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Abstract 

Classical methods (measuring the pressure drop across a bed for different flowrates of air through the 

bed) were used to determine the superficial velocity for minimum fluidisation, Umf, of sieved particles 

of alumina. The particles were characterised optically using an instrument (Morphologi G3, Malvern 

Instruments), which, from pixelated, enlarged photographs, measured the particles’ mean diameter, dp, 

to be 0.48  0.04 mm and their sphericity, , to be 0.77  0.09. Values of Umf were measured for the 

temperature in the electrically heated bed varying from 14 to 920oC. The results were analysed using 

Ergun’s equation; one outcome was that the voidage, mf, in an incipiently fluidised bed was found to 

be related to the particles’ sphericity by: 

 (1 − 𝜀𝑚𝑓) /  2𝑚𝑓
3   =  12.2  0.4. 

The measured Umf were significantly larger than the values predicted by Wen and Yu’s equation, if 

the mean diameter of the particles was taken, as recommended, to be the geometric mean of the upper 

and lower sieve sizes, used when preparing the particles. Alternatively, the measured values of Umf 

were over-predicted by Wen and Yu’s equation, when using the optically measured mean size of the 

particles. The best predictions of Umf were made by using the optically measured mean values of both 

dp and , together with Ergun’s equation and the above equation coupling mf and . Such a procedure 

is proposed for estimating Umf in general. No evidence was found for mf varying with temperature. 

Highlights 

Wen and Yu’s equation does not reliably predict the gas velocity for minimum fluidisation 

Now the onset of fluidisation can be predicted knowing only the particles’ size and sphericity 

A relation is suggested between the voidage at incipient fluidisation and the particles’ sphericity 
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Nomenclature 

Ap The cross-sectional area of a particle’s photographic image 

c  The circularity of a particle, defined by (4πAp/𝐿𝑝
2 ) 

dp The volume-equivalent diameter, i.e. the diameter of the sphere with the same volume as the 

particle under consideration 

dCE The circular equivalent (CE) diameter of a particle, i.e. the diameter of the circle with the 

same area as that of the 2D image of the particular particle 

g The acceleration due to gravity 

Ga   The Galileo number  = (p − f)f g𝑑𝑝
3/μ2 

H The depth of a bed of particles 

Lp The apparent perimeter of a particle as measured from a photograph 

Re The Reynolds number (f Umf dp/μ) 

Sp The actual surface area of the particle under consideration   
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U The superficial velocity of the gas flowing through a bed of solid particles 

Umf  The superficial velocity of the gas at the onset of fluidisation in a bed of solid particles 

Vp The volume of a particle   

ΔP The drop in pressure across a bed of particles, through which air flows 

ε  The voidage in a settled bed of solid particles 

mf The voidage in a bed at incipient fluidisation 

 The sphericity of a particle, i.e. the ratio of the surface area of the sphere with the same 

volume as the particle to the actual surface area of the particle 

μ The viscosity of the gas flowing through a bed of solid particles 

b  The bulk density of a bed of particles 

f The density of the air flowing through a bed particles 

p   The density of a particle 

1. Introduction 

This paper describes simple experiments to check the formula of  Wen and Yu (1966),  

commonly used for predicting Umf, the superficial velocity of the gas for the onset of 

fluidisation in a bed of solid particles from group B of Geldart’s classification (Geldart, 

1973). Doubts about Wen and Yu’s formula (Eq. (8) below) have been expressed (Botterill, 

Teoman, 1980, Botterill, Teoman, Yurigir, 1982a, b, Delebarre, 2004, La Nauze, 1986, 

Howard, 1989), although the equation has proved useful for many practical applications, even 

at elevated temperatures (Peng Dai, Dennis, Scott, 2016). The experiment described below 

took a bed of well-characterised particles and measured Umf, when fluidising it with air at 

temperatures between 14oC and 920oC. Wen and Yu’s equation was then assessed in the light 

of these values of Umf, measured over this wide range of temperature. 

2. Experimental  

Alumina particles, described below, were fluidised in a stainless steel tube (height 

1130 mm, i.d. 78 mm) surrounded by electrical heating coils, operated by a PID controller, 

using a K-type thermocouple immersed in the bed. A vertical cross-section of the set-up is 

shown in Fig.1. The bed could be heated to slightly above 1000°C. Fibreglass insulation was 

packed around the exterior of the heating coils to reduce losses of heat. Laboratory air was 

passed through the bed (unfluidised depth ~ 250 mm) via a stainless steel distributor, which 
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had a square-pitch array of 36 holes (diam. 0.4 mm) around a central tube (stainless steel; i.d. 

