 4)(2, 3, 4, 1) = (3, 4, 2, 1).

Second, we read off the permutation associated to the product στ from Fig-
ure 9, which gives

P(στ) = (3, 4, 2, 1),

the same result.

There are even braids β whose associated permutation P(β) is just the iden-
tity permutation (1, 2, . . . , n) which does not permute any of the elements
1, 2, . . . , n. Such braids are called pure braids. Figure 12 shows an example
that illustrates that pure braids can already be rather complicated, although
the associated permutation is trivial. To see that this braid is a pure braid,
start with any input vertex and trace it through the picture. You will see
that you end up at the same number that you started from.

σ1σ2σ
−1
3 σ−1

3 σ2σ1 =

1 2 3 4

1 2 3 4

Figure 12: An example of a pure braid in B4.
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The set of all pure braids contained in B4 is denoted by PB4. The subset
PB4 is closed under taking inverses and products and contains the identity
element of B4. Therefore, PB4 is a subgroup of Bn, called the pure braid
group on n strands.

In Equations (5)–(7), we explained fundamental relations that are enough
to transform any two different pictures of the same braid into one another.
Because the symmetric group Sn of permutations is closely related to the
braid group Bn, the generators and relations for Sn are very similar, but
easier to work with in practice. We write τi for the elementary permutation
that interchanges only the i-th and (i+1)-th element in the set {1, 2, . . . , n}.
In our notation, this means

τi = (1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n). (9)

For instance, τ2 = (1, 3, 2, 4) as an element of S4. The generator τi is depicted
in Figure 13 using the same graphical depiction of permutation we used
before.

τi = . . .. . .

1 i− 1 i i+ 1 i+ 2 n

1 i− 1 i i+ 1 i+ 2 n

Figure 13: The i-th generator τi of Sn which transposes i and i+ 1.

The notation is understood so that if i−1, i+2 do not exist, they are simply
omitted. For example, τ1 = (2, 1) is the only generator for the symmetric
group S2, while S3 has the two generators

τ1 = (2, 1, 3), τ2 = (1, 3, 2).

The element τ5 exists in all symmetric groups Sn with n ≥ 6. For example,

τ5 = (1, 2, 3, 4, 6, 5, 7, 8, 9, 10)

when viewed as a generator of S10. The elements τi are called transpositions
or elementary transpositions. Any element of Sn can be written as an iterated
product of these transpositions. For example

(2, 3, 1, 5, 4) = (1, 3, 2, 4, 5)(2, 1, 3, 4, 5)(1, 2, 3, 5, 4) = τ2τ1τ4. (10)
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Here, we recall that products are read from left to right. So in the product
in the middle, first, 3 is sent to 2, then 2 is sent to 1, and finally 1 is sent to
1. Hence, tracing through the entire string of mappings, 3 is sent to 1. We
illustrate this example in Figure 14.

1 2 3 4 5

1 2 3 4 5

=

1 2 3 4 5

1 2 3 4 5

= τ2τ1τ4

Figure 14: The decomposition of the element from Equation (10) in S5 as a
product of transpositions.

The relation describing the symmetric group based on these generators are

τiτi = 1n, for all i, (11)

τiτi+1τi = τi+1τiτi+1, for all i < n− 1,

τiτj = τjτi, whenever j ̸= i, i− 1, and i+ 1.

These relations are almost the same as for the braid group. The only dif-
ference is that τ−1

i = τi, which may be derived from Equation (11). The
geometric explanation for this relation is that the order in which the strands
cross does not matter for permutation. One can observe that the generators
τi for Sn satisfy all of the relations that the σi satisfy in Bn. This explains
why the map P: Bn → Sn described earlier is a homomorphism, that is,
it is compatible with products. In fact, it follows from the definitions that
P(σi) = τi.

2.3. Orders of elements in a group

We discuss one more concept from the theory of groups before starting to
look at the braid patterns of the blanket more closely. This is the concept of
the order of an element. Let g be an element inside of a group (for example,
the symmetric groups, but the concept of order is defined for any group).
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If there exists a positive integer number n such that gn = 1 and n is the
smallest positive number with this property, then g is said to have order n.
If no such number n exists, then g has infinite order. A basic result is that
if a group has m elements, then the order of any element g in this group
divides m.4 This result strongly limits the possible orders of elements in a
given group and implies that if the group only have finitely many elements,
then there is no element of infinite order.

The symmetric groups only have finitely many elements. In fact, we can
verify that the symmetric group Sn has

n! = n(n− 1) · . . . · 1

elements. This number, called n factorial, grows extremely quickly. For
example,

4! = 4 · 3 · 2 · 1 = 24, 5! = 5 · 4! = 120,

6! = 6 · 5! = 720, 7! = 7 · 6! = 5040, . . .

In fact, we can have elements in Sn of any prime order. For an example of
the order of an element, we may study the element P(σ) = (2, 3, 1, 4) in the
symmetric group S4. We already know from the start that the order of this
element can be 2, 3, 4, 6, 8, 12, or even 24. To find the order, we compute
successive products of P(σ) with itself. That is, we compute powers of this
element. We see that

P(σ)2 = (3, 1, 2, 4), P(σ)3 = (1, 2, 3, 4).

We do not need to compute further since the third power equals the identity.
This tells us that P(σ) has order 3.5

4 This result, named after 18th century mathematician Joseph-Louis Lagrange, can be
found in standard textbooks on the theory of groups such as [17].

5 Group theory offers more effective methods to compute the order of elements in
symmetric groups by decomposing such elements into products of cycles. A cycle is a
sequence of numbers obtained by repeated application of a permutation that returns to
the initial element. For instance, the element (3, 1, 2, 4) contains only one cycle of order
3, the cycle 1 7→ 3 7→ 2 7→ 1. The order of an element of a symmetric group is the least
common multiple of all cycle lengths of a given element. For more details, see for example
[17, Chapter 2].
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In contrast, there are infinitely many elements in the braid group Bn, and
even in the pure braid group PBn, for any number n of strands. For example,
we can always multiply the element σ2

1 with itself and one gets increasingly
tangled up strands σ2

1, σ
4
1, σ

6
1, . . . which will never be the same braid. A

harder fact to prove about the braid groups is that the identity element is
the only element of finite order. The identity always has order 1. All other
elements of Bn have infinite order.

3. The Blanket

We have provided all the mathematical definitions we will need to discuss
the patterns on the blanket in more detail. We next look for symmetries and
repeating patterns in the braids of the blanket.

