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Cayley four-form � on an eight-dimensional manifold M is a real differential form of a 
special algebraic type, which determines a Riemannian metric on M as well as a unit real 
Weyl spinor. It defines a Spin(7) structure on M , and this Spin(7) structure is integrable 
if and only if � is closed. We introduce the notion of a complex Cayley form. This is a 
one-parameter family of complex four-forms �τ on M of a special algebraic type. Each �τ

determines a real Riemannian metric on M , as well as a complex unit Weyl spinor ψτ . The 
subgroup of GL(8, R) that stabilizes �τ , τ �= 0 is SU(4), and �τ defines on M an SU(4)

structure. We show that this SU(4) structure is integrable if and only if �τ is closed.
We carry out a similar construction for the split signature case. There are now two one-
parameter families of complex Cayley forms. A complex Cayley form of one type defines an 
SU(2, 2) structure, a form of the other type defines an SL(4, R) structure on M . As in the 
Riemannian case, these structures are integrable if and only if the corresponding complex 
Cayley forms are closed. Our central observation is that there exists a special member of 
the second one-parameter family of complex Cayley forms, which we call the Lorentzian 
Cayley form. This four-form has the property that it calibrates two four-dimensional 
subspaces H, H⊥ that have the property that the induced metric on H, H⊥ is Lorentzian. 
In particular, in a basis adapted to such a calibration, the Lorentzian Cayley form is built 
from the complex self-dual two-forms for H, H⊥. We explain how these observations solve 
a certain puzzle that existed in the context of four-dimensional Lorentzian geometry.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
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1. Introduction

A global triple cross product structure on an oriented 8-dimensional manifold M equipped with a Riemannian metric g
is called a Spin(7) structure. Such a cross product gives rise to an associated alternating 4-form, which is called a Cayley
form. The metric and the cross product cannot be prescribed independently, and, given a Cayley form � the metric and the 
associated triple cross product is determined uniquely by �, see more on this below. Given the metric g� compatible with 
and determined by �, there is the associated Clifford algebra � : T M → End(S), where S = S+ ⊕ S− is the space of spinors, 
and the Clifford matrices satisfy their usual defining relations �(ξ)�(ξ) = g�(ξ, ξ)I, ξ ∈ T M . Further, given � and g� there 
exists a special real unit Weyl spinor ψ� ∈ S+ such that

〈ψ�,�(ξ1)�(ξ2)�(ξ3)�(ξ4)ψ�〉 = �(ξ1, ξ2, ξ3, ξ4). (1)

Here ξ1,2,3,4 ∈ T M and 〈·, ·〉 is the Spin(8) invariant inner product on S+, S− . In other words, a Cayley form � determines 
both the metric g� as well as a unit real Weyl spinor ψ� (this spinor is determined only up to its sign) such that the Cayley 
form itself can be reproduced as an appropriate square (1) of this spinor.

This statement can be confirmed by a dimensions count. A Cayley form is a four-form on �4 M of a special algebraic 
type, whose stabiliser in GL(8, R) is Spin(7). Note that Spin(7) is also the stabiliser in Spin(8) of a real unit Weyl spinor. 
The space of Cayley forms is then

�4(R8) ⊃ {Cayley forms} = GL(8,R)/Spin(7). (2)

This is the space of dimension 64 −21 = 43. This is also the dimension 36 of the space of metrics on R8 plus the dimension 
7 of the space of real unit spinors, so we can write

{Cayley forms} = {metrics on R8} ⊕ {unit Weyl spinors}. (3)

This equation, of course, has to be interpreted only heuristically, as all three of the spaces related by it are not vector spaces. 
In particular, the space of Cayley forms can be thought of as an algebraic variety in the 70-dimensional space �4(M) subject 
to 27 independent relations. An explicit characterisation with relations that are not all independent is available in [17].

It is useful to write the formula for g� explicitly. When � is a four-form of the Cayley algebraic type we have

1

6
ξ1�ξ2�� ∧ η1�η2�� ∧ � = (g�(ξ1, η1)g�(ξ2, η2) − g�(ξ1, η2)g�(ξ2, η1))v�, (4)

where ξ1,2, η1,2 ∈ T M and v� is the volume form determined by �. Explicitly v� = (1/14)� ∧ �. This is one of the ways 
in which the metric g� is characterised by �. An explicit formula for g� is obtained in [13], see Lemma 4.3.3.

A Cayley form � can be written in a way that exhibits calibrations. We remind that a four-dimensional oriented subspace 
H ⊂ T M is called Cayley, or calibrated by �, if for any oriented orthonormal basis ξ1,2,3,4 ∈ H (with respect to g�) we have 
2
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�(ξ1, ξ2, ξ3, ξ4) = +1. The orthogonal complement H⊥ of a Cayley subspace is also Cayley, and � can be written in a way 
that exhibits the SU(2) × SU(2) × SU(2)/Z2 subgroup of Spin(7). To this end one introduces an orthonormal basis in the 
space of self-dual two-forms in H, H⊥ . The Cayley form then takes the form (66).

Another way to think about this geometric setup is that a Cayley form � on M , together with a choice of a unit vector, 
identifies the tangent space T p M at each point with the space of octonions O, so that the chosen vector is identified with 
the identity octonion. Indeed, a Cayley form equips T p M with a triple cross product, and this triple cross product comes 
from the octonion product once the tangent space T p M is identified with O, see below. From this octonionic point of view, 
a calibration is a choice of a copy of quaternions H ⊂O.

The above discussion assumed that the metric g� determined by � is Riemannian. However, a real four-form of the 
Cayley algebraic type can give rise to both a Riemannian and a split signature metrics via (4). In the latter case � is a real 
four-form of a special algebraic type whose GL(8, R) stabiliser is Spin(4, 3), and � determines a split signature metric g�

as well as a real unit Weyl spinor ψ� of Spin(4, 4) such that (1) continues to hold. A Cayley form of split type is a real 
four-form that identifies T p M with the space of split octonions, once a choice of a suitable unit vector in T p M is made to 
be identified with the unit split octonion.

The first new observation of this paper is that we can extend the notion of four-forms of Cayley type also to complex-
valued four-forms on �4T ∗M . We will call a complex four-form �τ ∈ �4

CT ∗M a complex Cayley form, or a complex form 
of a Cayley type, if there is a compatible with it, in the sense of formula (4), real metric. Examples of such complex four-
forms are easy to produce by taking the real metric of signature either all plus or split, building the corresponding Clifford 
algebra, and then applying the formula (1) with a complex unit spinor ψ . The resulting complex-valued four-form then 
continues to produce a real metric via (4).

Interestingly, dropping the reality requirement for ψ� in (1) allows to construct complex Cayley forms in eight dimen-
sions in any signature. However, the most interesting cases to consider are still Riemannian and split, where real spinors 
exist and complex Cayley forms can be compared to their real cousins. In the case of Riemannian signature, there is a single 
orbit in S+ of complex unit spinors ψτ : 〈ψτ , ψτ 〉 = 1 for each value of 〈ψ̂τ , ψτ 〉 := cosh(2τ ), where the hat in ψ̂τ ∈ S+ is 
the Spin(8) invariant complex conjugation. The Spin(8) stabiliser of a complex unit spinor ψτ , τ �= 0 is SU(4). This will also 
be the GL(8, R) stabiliser of the complex Cayley form �τ produced from ψτ . Thus, a complex Cayley form that gives rise 
to a Riemannian signature metric g�τ endows M with a SU(4) structure rather than Spin(7) structure produced on M by a 
real Cayley form. It is illuminating to write an explicit formula for this complex Cayley form. It is given by

�τ = 〈ψτ ,����ψτ 〉 = cosh(2τ )Re(
) − 1

2
ω ∧ ω + i sinh(2τ )Im(
). (5)

Here 
 is the (4, 0) form for the complex structure J that the SU(4) structure �τ defines, and ω is the (1, 1) Kahler form. 
This should be compared with the expression (59) for the usual real Cayley form, once an SU(4) structure is chosen. Both 
(5) and (59) are manifestly SU(4) invariant. When τ = 0 the complex Cayley form becomes real and turns into the usual 
real Cayley form �0 = �. The invariance of �τ at τ = 0 is thus increased from SU(4) to Spin(7).

There is the dimensions count similar to (2) but for complex Cayley forms.

�4
C(R8) ⊃ {complex Cayley forms with τ �= 0} = GL(8,R)/SU(4). (6)

This is the space of dimension 64 −15 = 49. This is also the dimension 36 of the space of metrics on R8 plus the dimension 
13 of the space of complex unit Weyl spinors of fixed norm squared, so we can write

{complex Cayley forms} = {metrics on R8} ⊕ {complex ψ : 〈ψ,ψ〉 = 1, 〈ψ, ψ̂〉 = cosh(2τ )}. (7)

Again, this equation should only be interpreted heuristically, as none of the spaces is a vector space.
Complex Cayley forms of the type (5) are interesting because they can be used to encode SU(4) structures in eight 

dimensions in a single object �τ , rather than in two objects ω, 
 as is more standard. We remind the reader that the 
SU(4) structure on M is a reduction of the principal GL(8, R) frame bundle to an SU(4) subbundle. An SU(4) structure on 
M is said to be integrable if it is preserved by the Levi-Civita connection of the underlying Riemannian metric. We show, in 
Proposition 5, that an SU(4) structure defined by �τ is integrable if and only if the complex Cayley form is closed d�τ = 0.

Similar to real Cayley forms, there is also a way of writing the complex Cayley form in a way adapted to its calibrated 
planes. To describe this we need to generalize the notion of the calibration slightly, and say that an oriented subspace 
H ⊂ T M is calibrated by �τ if for any oriented orthonormal (with respect to the real metric defined by �τ ) basis ξ1,2,3,4 ∈ H
the quantity �τ (ξ1, ξ2, ξ3, ξ4) = + cosh(2τ ). The complex Cayley form �τ can then be written in a way adapted to one of 
its calibrated planes. It is no longer possible to write an expression that involves just the self-dual two-forms for H, H⊥ , 
because the stabiliser subgroup of �τ is smaller. The expression that arises is given by (74) and involves an orthonormal 
basis of one-forms for both H, H⊥ . This way of writing �τ exhibits the SO(4) subgroup of its stabiliser. This is the diagonal 
group of rotations that acts simultaneously on H, H⊥ .

The second and main new observation of this paper is that there also exist complex Cayley forms that are compatible 
with the split signature metric on M , and that in the split case the story is richer and exhibits phenomena that do not 
have analogs in the Riemannian case. The story in the split signature case starts analogously to that in the Riemannian 
3
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case. One introduces complex Cayley forms �τ ∈ �4
CT M to be those that are compatible with a real split signature metric 

on M . They are again constructed from complex unit spinors ψ ∈ S+ of Spin(4, 4) via (1). The new situation is that there 
are now several different types of complex unit spinors, with different stabiliser. In particular, there are two one-parameter 
families of orbits, distinguished by the value of 〈ψ̂, ψ〉. Analogously to the Riemannian case, there is a family �τ , where 
〈ψ̂, ψ〉 = cosh(2τ ). The stabiliser of a generic four-form �τ is SU(2, 2), and so �τ defines a real split signature metric on 
M , as well as an orthogonal complex structure, together with the top holomorphic form 
. The special member of this 
family of four-forms �0 coincides with the real split Cayley form, whose stabiliser is Spin(4, 3).

The other arising one-parameter family of complex Cayley forms �θ , θ ∈ [0, π/2] does not have a Riemannian analog. It 
defines a real split signature metric as well as a complex unit Weyl spinor ψθ with 〈ψ̂θ , ψθ 〉 = cos(2θ). A generic member 
of this family of four-forms has the stabiliser SL(4, R). This means that �θ endows M with a paracomplex structure (see 
below for the definition) whose real null four-dimensional subspaces are those on which the stabiliser SL(4, R) acts. The 
four-form �θ can be written in terms of the data that the paracomplex structure defines. Let 
± be the real decomposable 
four-forms given by the products of eigendirections of the paracomplex structure (these are the real analogs of 
, 
̄ in the 
case of complex structure), and ωr be the analog of the Kahler form. We then have

�θ = cos(2θ)
1

2
(
+ + 
−) + i sin(2θ)

1

2
(
+ − 
−) + 1

2
ωr ∧ ωr . (8)

For θ = 0, π/2 the four-form �θ is again real, and gives two different versions of the real split Cayley form with stabiliser 
Spin(4, 3). These differ by the relative sign in the two terms involved, but in each case the stabiliser is Spin(4, 3).