1.753 mm, o.d. 3.175 mm). This tube protruded above the distributor by ~ 0.5 mm and was 

used as a pressure-tapping, connected to a water manometer, which measured the difference 

in pressure across the bed of alumina particles. Control of the flowrate of air was by a needle-

valve and rotameter, using flowrates up to 48 l/min, when expressed at room temperature and 

pressure. The volumetric flowrate at the bed’s temperature (measured with the single 

thermocouple) was calculated using the ideal gas law to account for the elevated temperature 

inside the bed. The largest source of error arose from the rotameter being unsteady at higher 

flowrates. Thus above 30 l/min, the rotameter’s float oscillated slightly, making it a little 

more difficult to measure high flowrates of air accurately. 

Fig. 1 hereabouts.  

Alumina particles were used, chosen for their stability over the temperature range 

investigated. The particles were washed and sieved to be between 0.355 mm and 0.425 

mm, using standard, handheld, laboratory sieves. The bulk density of the unfluidised 

alumina particles, as well as the density of one particle and the voidage in an unfluidised 

bed of these particles, were all measured experimentally. To find a particle’s density, p, a 

known mass of alumina particles was slowly added to a known volume of water in a 

measuring cylinder. The displacement gave the volume of particles added, thereby 

yielding a particle’s density. The voidage, ε, (the fraction of a settled  bed’s volume not 

occupied by particulate matter, but by voids) was estimated by simply measuring the total 

volume occupied (after some modest shaking inside a wide measuring cylinder) by a 

known mass ( 200 g) of dry particles. Next, the volume of water to reach the top of the 

particles in the measuring cylinder, i.e. the volume of the voids, was measured. Finally, 

the bulk density, b, of the particles in a bed was found either directly from the known 

mass and volume of the particles in the measuring cylinder or by substituting in: ε  = 1 − 

b/p. The values measured were: b = 2140  200 kg/m3, p = 3900  350 kg/m3 and ε = 

0.45  0.04. The geometric mean of the upper and lower sieve sizes was 0.388 mm for a 

nominal size range of 0.355 – 0.425 mm.  

The alumina particles were examined optically using a particle sizer (Morphologi 

G3; Malvern Instruments), which is a microscope for characterising particles. It estimates 

their sizes and shapes directly from enlarged photographs, i.e. 2D images of 3D particles 

resting on a microscope slide. Part of the justification of the procedure described below is 
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that errors are minimised, if enough particles are examined, with views from different 

angles. First, a small cyclone finely dispersed the sample over a microscope slide, thereby 

minimising the chance of particles touching one another. Microscopy was done both with 

and without a thin film of cooking oil on the slide to ensure the particles settled in a 

random way on the slide. The results from both methods were indistinguishable from one 

another, thereby confirming the absence of a preferred mode for a particle to settle in. The 

instrument automatically images, pixelates and analyses every particle detected. The 

operator can also choose to remove manually any extrema from the analysis, e.g. because 

of dust particles or particles touching one another. Figure 2 is an image of a few particles; 

it is clear that they can have extremely sharp points.  

Figure 2 hereabouts 

The cross-sectional area, Ap, of every particle’s pixelated image was measured by 

the instrument. This then yielded the circular equivalent (CE) diameter, dCE, of each 

particle; this is the diameter of the circle with the same area as that of the 2D image of the 

particular particle in e.g. Fig. 2. Hence, dCE = 2 √(Ap/π). Figure 3 shows the fractional 

volume of 502 particles analysed (selected after thorough mixing), plotted against their 

circular equivalent (CE) diameter, dCE, in μm. The few smaller particles with dCE less than 

300 μm were ignored and attention focused on the particles with 350 <  dCE < 580 μm. 

Their modal circular equivalent diameter was dCE = 0.48  0.04 mm; this is significantly 

higher than the geometric mean of the upper and lower sieve sizes, i.e. 0.388 mm. In fact, 

it exceeds the width of the larger sieve, i.e. 0.425 mm.  Presumably some relatively long 

and thin particles had passed through the larger sieve. 