3.1. The repeating braid patterns of the blanket

There are three distinct patterns that can be observed on the blanket. The
first pattern, Pattern A, is the smallest. It involves only three strands and is
a very recognizable braid, reminiscent of patterns of braided hair. Pattern A
is shown in Figure 15, once as a picture of four repetitions of the pattern on
the blanket and once as a schematic drawing of a single repetition, identified
as the element

β1 = σ1σ
−1
2 (12)

of the braid group B3.

β1 =

1 2 3

1 2 3

(a) Pattern A as an element of B3

(b) Four repetitions on the blanket

Figure 15: The repeating Pattern A of the blanket.
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Therefore, the picture in Figure 15(b) corresponds to

β4
1 = σ−1

2 σ1σ
−1
2 σ1σ

−1
2 σ1σ

−1
2 σ1.

The second repeating braid pattern, Pattern B, is depicted in Figure 16
below. This pattern corresponds to an element of B6 as six braids are used.

β2 =

1 2 3 4 5 6

1 2 3 4 5 6

(a) Pattern B as an element of B6

(b) Two repetitions on the blanket

Figure 16: The repeating Pattern B of the blanket.

In Figure 16(a), we see a schematic depiction of a single repetition of this
pattern. It corresponds to the braid group element

β2 = σ−3
1 σ−2

3 σ−3
5 σ2σ4 (13)

of B6. We have summarized products into powers, so that, for example

σ−3
1 = σ−1

1 σ−1
1 σ−1

1 .

The right hand side, Figure 16(b), shows two repetitions of this pattern on
the blanket.

There is a third repeating braid pattern found on the blanket. This pat-
tern is displayed in Figure 17. Figure 17(a) schematically displays a single
repetition of this pattern as the element

β3 = σ−2
2 σ1σ

−1
3 (14)

of the braid group B4 while Figure 17(b) shows two repetitions of this pattern
on the blanket.
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β3 =

1 2 3 4

1 2 3 4

(a) Pattern C as an element of B4

(b) Two repetitions on the blanket

Figure 17: The repeating Pattern C of the blanket.

The three repeating patterns found on the blanket are elements β1 of B3,
β2 of B4, and β3 of B6. Using the discussion at the end of §§1.4, we find
associated permutations P(β1) of three numbers, P(β2) of four numbers, and
P(β3) of six numbers. These permutations encode where the input labels end
up traced through the braids. These permutations are given by

P(β1) = (3, 1, 2), P(β2) = (3, 1, 2, 5, 6, 4), P(β3) = (2, 1, 4, 3). (15)

In §§2.3, we discussed the concept of the order of an element g as the minimal
n such that gn = 1. We can check to see that P(β1) and P(β2) both have
order 3 while P(β3) has order 2.

3.2. The braid structure of the entire blanket

We now study the overall structure of the blanket as a braid. For this we
observe the repetition of the basic patterns A, B, and C discussed in the
previous section. Looking at Figure 1, we observe that the basic patterns A,
B, and C repeat horizontally using the following scheme:

A B A C C C A B A · · · (16)

This shows that the repetition pattern is symmetric with respect to 180◦-
rotation about the vertical axis. However, the entire blanket is not rotation
symmetric at the vertical middle axis because Patterns A and C are not sym-
metric with respect to such a rotation. Algebraically, a rotation by 180 about
the vertical axis correspond to exchanging σi with σn−i, for all i between 1
and n− 1. The braid β2 is symmetric under these operations because:
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β2 = σ−3
1 σ−2

3 σ−3
5 σ2σ4 = σ−3

5 σ−2
3 σ−3

1 σ4σ2,

which we obtain using the relations from Equation (7). However, β1 is not
symmetric under this operation as

β1 = σ1σ
−1
2 ̸= σ2σ

−1
1 .

The braid β3 also does not display such a rotation symmetry6 since

β3 = σ−2
2 σ1σ

−1
3 ̸= σ−2

2 σ3σ
−1
1 .

The braids use a total of 36 = 4·3+2·6+3·4 strands, so they are represented
by elements of B36. An interesting symmetry here is that all types A, B, and
C of the repeating patterns use the same number of 12 strands.

A careful study of the blanket shows that Pattern A repeats 36 times hori-
zontally, Pattern B repeats 18 times, and Pattern C repeats 30 times. From
this we can determine how many of the generators σi or their inverses are
used to write the braids on the blanket as an element of B36—the number of
crossings. The entire braid pattern on the blanket is displayed in Figure 18.
Further data about the number of strands occupied by the pattern and the
number of crossings used is summarized in Table 2. The question whether
the number of crossings used in the blanket’s design is minimal to capture
these braids will be addressed in §§3.3.

Strands
per copy

Copies
Total
strands

Repetitions
Crossings
per rep.

Total
crossings

Pattern A 3 4 12 36 2 288
Pattern B 6 2 12 18 10 360
Pattern C 4 3 12 30 4 360
Blanket 36 1,008

Table 2: The repeating patterns on the blanket.

Note that if there was one more horizontal repetition of Pattern A, then
each Pattern would feature 360 crossings. The way the blanket is designed,
only patterns B and C feature 360 crossings each, and Pattern A has 288
crossings. However, five horizontal copies of Pattern A, three of Pattern B,
and four of Pattern C cannot be placed in an arrangement that is rotation
symmetric about the horizontal middle axis.

6However, the symmetry could be achieved by using the braid σ−2
2 σ1σ3 instead of β3.
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We can now identify the overall braid as a product of the braids associated to
the repeating patterns, Patterns A, B, and C. For example, Pattern A repeats
36 times as indicated in Table 2. Thus, a copy of repetitions of Pattern A
in the vertical direction corresponds to β36

1 , the 36-fold product of β1 with
itself.

In the horizontal direction, braids may be placed next to each other. For
example, on the left edge of the blanket, we have a copy of Pattern A next
to a copy of Pattern B on the right. Mathematically, this means that the 36-
fold power of β1 is placed on the left of the 18-fold power of β1. We separate
horizontally neighboring braids by commas. Thus, on the left we start with
(β36

1 , β18
2 ). We continue following the scheme of pattern repetition observed

in Equation (16) and find that the blanket corresponds to the braid β defined
as:

β = (β36
1 , β18

2 , β36
1 , β30

3 , β30
3 , β30

3 , β36
1 , β18

2 , β36
1 ). (17)

A schematic picture of the braid corresponding to the entire blanket is given
in Figure 18.