Our main observation is that there exists yet another special member of this second family of complex Cayley forms. It 
corresponds to θ = π/4. The corresponding complex unit spinor is orthogonal to its complex conjugate 〈ψ̂π/4, ψπ/4〉 = 0. 
We will refer to complex Cayley form �L := �π/4 as the Lorentzian Cayley form. The explicit expression for the Lorentzian 
Cayley form is

�L = i

2

+ − i

2

− + 1

2
ωr ∧ ωr . (9)

The Lorentzian Cayley form (9) admits an expression that is adapted to the calibrated planes that it defines, and it is this 
expression that motivates our interest in this object.

Before we discuss calibrations for �L we would like to remind the reader the story for the real split Cayley form. This 
is a real four-form that is built via (1) from a real unit spinor of Spin(4, 4). The stabiliser of the real split Cayley form 
is Spin(4, 3), which is also the stabiliser of a real unit spinor. There are two different types of calibrations that this form 
defines. Thus, it has calibrated planes H which are Riemannian in the restriction of the metric g� to H . In a basis adapted 
to such calibrated planes the split Cayley form takes the form (104). But it also has calibrated planes H that have split 
signature metric. In a basis adapted to such calibrated planes the Cayley form is written as (106). The two different types of 
calibrations in the split case can be understood as corresponding to a copy of quaternions H in the space of split octonions 
Õ, or to a choice of a copy of split quaternions H̃⊂ Õ.

The story for the Lorentzian Cayley form is somewhat analogous. As for the real split Cayley form, there are two different 
types of calibrations that �L has. They can now be distinguished by whether the restriction of �L to H is purely real or 
purely imaginary. Thus, we will say that an oriented four-dimensional subspace H ⊂ T M is Lorentzian-calibrated by �L

if for any oriented orthonormal basis ξ1,2,3,4 for H we have �L(ξ1, ξ2, ξ3, ξ4) = +i . Similarly, we will say that an oriented 
H ⊂ T M is split-calibrated by �L if for any oriented orthonormal basis ξ1,2,3,4 for H we have �L(ξ1, ξ2, ξ3, ξ4) = +1. The 
Lorentzian Cayley form �L can then be written in a form adapted to one of its calibrated planes. The most interesting for 
us expression is the one adapted to one of its Lorentzian calibrated planes. We have

�L = −1

6
i

L
i
L − 1

6
̃i

L̃
i
L − i

L̃
i
L (10)

where 1,2,3
L and ̃1,2,3

L are the Lorentzian (and thus complex) self-dual two-forms for H, H⊥ respectively. In particular, 
this formula makes it clear that the Lorentzian Cayley form calibrates 4-planes with Lorentzian signature metric, and that in 
a basis adapted to such calibrated planes it is built from the complex self-dual two-forms for H, H⊥ . This observation gives 
the justification for the title of this paper. While the stabiliser of �L is Spin(3, 3) = SL(4, R), only the Lorentz Spin(3, 1)

subgroup of this is manifest in the way (10) of writing the complex four-form �L . This is the diagonal Lorentz group that 
acts simultaneously by pseudo-orthogonal transformations on H, H⊥ .

Acting on the four-form �L with GL(8, R) produces an orbit in the space of complex four-forms of the algebraic type of 
�L . Any four-form of this algebraic type defines a real metric of signature (4, 4) plus a complex unit spinor ψL of Spin(4, 4)

that has the property 〈ψ̂L, ψL〉 = 0. This can be confirmed by dimensions count. Indeed, we have

{Lorentzian Cayley forms} = GL(8,R)/Spin(3,3). (11)

The dimension of this space is 64 − 15 = 49. This is the dimension 36 of the space of metrics on R8 plus the dimension 
16 − 2 − 1 = 13 of the space of unit complex spinors that are orthogonal to their complex conjugates. So, we can write
4
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{
Lorentzian

Cayley forms

}
= {metrics on R4,4} ⊕ {complex unit spinors ψL : 〈ψL, ψ̂L〉 = 0}. (12)

Again, none of the spaces involved is a vector space, and this relation should only be understood heuristically.
The definition of �L and the expression (10) for the Lorentzian Cayley form solves a puzzle that existed in the context 

of geometry in four dimensions. It is well-known that a conformal metric on a four-dimensional manifold can be encoded 
into the knowledge of the Hodge operator on two-forms, and thus in the knowledge of which two-forms are self-dual. 
This works for all three different possible signatures in this number of dimensions, and can be described very concretely 
by means of the so-called Urbantke formula [19]. Let now M be a 4-manifold, and Bi, i = 1, 2, 3 ∈ �2(M) be a triple of 
two-forms that is non-degenerate in the sense that the symmetric 3 × 3 matrix of wedge-products Bi ∧ B j, i, j = 1, 2, 3 is 
non-singular. The triple then defines the metric

gB(ξ,η)v B = 1

6
ε i jkξ�Bi ∧ η�B j ∧ Bk. (13)

Here ε i jk is the completely anti-symmetric rank three tensor. The right-hand side of this expression is a top degree form, 
and is a symmetric pairing of two vector fields ξ, η ∈ T M . It is required to be equal to a symmetric pairing gB(ξ, η) times 
the volume form v B of gB . The issue of orientation of M encoded by v B is subtle. It turns out that there are two in general 
different orientations defined by Bi . One is given by the 4-form Bi ∧ Bi . The other is determined by the requirement that the 
metric defined by (13) is positive definite rather than negative definite. In general these two orientations do not coincide. 
This will not be important for our purposes, but should be kept in mind. To summarise, the formula (13) defines a metric 
gB and, in particular, a conformal metric on M . The two-forms Bi are then self-dual (or anti-self dual, this depends on the 
orientation chosen) in the conformal metric gB .

The formula (13) is a version of a statement well-known in the mathematical literature. For example, when we in 
addition demand that Bi ∧ B j ∼ δi j and that dBi = 0, we get the hyper-Kähler triples, see e.g. [9].

The formula (13) works slightly differently for different signatures. When the two-forms Bi are real two-forms on M , 
one can obtain via (13) only the metrics of the Euclidean and split signatures. This is not surprising, because the two-forms 
Bi become identified with self-dual two-forms of the metric gB , and self-dual two-forms are real only in the Euclidean and 
split signatures. These two signatures are distinguished by the properties of the matrix Bi ∧ B j of the wedge products of 
the two-forms. This is a symmetric 3 × 3 matrix that can be diagonalised by a GL(3, R) transformation. There are just two 
possibilities for the relative signs of the eigenvalues: either they are all of the same sign and the matrix arising is definite, 
or this matrix is indefinite. It is the first of these two cases for which the metric arising in (13) is Euclidean. The indefinite 
case gives the split signature metric via (13).

The Lorentzian case is more subtle. One must start with complex-valued two-forms Bi ∈ �2(M, C). In the Lorentzian 
signature the anti-self dual two-forms are complex-conjugates of the self-dual ones. Since anti-self dual two-forms are 
wedge product orthogonal to the self-dual ones, and we obtain the metric gB by declaring the two-forms Bi to be the 
self-dual two-forms of gB , we must impose the conditions

Bi ∧ B j = 0. (14)

These are nine “reality conditions”. They can be shown to guarantee that the conformal metric produced by (13) from the 
complex two-forms Bi is real Lorentzian. The Lorentzian version of (13) also requires an addition factor of the imaginary 
unit on the right-hand side. For more details on this story in different signatures we refer the reader to e.g. [15], see Section 
5.4.

While the formula (13) appears to be a curiosity of four-dimensional geometry, it is closely related to the geometry 
of Cayley forms in eight dimensions by a variant of dimensional reduction, at least in its Riemannian and split signature 
versions. Indeed, starting with a real Cayley form � of the Riemannian type, i.e. one that is compatible with a Riemannian 
signature metric, and choosing a calibrated subspace H ⊂ T M , we can choose a basis of self-dual bivectors σ 1,2,3 ∈ �+H . 
Inserting these into � and restricting the resulting two-forms onto H⊥ , we get a triple of two-forms Bi := σ i��|H⊥ on H⊥ . 
The conformal metric on H⊥ defined by these Bi via (13) is then the same as the conformal metric induced on H⊥ by g� . 
In this way (13) can be understood as the dimensional reduction of the formula (4).

This can also be phrased in terms of octonions. The Cayley form � of Riemannian type identifies the tangent space to 
every point with a copy of octonions O, after a choice of a vector to be identified with the unit octonion is made. Choosing 
a copy of quaternions H ⊂ O then gives the dimensional reduction to four dimensions, which is behind the Euclidean 
version of the formula (13). Similarly, the real split Cayley four-form � identifies R8 with the space of split octonions Õ, 
again after a vector is chosen to be identified with the unit split octonion. Choosing a copy H̃ ⊂ Õ gives the setup for 
dimensional reduction that is responsible for the split signature version of (13). It is clear that there is no room here for 
a similar dimensional reduction interpretation of the Lorentzian version of the Urbantke formula, as long as one uses real 
Cayley forms.

Nevertheless, the Lorentzian version of the Urbantke formula exists, and it is a natural question whether there is a version 
of the Cayley form that is responsible for the Lorentzian Urbantke formula, via dimensional reduction. The Lorentzian Cayley 
form (10) is exactly this object, and the main goal of this paper is to explain the geometry associated with such a form.
5



K. Krasnov Journal of Geometry and Physics 201 (2024) 105211
The organisation of this paper is as follows. We start, in Section 2, by reviewing the linear algebra behind the notion 
of the Cayley form. We discuss the triple cross product and define Cayley forms. A choice of a unit vector leads to cross-
products and normed algebras. We also review how every Cayley form is given by a square of a certain unit Weyl spinor. 
We discuss Riemannian Cayley forms in more details in Section 3. We introduce an octonionic model of the Clifford algebra 
Cl(8), which then allows to do explicit calculations with Cayley forms corresponding to the same metric. We also review 
the notion of pure spinors here, and show how a complex viewpoint on a real Cayley form arises by representing a unit 
spinor as a sum of two complex conjugate pure spinors. We then introduce the notion of complex Cayley forms, and obtain 
an explicit expression for such a form in a basis adapted to a calibration. We prove that the SU(4) structure defined by a 
complex Cayley form is integrable if and only if this form is closed. We then proceed to analogous constructions in the split 
signature case in Section 4. We treat the real split Cayley forms here, and explain the associated geometry. In particular, 
there are now two different possible viewpoints on the real split Cayley form, the complex and paracomplex ones. Section 5
is central to the paper. Here we discuss the two types of possible complex split Cayley forms, and define the notion of the 
Lorentzian Cayley form, as a special member of one of the families of complex split Cayley forms. We show how from the 
point of view of a 4 + 4 split the Lorentzian Cayley form is built from the complex Lorentzian self-dual two-forms. We also 
prove that the SL(4, R) structure defined by a Lorentzian Cayley form is integrable if and only if this form is closed. The 
last section of the paper is an Appendix that explicitly computes the tangent space to the space of Lorentzian Cayley forms 
corresponding to the same metric.

2. Cayley forms, cross products and normed algebras

We start with a series of definitions to remind the reader the notion of a Cayley form and its link to octonions. In this 
section we only consider the case of a positive definite metric. All definitions are from [17].

Let W be a finite dimensional real vector space with inner product W × W → R, which we denote by round brackets 
(u, v). Thus, (u, u) := |u|2 is the squared norm.