Figure 3 hereabout 

The other measurable quantity from the pixelated images in Fig. 2 is the apparent 

perimeter, Lp, of each particle. This enables the circularity of the particle to be estimated; 

this is: 

 c = 4πAp/𝐿𝑝
2 .          (1) 

The circularity corresponds to the area of the 2D image of a particle divided by 𝐿𝑝
2 /4𝜋. 

For a sphere, c = 1, otherwise, c < 1; thus, e.g. for a square image of a cube, c = 0.785. 

Figure 4 shows the distribution of the (so called high sensitivity) particles’ circularity. 
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There is a skewed distribution, with the instrument’s statistical analysis declaring a most 

probable value for c of 0.77  0.09. This value of c turns out to be the best available 

estimate for the sphericity of this sample of particles (Nedderman, 1992). The sphericity, 

, of one particle is defined as the ratio of: (the surface area of the sphere with the same 

volume as the particle) to (the actual surface area of the particle). Mathematically it is: 

 =
𝜋1 3⁄ (6 𝑉𝑝)

2 3⁄

𝑆𝑝
 , 

whereas the dimensionless circularity, c, was defined in Eq. (1) in terms of Ap and Lp, 

both of which can be measured from Fig. 2. Again for a sphere,  = 1. Thus, it has been 

assumed that good estimates of three-dimensional properties of particles, such as their 

sphericity, , can be derived from two-dimensional photographs. Thus in this project, the 

circular equivalent diameter, dCE, was taken as the best estimate of the surface-volume 

diameter, 𝑑𝑝, (the diameter of the sphere with the same volume as the particle under 

consideration), i.e. 𝑑𝑝 ≈ 𝑑𝐶𝐸 .  Also, the circularity, c, was assumed to equal the 

sphericity, , so  ≈ 𝑐. These conclusions were confirmed by the above observation that 

there was no difference between the observed properties of particles, which had settled on 

a microscope slide with and without a thin layer of oil. The details of the particles used 

are summarised in Table 1. The mean value of the particle size, dp, and the sphericity, , 

are important, because they appear again in Ergun’s Eq. (2) below. 

Figure 4 heareabouts 

 

Table 1.  A summary of the parameters used for the particles of alumina. 

 ________________________________________________________ 

Geometric Mean of Sieve Sizes   0.388 mm 

CE Diameter, dCE = dp    0.48 ± 0.04 mm 

Density of a particle, p    3900 ± 350 kg m-3 

Bulk Density. b     2140 ± 200 kg m-3 

Circularity, c (estimate of sphericity, )  0.77 ± 0.09 

Voidage, ε     0.45 ± 0.04 

_______________________________________________________  



 

7 
 

3. Measurement of the Superficial Velocity for Incipient Fluidisation 

The cold bed was loaded with a known mass of alumina sand and a small flowrate of air 

passed through it. Next the bed was heated to the required temperature and then fluidised by 

increasing the flowrate of air through the bed. The bed was left for a few minutes to allow the 

temperature to stabilise. Initially the flowrate of gas was well above the minimum for fluidisation. 

The flowrate of air was then reduced in small steps and readings of the pressure difference across 

the bed were taken from the manometer. The steps were particularly small around the point of 

fluidisation to obtain a clear picture of the bed’s changing behaviour. This is shown in Fig. 5, 

which is a plot of the pressure difference across the bed versus the superficial velocity of the air, 

i.e. (the volumetric flow rate of the air at the temperature of the bed) / (cross-sectional area of the 

bed). Figure 5 is for the bed at 610oC; clearly it has two linear asymptotes. The one through the 

origin of Fig. 5 is for air flowing through a packed bed; the horizontal one is for when the 

particles were fully fluidised. In fact, the constant pressure drop across the bed, when fluidised, 

corresponded at every temperature to the submerged weight of the particles per unit area of the 

bed, as calculated from the measured mass of all the particles in the bed. This provided a useful 

check on the position of the horizontal asymptote. The point of intersection of these two 

asymptotes was used to identify Umf, the value of U for incipient fluidisation. For Fig. 5, this is 

Umf  = 0.127  0.004 m/s measured at 610oC. The error quoted here comes partly from several 

repeats of Fig. 5. 