3.3. Mathematical questions

The blanket is, first and foremost, a piece of art and craft. However, as we
have seen, the artwork translates into the abstract structure of a braid, which
can be analyzed using a branch of algebra called group theory. Therefore,
we are able to use mathematics to extract more precise information from the
blanket. Mathematical questions concerning the braids on this blanket may
emerge and may be answered using the current mathematical understanding
of the group theory behind braids. Even if we could not answer these ques-
tions using the current understanding of braids by mathematicians, we may
at least be able to pose questions that are worth exploring through research.

Pure braids

One question that we can ask about the blanket is whether it represents a
pure braid, as defined in §2.2.

Question 1. Does the braid pattern of the blanket represent a pure braid?

Answer to Question 1. To answer this question, we recall the definition of a
pure braid. A pure braid is a braid β (of n strands) such that the associ-
ated permutation P(β) is the identity element of the symmetric group Sn.
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4 5 6 7 8 91 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 28 29 30 31 32 3325 26 27 34 35 36

4 5 6 7 8 91 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 28 29 30 31 32 3325 26 27 34 35 36

Figure 18: The braid β represented by the entire blanket.
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We computed the permutations associated to each of the repeating patterns
β1, β2, and β3 at the end of §3.1. We also recorded how many times each
pattern repeats vertically and horizontally in Table 2. This way, we identified
the braid β representing the entire blanket in Equation 17, a braid in B36.
Now, we want to know if P(β) = 136, the identity of S36.

To compute P(β), we use the rule that the function P which takes elements
of Bn (i.e., braids) as inputs and produces elements of S36 (i.e. permutations)
as outputs is a homomorphism of groups. This implies that

P(βn) = P(β)n;

see the discussion at the end of §2.2. Using this property we conclude that

P(β36
1 ) = P(β1)

36 =
(
P(β1)

3
)12

= 1123 = 13.

Here, we use the earlier observation that the order of P(β1) = (3, 1, 2) is 3,
which divides 36. Hence, the 36-th power of β1 is the identity. Similarly, we
calculate that:

P(β18
2 ) = P(β2)

18 =
(
P(β2)

3
)6

= 166 = 16,

P(β30
3 ) = P(β3)

30 =
(
P(β3)

2
)15

= 1154 = 14.

Thus, the three braids β1, β2, and β3 appearing as repeating patterns on the
blanket are all pure braids.

We further observe that the function P is compatible with putting braids
β1, β2 next to one another in the sense that

P(β1, β2) = (P(β1),P(β2)).

Here, on the right, we represent permutations that permute a disjoint set of
strands separated by commas. For example,

((3, 1, 2), (6, 4, 5, 8, 9, 7)) = (3, 1, 2, 6, 4, 5, 8, 9, 7).

On the left, we have the permutation (3, 1, 2) permuting the first three num-
bers separated by a comma from the permutation (6, 4, 5, 8, 9, 7) permuting
the numbers from 4 to 9. The right hand side is a single permutation per-
muting the first 9 numbers.
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By Equation 17, the braid β representing the entire blanket consists of par-
allel braids of the form β36

1 , β18
2 , and β30

3 . As we observed above, these are
all pure braids. Thus, by the observations of the last paragraph, β itself is a
pure braid. Indeed, applying the map P to β gives

P(β) = P
(
β36
1 , β18

2 , β36
1 , β30

3 , β30
3 , β30

3 , β36
1 , β18

2 , β36
1

)
=
(
P(β36

1 ),P(β18
2 ),P(β36

1 ),P(β30
3 ),P(β30

3 ),P(β30
3 ),P(β36

1 ),P(β18
2 ),P(β36

1 )
)

= (13, 16, 13, 14, 14, 14, 13, 16, 13) = 136.

The last equation uses the fact that parallel identities on subsets of the
strands combine into the identity on all strands. Thus, the blanket represents
a pure braid, and Question 1 is answered in the affirmative.

Question 1 was not a very difficult question. We were able to answer this
question using elementary group theory found in textbooks. Alternatively,
to confirm that the blanket represents a pure braid, we could have considered
Figure 1 and traced every one of the 36 strands from top to bottom to check
that they each start and end at the same number.

Crossing numbers

Looking at the total number of 1, 008 crossing of the blanket (see Table 2)
raises the question of whether the braids of the blankets are realized with
a minimal number of crossings. In other words, is there some way to (ab-
stractly) rearrange the braids using the three types of relations from Figure
11, or equivalently using Equations (5)–(7), such that equivalent braids with
a smaller number of crossings appear?

Question 2. Is the number of crossings we computed in the blanket (1, 008)
minimal in representing the braids?

Answer to Question 2. It turns out that the numbers of crossings are min-
imal for each of the three braids β1, β2, β3 (given respectively by Equations
(12), (13), and (14)) and all of their products, and hence for the braid β
symbolizing the entire blanket described by Equation (17). But to explain
why this is the case, powerful theorems are needed.

For the braid β1 symbolizing Pattern A, it is easier to check by hand that the
number of crossings used is minimal. Recall that in Equation (15), we say
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that the permutation associated to β1 is P(β1) = (3, 1, 2). In the symmetric
group S3 of permutations, the element (3, 1, 2) can be written as

P(β1) = (3, 1, 2) = (2, 1, 3)(1, 3, 2) = τ1τ2,

with the notation for transpositions τ1, τ2 from Equation (9). Therefore, the
element P(β1) can be written using at least two elementary transpositions (τ1
and τ1 once each). It is not possible to write (3, 1, 2) as a product of just one
transposition as it has order 3 and all transpositions have order 2. Hence,
we need at least two generators (that is, two crossings) to display P(β1) in
S3. Because all relations among the σi in Bn are satisfied by the τi in Sn, we
need at least as many braid group generators σi to define a braid β as we
need τi to define the associated permutation P(β). So, whichever way we try
to write β1 as a product of elements σi, we need at least two such generators.
The number of generators used in a product equals the number of crossings.
So we need at least two crossings to draw β1. So the number of crossings
used in Pattern A is minimal.

The same reasoning that we used to argue that β1 requires at least two
crossings to be drawn cannot be used to determine the minimal number of
crossings in β2 and β3. The reason for this is that in the defining picture
for β2 (see Figure 16(a)) we use ten crossings. However, decomposing P(β2)
gives:

P(β2) = (3, 1, 2, 5, 6, 4)

= (2, 1, 3, 4, 5, 6)(1, 3, 2, 4, 5, 6)(1, 2, 3, 4, 6, 5)(1, 2, 3, 5, 4, 6)

= τ1τ2τ5τ4,

and only uses four transposition. For this reason, it is possible that there
might be a way to display the braid β2 with less than ten crossings. A similar
observation can be made for β3. As we will see below, we require cleverer
mathematical methods to be sure about the minimal number of crossings
needed to denote the braids β2 and β3.