Definition 1. An alternating multi-linear map W 3 → W , (u, v, w) → u × v × w is called a triple cross product if it satisfies 
(u × v × w, u) = (u × v × w, v) = (u × v × w, w) = 0 and

|u × v × w|2 = |u ∧ v ∧ w|2 := det

⎛
⎝ |u|2 (u, v) (u, w)

(v, u) |v|2 (v, w)

(w, u) (w, v) |w|2

⎞
⎠ . (15)

Triple cross product exists only in dimensions 1, 2, 4, 8. It vanishes in dimensions 1, 2 and is unique in a given orientation 
in dimension 4. Let us now assume that the dimension is 8. In this dimension, there arises the notion of a Cayley form.

Definition 2. A four-form � ∈ �4W ∗ is called non-degenerate if for any triple u, v, w of linearly independent vectors in W
there exists a vector x ∈ W such that �(u, v, w, x) �= 0. An inner product in W is called compatible with a four-form � if 
the map W 3 → W , (u, v, w) → u × v × w defined by

(x, u × v × w) := �(x, u, v, w) (16)

is a triple cross product. A four-form � ∈ �4W ∗ is called a Cayley form if it admits a compatible inner product.

An intrinsic characterisation of Cayley forms is provided by Theorem 7.8 in [17]. If � is a Cayley form, then its compatible 
inner product is uniquely determined by �. In particular, there is a unique orientation of W and the associated volume form 
so that we have

|u ∧ v|2 vol := (|u|2|v|2 − (u, v)2)vol = 1

6
u�v�� ∧ u�v�� ∧ �. (17)

The inner product defined by a Cayley form � can be explicitly extracted by the procedure explained in Lemma 7.13 of [17], 
see formula (7.20) of this reference. An alternative, more explicit expression is given in Lemma 4.3.3 of [13].

Choosing a unit vector e ∈ W determines a skew-symmetric map V e × V e → V e , where V e := e⊥ . This map is a cross 
product u ×e v := u × e × v . Let us discuss the notion of the cross-product.

Let V be a finite dimensional real vector space with inner product V × V →R that we denote by round brackets (u, v). 
Then (u, u) := |u|2 is the squared norm.

Definition 3. A skew-symmetric bilinear map V × V → V : u, v → u × v is called a cross-product if it satisfies (i) (u × v, u) =
(u × v, v) = 0 and (ii) |u × v|2 = |u|2|v|2 − (u, v)2.

A cross-product exists only in dimensions 0,1,3,7, see Theorem 2.5 of [17]. It is zero in dimensions 0,1, and in dimension 
3 it is unique in a given orientation of V .
6
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The situation is much more interesting in dimension seven. A cross product on V endows it with an alternating three-form 
φ ∈ �3 V ∗ (called the associative calibration) defined via

φ(u, v, w) := (u × v, w). (18)

One can also start with a three-form φ ∈ �3 V ∗ and ask whether φ determines an inner product.

Definition 4. Let V be a real vector space. A three-form φ ∈ �V ∗ is called non-degenerate if, for every pair of linearly inde-
pendent vectors u, v ∈ V there exists a vector w ∈ V such that φ(u, v, w) �= 0. An inner product on V is called compatible 
with φ if the map × : V × V → V defined by (18) is a cross product.

The case of dimension seven is then particularly interesting because in this dimension a generic non-degenerate φ has a 
compatible inner product and moreover determines its compatible inner product uniquely. This is the content of Theorem 
3.2 in [17] that states that φ is non-degenerate if and only if it admits a compatible inner product, and moreover, this inner 
product if it exists is uniquely determined by φ. Explicitly, given a non-degenerate φ ∈ �3 V ∗ , there exists an orientation of 
V and the associated volume form vol ∈ �7 V ∗ such that

(u, v)vol = 1

6
u�φ ∧ v�φ ∧ φ. (19)

A non-degenerate φ determines both the inner product in V and the orientation vol. Note, however, that for a non-
degenerate real three-form φ ∈ �3 V ∗ , the inner product resulting from (19) may be both positive definite, as well as have 
signature (4, 3). There exists a degree seven invariant that can be constructed from φ which is non-zero if and only if φ is 
non-degenerate, and whose sign determines the signature of the inner product arising via (19). This invariant is discussed, 
e.g. in [1].

Given a cross product one can consider the expression (u × v) × w . It can be seen that this is alternating on any triple 
of pairwise orthogonal vectors u, v, w ∈ V . It extends uniquely to an alternating map V 3 → V called the associator bracket 
given by

[u, v, w] := 1

3
((u × v) × w + (v × w) × u + (w × u) × v). (20)

This gives rise to a four-form ψ ∈ �4 V ∗ called the coassociative calibration defined via

ψ(u, v, w, x) := ([u, v, w], x). (21)

It can be shown that ψ = �φ, where � is the Hodge operator � : �k V ∗ → �7−k V ∗ associated to the inner product, and the 
orientation is as explained in Lemma 4.8 of [17].

Let us now discuss the relation between cross products, triple cross products, and normed algebras. The first statement 
is that a cross product determines a normed algebra and every normed algebra determines a cross product.

Definition 5. A normed algebra W is a finite dimensional real vector space equipped with an inner product and a bilinear 
map W × W → W (called the product), and also a unit 1 ∈ W . These data satisfy 1u = u1 = u and |uv| = |u||v|.

We have the notion of conjugation on W , defined by 1̄ = 1 and ū = −u, u ∈ 1⊥ . Any element of W that is orthogonal to 
the unit element is called imaginary, and the conjugation changes the sign of the imaginary elements. The normed algebras 
and vector spaces equipped with cross products are related as follows, see Theorem 5.4 of [17]. In one direction, if W is a 
normed algebra then V = 1⊥ ⊂ W is equipped with the cross product defined as

u × v = uv + (u, v), u, v ∈ 1⊥. (22)

In the opposite direction, if V is a finite dimensional vector space equipped with an inner product and cross product, then 
W =R ⊕ V is a normed algebra with the product

uv = u0 v0 − (u1, v1) + u0 v1 + v0u1 + u1 × v1, (23)

where we write u = u0 + u1, v = v0 + v1, u0, v0 ∈R, u1, v1 ∈ V . The normed algebras one gets from the cross products in 
dimensions 0,1,3,7 are algebras isomorphic to R, C, H, O respectively.

Let us now explain how a Cayley form together with a choice of a unit vector e ∈ W identifies W with a copy of O. 
This is the content of Theorem 6.15 of [17].
7
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Theorem 6. Assume dim(W ) = 8, let � be a Cayley form with its associated triple cross product, and let e ∈ W be a unit vector.

• Define the map ψe : W 4 →R by

ψe(u, v, w, x) := (e × u × v, e × w × x)

− ((u, w) − (u, e)(e, w))((v, x) − (v, e)(e, x)) (24)

+ ((u, x) − (u, e)(e, x))((v, w) − (v, e)(e, w)).

Then this map is alternating ψe ∈ �4W ∗ and

� = e∗ ∧ φe + εψe, φe = e�� ∈ �3W ∗ (25)

and ε = ±1 is a sign that is explained in Lemma 6.10 of [17].
• The subspace V e := e⊥ carries a cross product

V e × V e → V e : u ×e v := u × e × v. (26)

The restriction of φe to V e is the associative calibration, and the restriction of ψe to V e is the coassociative calibration.
• The space W is a normed algebra with unit e and multiplication and conjugations given by

uv := u × e × v + (u, e)v + (v, e)u − (u, v)e, ū = 2(u, e)e − u. (27)

The final statement that we need is Theorem 10.3 from [17]. This shows how, given a Cayley form � ∈ �4W ∗ , spinors 
for Spin(8) can be identified with certain subspaces in the spaces of differential forms. The Cayley form itself is given by 
the construction (1) from a particular canonical spinor. More precisely, we have

S+ = �0 ⊕ �2
7, S− = �1 (28)

where

�2
7 := {ω ∈ �2W ∗ : �(� ∧ ω) = 3ω} = {u∗ ∧ v∗ − u�v�� : u, v ∈ W }. (29)

The Clifford algebra is then given by

�(u) =
(

0 γ̃ (u)

γ (u) 0

)
(30)

where γ (u) : S+ → S−, γ̃ (u) : S− → S+ and are given explicitly by

γ (u)(λ, w)=λu∗ + 2u�ω, λ ∈ �0, ω ∈ �2
7, (31)

γ̃ (u)(θ)=(u�θ, u∗ ∧ θ
∣∣
�2

7
), θ ∈ �1.

Then γ̃ (u)γ (u) = |u|2I, and we have the Clifford algebra �(u)�(u) = |u|2I. Note that our Clifford algebra conventions are 
different from those in [17]. The theorem 10.3 from [17] then gives an explicit expression for the triple cross product that 
corresponds to the special spinor ψ = (1, 0) ∈ S+ . The Cayley form that is compatible with this triple cross product in the 
sense of (16) is given by (1) with spinor ψ = (1, 0).

3. Spinors of Spin(8) and Riemannian Cayley forms

For the purpose of doing explicit calculations with Cayley forms, it is very convenient to have an explicit model for the 
Clifford algebra Cl(8). In the previous section we explained how such a model arises when � is chosen. The Cayley form is 
then produced via (1) from a particular canonical spinor that � defines. However, for practical calculations it is much more 
convenient to fix the metric and the corresponding Clifford algebra, together with a model for it, and only allow the spinor 
ψ to vary. All calculations in the remainder of this paper are of this type.

Given that a Cayley form � identifies T M with a copy of O, after a unit vector in T M is chosen to be identified with 
the unit octonion, there exists an octonionic model for Cl(8). This model is most convenient in explicit calculations. The 
purpose of this section is to describe the octonionic model for Cl(8), and then use it to derive some properties (and explicit 
expressions) for the Riemannian Cayley form �.
8
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3.1. Octonions

The space of octonions O is a normed algebra with the property |xy| = |x||y| (i.e. a composition algebra). The usual 
octonions (unlike split octonions) also have the property that the norm of every non-zero element is not zero, which makes 
them into a division algebra. It is non-commutative and non-associative, but alternative, which can be stated as the property 
that the subalgebra generated by any two elements is associative.

A general octonion is an object

q = q0I +
7∑

a=1

qaea (32)

where ea are unit imaginary octonions. The unit octonions anti-commute and square to minus the identity. The octonion 
conjugate changes the sign of all the imaginary octonions. The octonionic pairing is

(q,q) = |q|2 = qq = (q0)
2 +

7∑
a=1

(qa)
2. (33)

We encode the octonionic product by the cross-product in the space of imaginary octonions. Thus, we write

O = R+ ImO. (34)

Let e1,...,7 be a basis in the space of imaginary octonions. The cross-product in ImO is then encoded by the associator 
three-form on R7, which we choose to be

φ = e567 + e5(e41 − e23) + e6(e42 − e31) + e7(e43 − e12). (35)

Here ea, a = 1, . . . , 7 is a basis of one-forms on R7, and the notation is eabc... = ea ∧eb ∧ec . . .. This encodes the cross-product 
in the sense that

(ea × eb,ec) = (ec)∗�(eb)∗�(ea)∗�φ (36)

where (ea)∗ is the dual basis of vectors. So, for instance e5 × e6 = e7. It is worth mentioning that the 2-forms

1 := e41 − e23, 2 := e42 − e31, 3 := e43 − e12 (37)

give a basis in the space of self-dual 2-forms in the space R4 spanned by e1,2,3,4, in the natural orientation e1234 ∈
�4(R4). This is in spite of the minus signs that appear in their definition. The choices made in writing (35) are a matter of 
convention. For later purposes we will also mention that the Hodge dual four-form is given by

�φ = e1234 + e67(e41 − e23) + e75(e42 − e31) + e56(e43 − e12). (38)

3.2. Octonionic model for Cl(8)

The Clifford algebra Cl(8) can be generated by the operators of, say, left multiplication by unit octonions. Concretely, we 
have the following representation of a general linear combination of the Clifford generators

q0�0 +
7∑

a=1

qa�a =
(

0 Lq̄
Lq 0

)
. (39)

Thus, Cl(8) is generated by 2 × 2 matrices with octonionic entries that act on two-component columns with entries in O

ψ =
(

α
β

)
, α,β ∈O. (40)

Majorana-Weyl spinors are then identified with copies of octonions S± =O. We will take the Majorana-Weyl spinors in S+
to be those with the upper element different from zero, i.e. α �= 0, β = 0. The Spin(8) invariant inner product on S+ is just 
the pairing (33) of two octonions.