Figure 5 hereabouts 

A quartz tube (i.d. 27.5 mm, with a sintered quartz distributor) housed the particles for 

investigating the onset of fluidisation for the alumina particles at the two lowest temperatures of 

14oC, as on a cold day, and 25oC. This narrow tube was necessary, because the rotameter was too 

small to provide the high flowrates required to achieve fluidisation at room temperature in the 

wider, stainless steel, bed. Of course, the pressure drop across the bed was still measured with a 

manometer. For this a pipe was inserted in the quartz tube, with the open end on the distributor 

and the other end connected to the manometer. Flowrates of air were again controlled by the 

needle-valve and rotameter. The quartz tube could not be heated and so was only used at room 

temperature. At 14oC, because accurate measurements (of the higher flowrates of air) were more 

difficult to make, use was made of the fact that the horizontal portion of Fig. 5 corresponded to 

the pressure difference, ΔP, supporting the bed’s known weight per unit area. The observations 

made with the bed at 14oC are shown in Fig. 6, where it will be noticed that the part for low flows 

of air has been forced very slightly to pass through the origin. The measurements are slightly more 

scattered than in Fig. 5. Even so, to identify Umf is straightforward. Its value is Umf = 0.221  0.018 

m s−1, i.e. higher than when the air and particles were at 610oC as in Fig. 5. The error in the Umf 

measured at 14oC was higher than that derived from Fig. 5 for 610oC. 
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Fig. 6 hereabouts  

4.1 Theory of Incipient Fluidisation. 

Many correlations, discussed below, exist for predicting Umf, because there is an obvious 

advantage in avoiding experiments for measuring Umf. Most models are based on Ergun’s equation 

(Ergun, Orning, 1949; Ergun, 1952; Niven, 2002) for the pressure drop, ΔP, across a packed bed 

of depth, H: 

(
∆𝑃

𝐻
) = 150

(1− )2𝑈

32𝑑𝑝
2  + 1.75

(1−𝜀)

𝜀3

𝑓𝑈2

𝑑𝑝
 .                (2) 

This equation was originally for a bed of spherical particles. However, for non-spherical particles, 

their effective diameter is taken as the mean value of (𝑑𝑝), where dp is the diameter of the sphere 

with the same volume as the particle under consideration (Ergun, Orning, 1949; Ergun, 1952). 

Wen and Yu (1966) assert that “As an approximation, the particle diameter (i.e. dp) may be 

calculated from the geometric mean of the two consecutive sieve openings without introducing 

serious errors”. This matter is discussed again below. 

The first term on the right-hand side of Eq. (2) represents viscous effects and so is 

important for low flowrates of air and for small particles, i.e. for low Reynolds numbers. The 

second term is determined by inertial effects and so is for high Reynolds numbers. It must be 

noted that for non-spherical particles there has been discussion about the precise values of the 

constants 150 and 1.75 in Eq. (2). Thus alternative values, respectively up to 200 and up to 4.0 

have been proposed for these two constants (Leva, 1947; MacDonald et al., 1979; Niven, 2002; 

Ozahi et al., 2008). The question of the exact values is discussed again below in the light of 

experimental measurements. 

At minimum fluidisation, the effective weight of the bed must be balanced by the pressure 

drop across the bed, so:  

 
∆𝑃

𝐻
= (1 − 𝜀)(𝜌𝑝 − 𝜌𝑓)𝑔 .       (3) 

Combining Eqs. (2) and (3), for the pressure gradient at the point of incipient fluidisation yields: 

(𝜌𝑝−𝜌𝑓)𝑓𝑔𝑑𝑝
3

𝜇2    =    
150(1− 𝑚𝑓)

2𝑚𝑓
3 (

𝑈𝑚𝑓𝑑𝑝

𝜇
)  +  

1.75

𝑚𝑓
3 (

𝑓𝑈𝑚𝑓𝑑𝑝

𝜇
)

2

,   (4) 

when U = Umf and  = mf. In a bed on the point of being fluidised, mf is usually slightly larger 

than   for a packed bed (Kunii, Levenspiel, 1969). Thus, after defining the dimensionless groups: 
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Ga = 
(𝜌𝑝−𝜌𝑓)𝑓𝑔𝑑𝑝

3

𝜇2   and Re = (
𝑓𝑈𝑚𝑓𝑑𝑝

𝜇
),      (5) 

there results the equation: 

  Ga = 150
(1−𝑚𝑓)

2𝑚𝑓
3 Remf +

1.75

𝑚𝑓
3 Remf

2  ,         (6) 

relating the Galileo and Reynolds numbers. Of course, if quite unusually the diameter, dp, the 

sphericity of the particles, , and the voidage at incipient fluidisation, mf, are all known, Eq. (6) 

could be solved to give the Reynolds number, Remf (based on the diameter of the particles), and 

hence also yield a value for the superficial velocity, Umf, for incipient fluidisation.  However, as 

seen above, it is not at all straightforward to obtain accurate values of these parameters, 𝑑𝑝,  and 

mf. Thus, just one problem is exactly what the value of dp might be, because in this study the 

geometric mean of the relevant sieve sizes was 0.388 mm, but the value measured optically (see 

Table 1) for dp was  0.48  0.04 mm.  