Positive and homogeneous braids

A braid is called positive if it can be displayed in a way only containing
crossings where the left stand crosses over the right strand. In the lan-
guage of group theory, a braid is positive if it can be written as a product
of the generators σ1, . . . , σn−1 without using any inverse elements.
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As an example, consider the braid σ3
1σ

2
3σ

3
5σ2σ4 shown in Figure 19. This

braid reminds us of Pattern B, but it is not quite the same. For instance,
comparing to Figure 16, we see that the crossing of the first two strands are
reversed compared to those in Pattern B.

1 2 3 4 5 6

1 2 3 4 5 6

Figure 19: The positive braid σ3
1σ

2
3σ

3
5σ2σ4.

Each positive braid contains a minimal number of crossings. This is because
the only relations between positive braids are given by the second and third
types of braid relations depicted in Figure 11 (or equivalently, described by
Equations (6) and (7)). These types of relations never reduce the number
of generators σi appearing in a given expression of a positive braid in the
generators. Thus, the number of such generators must be minimal.

None of the braids, β1, β2, β3, in the blanket appear to be positive. This
can be seen by considering the expressions for β1, β2, and β3 in Equations
(12), (13), and (14). In these braids, we see inverses of the generators σi

appearing. For this reason, we cannot yet determine whether braids β2 and
β3 have a minimal number of crossings.

In other words, in order to determine whether braids such as β2 and β3 use
a minimal number of crossings, more work is required. It turns out that by
generalizing the concept of a positive braid to larger classes of braids, called
alternating and homogeneous braids, we can have the necessary tools at our
disposal to ascertain whether the number of crossings in the blanket’s design
is minimal.

The first class of braids that we encounter are alternating braids. A braid
is called alternating if it can be expressed as a product of the elements,
σ1, σ

−1
2 , σ3, σ

−1
4 , . . . only. This means that the inverse σ−1

2k may appear for an
even index (that is, an index 2k for an integer k), but σ2k cannot appear.
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For odd indices (that is, indices 2k + 1 for k an integer), σ2k+1 may appear,
but its inverse σ−1

2k+1 cannot appear. The braid β1 from Equation (12) is an
alternating braid. Its definition features only σ1 and σ−1

2 . The braid β2 is
not itself alternating, but its inverse

β−1
2 = σ−1

4 σ−1
2 σ5σ3σ1

is alternating. The fact that any alternating braid necessarily has a minimal
number of crossings was proved by V. Turaev in [19].

Theorem 1 (V. Turaev, 1988). Any alternating braid has a minimal crossing
number.

Therefore, we can use Turaev’s theorem to conclude that the braids β1 and
β−1
2 have a minimal number of crossings. We already knew this for the

braid β1 because of our earlier analysis. Moreover, we can also conclude
that β2 itself has a minimal number of crossings, being the inverse of β−1

2 .
Consequently, all powers of β1 and β2 will have minimal crossing numbers.

The braid β3, however, is neither positive nor alternating, but we observe
that its definition in Equation (14) only features σ1, σ

−2
2 , and σ−1

3 . Such a
braid is called (1,−1,−1)-homogeneous. The concept of such a homogeneous
braid generalizes the idea of both positive and alternating braids. For exam-
ple, a braid in B4 is positive if and only if it is (1, 1, 1)-homogeneous, as it only
features σ1, σ2, and σ3, and none of their inverses. The string (1, 1, 1) indi-
cates which power of which generator is used. Similarly, an alternating braid
such as β−1

2 in B6 is a (1,−1, 1,−1, 1)-homogeneous braid, and β2 itself is
(−1, 1,−1, 1,−1)-homogeneous. As we can see then, the set of homogeneous
braids is larger than the set of positive or alternating braids.

It was unknown until recently whether any homogeneous braid has a minimal
crossing number, or if there might be braids that are homogeneous but with
a crossing number that could be reduced further. The following theorem is
a recent result that was only proved five years ago [1].

Theorem 2 (I. Alekseev and G. Mamedov, 2019). Any homogeneous braid
has a minimal crossing number.

Due to this theorem, we know that the braid β3 has a minimal crossing num-
ber. Therefore, all braids β1, β2, and β3 have minimal crossing numbers.
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Further, all powers of these braids have minimal crossing numbers, and
placing such braids next to one another also produces braids with mini-
mal crossing numbers. Hence, we conclude that the braid β from Equation
(17) displaying the entire blanket has a minimal crossing number as it is a
homogeneous braid itself.

Question 2 turned out to be more complex than Question 1. In order to
answer Question 2 we used recent results from research mathematicians ob-
tained in the last decades, showing how mathematics is an ever-changing
field and that there is still much to be discovered.

4. Braids and knots

The beauty of mathematics reveals itself when connections are created be-
tween different kinds of mathematical structures. In order to understand
why the theorems of Turaev and Alekseev–Mamedov hold true, we have to
understand their proofs. Proofs are formal verifications of the validity of
a certain mathematical claim—in these cases, the statements of the theo-
rems. For Theorems 1 & 2, the results are proved using techniques from the
study of knots. In mathematics, the concept of a knot can be formalized
using a subject called topology, where spaces are studied up to continuous
deformation. This means that in topology, unlike geometry, distances can
be distorted, and a space is only studied as if it was made from soft rubber
string, sheet, or block. In this section, we briefly introduce some key ideas
from knot theory and illustrate how studying knots can give us information
about the complexity of the braid patterns of the blanket.

4.1. Knot invariants

Knot theory may be an even older subject of mathematical investigation than
braids.7 A central goal of knot theory is to list all knots up to knotting oper-
ations , which twist the string of a knot without cutting it. In this context, a
knot is a closed curve in three-dimensional Euclidean space. Three examples
of knots are presented in Figure 20. A link is a collection of several knots
which might be intertwined. An example of such a link, consisting of two
smaller, intertwined knots, called its components, is displayed in Figure 21.

7 The first systematic account of the braid group was given by Emil Artin in the 1920s
[4] while knots or links were already studied by Gauss in the 1830s [16].
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(a) The knot K1 (b) The knot K2 (c) The knot K3

Figure 20: Three examples of knots. Which of these are equivalent?

A primary objective in knot theory is to classify all knots. The earliest ex-
ample of such a knot tabulation was given by Peter Guthrie Tait in 1885 by
listing all inequivalent knots with up to ten crossings [13]. Providing such a
knot table means writing down a part of the infinite list of all possible knots
ordered by increasing complexity.