For concrete computations, it is convenient to have an explicit form of the �-matrices. To this end we arrange octonions 
into eight-component columns that start with q0 as the top entry. In this representation the �-matrices (39) become the 
following 16 × 16 matrices

�0 =
(

0 I
I 0

)
, �a =

(
0 −Ea

E 0

)
for a ∈ {1, . . . ,7} (41)
a

9
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where

E1 = −E01 + E27 − E36 + E45

E2 = −E02 − E17 + E35 + E46

E3 = −E03 + E16 − E25 + E47

E4 = −E04 − E15 − E26 − E37

E5 = −E05 + E14 + E23 − E67

E6 = −E06 − E13 + E24 + E57

E7 = −E07 + E12 + E34 − E56

(42)

and Eij are the usual generators of so(8), i.e. anti-symmetric matrices with +1 on the ith row and jth column.

3.3. Cayley form

We now take a Majorana-Weyl spinor ψ given by α = I, β = 0. This is a unit spinor 〈I, I〉 = 1. The insertion of two 
distinct �-matrices between this spinor vanishes 〈I, ��I〉 = 0. The insertion of four distinct �-matrices gives the following 
four-form on R8

� := 〈I,����I〉 = e0 ∧ φ − �φ (43)

where φ is given by (35) and �φ is its dual four-form given by (38). The meaning of the above equation is that it lists 
non-zero values for the insertion of four different �-matrices between two copies of the spinor α = I, β = 0. Thus, e.g. 
(I, E1 E2 E3 E4I) = −1.

3.4. Cayley form for an arbitrary unit spinor

For later purposes, we give the formulas for the Cayley form obtained as

�ψ := 〈ψ,����ψ〉 (44)

where ψ is the unit spinor 〈ψ, ψ〉 = 1 parametrised as

ψ = (

√
1 − |α|2,α), α ∈R7. (45)

We have

�ψ = e0 ∧ Cψ − �Cψ (46)

where

Cψ := (1 − 2|α|2)C + 2α ∧ α∗�C − 2
√

1 − |α|2α∗� � C

�Cψ := �C − 2α ∧ α∗� � C + 2
√

1 − |α|2α ∧ C (47)

where α is interpreted as a one-form in R7 in these formulas, and α∗ is the dual vector field, computed with respect to 
the standard metric on R7.

The formula (46) gives an explicit description of the four-forms of the Cayley algebraic type that give rise to the same 
metric. It can also be noted that the tangent space to the space of such four-forms, at �, is given by the four-forms of the 
type

δ� = e0 ∧ Y ∗�� − Y ∧ (e0)∗�� (48)

where Y ∈R7.

3.5. Pure spinors

We will now remind basic facts about pure spinors. Let V be a real vector space of dimension dim(V ) = 2n, equipped 
with a metric that is not necessarily definite. Given a spinor ψ we define M(ψ) := V 0

ψ , the subspace of the complexification 
VC of V that annihilates ψ via the Clifford product. The spinor ψ is said to be pure if the dimension of the space M(ψ)

is maximal possible, i.e. n. We shall refer to M(ψ) as the maximal totally null (MTN) subspace corresponding to the pure 
10
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spinor ψ . It is known since Cartan [6] that pure spinors are Weyl. Cartan also gives a very useful algebraic characterisation 
of pure spinors, which we now explain.

Given a (Weyl) spinor ψ (or a pair of Weyl spinors ψ, φ), one can insert a number of �-matrices between two copies of 
ψ (or, more generally, between ψ and φ). Let us introduce the convenient notation

�k
C(R2n) � Bk(ψ,φ) := 〈ψ,� . . . �︸ ︷︷ ︸

k times

φ〉. (49)

It is assumed that distinct �-matrices are inserted, thus giving components of a degree k differential form (in general 
complex) in R2n .

The following proposition is due to Cartan [6] and Chevalley [7]

Proposition 1. A Weyl spinor φ is pure (or in Cartan’s terminology simple) if and only if Bk(φ, φ) = 0 for k �= n. The n-vector Bn(φ, φ)

is then proportional to the wedge product of the vectors constituting a basis of M(φ), where M(φ) is the MTN subspace that corresponds 
to φ .

We note that this theorem gives a practical way of recovering M(φ) as the set of vectors whose insertion into Bn(φ, φ)

vanishes. Thus, this theorem establishes a one-to-one correspondence between pure spinors φ (up to rescaling) and MTN 
subspaces M(φ). This theorem also gives a set of quadratic constraints that each pure spinor must satisfy.

For a general signature there are several distinct types of pure spinors of Spin(k, l), see [14]. For our purposes in this 
section we only need the case of Spin(8). In this case there is only one type of pure spinors and it can be shown that 
Spin(2n) acts transitively on the orbits of pure spinors of fixed length 〈ψ̂, ψ〉 in S± , where ψ̂ is the Spin(8) invariant 
complex conjugate of ψ . It can be shown that there is a unique (up to sign) Spin(8) invariant complex conjugation operator 
on each S± . For a proof of the transitivity of the group action on the pure spinor orbit see e.g. [11].

We will also need statements about the possible ways that the MTN subspaces of pure spinors can intersect. Let φ, ψ
being two pure spinors of Cl(2n) of the same parity, with the corresponding MTN subspaces M(φ), M(ψ). We have the 
following set of statements, most due to Cartan [6]

Proposition 2. The MTN subspaces of two pure spinors of the same parity φ, ψ ∈ S+ can intersect along n −2m, m ∈N null directions. 
The intersection along n − 2m directions occurs if and only if Bk(φ, ψ) = 0 for k < n − 2m and Bn−2m(φ, ψ) is non-zero. It is then 
decomposable and its factors are the common null directions in M(φ), M(ψ). Two MTN’s M(φ), M(ψ) do not intersect if and only if 
B0(φ, ψ) �= 0.

For a proof, see e.g. [5], Proposition 9. We also have the following fact due to Chevalley

Proposition 3. When the MTN subspaces of two pure spinors φ, ψ intersect along n − 2 directions, the sum φ + ψ is a pure spinor.

This last fact follows from the fact that all Weyl spinors in four dimensions are pure. Its proof can also be found in [5].

3.6. Pure spinors of Spin(2n) and complex structures

There is a bijective relation between the (projective, i.e. up to complex rescalings) pure spinors of Spin(2n) and orthogo-
nal complex structures on R2n consistent with a given orientation. We review it only briefly, for more information see e.g. 
[4] or [16] Chapter IV, Section 9.

In one direction, as we have seen, the pure spinor ψ ∈ S+ comes with its MTN subspace M(ψ). There is a Spin(2n) in-
variant operation of complex conjugation ψ → ψ̂ , which is anti-linear and squares to plus or minus the identity, depending 
on n. Depending on n, the complex conjugation operator either preserves S+ , or maps S+ → S− , see e.g. [2] for an explicit 
description. The annihilator subspace M(ψ̂) is the complex conjugate of M(ψ), and M(ψ), M(ψ̂) are complementary in R2n

C
and together span it. One can define an orthogonal complex structure (OCS) on R2n by declaring M(ψ) to be the eigenspace 
of J of eigenvalue +i , and then M(ψ̂) to be the eigenspace of eigenvalue −i . This defines an OCS J , which in turn gives 
R2n an orientation.

To establish the relation in the other direction, one starts with an OCS J on R2n . This defines the eigenspaces E±

J E± = ±i E± (50)

of J that are totally null, complex conjugate of each other and of dimension n. One then realises Cl(2n) in terms of creation-
annihilation operators on �(E+), as is reviewed in e.g. [2]. Then the top and the zero degree elements of �(E+) are pure 
spinors that correspond to J . They may both be in S+ , or one in S+ and one in S− , depending on the dimension. To obtain 
pure spinors that correspond to other OSC one uses the action of Spin(2n). This action is transitive on both the space of OCS 
on R2n that are compatible with a given orientation and on the space of pure spinors (of a given parity). This establishes 
that a given OSC can be linked to its corresponding pure spinor.
11
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We note that there are always two distinct pure spinors (up to complex multiplication) that correspond to a given OCS 
J . The MTN of one of these pure spinors is E+ , while the MTN of the other is E− .

3.7. Pure and non-pure spinors of Spin(8)

The octonionic model of Cl(8) identifies Weyl spinors of Spin(8) with complexified octonions. The only spinor bilinears 
Bk(ψ, ψ) that exist are B0, B4. Cartan’s purity criterion tells us that for a pure spinor B0(φ, φ) = 0, and this is the only con-
dition that the pure spinor must satisfy. Thus, pure spinors of Spin(8) are complexified null octonions. Given the reviewed 
above relation between OCS compatible with a given orientation and projective pure spinors of a given parity, we see that 
the space Z+

8 = SO(8)/U(4) of OCS on R8 compatible with a given orientation can be realised as the null quadric Q 6 ⊂P 7, 
see [4] for more on this interpretation.

It is then easy to understand the other possible types of spinors that can exist in this dimension. Indeed, any non-null 
complexified octonion can be written as a sum of two null complexified octonions. To see this, it is convenient to first 
rescale the complexified octonion by a complex number to make it have norm one. After this is done, we have α1 + iα2

with |α1|2 − |α2|2 = 1 and (α1, α2) = 0. We can then define

|α1| = coshτ , |α2| = sinhτ (51)

so that

α1 + iα2 = coshτ
α1

|α1| + i sinhτ
α2

|α2|
(52)

= 1

2
eτ

( α1

|α1| + i
α2

|α2|
) + 1

2
e−τ

( α1

|α1| − i
α2

|α2|
)
.

This means that any unit impure spinor of Cl(8) can be written as a linear combination of two complex conjugate pure 
spinors. The same applies for the case of a real octonion α1. In this case we just need to select an (arbitrary) octonion α2

orthogonal to α1 and of the same norm. Then

α1 = 1

2
(α1 + iα2) + 1

2
(α1 − iα2) (53)

is a sum of two null complexified octonions.
Given that we need at most two pure spinors to represent an arbitrary spinor in eight dimensions, we can understand 

the geometry of impure spinors. The MTN of a pure spinor in eight dimensions is four-dimensional. If we take two pure 
spinors φ, ψ of the same parity, their MTN’s can intersect in four, two and zero dimensions. When they intersect in four 
dimensions φ is proportional to ψ . When they intersect in two dimensions, the sum is still a pure spinor. When they 
intersect in zero dimensions, the sum is impure. Thus, any impure spinor in eight dimensions is a sum of two pure spinors 
whose MTN’s do not intersect. In terms of complexified octonions, the impure spinors are given by a linear combination of 
two null octonions that are complex conjugate to each other.

The case of complex impure spinors is then different from the real case in terms of the geometry that arises. In the 
complex case the stabiliser of φ = α1 + iα2 must stabilise both α1,2. It is then a copy of Spin(6) = SU(4) that stabilises the 
two complex conjugate pure spinors composing φ. When the spinor is real φ = α1, the stabiliser is a copy of Spin(7) that 
stabilises the octonion α1.

3.8. Complex basis for the Cayley form

Cayley form on R8 is a four-form of a special algebraic type that endows R8 with a metric and a unit real Weyl spinor. 
As discussed in a previous subsection, we can always write a real unit spinor as the sum of a pure spinor and its complex 
conjugate. There is of course no unique way of doing this, and the choice involved is the same as the choice of a complex 
structure on R8.