To cope with the usual lack of measured values for the sphericity, , and mf, Wen and Yu 

(1966) assigned values to the two groups containing these parameters in Eq. (4), as follows:   

      
(1−𝜀𝑚𝑓)

2𝑚𝑓
3  ≈ 11;     

1

 𝑚𝑓
3  ≈ 14.      (7) 

For this they used information from both their experiments and the literature; one result of using 

Eqs. (7) with Eq. (4) is Wen and Yu’s correlation (1966), which can be written as:        

 𝑅𝑒mf =  √(33.7)2 + 0.0408 Ga − 33.7.      (8) 

Often this is reasonably accurate at room temperature, so it has been widely used (Yates, 1983, 

Peng Dai, Dennis, Scott, 2016). It should be stressed that the two simultaneous Eqs. (7) have only 

one acceptable root of  = 0.67 and mf  = 0.47, so that, strictly speaking, Eq. (8), i.e. Wen and 

Yu’s correlation, is really only true, when  = 0.67 and mf  = 0.47. Such a value for mf  is 

sometimes too high (Botterill, 1975), although both  and mf do have a variety of values for 

different particles. Thus, Kunii and Levenspiel (1969) give values of mf lying between ~ 0.4 and 

0.7 and  between 0.50 and 0.85. This alone brings the universal applicability of Wen and Yu’s 

Eq. (8) into doubt. The approximate values indicated here in Table 1 for the alumina particles 

under investigation were  = 0.77 and   = 0.45 in a settled bed, with the expectation that mf is 

slightly larger than . Thus, strictly speaking, one might not expect Wen and Yu’s correlation 

(1966) to hold for these particles of alumina, because   is larger than 0.67, assumed by Wen and 

Yu (1966) in deriving Eqs. (7) and (8). Also, the point has been made by Narsimhan (1965) and 
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Delebarre (2004) that  and mf are not independent, because the magnitude of mf is probably 

determined by the value of  for a given set of particles. It thus seems that, because Wen and Yu’s 

two Eqs (7) over-stipulate the prediction of Umf, it would be preferable to have only one equation 

in place of Eqs (7) and also rely on measuring one more quantity, either mf or . Such an 

approach is adopted below; it might provide more accurate predictions of Umf than by assuming 

universal values of  = 0.67 and mf  = 0.47, as suggested by Wen and Yu (1966). 

 At this stage it is worth noting that inter alia Saxena and Vogel (1977) offered their own 

values of the constants in Eq. (7); they prefer (1 −  𝑚𝑓) 2𝑚𝑓
3 = 5.9 ⁄  0.6   and 1/𝑚𝑓

3  = 10.0 

 0.4, somewhat different from Eq. (7). These two simultaneous equations have one realistic 

solution  = 0.87 and mf = 0.49. It is interesting that Saxena and Vogel’s experiments (1977) 

involved temperatures up to 430oC and pressures from 179 to 834 Pa. Other alternatives to Eqs (7) 

are discussed below after the values of Umf, measured here over an unusually wide range of 

temperatures, have been considered.  

4.2 Plotting (Ga/Remf) against Remf 

Equation (6) can be rearranged to: 

  (
Ga

Remf
) = 150

(1−𝜀𝑚𝑓)

2
𝑚𝑓

3  +  
1.75

𝑚𝑓
3 Remf.     (9) 

Hence, a plot of (Ga Remf⁄ ) against Remf should yield a straight line, whose slope and intercept 

are characterised by the sphericity, , and voidage, εmf, properties which are assumed pro tem not 

to vary with the temperature of the bed. Figure 7 shows such a plot, using the Umf  measured here, 

together with the values of dp determined optically and also values of μ and f for the temperature 

of the fluidising air. The best fit line certainly has the expected shape with a clear slope and 

intercept for Remf up to 7.2. 