Like we observed in braids, some pictures of knots might look different but de-
scribe equivalent knots. In this case, one of the knots can be transformed into
the other by means of knotting operations that do not cut the string. To give
a precise mathematical definition of a knotting operation, we use the concept
of ambient isotopy. Such an ambient isotopy is, roughly speaking, a globally
defined smooth deformation of the ambient space. A fundamental break-
through was achieved by Kurt Reidemeister in the 1920s [15], who proved
Theorem 3 below which states that two knots are equivalent through ambi-
ent isotopy precisely if they may be deformed into one another using a finite
list of moves made up of three elementary moves—now called Reidemeister
moves—displayed in Figure 22. In these pictures, the dotted box represents
a section inside of a picture of a knot and the moves indicate that the two
boxes linked with equality may be interchanged to produce equivalent knots.

Figure 21: An example of a link with two components.
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Theorem 3 (K. Reidemeister, 1927). Two knots are equivalent if and only
if they can be related using a finite sequence of the three types of operations
from Figure 22.

An example of using the Reidemeister moves from Theorem 3 to simplify a
knot is shown in Figure 23. The first knotting operation is of Reidemeister
type II (Figure 22(b)) which uncrosses two neighboring strands. The second
knotting operation removes a loop, which is of Reidemeister type III (Figure
22(c)). At the end of the manipulation, we are left with the so-called unknot,
the easiest knot which does not contain any crossing strings and is simply a
circle.

=

(a) First Reidemeister move (type I)

=

(b) Second Reidemeister move (type II)

=

(c) Third Reidemeister move (type III)

Figure 22: The three fundamental (un)knotting operations called Reidemeister
moves.
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Figure 22(b)−−−−−−−→
∼

Figure 22(a)−−−−−−−→
∼

Figure 23: A knot equivalent to the unknot.

If we are presented with two different knots, sometimes it is impractical
to check all the possible ways to deform the ambient space in order to see
if the two knots are equivalent. For example, try to confirm which knots
in Figure 20 are equivalent and which are not. In order to conclusively
determine that it is impossible to turn one knot into another through knotting
operations, mathematicians employ invariants. An invariant is a method to
associate a numeric or algebraic quantity to each knot picture. This quantity
could be a simple integer number, or something more complicated, like a
polynomial. What defines an invariant is the property stating that if two
knots are equivalent, then the invariant takes the same value for these knots.
Using such an invariant, we can affirm that if two knots are associated with
different values through the invariant, then they cannot be equivalent.8

A basic knot invariant is, for example, the number of components in a link,
which is the number of closed curves inside the link. With this terminology,
we note that a knot is a link with just one component and cannot be equiv-
alent to a proper link with several components. Another invariant, which
is harder to compute, is the crossing number, which is the minimal number
of crossings needed to display a knot, using the same idea as the crossing
number of a braid discussed earlier. The knots K1 and K2 in Figure 20 are
displayed with a minimal number of crossings—with three and five crossings
respectively. In the Alexander–Briggs knot table [3], which lists all distinct
knots with up to nine crossings, these knots are labelled as the knots 31 and
52 respectively. The knot K3 is displayed with four crossings but can be
transformed into depictions that only use three crossings. Thus, its crossing
number also equals three.

8 This conclusion uses the logical contrapositive that the statement “If A then B” holds
true if and only if the statement “If not B, then not A” holds true.
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Some powerful invariants of knots were found in the 1980s, and these invari-
ants of knots were used to prove the theorems about braids that we discussed
earlier in this article. These invariants are called the Jones polynomial and
the Alexander–Conway polynomial [2, 6, 9]. For the knots displayed in Figure
20, we include the values of the Jones and Alexander–Conway polynomials
in Table 3 below.

Knot Ki
Alexander–Conway
Polynomial ∇(Ki)

Jones Polynomial J(Ki)

K1 1 + z2 −q8 + q6 + q2

K2 1 + 2z2 −q12 + q10 − q8 + 2q6 − q4 + q2

K3 1 + z2 −q8 + q6 + q2

Table 3: The knot invariants associated to the knots K1,K2,K3 from Figure 20.

The beauty of the invariants of Jones and Alexander–Conway is that they
can be computed recursively, meaning that we can compute the invariant
of a more complicated knot or link by knowing the invariants of slightly
simpler knots or links (with one or two less crossings) by virtue of a universal
formula. In the case of the Alexander–Conway polynomial ∇(L) of a link L,
this formula9 is given by

∇(L+)−∇(L−) = z∇(L0). (18)

Similarly, for the Jones polynomial J(L), the formula10 is given by

q−2J(L+)− q2J(L−) = (q − q−1)J(L0). (19)

In addition to these recursive formulas, we need to specify the value of the
invariants at the simplest possible knot, the unknot, which we denote by ⃝.
The requirement is simply that

∇(⃝) = 1, and J(⃝) = 1.

To understand the formulas in Equations 18 and (19), we have to first give
an orientation to our link which specifies a direction to travel around each
component of the link. An example of a knot with an orientation is shown
in Figure 24.

9 The original Alexander polynomial was defined using other methods in the 1920s [2].
The recursive formula was discovered by Conway in the late 1960s [6].

10 Often, q =
√
t, or q = 1/

√
t, is used as the polynomial variable.
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Figure 24: A choice of an orientation on the knot K2 from Figure 20(b).

It is not important which orientation we choose, but we have to continue
using one orientation in the recursive computation of the invariants. Next,
we fix a single crossing of the knot. If this crossing is positive, which means
it is of the form , we call the link that has this crossing L+. Replacing

the fixed crossing by the negative crossing , gives the knot L−. Finally,

replacing the original fixed crossing by two parallel strands gives the knot
L0. Note that the dotted box refers to a small region inside of a larger knot
or link. The following formulas apply Equations (18) and (19) to the knot
K1 from Figure 20(a):

∇

 −∇
  = z∇

 

q−2J

 − q2J

  = (q − q−1)J

 
There are theoretical reasons why such relatively simple recursive formulas
provide some of the best known invariants of knots. These reasons delve
into other areas of mathematics such as analysis and algebra. However, the
computation of these invariants is not difficult. For example, the first of the
two equations above implies that

∇(K1) = 1 + z∇(LH),

where

LH = (20)

is called the Hopf link.
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Here, we have also used the fact that the knot (K1)− is equivalent to the
unknot. This can be seen by first using the second Reidemeister move to
remove the two crossings at the top, and then using the first Reidemeister
move to remove the extra loop—see Figure 23. Using the fact that∇(LH) = z
(see Equation (27) in the Appendix), we find that

∇(K1) = 1 + z2. (21)

Similarly, we derive that

J(K1) = q4 · 1 + (q − q−1)J(KH) = q4 + q2(q − q−1)(−q5 − q),

using the fact that J(KH) = −q5 − q (see Equation (28)). From this we
compute that

J(K1) = −q8 + q6 + q2. (22)

We include the detailed computation of the knot invariants associated to the
Hopf link and the 3-twist knot K2 in Appendix A.