Thus, let us choose an orthogonal complex structure on R8. There is the corresponding pair of complex conjugate pure 
spinors ψp, ψ̂p , and their sum

ψ = ψp + ψ̂p (54)

is a real spinor. We rescale ψ to make it unit, which is equivalent to 〈ψ̂p, ψp〉 = 1/2. The Cayley form for ψ can then be 
computed as

〈ψ,����ψ〉 = 〈ψp,����ψp〉 + 〈ψ̂p,����ψ̂p〉 + 2〈ψ̂p,����ψp〉. (55)

The first term here is decomposable and is given by the product of the null directions of ψp . In other words, it is a multiple 
of the (4, 0) holomorphic top form 
 for the complex structure J
12
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〈ψp,����ψp〉 = 1

2

. (56)

Thus, the first two terms in (55) can be written as Re(
). To understand the last term we note that

〈ψ̂p,��ψp〉 = i

2
ω (57)

where ω is the (1, 1) Kahler form for J . The last term in (55) is then a multiple of ω ∧ ω

〈ψ̂p,����ψp〉 = −1

4
ω ∧ ω. (58)

Overall, we get

〈ψ,����ψ〉 = Re(
) − 1

2
ω ∧ ω. (59)

To make this concrete, we take the spinor ψ to be the identity octonion ψ = I, and the pure spinor to be

ψp = 1

2
(I + i e4). (60)

If ψp is interpreted as a positive parity spinor ψp ∈ S+ , and R8 is identified with octonions, the corresponding complex 
structure J is J = Re4 , the operator of right multiplication by e4. The corresponding +i eigenspace is

E+ = Span(e4 + i e0, e1 + i e5, e2 + i e6, e3 + i e7). (61)

Then


 = (e4 + i e0)(e1 + i e5)(e2 + i e6)(e3 + i e7) (62)

ω = e15 + e26 + e37 + e40

and

� = Re(
) − 1

2
ω ∧ ω = e0 ∧ C − �C (63)

where C, �C are given by (35) and (38) respectively.
Thus, every Cayley form is of the form 〈ψ, ����ψ〉, and can be written in the complex basis as (59) by choosing (non-

uniquely) a complex structure on R8 whose associated pure spinor has ψ as its real part. The stabiliser of � is the stabiliser 
of the spinor ψ , which is Spin(7). The stabiliser of a pure spinor ψp whose real part is ψ is a copy of SU(4) = Spin(6). 
Thus, the complex form (59) makes manifest only the SU(4) subgroup of its stabiliser subgroup Spin(7).

3.9. Calibrations

The expression (63) for the Cayley form � exhibits the SU(4) subgroup of its stabiliser group Spin(7). The same four-form 
can be written differently, exhibiting a SU(2) ×SU(2) ×SU(2)/Z2 subgroup. This also leads to the notion of four-dimensional 
submanifolds of R8 calibrated by �.

We start by introducing a basis in the space of self-dual two-forms in the e1,2,3,4 directions, as given in (37). We then 
define a similar basis for the directions e0,5,6,7

̃1 := e05 − e67, ̃2 := e06 − e75, ̃3 := e07 − e56. (64)

We note that the volume forms for each of these four-dimensional subspaces can be written as

e4123 = −1

6
ii, e0567 = −1

6
̃ĩi . (65)

It is then not hard to check that the Cayley form (43), which also equals (63), can be written as

� = −1

6
ii − 1

6
̃ĩi + ĩi . (66)

The SU(2) × SU(2) × SU(2)/Z2 invariance of this form is manifest. Indeed, one can perform the SO(4) rotations in each 
of the subspaces e1,2,3,4 and e0,5,6,7. The orthogonal group in four dimensions splits as SO(4) = SU(2) × SU(2)/Z2. One of 
these factors acts on the self-dual two-forms i as an SO(3) transformation, the other leaves it invariant. So, the two copies 
of SU(2) that leave invariant the self-dual two-forms i, ̃i are manifest in (66). Yet another SU(2) is the diagonal in the 
SU(2) × SU(2)/Z2 subgroup where each factor acts on the self-dual two-forms. Only the diagonal SU(2) survives as the 
invariance of the last term in (66).
13
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Cayley four-form in R8 provides an example of calibrations, see [10] and [11]. A four-dimensional oriented subspace X
of R8 is said to be calibrated by � if the restriction of � to X coincides with the volume form of X at each point. Thus, 
the local model for a calibrated subspace X is that of the e0,5,6,7 subspace of R8.

We end with the statement describing the Grassmanian of Cayley four-planes in R8 as a homogeneous group space.

Proposition 4. The group Spin(7) acts transitively on the Grassmanian G(�) of Cayley four-planes in R8 . The isotropy group is 
K = SU(2) × SU(2) × SU(2)/Z2 . Thus, G(�) = Spin(7)/K .

This is theorem 1.38 from [10].

3.10. Complex Cayley form

Having understood the real Riemannian Cayley form, as one produced as 〈ψ, ����ψ〉 from a real unit spinor ψ , we 
can describe its complex generalisation. This is produced in the same way, but now from a complex unit spinor. It is clear 
that the metric defined by such a complex Cayley form will still be real. Indeed, the only fact that is used in the algebra of 
obtaining the metric g� from the real Cayley form � = 〈ψ, ����ψ〉 is the unity of the spinor ψ . And so the metric defined 
by � continues to be real even when ψ is a complex unit spinor. For the complex Cayley form given by (5) this can be 
checked by an explicit computation.

We have already seen in (52) that an arbitrary complex unit spinor can be written as a linear combination of two 
complex conjugate pure spinors

ψτ := eτ ψp + e−τ ψ̂p (67)

where

ψp := 1

2

(
α1

|α1| + i
α2

|α2|
)

(68)

and ψ̂p is the complex conjugate complexified octonion, which is also null. When τ = 0 we get the real unit spinor that we 
considered in (54).

It is now not difficult to compute the complex Cayley form

�τ := 〈ψτ ,����ψτ 〉. (69)

It is given by the expression (5) quoted in the Introduction. Unlike � = �0, the τ �= 0 complex Cayley form is only invariant 
under SU(4), which is the stabiliser of ψτ , τ �= 0. The expression (5) makes manifest the full stabiliser subgroup.

3.11. Complex Cayley form in a basis adapted to a calibration

The appropriate notion of a calibration for a complex Cayley form is as follows. We say that an oriented subspace H ⊂R8

is calibrated by �τ if for any oriented orthonormal basis ξ1,2,3,4 ∈ H we have �τ (ξ1, ξ2, ξ3, ξ4) = + cosh(2τ ).
We can rewrite �τ in a basis adapted to its calibrated planes. We do this for our standard form (5) with 
, ω given by 

(62). To this end it is most convenient to first rewrite 
, ω in a basis adapted to calibrated planes. And so we order the 
basis of orthonormal vectors in R8 so that it is spanned by eI , ̃eI , I = 1, 2, 3, 4, where

ẽ1 = e5, ẽ2 = e6, ẽ3 = e7, ẽ4 = e0. (70)

We choose the orientation to be ε4123 = +1. We can then write

Re(
) = 1

24
εI J K LeI e J eK eL + 1

24
εI J K L ẽ I ẽ J ẽK ẽL − 1

4
εI J K LeI e J ẽK ẽL

Im(
) = 1

6
εI J K L ẽ I e J eK eL − 1

6
εI J K LeI ẽ J ẽK ẽL (71)

1

2
ω ∧ ω = −1

4
eI e J ẽK ẽLδI K δ J L,

with the summation convention implied. This form of writing these four-forms makes manifest the diagonal SO(4) ⊂ Spin(8)

subgroup of the stabiliser SU(4) ⊂ Spin(8).
In terms of this basis the real Cayley form is given by

� = Re(
) − 1

2
ω ∧ ω = 1

24
εI J K LeI e J eK eL + 1

24
εI J K L ẽ I ẽ J ẽK ẽL (72)

+1
(δI[K δL] J − εI J K L)eI e J ẽK ẽL .
4

14
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Here δI[K δL] J := (1/2)(δI K δL J − δI LδK J ) is the anti-symmetrisation. The 4-form � can also be written in terms of the self-
dual two-forms

I J := 1

2
(δI[K δL] J − εI J K L)eK eL

(73)

̃I J := 1

2
(δI[K δL] J − εI J K L)ẽK ẽL

and takes the form (66).
On the other hand, using the formulas (71) we get for �τ

Re(�τ ) = cosh(2τ )

24
εI J K LeI e J eK eL + cosh(2τ )

24
εI J K L ẽ I ẽ J ẽK ẽL

+1

4
(δI[K δL] J − cosh(2τ )εI J K L)eI e J ẽK ẽL (74)

Im(�τ ) = sinh(2τ )

6
εI J K L ẽ I e J eK eL − sinh(2τ )

6
εI J K LeI ẽ J ẽK ẽL .

It is obvious that this can no longer be written in terms of self-dual two-forms (73) for H, H⊥ . Indeed, these self-dual 
2-forms each contain an even number of eI , ̃eI , and so will any expression constructed from them. This is not the case 
for Im(�τ ), which shows that it cannot be written in terms of I J , ̃I J . This way of writing �τ manifests only the SO(4)

subgroup of the stabiliser SU(4) of the real and imaginary parts of �τ .

3.12. Complex Cayley forms and integrable SU(4) structures

The introduced complex Cayley form �τ is interesting because it encodes the data (g, J , 
) of a Riemannian metric, a 
compatible with it complex structure J as well as a top holomorphic form 
 in a single geometric object �τ . Thus, for any 
τ �= 0 the complex Cayley form �τ can be called an SU(4) structure. It is easy to see that this SU(4) structure is integrable 
if and only if d�τ = 0.

Indeed, in one direction, when the SU(4) structure is integrable we have ∇ω = 0, ∇
 = 0, where ∇ is the Levi-Civita 
covariant derivative for the metric. This implies dω = 0, d
 = 0, and so also d�τ = 0.

In the other direction when d�τ = 0 the imaginary part of this equation gives dIm(
) = 0. We have the following 
lemma:

Lemma 7. In complex dimension n ≥ 4 the equation dIm(
) = 0 implies d
 = 0.

Proof. Indeed, in complex dimension n we have 
 ∈ �n,0 and so d
 ∈ �n,1 ⊕ �n−1,2, where �p,q is the space of (p, q)

forms. We use the same notations as in Chapter 3 of [18]. This means that dIm(
) takes values in the following space

dIm(
) ∈ �n,1 ⊕ �n−1,2 ⊕ �2,n−1 ⊕ �1,n. (75)

However, for n ≥ 4 all these spaces are distinct, and so dIm(
) = 0 implies vanishing of the projection of dIm(
) to every 
single of the subspaces appearing in (75). This implies vanishing of also dRe(
), which takes values in the same subspace 
as the right-hand side of (75), and thus implies vanishing of d
. �
Remark 1. In complex dimension n = 3 it is not true that dIm(
) = 0 implies d
 = 0. Indeed, in this case

d
 ∈ �3,1 ⊕ �2,2. (76)

The last space here contains real elements, and so in this case the vanishing of the (2, 2) component of dIm(
) (or of 
dRe(
)) does not imply the vanishing of all of the (2, 2) components of d
. And indeed, there are so called half-flat 
structures in complex dimension three, see [12], for which

dRe
 = ω2. (77)

We thus see that in the current case of complex dimension four dIm(
) = 0 implies d
 = 0. It is then a standard fact 
that this implies the integrability of the complex structure defined by 
. Indeed, this implies that for any θ ∈ �1,0 we have 
dθ |(0,2) = 0, which is equivalent to the vanishing of the Nijenhuis tensor.