Fig. 7 hereabouts 

The slope and intercept of the regression line in Fig. 7 were measured to be, respectively: 

  
1.75

𝑚𝑓
3 =  61   20;     150

(1−𝜀𝑚𝑓)

2𝑚𝑓
3 = 1837  63.    (10)  

Thus the intercept, corresponding to observations made at low Remf, i.e. at high temperatures, was 

measured much more accurately than the slope. The intercept in Fig. 7 indicates that: 

   
(1−𝜀𝑚𝑓)

2𝑚𝑓
3 =   12.2  0.4.       (11) 
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This compares fairly well with the value of ≈ 11, assumed in Wen and Yu’s (1966) Eq. (7), but 

less well with the value of 5.9  0.6 favoured by Saxena and Vogel (1977). However, the slope of 

the best fit line in Fig. 7, which, of course, is particularly sensitive to the measurements at high 

Remf, suggests 1/
𝑚𝑓
3

 = 35  11. This is 2.5 times larger than Wen and Yu’s value of 14 in Eq. (7) 

and 3.5 times bigger than Saxena and Vogel’s (1977) value of 10.0  0.4. That both the slope and 

intercept of the best-fit line in Fig. 7 are slightly higher than expected could result from the two 

numerical constants in Eq. (2) not being exactly 150 and 1.75, as noted above. Together, the slope 

and intercept as presented in Eq. (10) indicate mf  0.24  and   2.1. These unacceptable values 

imply that it is extremely difficult to deduce say mf, because of the problem of measuring 

accurately the slope of Fig. 7, which has a small range of Remf up to 7.2.  However, one important 

conclusion is that the intercept in Fig. 7 (corresponding to measurements made at low Remf, i.e. 

high temperatures) can be measured quite accurately, in fact to within 4 %. This leads to Eq. (11), 

which clarifies how the voidage at incipient fluidisation, mf, depends on the sphericity, , for the 

particles under consideration. Equation (11) holds well for beds at elevated temperatures. 

Interestingly the value of  = 0.77  0.09 measured optically here, when substituted in Eq. (11) 

yields mf = 0.43. This value is very much what might have been expected. Then assuming  = 

0.77 and mf = 0.43 leads to 1/𝑚𝑓
3  = 16.3, instead of ≈ 14, as suggested by Wen and Yu (1966) 

in Eq. (7). Equation (11) slightly re-writes one of the two Eqs. (7) of Wen and Yu (1966) and 

because of its apparent accuracy will be taken seriously as relating  to mf. It might be noted that 

Eq. (11) with   = 1 for uniform spheres gives mf = 0.39. This lies between the values of   = 0.48 

for closely packed uniform spheres in a cubic lattice and mf = 0.32 in a body-centred-cubic 

structure (Atkins, 1986). This value of mf  = 0.39 is accordingly plausible for uniform spheres, 

confirming Eq. (11). 

 The measured values of Umf are compared in Fig. 8 with various predictions. It is striking 

that Wen and Yu’s correlation, Eq. (8), seriously under-predicts Umf, if the mean value of dp is 

taken to be the geometric mean of the upper and lower sieve sizes, previously used by other 

authors, including Wen and Yu (1966). This is an important conclusion, that Wen and Yu’s 

correlation cannot always be relied upon, if the geometric mean of the two sieve sizes is assumed 

to be the appropriate value for dp. On the other hand, Fig. 8 shows that using the value of 

dp = 0.479 mm, as measured optically above, together with Wen and Yu’s Eq. (8), yields values of 

Umf, which are slightly too high. As for the other predictions in Fig. 8, the modified Ergun Eq. 

comes from substituting in Eq. (4) the values of dp and  measured optically (see Table 1), 

together with mf = 0.45, i.e.  from Table 1. In addition, Fig. 8 includes predictions from an 

empirical formula: 
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Remf   = 7.33  10−5  10√(8.24 log10Ga  −  8.81) , 

devised by Wu and Baeyens (1991). These last two correlations give better predictions than 

Saxena and Vogel’s (1977) modification of Wen and Yu’s correlation, Eq. (8). 

Fig. 8 hereabouts 

Very importantly, the preceding discussion provides a new way of predicting Umf. This is 

to accept Eq. (6), together with the values of  and dp measured optically, as above. Then  can be 

substituted in Eq. (11) to yield mf.  The resulting values of , mf and dp can then be substituted in 

Eq. (6) to calculate values of Remf and thence Umf. The resulting predictions of Umf are shown in 

Fig. 9 as the dotted line. They are seen to be in good agreement with the measurements. Also 

included in Fig. 9 for comparison are two curves from Fig. 8, i.e. the predictions from Wen and 

Yu’s Eq. (8) using for dp either the value measured optically here or the geometric mean of the 

two sieve sizes. The Umf predicted by our proposed method, based on the optically measured dp 

and , are better than the other predictions. 