Invariants can be viewed as a measure of the complexity of knots and links.
A good example for this is the fact that the minimal number of crossings
required to display a knot or link is an invariant of knots. For the three ex-
amples of knots K1,K2,K3 from Figure 20, the knots K1 and K2 are displayed
with a minimal number of crossings. The knot K1 requires three crossings,
while K2 requires five. The knot K3 is equivalent to K1 and, hence, nec-
essarily has the same minimal crossing numbers, even though the chosen
presentation uses four crossings. For other invariants, like the Alexander–
Conway and Jones polynomial, we have less of a clear interpretation of the
information the invariants provide, but there seems to be a tendency for more
complicated polynomials to be associated to more complex knots.

4.2. Turning braids into knots and links

We now explore the close connection between braids and links. Given a braid,
we can produce a knot or link by connecting each top end of a string to the
corresponding end at the bottom. Figure 25 illustrates this process of closing
a braid. We can check that the knot obtained in this figure is the same as
the knot K2 from Figure 20(b). A braid might have several components
and therefore may not necessarily yield a knot but instead a proper link.
The link obtained from closing the braid β is called the braid closure of β.
Describing knots and links as braid closures is useful, for example, in order
to implement knots and links in a computer.
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−→
∼

−→
∼

Figure 25: The braid closure of the braid σ−2
2 σ−1

1 σ2σ
−1
1 σ−1

2 .

It can be shown that every knot and every link can be obtained as the closure
of some braid. We can verify by drawing pictures that the knots K1,K2,K3

in Figure 20 can be obtained by closing the respective braids

σ−1
2 σ−1

1 σ−1
2 σ−1

1 , σ−2
2 σ−1

1 σ2σ
−1
1 σ−1

2 , σ−1
2 σ−1

1 σ−1
2 σ−1

1 .

At this point, we have already given away the fact that the knots, K1 and K3,
from Figure 20 are equivalent.11 Can we transform one into the other using
knotting operations? We observe that braid closures are not unique for a
given braid. For example, the braid closure of σ−3

2 σ−1
1 σ2σ

−1
1 also produces

the knot K2. Theorem 4 below by A. Markov [12] solves the question of when
two braid closures are equivalent as knots.

Theorem 4 (A. Markov, 1935). The braid closures of two braids are equiv-
alent links if and only if the braids are related by a finite list of the following
three types of operations:

1. Changing a braid to an equivalent braid;

2. Changing a braid β of the form β = γσi to β′ = σiγ;

3. Exchanging a braid β in Bn with the braid (β × 1)σn in Bn+1.

The first operation (1) shows that braid closure is a well-defined opera-
tion. If two braids are equivalent, then their closures must be equivalent.

11 The knots K1 and K3 are different depictions of the trefoil knot. We show that these
two knots are equivalent in Figure 31 in Appendix A. The knot K2 is not equivalent to
the other knots—it is known as the 3-twist knot.
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The second operation (2) describes moving a crossing from the top of the
braid to the bottom by moving it along the unbraided right side of the link.
This operation is illustrated in Figure 26(a). The third operation (3) refers
to adding (or removing) a loop and is depicted in Figure 26(b). In these
pictures, an arbitrary braid may be placed into the gray boxes.

=
. . . . . .

. . . . . .
. . . . . .

. . . . . .

(a) Markov move (2)

=. . .

. . .

. . .

. . .

(b) Markov move (3)

Figure 26: Two of Markov’s fundamental operations on braid closures described
in Theorem 4.

4.3. Invariants of the braid patterns

We now apply ideas from knot theory to the analysis of our blanket. Recall
that each repeating pattern, Pattern A–C, of the blanket can be described
by braid group elements β1, β2, and β3, defined in Equations (12), (13), and
(14), respectively. We discussed in §4.2 how the closure of a braid can be
a link or a knot. This means that we can compute the Alexander–Conway
polynomial ∇ and Jones polynomial J associated with the links L1, L2, and
L3 obtained as the braid closures of β1, β2, and β3, respectively. So we pose
a new question:

Question 3. What are the values of Alexander–Conway and Jones polyno-
mials for the braid closures of Pattern A, B, and C of the blanket?

Answer to Question 3. We start with Pattern A. The associated braid β1

was identified in Equation (12). We see in Figure 27 that the closure of
this braid can be simplified to the unknot using two Markov moves of type
(3) in Theorem 4. Therefore, the braid closure of β1 is the unknot and, by
definition, its knot polynomials are equal to 1:

∇(L1) = 1, J(L1) = 1.
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−→
∼

−→
∼

Figure 27: The braid closure of the braid β1 symbolizing Pattern A.

Next, we consider Pattern C and the braid β3 from Equation (14) extracted
from this pattern. Figure 28 below shows that we can simplify its braid clo-
sure to the Hopf link LH , which we have previously encountered in Equation
(20). This derivation uses two Markov moves of type (3). The second time,
before applying this move, we have to slide the interior part of the link past
the outer arch. As this is a topological operation, or, a knotting operation, it
can be performed using Reidemeister moves thanks to Theorem 3. The Hopf
link is a proper link with two components, and its knot polynomials are:

∇(L3) = ∇(LH) = z, J(L3) = J(LH) = −q5 − q. (23)

Details of the computations yielding these results can be found in Appendix
A.

Pattern B has a much more complicated braid closure because the braid β2

from Equation (13) features higher powers of the first and last generators,
namely σ−3

1 and σ−3
5 . This makes it impossible to apply a Markov move of

type (3) to remove a loop from the braid closure, a move we made signifi-
cant use of when identifying the braid closures for β1 and β3. Deriving the
Alexander–Conway and Jones polynomials of the braid closure L2 of β2 using
the recursive formulas (18) and (19) is possible but relatively long, so we do
not include it here.

−→
∼

−→
∼

Figure 28: The braid closure of the braid β3 symbolizing Pattern C.
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Table 4 summarizes the values of the invariants for the links L1,L2, and L3.

Knot Ki Components ∇(Li) J(Li)
L1 1 1 1

L2 1 z5 + 2z3 + z
−q21 + 2q19 − 2q17 + 4q15 − 3q13

+2q11 − 3q9 − q5

L3 2 z −q5 − q

Table 4: The knot invariants associated to the links L1,L2,L3 obtained from the
three distinct braid patterns in the blanket. To compute these invariants, we used
the KNOT program of K. Kodama available at http://www.math.kobe-u.ac.jp/

~kodama/knot.html, last accessed on July 27, 2024.

