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S2 Appendix. Epidemiological model formulation and estimation.

Epidemiological model formulation.

This section presents a brief description of the proposed model used to capture the
dynamics of infectious COVID-19 individuals within ten zones in Nagpur urban area of
India. The proposed model is a modification of a model used in Acheampong et al. [1].
The total population within each zone at any time t, denoted by N(t) is respectively
partitioned into five mutually exclusive compartments depending on the status of the
disease. These compartments are the proportion of susceptible individuals S(t),
proportion of non-symptomatic infected individuals E(t), proportion of symptomatic
infectious individuals I(t), proportion of confirmed positive infectious individuals, P (t)
and proportion of recovered individuals, R(t). That is, susceptible, exposed, infectious,
confirmed positive and recovered model, which is abbreviated as SEIPR. Each zone is
modelled independently. The proportion of individuals in the respective compartments:
E(t), I(t), and P (t) can transmit the infection. Thereby, the force of infection is

λ = β1(β2E(t) + β3P (t) + I(t)), (1)

where β1 is the effective contact rate per day, β2 and β3 respectively account for the
reduction in disease transmissibility of exposed and confirmed positive individuals. It is
further assumed that disease-induced death only happens to individuals in I(t) and P (t),
compartments. Thus, the following five nonlinear systems of differential equations are
used to model the transmission dynamics of the COVID-19 infections within each zone:

d

dt
S(t) = −(λ+ σ)S(t). (2)

It is assumed that no new susceptible, S(t) individuals enter this compartment. The
proportion of individuals in the susceptible, S(t) compartment may decrease either
when individuals get tested positive for the infection and enter the confirmed positive
compartment at the rate σS(t) or when individuals acquire the infection and enter the
asymptomatic infected compartment at the rate λS(t).

d

dt
E(t) = λS(t)− ϵE(t). (3)
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The proportion of individuals in the exposed, E(t) compartment increases at the same
rate susceptible individuals get infected. The proportion of exposed individuals
deceased at the rate ϵE(t), of which the fraction of the individuals get tested positive
for the infection and enters the confirmed positive compartment at the rate ωϵE(t) and
fraction of individuals that becomes infectious and symptomatic enter the symptomatic
infectious compartment at the rate (1− ω)ϵE(t).

d

dt
I(t) = (1− ω)ϵE(t)− (δ + γρ+ d)I(t). (4)

Infected individuals become symptomatic at the rate (1− ω)ϵE(t). Symptomatic
infectious individuals may leave the compartment via recovery at the rate γρI(t) or via
testing positive for the infection and enter the confirmed positive compartment at the
rate δI(t). It also decreases due to infection-induced death rate dI(t).

d

dt
P (t) = σS(t) + ωϵE(t) + δI(t)− (ρ+ d)P (t). (5)

Newly confirmed positive infections enter the compartment at the same rate they get
tested positive from susceptible, exposed, and infectious compartments. The proportion
of confirmed positive individuals may leave the compartment via diseased-induced death
rate of dP (t) or via recovery after receiving treatment at the rate of ρP (t).

d

dt
R(t) = ρ(P (t) + γI(t)). (6)

The proportion of recovered individuals increases due to recovery at the rates ρP (t) and
ργI(t), respectively from confirmed positive and symptomatic infectious individuals.
The SEIPR flow diagram of COVID-19 disease is depicted in Fig 1.

Fig S1. Flowchart for the model of COVID-19 transmission involving five
compartments. See Table S1 for explanations of the parameters and variables used in
the model.

The basic reproductive number

The basic reproduction number in this study is referred to as the number of secondary
COVID-19 infections generated by a single active COVID-19 infected individual during
the entire infectious period [1]. Mathematically, the basic reproduction number R0 is
the dominant eigenvalue of the next generation matrix [2, 3]. In this study, the method
formulation in Van den Driessche and Watmough [2] is applied to obtain an expression
of R0 for the proposed SEIPR model. Let x = (E, I, P )T , then the system of
differential Eqs (1-6) can be written in the form

dx

dt
= F(x)− V(x). (7)
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Table S1. Description of model parameters and state variables.

variable Description

S Proportion of susceptible population
E Proportion of non-symptomatic infected (exposed) population
I Proportion of symptomatic infectious population
P Proportion of confirmed positive population
R Proportion of recovery population

Parameter Description

λ Force of infection
β1 Effective contact rate
β2 Accounts for reduction in disease transmissibility of exposed individual
β3 Accounts for reduction in disease transmissibility of confirmed positive individual
ϵ Incubation period
σ Progression rate of susceptible individual to confirmed positive class via testing per day
δ Progression rate of infectious individual to confirmed positive class via testing per day
d Disease-induced death rate per day
ω Fraction of exposed individuals that transient to confirmed positive class
γ Fraction of infectious individuals that transient to recovery class
ρ Recovery rate of confirmed positive individuals per day

where

F(x) =

β1(β2E + β3P + I)S
0
0

 , V(x) =

 ϵE
−(1− ω)ϵE + iT I

−σS − ωϵE − δI + pTP

 . (8)

The corresponding Jacobian of F(x) and V(x) evaluated at the disease-free equilibrium
E0 are, respectively given by

F ) =

β1β2 β1β3 β1

0 0 0
0 0 0

 , V =

 ϵ 0
ϵ(ω − 1) iT 0

−ωϵ− δ + pT

 , (9)

where iT = δ + γρ+ d and pT = ρ+ d. Hence, the basic reproduction number, R0 is
given by the dominant eigenvalue of FV −1, which is

R0 =β1S
0

(
β2

ϵ
+

β3(1− ω)

iT
+

δ(1− ω) + iTω

iT pT

)
, (10)

=RE +RP +RI , (11)

where the effective reproduction number, R0 is made up of contributions from secondary
infections from the exposed class E (RE) generated by asymptomatic individuals;
confirmed positive individuals — class P (RP ); and the infected (symptomatic) class I
(RI). S

0 is the proportion of the population that is initially susceptible. Eq (10) implies
the classes (E, I, and P ) are the main drivers of the infections and as such, that
intervention strategies of COVID-19 infections should target those in these classes.
According to Theorem 3.2 of Van den Driessche and Watmough [2], the disease-free
steady state E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. Here,
the disease-free steady state is given by

E0 = (S0, 0, 0).
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Epidemiological model fitting and Non-linear least squares estimation

In this section, the least squares estimation technique used for model parameter
estimation is briefly described. Note that the SEIPR model given by Eqs (2-6) can be
generally expressed in the form

dΥ

dt
= F (t,Υ, θ), Υ(t0) = Υ0, (12)

where the non-linear function F depends on time t, the vectors of dependent or state
variables Υ and unknown model parameters θ to be estimated. The goal of the least
squares estimation is to obtain the best values of the model parameters by minimizing
the error between the reported data points Υ(ti)

data and the solution Υ(ti)
sim of the

model given by Eqs (2-6) associated with the model parameters θ. The objective
function used in the minimization task is given by

C(θ) =

n∑
i=1

(
Υ(ti)

data−Υ(ti)
sim

)2
, (13)

where n is the available reported data points. Thus, the non-linear least squares
estimate of the model parameters, θ is

θ̂ = argmin
θ

C(θ). (14)
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