Fig. 9 hereabouts 

5. Discussion 

It was mentioned above that alternative constants for the right hand side of Eqs (7) have been 

determined previously. Some such values are collected in Table 2; several of them originate from 

the excellent review by Lettieri and Macri (2016). Interestingly the means and standard deviations 

of the values listed in Table 2 are: 

(1 − 𝜀𝑚𝑓) /  2𝑚𝑓
3   =  8.8  2.4,       

           (12) 

                  1 / 𝑚𝑓
3    = 13.0  2.5. 

However, the values in Table 2 refer to solids with a wide range of sizes, shapes and densities. 

Even so, the above value of (1 − 𝜀𝑚𝑓) / 2𝑚𝑓
3   =  12.2  0.4, in Eq. (11) and deduced from Fig. 

7 is within the range of values listed in Table 2, if the errors of the data in Table 2 are included.  
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Table 2. Literature values of the two constants on the right-hand side of Eqs (7) 

       ________________________________________________________________________ 

Reference      (1 − 𝜀𝑚𝑓) /  2𝑚𝑓
3              1 / 𝑚𝑓

3    

            ____________________________________________________________________________________________________________ 

 Wen & Yu (1966)    11.0   14.0 

 Bourgeois & Grenier (1968)     8.9   14.9 

Saxena & Vogel (1977)      5.9   10.0 

Babu et al. (1978)      5.2     8.8 

Richardson & Jeronimo (1979)     9.4   15.7 

Grace  (1982)       8.9   14.0 

Chitester & Kornosky (1984)     7.7   11.6 

Thonglimp et al. (1984)      9.9   13.4 

Nakamura et al. (1985)      9.7   12.3 

Lucas & Arnaldos (1986)        5.0     8.5 

Adánaz & Abanades (1991)     9.0   15.3 

Bin (1993)       9.4   14.8 

Reina et al. (2000)    14.2   12.7 

Zhu et al. (2007)         8.3   16.1 

_____________________________________________________________________ 

 The real situation appears to be more complex than the physics behind both the Ergun Eq. 

(2) and Wen and Yu’s correlations, Eqs (7) and (8). In fact, the literature on the topic is 

complex and by no means agreed upon, so the proposed procedure of predicting Umf using 

Eqs (6) and (11), together with optically measured values of  and dp, seems simple, useful 

and promising. The main factors missing from Eqs (2) and (7) were first discussed by 

Botterill et al. (1980, 1982a, b, c). Of course, the viscosity, , of the fluidising gas increases 

with temperature, but, as was done here, that can be allowed for. Thus, changes in f and  

affect exactly how the hydrodynamic forces on fluidised particles vary with temperature. 

However, Botterill et al. (1980, 1982a, b), as well as Lucas et al. (1986) and Saxena et al. 

(1987) have concluded that, in the laminar flow regime for Geldart’s group B particles, mf  

varies with temperature. Thus on raising the temperature above its ambient value, they report 

that mf can initially fall and subsequently increase. Also, according to Lucas et al. (1986), 

there can be changes of mf with Remf, because the boundary layer around each fluidised 

particle changes with Remf, so the mean distance between adjacent particles, and consequently 
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mf, also varies. Forces between neighbouring particles can be important, when the particles 

are small. Apparently the effect of these forces can be altered by changing the temperature 

(Lettieri, Macri, 2016). Thus Lin et al. (2002) after fluidising silica particles concluded that 

inter-particle forces might well vary with temperature and so affect mf. Such forces are 

difficult to assess on an a priori basis. 

 With reference to the previous paragraph, it must be mentioned that Pattipati and Wen 

(1981, 1982) reached the conclusion that mf definitely does not vary with temperature. 