By inspection, we can tell that the braid closure L2 of β2 is a link with two
components. One way to verify this is by drawing a planar picture of the braid
closure. Another method, using group theory, considers the permutation

P(β2) = (3, 1, 2, 5, 6, 4)

from Equation (15). This permutation can be factored as the product

P(β2) = (3, 1, 2, 4, 5, 6) · (1, 2, 3, 5, 6, 4).

The first permutation in this product, (3, 1, 2, 4, 5, 6), reorders 1, 2, 3 but fixes
4, 5, 6, and the second permutation, (1, 2, 3, 5, 6, 4), fixes 1, 2, 3 but reorders
4, 5, 6. This way, P(β2) separates the numbers from 1 to 6 into two disjoint
sets: {1, 2, 3} and {4, 5, 6}. Repeated application of the partition P(β2) con-
nects all points in these subsets but will never connect a number in the set
{1, 2, 3} to a number in the set {4, 5, 6}. For instance, starting with 1, ap-
plying P(β2) gives us 3, then 3 is mapped to 2, and 2 is mapped back to 1.
This shows that the two sets {1, 2, 3} and {4, 5, 6} are precisely the subsets
of vertices that will constitute components of the braid closure.

We can go one step further and identify the link that appears as the braid
closure L2 of β2. In order to do this, we introduce the operation of connected
sum of knots. This operation takes two knots, cuts their strings, and ties
the open ends of the two knots together. This process results in a single
new knot. Figure 29 shows an example of such a connected sum opera-
tion. Here, we compute the connected sum of two identical copies of the
trefoil knot K1 from Figure 20. The resulting knot is called the Granny knot.

http://www.math.kobe-u.ac.jp/~kodama/knot.html
http://www.math.kobe-u.ac.jp/~kodama/knot.html
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−→
∼

Figure 29: The connected sum of two trefoil knots K1.

Given two knots K1 and K2, we denote their connected sum by K1#K2. For
example, the knot in Figure 29 is denoted by K1#K1 using this notation.

Taking the connected sum of any knot with the unknot ⃝ returns the knot
itself. In formulas,

K#⃝ = K and ⃝#K.

This way, the unknot functions as the identity element for the connected sum
operation, similar to the identity element of a group. However, the operation
# does not define a group product in the sense of §1.1 because there are
no inverses. That is, for a given knot K we cannot find a knot L such that
K#L = ⃝ unless both knots are already equivalent to the unknot. The
reason for this is that the connected sum adds the minimal crossing numbers
of the knots. If Cr(K) denotes the minimal crossing number of the knot K,
then

Cr(K#L) = Cr(K) + Cr(L).

A knot that cannot be displayed as a connected sum of two knots (that are
not the unknot) is called a prime knot. This naming follows the analogy with
prime numbers, which cannot be factored as a product of two other positive
integers that are not equal to 1. For instance, the trefoil knot K1 is a prime
knot. In fact, it is the second easiest knot possible. The granny knot from
Figure 29 is not prime as it is a connected sum of two knots, neither of which
are the unknot.

The connected sum operation is not completely unambiguous for links with
several components. It includes a choice of which components of the two link
we cut. However, the Alexander–Conway and Jones polynomials follow the
pattern that their value evaluated for connected sum is simply the product
of the polynomials. In formulas, this means that for any two links K and L:
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∇(K#L) = ∇(K) · ∇(L) and J(K#L) = J(K) · J(L). (24)

These formulas are valid independently of which components of the links
were cut in order to form the connected sum.

Applying a few knotting operation shows that L2 decomposes as the following
connected sum:

L2 = K1#LH#K1. (25)

Here, K1 is the trefoil knot from Figure 20(a), and LH is, again, the Hopf link.
The knotting operations performed in Figure 30 show how this decomposition
of L2 as a connected sum can be verified. In the figure, we start by closing
the braid β2. Then, after removing the dots, which are not relevant to the
link, we use a few knotting operations to rearrange the knot in a form that
makes us recognize it as a connected sum as claimed.

−→
∼

−→
∼

Figure 30: The braid closure of the braid β2 symbolizing Pattern B.

Now, since the values of the Alexander–Convey polynomial are

∇(K1) = z2 + 1 and ∇(LH) = z,

by Equations (21) and (27), we can verify that Equation (24) is correct in
this example. Indeed,

∇(L2) = z5 + 2z3 + z = (z2 + 1)z(z2 + 1) = ∇(K1)∇(LH)∇(K1).

Similarly, for the Jones polynomial, we have

J(L2) = −q21 + 2q19 − 2q17 + 4q15 − 3q13 + 2q11 − 3q9 − q5

= (−q8 + q6 + q2) · (−q − q5) · (−q8 + q6 + q2)

= J(K1)J(LH)J(K1).
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Finally, we observe that the minimal crossing number of L2 equals eight,
based on the following computation:

Cr(L2) = Cr(K1) + Cr(LH) + Cr(K1) = 3 + 2 + 3 = 8.

5. Conclusion

In this article, we used mathematics to describe the braid pattern on a knitted
blanket. This involved a theory called group theory. This way, we were able to
answer some questions about the braids, observe some inherent symmetries,
and provide measures of the complexity of the structure of the patterns. We
were able to demonstrate, by answering Question 1, that the strands of the
braid return to their original position when traced through the entire blanket.
This means that the braids featured in the blanket are so-called pure braids.
Next, we were able to see that the number of crossings used in the blanket
is minimal among all possible equivalent ways to represent these braids by
answering Question 2. To answer the second question, we applied results of
recent research by Turaev and Alekseev–Mamedov.

We explained the connection between braids and knots in §4. Studying the
knots and links obtained by closing the braid patterns of the blanket lead
to Question 3 about the values the invariants of Alexander–Conway and
Jones assign to these links. While answering this question, we observed that
invariants can serve as a measure of the complexity of a link. For instance,
the minimal crossing number of a knot directly indicates its complexity, or,
how intertwined the string is. Other invariants like the Jones polynomial
tend to associate more complex polynomials to more intricate knots. We
were able to identify all three links obtained from the braid patterns among
known lists of knots and using the operation of connected sums of links.