When d
 = 0, the real part of d�τ = 0 implies ω ∧ dω = 0. We have the following lemma:

Lemma 8. In complex dimension n ≥ 4 the requirement ω ∧ dω = 0 implies dω = 0.
15
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Proof. We have the following decomposition of the space of forms into irreducible components, formula (3.7) in [18]

�5 = [[�5,0]] ⊕ [[�4,1
0 ]] ⊕ [[�3,2

0 ]] ⊕ �3

�3 = [[�3,0]] ⊕ [[�2,1
0 ]] ⊕ �1 (78)

�1 = [[�1,0]].
Here �p,q

0 is the irreducible subspace that does not contain any objects of the type ωm ∧ �p−m,q−m . All of the spaces 
appearing above are only non-zero when n ≥ 5. The last term in the first line of (78) consists of terms of the type ω ∧ �3. 
Further, in dimension n ≥ 4 all the terms in ω ∧ �3 survive and ω ∧ φ = 0, φ ∈ �3 implies φ = 0. Thus, for n ≥ 4 we have 
that ω ∧ dω = 0 implies dω = 0. �
Remark 2. Note that in complex dimension n = 3

ω ∧ �3 = ω ∧ [[�2,1
0 ]] ⊕ ω2 ∧ �1 (79)

and so in complex dimension n = 3 the first term in the second line in (78) is projected away upon wedging with ω. 
This means that in three complex dimensions ω ∧ dω = 0 does not imply dω = 0. And indeed, in the example of half-flat 
structures in dimension three we have dω2 = 0 but dω �= 0, with dω|(3,0) part of dω being non-vanishing.

We have thus seen that d�τ = 0 implies d
 = 0 and dω = 0. It is then a standard fact that vanishing of both of these 
exterior derivatives implies integrability. Indeed, the intrinsic torsion of an SU(4) structure, see [8] for a similar discussion 
in the case of SU(3) structure, takes values in the space

�1 ⊗ su(4)⊥ = [[�1,0 ⊗ �2,0]] ⊕ [[�2,1]] ⊕ �1 (80)

where the space [[�1,0 ⊗�2,0]] of real dimension 2 ×4 ×6 = 48 further splits into W1 = [[�3,0]] of real dimension 2 ×4 = 8
and the remainder W2. The space [[�2,1]] splits into another copy of W4 = �1, as well as W3 = [[�2,1

0 ]]. The last �1 factor 
of the intrinsic torsion is denoted by W5. The first two irreducible factors of the intrinsic torsion W1 ⊕ W2 control the 
Nijenhuis tensor, and so vanish when d
 = 0. In addition, d
 = 0 implies the vanishing of the component W5 of the 
intrinsic torsion, which is captured by the �4,1 part of d
. It is also known, see [18] and also the discussion in [8], that dω
captures the components W1,3,4 of the intrinsic torsion. Thus, d
 = 0 together with dω = 0 imply vanishing of all of the 
intrinsic torsion and thus integrability.

We have proved the following

Proposition 5. The SU(4) structure defined by the complex Cayley form �τ is integrable if and only if d�τ = 0.

4. Spinors of Spin(4, 4) and associated real Cayley forms

We now describe analogs of all the statements above for the case of the split signature Spin group Spin(4, 4). This now 
admits a split octonion model. We deal with corresponding complex Cayley forms in the next section.

4.1. Split octonions

Split octonions Õ form a non-associative normed composition algebra. It is not a division algebra because there are null 
elements. A split octonion is an object

q̃ = q̃0I +
7∑

a=1

q̃aẽa. (81)

The unit imaginary octonions ẽa anti-commute and satisfy

(ẽ5)2 = (ẽ6)2 = (ẽ7)2 = −I, (ẽ1)2 = (ẽ2)2 = (ẽ3)2 = (ẽ4)2 = I. (82)

Thus, the split octonions I, ̃e5, ̃e6, ̃e7 generate a copy of H⊂ Õ. The octonion pairing is given by

(q̃, q̃) = q̃q̃ = (q̃0)
2 − (q̃1)

2 − (q̃2)
2 − (q̃3)

2 − (q̃4)
2 + (q̃5)

2 + (q̃6)
2 + (q̃7)

2

where the conjugation denoted by overbar changes the signs of all the imaginary generators.
The products of imaginary octonions are most efficiently encoded into the following three-form on Im(Õ) =R7

φ̃ = e567 − e5(e41 − e23) − e6(e42 − e31) − e7(e43 − e12) (83)
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which is similar to (35) but with the opposite sign in front of the terms containing e1,2,3,4. This encodes the vector product 
via

(u × v, w) = w�v�u�φ̃. (84)

For example ẽ5 × ẽ6 = ẽ7, but ẽ5 × ẽ2 = −ẽ3 because the octonion pairing is negative-definite on directions 1, 2, 3, 4.
We note for the later that the four-form dual to φ is given by

�φ̃ = e1234 − e67(e41 − e23) − e75(e42 − e31) − e56(e43 − e12). (85)

4.2. The split octonion model of Cl(4, 4)

Similarly to the case of Cl(8), the Clifford algebra Cl(4, 4) can be realised in terms of 2 × 2 matrices with entries in split 
octonions. The general linear combination of Clifford generators is realised as

�q̃ =
7∑

I=0

q̃I �̃I =
(

0 L ¯̃q
Lq̃ 0

)
(86)

where Lq̃ is the operator of left multiplication by q̃ ∈ Õ.
Concretely, an explicit description of the Clifford algebra Cl(4, 4) in terms of 16 × 16 matrices arises by taking split 

octonions to be eight-component columns with q̃0 as the top entry. One then has the following �-matrices

�̃0 =
(

0 I
I 0

)
, �̃a =

(
0 −Ẽa

Ẽa 0

)
for a ∈ {1, . . . ,7} (87)

where

Ẽ1 = S01 + S27 − S36 + S45

Ẽ2 = S02 − S17 + S35 + S46

Ẽ3 = S03 + S16 − S25 + S47

Ẽ4 = S04 − S15 − S26 − S37

Ẽ5 = −E05 + E14 + E23 − E67

Ẽ6 = −E06 − E13 + E24 + E57

Ẽ7 = −E07 + E12 + E34 − E56.

(88)

Our notation is that Eij is the anti-symmetric matrix that has +1 component in the ith row and jth column, and −1 in 
the jth row ith column. The matrix Sij is the symmetric matrix with +1 in both the ith row jth column and jth row ith 
column positions. The matrices Ẽ5,6,7 square to minus the identity, while Ẽ1,2,3,4 square to plus the identity. The matrices 
Ẽa anti-commute.

4.3. The real split Cayley form

The canonical split Cayley form is obtained by inserting four distinct �-matrices between two copies of the identity 
octonion. We get

�̃ := 〈I, �̃�̃�̃�̃I〉 = e0 ∧ φ̃ − �φ̃ (89)

where φ̃ is the three-form (83) that encodes the split octonion multiplication and �φ̃ is the Hodge dual of φ̃ given by (85). 
The stabiliser of �̃ in Spin(4, 4) is the stabiliser of the Weyl spinor that is the identity split octonion, and this is Spin(3, 4).

4.4. Pure spinors of Spin(4, 4)

There are several different possible points of view on the real split Cayley form �̃. These arise by representing the real 
unit spinor (identity split octonion) as a sum of two pure spinors. In contrast to the compact case Spin(8), where this 
decomposition, even though not unique, is possible of only one type, the situation for Spin(4, 4) is more interesting because 
there are now pure spinors of different types. The structure of the pure spinor orbits for indefinite metric signature Spin 
groups is described in [14].

For Spin(4, 4) there are three different types of pure spinors. They are distinguished by properties of the annihilator 
subspace. Recall that M(ψ) stands for the annihilator subspace (here of R4,4) of the spinor ψ . For pure spinors ψp of one 
C
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type all four vectors spanning M(ψp) are complex. In the terminology of reference [14] these are pure spinors of real index 
zero. For another type of pure spinors all four vectors are real. These are pure spinors of real index four. And then last, most 
interesting for our purposes type is with two real and two complex null vectors spanning M(ψp). These are pure spinors of 
real index two. The action of Spin(4, 4) on all the corresponding orbits is transitive, see [14].

In the previous section, we have seen that a complex viewpoint on the Riemannian real Cayley form is possible, and 
arises by choosing a complex structure on R8. After such a choice is made, the real unit spinor that goes into the construc-
tion of the real Cayley form is written as a sum of a pure spinor and its complex conjugate. There is a similar viewpoint on 
the real split Cayley form, except that now there are two different ways that we can represent a real unit split octonion as 
a sum of two null octonions.

4.5. Split real Cayley form and complex structure

The first of the two possible viewpoints on the real split Cayley form is the complete analog of what we did in the case 
of R8. We choose a complex structure on R4,4, which is encoded by a pure spinor. The corresponding pure spinor ψp has 
four complex null directions spanning M(ψp), and is thus of the real index zero. Its complex conjugate ψ̂p is also a pure 
spinor, whose null directions M(ψ̂p) are complementary, i.e. the spaces M(ψp), M(ψ̂p) are transverse M(ψp) ∩ M(ψ̂p) = 0, 
and also span all of R4,4

C . This in particular means that 〈ψp, ψ̂p〉 �= 0. The spinor

ψ = ψp + ψ̂p (90)

is not pure, and is a real unit spinor if we normalise 〈ψp , ψ̂p〉 = 1/2. Evaluating the four-form � = 〈ψ, ����ψ〉 gives us a 
complex viewpoint on the split real Cayley form.

Let us make this concrete and consider

ψp = 1

2
(I + i ẽ7) (91)

which is a complex null split octonion. The corresponding complex structure can be computed by evaluating directly the 
two-form 〈ψ̂p, �̃�̃ψp〉 and the four-form 〈ψp, �̃�̃�̃�̃ψp〉. This gives

〈ψ̂p, �̃�̃ψp〉 = i

2
ω, 〈ψp, �̃�̃�̃�̃ψp〉 = 1

2

 (92)

with

ω = e12 + e34 + e56 + e70

(93)


 = (e7 + i e0)(e1 − i e2)(e3 − i e4)(e5 + i e6).

The eigenvectors for the corresponding complex structure are

E+ = Span(e7 + i e0, e1 − i e2, e3 − i e4, e5 + i e6). (94)

This is the +i eigenspace for the operator R ẽ7 of right multiplication by the imaginary split octonion ẽ7.
Using I = ψp + ψ̂p we see that the split Cayley form admits a complex representation

�̃ = 〈I, �̃�̃�̃�̃I〉 = 〈ψp, �̃�̃�̃�̃ψp〉 + 〈ψ̂p, �̃�̃�̃�̃ψ̂p〉 + 2〈ψ̂p, �̃�̃�̃�̃ψp〉
= Re(
) − 1

2
ω ∧ ω (95)

with 
, ω given by (93). The original Cayley form is invariant under the group that stabilises the I spinor, which is 
Spin(3, 4). The complex representation makes manifest the SU(2, 2) subgroup of this stabiliser.

4.6. Split real Cayley form and paracomplex structure

Unlike in the case of Spin(8), there is another viewpoint on the real split Cayley form. This arises by considering a pair of 
complementary real pure spinors ψ± , i.e. pure spinors whose annihilator subspaces M(ψ±) are complementary. These pure 
spinors are now real, and so no longer related by complex conjugation. We will normalise them so that 〈ψ+, ψ−〉 = 1/2. 
The stabiliser of such a pair is SL(4, R) ⊂ GL(4, R), and so such a pair defines an orthogonal paracomplex structure on R4,4, 
which is a map K :R4,4 →R4,4 which satisfies K 2 = +I, g(K ·, K ·) = −g(·, ·). The eigenspaces of K are real and totally null. 
They are identified with the annihilator subspaces M(ψ+) and M(ψ−). In addition to a paracomplex structure K , the pair 
ψ± also defines top forms on the null eigenspaces of K . Writing
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ψ = ψ+ + ψ− (96)

gives a real unit spinor, and so allows us to get a different perspective on the real split Cayley form �̃, by viewing it from 
the perspective of a paracomplex structure.