However, when considering the effect of temperature on mf, Saxena and Vogel (1977), as 

well as Wu and Baeyens (1991), decided that mf can sometimes be taken to be constant. In 

this context, it is important to ascertain whether the measurements here of Umf from 14 to 

920oC provide any evidence for (or against) mf increasing with temperature. The intercept in 

Fig. 7 for Re → 0 is sensitive to mf, because it is proportional to (1 − 𝜀𝑚𝑓) / 2𝑚𝑓
3 . The 

intercept refers mainly to measurements at high temperatures and yet its value is well-defined 

in Fig. 7. Also, the  slope of the best-fit line is constant, although its magnitude is possibly 

higher than expected. It equals: 1 / 𝑚𝑓
3  = 35  11 and consequently is very dependent on 

mf.. Such a steep, constant slope might originate in uncertainties in the numerical constants in 

Eq. (2), as noted above; its large error is probably due to the limited range of Remf explored 

experimentally in Fig. 7. Even so, overall there is no strong evidence from Fig. 7 that mf 

varies systematically with temperature for the alumina particles investigated here from 14 to 

920oC. Further work is however needed, particularly using a wider variety of particles. 

6. Conclusions 

 Washed particles of alumina were sieved to be between 355 m and 425 m; their mean 

diameter, dp, and sphericity, , were measured optically. Beds of these particles were 

fluidised by air at atmospheric pressure and temperatures from 14oC to 920oC, to enable Umf 

to be measured over this range of temperature. Wen and Yu’s correlation, Eq. (8), was found 

to seriously under-estimate all these measured Umf, if dp was assumed to be the geometric 

mean of the sizes of the upper and lower sieves used to select the particles. If the considerably 

larger value of dp was used from the optical measurements of dp, Wen and Yu’s correlation 

slightly over-predicted Umf. These facts highlight the problem of what is the appropriate mean 

diameter, with which to characterise the particles. Analysis of the measurements of Umf, 

coupled with the optically measured dp indicated that 

(1 − 𝜀𝑚𝑓) /  2𝑚𝑓
3   =  12.2  0.4,   (11) 
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i.e. a relation, which couples the sphericity, , with the voidage, mf, at incipient fluidisation. This 

equality was used, together with the values of both dp and , measured optically, as well as 

Ergun’s Eq. (2), to estimate Umf at temperatures between 14 and 920oC. The agreement between 

the measured Umf and these predictions was good, so it is suggested that here is a better way of 

estimating Umf than relying on Wen and Yu’s correlation and only one measurement, i.e. of dp. 

Such an approach avoids the difficulty that Wen and Yu’s equation is, strictly speaking, only true 

if mf = 0.47 and   = 0.67. No evidence was found for mf varying with temperature. 
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Fig. 1 -  A vertical cross-section of the fluidised bed, its windbox and support. The spheres in 

the bed of particles represent bubbles rising up the bed, when fluidised. 
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Fig. 2 - Some of the particles of alumina used in this study; the distance for 400 μm is shown.  
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Fig. 3- The measured fraction (of the total volume of the 502 alumina particles studied) 

having particular (circular equivalent) diameters.  
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Fig. 4 - The fraction of the total volume of the 502 particles with particular values of the 

(“high sensitivity”) circularity, c. The results are for the same particles as in Fig. 3. 
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Fig. 5 - A typical plot of the pressure drop, ΔP, across the bed against the superficial velocity, 

U, of the air through the bed at 610oC. The vertical broken line gives Umf; defined by the 

intersection of the other two straight lines. 
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Fig. 6 - Plot of the pressure drop across the bed versus the superficial velocity, U, of the fluidising air 

at 14oC. 
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Fig. 7 - Plot of (Ga/Remf) versus Remf using the measured values of Umf to check Eq. (9). The best-fit 

straight line is shown; its slope and intercept are given by Eq. (10). 
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Fig. 8 - Comparison of the measured Umf  (X) with some correlations. The errors in the measured Umf 

varied from ~ 3 % at high temperatures to ~ 8 % at room temperature; see the text. The curves 

labelled Wen and Yu [1966] used Eq. (8) and a particle size of either dp = 0.388 mm (the geometric 

mean of the two sieve sizes) or dp = 0.479 mm (the measured CE diameter). The modified Ergun 

Equation used Eq. (4) with dp = 0.48 mm, m = 0.45 and  = 0.77 from Table 1. The curves labelled 

Saxena and Vogel [1977]  and Wu and Baeyens [1991] are described in the text. 
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Fig. 9 - The measured Umf (X), together with the two predictions (from Fig.8) of Umf  using Wen and 

Yu’s correlation, Eq. (8) and two different sizes, dp, for the particles. The finely dotted curve , labelled 

“This work” gives the new predictions using Ergun’s Eq. (4) with Eq. (11) and the values of  and dp 

measured optically here.  

 

 