Our study of the braid patterns on our blanket illustrates a remarkable
feature of mathematics, namely that it is more than the study of num-
bers. Indeed mathematics is the study of all kinds of structures that we
can use to explain the world around us. For example, braids are a funda-
mental structure that can describe how strings are intertwined. The study of
braids has a long history, going back over a hundred years [11], but even to
this day, mathematicians continue to seek out new knowledge about braids.
The theorems of Turaev and Alekseev–Mamedov are remarkably recent.12

12 In fact, at the time of writing, Alekseev–Mamedov’s article had not yet been published
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Using a new perspective to look at an old structure may broaden our under-
standing of fundamental structures such as braids. This shows that math-
ematics is an evolving area of research. Solving old questions engenders
new questions for mathematicians to explore. The question that Alekseev–
Mamedov answered was asked by mathematicians only recently after P. R.
Cromwell thought of the concept of a homogeneous braid as a generalization
of alternating and positive braids in the late 1980s [7].

The power of a general mathematical theorem such as Theorem 2 allows
us to know with certainty that something is true, even if the collection of
mathematical objects it refers to can be astronomically large. In theory, there
are braids of arbitrary size, so that no person or computer could ever list all
of them. By only working with fundamental axioms that all of these objects
share, mathematicians can derive strong conclusions about all of them at the
same time.

Sometimes, new mathematical results require connections between different
kinds of objects. We saw examples of this phenomenon in the results of
Turaev (Theorem 1) and Alekseev–Mamedov (Theorem 2) which built on
the connection between braids and links and used the invariants of Jones
and Alexander–Conway to prove the results on minimal crossing numbers of
braids, which we applied to answer Question 2.

Beyond what was explored in this article, invariants of knots have found
applications in various other areas of mathematics and even DNA folding
(see, for example, [14]). The Jones polynomial displays the full beauty of
mathematics as it relates to several seemingly unrelated areas of research:
Mathematical frameworks for quantum physics, through connections to the
geometry of three-dimensional spaces and transitions of such spaces over
time, and through statistical mechanics; Algebra, through the study of
symmetries of so-called quantum groups which have emerged from mathe-
matical physics in the late 1980s; Analysis, through the study of so-called
subfactors of von Neumann algebras. These connections continue to inspire
a wealth of research in mathematics and physics, even to this date.

in a mathematical journal. The process of publishing an article may take several years
and it involves the work being reviewed by other experts in the field. However, nowadays
most mathematics articles are made available on the internet as a preprint shortly after
completion, so other mathematicians can start studying and applying the authors’ work.
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More information about these connections can, for example, be found in
the research monograph [10] by Vaughan Jones who discovered the Jones
Polynomial and received for his work the Fields medal, an award regarded
as the Nobel prize for mathematicians.
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A. Computation of knot invariants

In this appendix, we include detailed computations of the knot invariants
listed in Table 3. Recall that for a single circle, both invariants ∇(⃝) and
J(⃝) take the value 1. From this, we can derive the value of these invariants
on two copies of the circle. For this, we consider the following three links:

L+ = , L− = , L0 = .
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Now, the defining equation for the Alexander–Conway polynomial in Equa-
tion (18) gives

z∇(L0) = ∇(L+)−∇(L−) = ∇(⃝)−∇(⃝) = 1− 1 = 0,

since both L+ and L− are equivalent to the unknot, using the first Reide-
meister move from Figure 22(a). Recall that the value of the knot invariant
∇ does not depend on the chosen orientation, which merely serves as a tool
to apply the recursive formula. Thus, we conclude that

∇ (⃝⃝) = 0.

Similarly, we can compute the Jones polynomial of two copies of the unknot
using Equation (19). Namely,

J(L0) =
1

q − q−1

(
q−2J(L+)− q2J(L−)

)
=

q−2 − q2

q − q−1
=

(q−1 − q)(q−1 + q)

q − q−1
.

Thus, we conclude that

J (⃝⃝) = −q − q−1. (26)

Now we can move on to compute the Alexander–Conway and Jones polyno-
mial for the Hopf link LH which is displayed in Equation (20). In this case,
by fixing a single crossing, we obtain the following three links:

(LH)+ = , (LH)− = → ,

(LH)0 = → .

Here, we use the second Reidemeister move to transform (LH)− into two
circles, and the first Reidemeister move to transform (LH)0 into the unknot.
From Equation (18) we can now derive that

∇(LH) = ∇(⃝⃝) + z∇(⃝) = 0 + z,

using Equation (26) and hence conclude that

∇

( )
= z. (27)
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A similar computation for the Jones polynomial using Equation (19) gives

J(LH) = q4J(⃝⃝) + q2(q − q−1)J(⃝) = −q5 − q3 + q3 − q,

where we refer to Equation (26) for the value of J(⃝⃝). This yields

J

( )
= −q5 − q. (28)

At this point, we have completed all calculations that were used to derive
the values ∇(K1) and J(K1) in §4.1; see Equations (21) and (22).

We can now compute the invariants associated to the knot K2. We choose
a positive crossing at the bottom of the knot and, by replacing this crossing
by a negative crossing and two parallel strands (to find (K2)− and (K2)0) we
obtain:

(K2)+ = , (K2)− = → ,

(K2)0 = → .

We see that (K2)0 is equivalent to a Hopf link LH . One can also check that
(K2)− is equivalent to the trefoil knot K1; see Figure 31.

∼ ∼ ∼ ∼ ∼

Figure 31: An equivalence of the two knots K1 and K3 from Figure 20.

This allows us to compute the invariants associated to the knot K2. For the
Alexander–Conway polynomial, we compute, again using Equation (18):

∇(K2) = ∇((K2)+) = ∇((K2)−) + z∇((K2)0)

= ∇(K1) + z∇(LH)

= 1 + z2 + zz,
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where we once again need the facts that ∇(K1) = 1+z2 (Equation (21)) and
∇(LH) = z (Equation (27)). Thus, we conclude that

∇(K2) = 1 + 2z2.

Similarly, we compute the Jones polynomial using Equation (19):

J(K2) = J((K2)+) = q4J((K2)−) + q2(q − q−1)J((K2)0)

= q4J(K1) + (q3 − q)J(LH)

= q4(−q8 + q6 + q2) + (q3 − q)(−q5 − q),

where we use the facts that J(K1) = −q8 + q6 + q2 (Equation (22)) and
J(LH) = −q5 − q (Equation (28)). Summarizing and simplifying the powers
of q we conclude that:

J(K2) = −q12 + q10 − q8 + 2q6 − q4 + q2.

To complete the computation of knot invariants in Table 3, we use Figure 31
to show that K1 and K3 are equivalent knots. Thus we have ∇(K1) = ∇(K3)
and J(K1) = J(K3).
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