To make this discussion concrete we choose the following two real pure spinors

ψ± = 1

2
(I ± ẽ4). (97)

Each of these pure spinors has the annihilator subspace consisting of four real directions in R4,4. They can be determined 
by computing 〈ψ±, �̃�̃�̃�̃ψ±〉. We get

〈ψ±, �̃�̃�̃�̃ψ±〉 = 1

2

± (98)

where


+ = (e4 + e0)(e1 + e5)(e2 + e6)(e3 + e7) (99)


− = (e4 − e0)(e1 − e5)(e2 − e6)(e3 − e7),

which exhibits the null directions. We also have

〈ψ+, �̃�̃ψ−〉 = 1

2
ωr (100)

where

ωr = e15 + e26 + e37 + e40. (101)

The sum of ψ+ and ψ− is the original spinor I, and we have the following real representation of the real split Cayley form

�̃ = 〈ψ+, �̃�̃�̃�̃ψ+〉 + 〈ψ−, �̃�̃�̃�̃ψ−〉 + 2〈ψ+, �̃�̃�̃�̃ψ−〉
= 1

2

+ + 1

2

− + 1

2
ωr ∧ ωr . (102)

This way of writing the split Cayley form only makes manifest the joint stabiliser of the two pure spinors ψ± , which is 
SL(4, R) = Spin(3, 3).

4.7. Calibrations in the Spin(4, 4) case

There are two different ways of viewing the real split Cayley form (89) from the point of view of calibrated planes that 
it defines. Thus, �̃ calibrates subspaces with both Riemannian and split signature metrics. Writing �̃ in a basis adapted to 
such calibrated planes exhibits the SU(2) × SU(2) × SU(2)/Z2 and SO(2, 1) × SO(2, 1) × SO(2, 1)/Z2 subgroups of Spin(4, 3)

respectively.
We first rewrite (89) in a form analogous to (66). Thus, we again introduce the self-dual two-forms in the four-

dimensional subspaces e1,2,3,4 and e0,5,6,7

1 = e41 − e23, 2 = e42 − e31, 3 = e43 − e12

̃1 = e05 − e67, ̃2 = e06 − e75, ̃3 = e07 − e56. (103)

The split Cayley form can then be written as

�̃ = −1

6
ii − 1

6
̃ĩi − ĩi (104)

where the only difference from (66) is the sign in front of the last term. This way of writing the Cayley form exhibits a 
SU(2) × SU(2) × SU(2)/Z2 subgroup of Spin(4, 3). As in the definite metric case, two of the SU(2)’s here act on the four-
dimensional subspaces e1,2,3,4 and e0,5,6,7 leaving the 2-forms i, ̃i invariant. One more copy of SU(2) acts on both of 
these subspaces rotating both i, ̃i . The subspace of R4,4 that is spanned by e0,5,6,7 is a calibrated subspace in this case. 
From the octonionic viewpoint, a choice of such a calibrated subspace is a choice of a copy of quaternions H ⊂ Õ.

Another way of writing the same four-form is to split R8 into two copies of R2,2. The relevant subspaces in this case 
are e3,4,5,6 and e1,2,7,0. We introduce the basis of split signature self-dual two-forms for these subspaces

1
s = e54 + e36, 2

s = e53 + e64, 3
s = e56 − e43

̃1
s = e01 + e27, ̃2

s = e02 + e71, ̃3
s = e07 − e12. (105)
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Then we can write the split Cayley form as

�̃ = −1

6
i jηi j − 1

6
̃i

s̃
j
sηi j + ĩ

j
sηi j (106)

where ηi j = diag(−1, −1, 1) is the metric on R2,1. This way of writing exhibits a SO(2, 1) ×SO(2, 1) ×SO(2, 1)/Z2 subgroup 
of Spin(4, 3). Thus R4,4 can also be calibrated by copies of R2,2. Such a calibration is a choice of a copy of split quaternions 
H̃⊂ Õ.

5. The Lorentzian Cayley form

We now consider complex Cayley forms for Spin(4, 4). There are now two one-parameter families of complex Cayley 
forms.

5.1. Complex unit spinors for Spin(4, 4)

Complex Cayley form arises as (1) for a complex unit spinor ψ ∈ S+ . Complex unit (Weyl) spinors of Spin(4, 4) can be 
classified similarly to the Spin(8) case, see [3].

A complex Weyl spinor is a complexified split octonion ψ = α1 + iα2. The condition that this spinor is unit becomes 
|α1|2 − |α2|2 = 1, (α1, α2) = 0. The pairing between ψ and its complex conjugate ψ̂ ∈ S+ is 〈ψ̂, ψ〉 = |α1|2 + |α2|2 = 1 +
2|α2|2. Because we are dealing with split octonions, this quantity can take any real value. The types of complex spinor orbits 
are characterised by this value.

When |α2|2 > 0 we have two split octonions of positive norm squared. We can then parametrise |α1| = cosh(τ ), |α2| =
sinh(τ ). The spinors

1

2

(
α1

|α1| ± i
α2

|α2|
)

(107)

are both null and thus pure. They are complex conjugates of each other. The stabiliser of either of them is SU(2, 2), and 
they define a complex structure on R4,4. Their sum is the real spinor α1, and the more general linear combination (67)
gives a complex unit spinor with the same stabiliser. The corresponding complex Cayley form is the precise analog of the 
complex Cayley form �τ in the Riemannian case.

We note that the orbit with the same stabiliser arises when |α2|2 < −1. In this case both octonions have negative norm 
squared |α1|2 < 0, |α2|2 < 0. One can again introduce two pure spinors that are complex conjugates of each other, so that 
the complex unit spinor is the linear combination (67). The stabiliser in this case is also SU(2, 2).

Another possible orbit is one with |α2|2 = 0, in which case |α1|2 = 1. Alternatively, one can take |α1|2 = 0, and thus 
|α2|2 = −1. Thus, the complex unit spinor in this case has unit real part, and null imaginary part, or null real part and 
imaginary part of norm squared minus one. Some discussion on this spinor orbit is contained in [3], section 5.8. We will 
not consider this orbit any further.

The case of most interest to us here is one where one of the two octonions has positive squared norm, while the other 
has negative norm squared. This is the orbit with |α2|2 < 0, while |α1|2 > 0, and so −1 < |α2|2 < 0. The norm squared of 
α1 then satisfies 0 < |α1|2 < 1. We can parametrise

|α1| = cos(θ), |α2| :=
√

−|α2|2 = sin(θ), θ ∈ (0,π/2). (108)

We can then rewrite

ψθ := ei θψ+ + e−i θψ− (109)

where

ψ± := 1

2

(
α1

|α1| ± α2

|α2|
)

(110)

are two real null octonions satisfying 〈ψ+, ψ−〉 = 1/2. We also have 〈ψ̂θ , ψθ 〉 = cos(2θ). The pair of real null spinors ψ±
that satisfy 〈ψ+, ψ−〉 = 1/2 defines a paracomplex structure K on R4,4, together with top forms on the eigenspaces of K . 
The stabiliser of the pair is SL(4, R), which is also the stabiliser of the complex unit spinor ψθ .

5.2. Complex Cayley form �θ

We now build the complex Cayley form using the spinor ψθ (109). All ingredients are already given by the formulas (98)
and (100). We get
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�θ := 〈ψθ , �̃�̃�̃�̃ψθ 〉 = cos(2θ)
1

2
(
+ + 
−) + 1

2
ωr ∧ ωr (111)

+i sin(2θ)
1

2
(
+ − 
−)

The stabiliser of this complex Cayley form contains the stabiliser of the pair of pure spinors ψ± , which is SL(4, R). When 
θ = 0 the spinor ψ becomes the sum of two real pure spinors. The corresponding complex Cayley form becomes the 
real split Cayley form �0 = �̃, whose stabiliser is Spin(4, 3). When θ = π/2 the spinor ψθ is purely imaginary, with the 
imaginary part given by the difference of two real pure spinors. The corresponding complex Cayley form is again real, with 
stabiliser Spin(4, 3).

5.3. Lorentzian Cayley form

When θ = π/4 we get the special case 〈ψ̂θ , ψθ 〉 = 0. We call the corresponding complex Cayley form Lorentzian Cayley 
form

�L := �π/4 = i

2
(
+ − 
−) + 1

2
ωr ∧ ωr . (112)

It is clear that �L acquires additional discrete symmetry as compared to �θ , which is to change the sign of both 
± , 
followed by the complex conjugation. This is not to be confused with the symmetry of swapping 
+ with 
− followed 
by the complex conjugation, which is a symmetry for any θ , and corresponds to swapping ψ± followed by the complex 
conjugation.

Choosing ψ± as in (97) we get

ψL := ψπ/4 = 1 + i

2
√

2
(I + ẽ4) + 1 − i

2
√

2
(I − ẽ4) = 1√

2
(I + i ẽ4). (113)

We can then write an explicit expression for the resulting Lorentzian Cayley form:

�L = i e0 ∧ φL + �φL (114)

where

φL := e123 − e1(i e45 − e67) − e2(i e46 − e75) − e3(i e47 − e56) (115)

�φL := i e4567 + e23(i e45 − e67) + e31(i e46 − e75) + e12(i e47 − e56).

Both φL, �φL are built from Lorentzian self-dual two-forms in directions e4,5,6,7, which span a copy of R1,3. The stabiliser 
of the complex Cayley form is the stabiliser of both I, ̃e4 , which is Spin(3, 3) = SL(4, R).

5.4. A different representation of the Lorentzian Cayley form

We have seen that the real Riemannian Cayley form is constructed from a unit spinor that can be understood as the sum 
of two pure spinors, namely a pure spinor and its complex conjugate. Similarly, the real split Cayley form is constructed 
from a spinor that is given by the sum of a pure spinor ψp and its complementary pure spinor ψ ′

p such that 〈ψp, ψ ′
p〉 �= 0. 

For the real split Cayley form this can be done in two different ways, either as the sum of the pure spinor of real index zero 
and its complementary, as in (90), or as a sum of a pure spinor of real index four and its complementary, as in (96).

Thus, the two of the three different types of pure spinors that exist in the split case lead to the split real Cayley form. 
A natural question to ask is what kind of spinor and the associated Cayley form is obtained when one takes the sum of a 
pair of pure spinors of the third type. These are pure spinors of real index two, which have two real and two complex null 
directions. Interestingly, a pure spinor of this type can be understood as a complex linear combination of pure spinors of 
the other two types. To make this discussion concrete, let us consider the pair

ψp = 1√
2
(

1

2
(I + i ẽ7) + i

2
(ẽ4 + i ẽ3)) = 1√

2
(

1

2
(I − ẽ3) + i

2
(ẽ4 + ẽ7)) (116)

ψ ′
p = 1√

2
(

1

2
(I − i ẽ7) + i

2
(ẽ4 − i ẽ3)) = 1√

2
(

1

2
(I + ẽ3) + i

2
(ẽ4 − ẽ7)).

The way we wrote the two new pure spinors makes it clear that they can be obtained as complex linear combinations of 
either two pure spinor with four complex null directions, or as a combination of two pure spinors with four real directions. 
We have 〈ψ ′

p, ψp〉 = 1/2, and so these pure spinors are complementary in that their null subspaces do not intersect. We 
have

ψL = ψp + ψ ′
p (117)
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and so the complex spinor ψL that is used in the construction of the Lorentzian Cayley form can be thought of as obtained 
as a sum of two complementary pure spinor of real index two. This representation of ψL leads to a different formula for 
�L .

The null subspace of ψp, ψ ′
p can be computed by evaluating the corresponding decomposable four-form. This gives

〈ψp, �̃�̃�̃�̃ψp〉 = 1

2

c, 〈ψ ′

p, �̃�̃�̃�̃ψ ′
p〉 = 1

2

′

c (118)

where


c = (e0 − i e7)(i e3 + e4)(e1 + e6)(e2 − e5)


′
c = (e0 + i e7)(i e3 − e4)(e1 − e6)(e2 + e5). (119)

This makes it clear that indeed ψp, ψ ′
p are of real index two, i.e. their annihilator subspaces are spanned by two complex 

and two real null vectors. We can also compute the two-form

〈ψ ′
p, �̃�̃ψp〉 = 1

2
ωc (120)

where

ωc = e61 + e25 + i e34 − i e07. (121)

We thus obtain an alternative expression for the Lorentzian Cayley form

�L = 〈ψ, �̃�̃�̃�̃ψ〉 = 1

2
(
c + 
′

c) + 1

2
ωc ∧ ωc . (122)

The way of writing (122) of the complex Cayley form makes manifest the subgroup of Spin(4, 4) that preserves both 
ψp, ψ ′

p . This is the subgroup that preserves what the paper [2] referred to as a structure of a mixed type, which is a 
complex linear combination of a paracomplex structure and the imaginary unit times a complex structure. In this case, this 
is the group SU(1, 1) that mixes the complex null directions of the pure spinor ψp times SL(2, R) that mixes its real null 
directions.

5.5. Lorentzian calibrations

We have already seen how the real split Cayley form allows to calibrate R4,4 by four-dimensional subspaces that are 
either R4 or R2,2. We will now exhibit how the complex Cayley form calibrates R4,4 by copies of the Minkowski space.

We introduce the (complex) basis of self-dual two-forms in copies of Mankowski space spanned by e4,5,6,7 and e0,1,2,3

1
L = i e45 − e67, 2

L = i e46 − e75, 3
L = i e47 − e56

̃1
L = i e01 − e23, ̃2

L = i e02 − e31, ̃3
L = i e03 − e12. (123)

We then have

�L = −1

6
i

L
i
L − 1

6
̃i

L̃
i
L − i

L̃
i
L . (124)

This way of writing the Lorentzian Cayley form exhibits the Lorentz subgroup Spin(3, 1) of its stabiliser Spin(3, 3). Indeed, 
this is the diagonal Lorentz subgroup that acts at the same time in both copies of the Minkowski space spanned by e4,5,6,7

and e0,1,2,3.

5.6. Integrable SL(4, R) structures

With the expression (111) for the 4-form �θ , it is not difficult to prove the SL(4, R) analogue of the Proposition 5.

Proposition 6. The SL(4, R) structure defined by a complex 4-form �θ, θ �= 0, π/2 is integrable if and only if d�θ = 0.

Proof. The proof is completely analogous to that of Proposition 5, so we will be brief. In one direction, an SL(4, R) struc-
ture is described by a triple (g, ωr, 
±), where g is a split signature metric in eight dimensions, the real Kahler form is 
ωr(ξ1, ξ2) = g(Kξ1, ξ2), where K is an orthogonal paracomplex structure K 2 = I, g(Kξ1, Kξ2) = −g(ξ1, ξ2), and 
± are the 
top forms 
+ ∈ �4,0, 
− ∈ �0,4. This structure is integrable if and only if dωr = 0, d
± = 0, which then implies that �L is 
closed.

In the other direction, the imaginary part of d�θ = 0 given by (111) gives that d(
+ − 
−) = 0. However, the quantities 
d
± live in different irreducible representations of SL(4, R), and so must vanish separately. This in turn implies that the 
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paracomplex structure defined by 
± is integrable. The real part of d�L = 0 gives ωr ∧ dωr = 0. As in the proof of Propo-
sition 5, we now refer to the decomposition of �5R4,4 into the SL(4, R) irreducible components, which is the same as 
formula (3.7) in [18], but for a paracomplex structure rather than complex. This shows that ωr ∧ dωr = 0 implies dωr = 0, 
which proves the assertion. We note that the same arguments imply that the complex split Cayley form �τ defines an 
integrable SU(2, 2) structure if and only if it is closed. �

The new feature of the split signature case is that we can evaluate �θ at θ = π/4 to obtain �L . The resulting special 
4-form, to which we referred as the Lorentzian Cayley form, has the same stabiliser SL(4, R) as any member of the family 
�θ, θ �= 0, π/2. And so an SL(4, R) structure can in particular be encoded by �L , with SL(4, R) structure being integrable 
if and only if d�L = 0.
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Appendix A. Lorentzian Cayley forms corresponding to the same metric

The purpose of this Appendix is to collect some explicit formulas for the tangent space to the space of all Cayley forms 
corresponding to the same metric.

A.1. Computation of certain four-forms

In preparation for the computation of the tangent space to the space of Lorentzian Cayley forms, we first collect some 
preliminary formulas.

The base spinor (113) provides us with the operator of the paracomplex structure K = R ẽ4 . All quantities are best 
described by decomposing them into their irreducible components with respect to this paracomplex structure. Explicitly, it 
is given by

K = e4 ⊗ (e0)∗ + e0 ⊗ (e4)∗ + e1 ⊗ (e5)∗ + e5 ⊗ (e1)∗ (125)

+ e2 ⊗ (e6)∗ + e6 ⊗ (e2)∗ + e3 ⊗ (e7)∗ + e7 ⊗ (e3)∗.

We note that �c is invariant under the action of K on all its four indices.
We now consider the vector space R4,4 ∼ Õ of real split octonion and decompose it into its components eigenvectors 

of K . Thus, we write

� = �1,0 + �0,1, K (�1,0) = �1,0, K (�0,1) = −�0,1 (126)

The eigenspaces of K are totally null and real. We can parametrise

�1,0 = ξ1,0(I + ẽ4) + �ξ1,0, �0,1 = ξ0,1(I − ẽ4) + �ξ0,1 (127)

where

�ξ1,0 = ξ1
1,0(ẽ1 + ẽ5) + ξ2

1,0(ẽ2 + ẽ6) + ξ3
1,0(ẽ3 + ẽ6) (128)

�ξ0,1 = ξ1
0,1(ẽ1 − ẽ5) + ξ2

0,1(ẽ2 − ẽ6) + ξ3
0,1(ẽ3 − ẽ6).

For purposes of the next subsection, we list the following results, obtained by explicit computation

〈ψ+, �̃�̃�̃�̃�1,0〉 = 
+ξ1,0 + ωr ∧ �ξ1,0�c+

〈ψ+, �̃�̃�̃�̃�0,1〉 = 1

2
ωr ∧ ωrξ0,1 + ωr ∧ (e4 + e0) ∧ �ξ0,1�ω (129)

〈ψ−, �̃�̃�̃�̃�1,0〉 = 1

2
ωr ∧ ωrξ1,0 + ωr ∧ (e4 − e0) ∧ �ξ1,0�ω

〈ψ−, �̃�̃�̃�̃�0,1〉 = 
−ξ0,1 + ωr ∧ �ξ0,1�c−
where we introduced the one- and two-forms
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�ξ0,1�ω := (e1 + e5)ξ1
0,1 + (e2 + e6)ξ2

0,1 + (e3 + e7)ξ3
0,1

�ξ1,0�c+ := (e2 + e6) ∧ (e3 + e7)ξ1
1,0 + (e3 + e7) ∧ (e1 + e5)ξ2

1,0

+ (e1 + e5) ∧ (e2 + e6)ξ3
1,0 (130)

�ξ1,0�ω := (e1 − e5)ξ1
1,0 + (e2 − e6)ξ2

1,0 + (e3 − e7)ξ3
1,0

�ξ0,1�c− := (e2 − e6) ∧ (e3 − e7)ξ1
0,1 + (e3 − e7) ∧ (e1 − e5)ξ2

0,1

+ (e1 − e5) ∧ (e2 − e6)ξ3
0,1.

Here we are referring to the following two- and three-forms

ω := e15 + e26 + e37

c+ := (e1 + e5) ∧ (e2 + e6) ∧ (e3 + e7) (131)

c− := (e1 − e5) ∧ (e2 − e6) ∧ (e3 − e7).

A.2. Lorentzian Cayley forms corresponding to the same metric

In the positive definite case, the space of Cayley forms giving rise to the same metric is the seven-dimensional space of 
unit spinors. We have seen that such Cayley forms can be parametrised explicitly as (46). We now want to obtain a similar 
parametrisation in the case of complex Cayley forms.

The first step is to parametrise the space of complex unit spinors that are orthogonal to their complex conjugates. Such a 
parametrisation is provided by (109) with θ = π/4. The spinor ψ = ψπ/4 arising this way is automatically orthogonal to its 
complex conjugate provided both ψ± are real and pure (and thus null). The norm of ψ is then 〈ψ, ψ〉 = 2〈ψ+, ψ−〉, which 
is automatically real. We get unit spinors ψ if we impose 〈ψ+, ψ−〉 = 1/2.

We now compute the tangent space to the set of such spinors, at ψ± given by (97). The condition that each ψ± remains 
null becomes

〈ψ+, δψ+〉 = 0, 〈ψ−, δψ−〉 = 0 (132)

which means that

δψ+ = a(I + ẽ4) + �ξ, δψ− = b(I − ẽ4) + �η (133)

where a, b ∈R and �ξ, �η ∈ Span(ẽ1,2,3,5,6,7). The condition that 〈ψ+, ψ−〉 = 1/2 remains satisfied implies

〈ψ+, δψ−〉 + 〈δψ+,ψ−〉 = 0 (134)

which implies a + b = 0 in (133). This gives the expected dimension 6 + 6 + 1 for the tangent space.
We now take

δψ = 1 + i√
2

δψ+ + 1 − i√
2

δψ− (135)

and compute

2δ�L = 〈ψ, �̃�̃�̃�̃δψ〉 = i 〈ψ+, �̃�̃�̃�̃δψ+〉 − i 〈ψ−, �̃�̃�̃�̃δψ−〉 (136)

+〈ψ+, �̃�̃�̃�̃δψ−〉 + 〈ψ−, �̃�̃�̃�̃δψ+〉.
We first compute the part of the tangent vector in the only direction that involves changing the I, ̃e4 components of the 

spinor. Thus, we consider

δψ+ = a(I + ẽ4), δψ− = −a(I − ẽ4). (137)

We use the results (129). For this tangent vector the real parts in (136) cancel and we have

2δ�L = i a(
+ + 
−). (138)

We then compute the variation of the Cayley form in the remaining tangent directions spanned by �ξ , �η. We get

2δ�L = (139)

iωr ∧
(
(�ξ1,0�ω+ + (e4 + e0) ∧ �ξ0,1�ω) − (�η0,1�ω− + (e4 − e0) ∧ �η1,0�ω)

)
+ωr ∧

(
(�η1,0�ω+ + (e4 + e0) ∧ �η0,1�ω) + (�ξ0,1�ω− + (e4 − e0) ∧ �ξ1,0�ω)

)
.
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Here the first two terms in brackets in the first line span all of �2,0, and the second two terms span all of �0,2. The same 
spaces are spanned in the brackets in the second line, but differently parametrised.

We can collect these results as the following proposition. Let 
4
L(M) ⊂ �4

C(M) be the space of Lorentzian Cayley forms 
on an eight-manifold M . Every such form �L defines a real split signature metric. Let us fix �L , and let g = g�L be the 
real metric defined by �L . Let L be the bundle of all Lorentzian Cayley forms that give rise to the same metric. This is 
a real rank 13 bundle, that, as we know, can be thought of as the bundle of complex unit spinors that are orthogonal to 
their complex conjugates. Alternatively, each fibre of L → M is a copy of Spin(4, 4)/Spin(3, 3). Then the original Lorentzian 
Cayley form �L is a section of L → M .

Proposition 7. Let S�L be the tangent space to the space of Cayley forms corresponding to the same metric, i.e. the vector subbundle 
of �4

C(M) whose fibre at each point x ∈ M is the tangent to the fibre L at �L . Then S�L decomposes into the following irreducible 
components

Re(S�L ) = �2,0 ⊕ �0,2, Im(S�L ) = �2,0 ⊕ �0,2 ⊕R (140)

with a bijective map between the spaces �2,0, �0,2 appearing in the real and imaginary parts of S�L . Explicitly, the relevant factors 
are described by the formulas (138) and (139).

We remark that the spaces that appear in the decomposition of S�L are as expected from the general theory of intrinsic 
torsion. Indeed, given an SL(4, R) structure, the tangent space T = R4,4 splits as �1,0 ⊕ �0,1. The Lie algebra spin(4, 4) =
�2T then splits as

spin(4,4) = �2,0 ⊕ �0,2 ⊕ �
1,1
0 ⊕R. (141)

Here the �1,1
0 factor is

sl(4,R) = �
1,1
0 (142)

and so

sl(4,R)⊥ = �2,0 ⊕ �0,2 ⊕R. (143)

These are precisely the spaces that appear in (140). The above proposition describes how these spaces are embedded into 
the space �4

C(R4,4) of complexified four-forms.
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