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Abstract. We show that Kellendonk’s tiling semigroup of an FLC substitution tiling is self-
similar, in the sense of Bartholdi, Grigorchuk and Nekrashevych. We extend the notion of the
limit space of a self-similar group to the setting of self-similar semigroups, and show that it is
homeomorphic to the Anderson–Putnam complex for such substitution tilings, with natural self-
map induced by the substitution. Thus, the inverse limit of the limit space, given by the limit
solenoid of the self-similar semigroup, is homeomorphic to the translational hull of the tiling.

1. Introduction

We study aperiodic tilings of Euclidean space arising from a substitution rule. Aperiodic tilings
provide important examples of topological dynamical systems, over spaces of tilings called tiling
spaces [18]. Since the seminal work of Kellendonk [10, 11] and Anderson and Putnam [1], much
is known about the topology of tiling spaces of substitution tilings, including calculations of their
topological invariants [1, 3, 10, 11, 18]. A beautiful result of Sadun and Williams [19] proves
that the tiling space of an FLC tiling is a fibre bundle over the torus, with totally disconnected
fibres (which are homeomorphic to the Cantor set, in the case of a repetitive, nonperiodic tiling).
Kellendonk’s work [10, 11] established an algebraic approach, by constructing an inverse semigroup
of partial translations for such a tiling. Tiling semigroups were extensively studied by Kellendonk
and Lawson in [12] and their algebraic properties were determined by Zhu in [22]. In this paper,
we show that tiling semigroups arising from a substitution are self-similar, and that the limit
solenoid naturally associated to the tiling semigroup is homeomorphic to the tiling space.

Self-similarity of groups has been a hugely fruitful mechanism with which to construct groups
enjoying certain properties, particularly growth properties. As such they have been key in solv-
ing several important problems in Group Theory and Geometric Group Theory, most notably
Grigorchuk’s famous group with intermediate growth [14, 6, 7]. Self-similar inverse semigroups
acting on topological Markov shifts were introduced by Bartholdi, Grigorchuk and Nekrashevych
in [4] and Nekrashevych went on to show they give rise to Smale spaces in [15]. It has already
been noted that self-similar groups and semigroups can be associated to some substitution tilings.
However, the general theory for substitution tilings is not worked out in either paper, which focus
entirely on a quotient by rotations and reflections of the Penrose tilings, see [4, p.13–15] and [15,
p.859–861]. Moreover, we outline a different, more global approach, which makes it implicit that
the full object constructed is Kellendonk’s tiling semigroup, rather than starting with generators
and (self-similar) relations. Our constructions are easily modified to construct the analogous ob-
ject where translations are replaced with general rigid motions, but we consider it important to
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present the theory in the translational case, which has remained a major focus in Aperiodic Or-
der owing to connections between translational dynamics of aperiodic patterns and their spectral
properties, which finds application to the study of quasicrystals [2].

For a substitution tiling satisfying standard conditions we show that Kellendonk’s tiling semigroup
acts self-similarly on a topological Markov chain that is naturally homeomorphic to the canonical
transversal of the tiling space. We recall the substitution graph, whose path-space is a topological
Markov chain. Kellendonk proved in [10] that this is conjugate to his discrete hull of a tiling,
with dynamics arising from (the inverse of) substitution. The tiling semigroup acts on this space
by translation. Indeed, an element of the tiling semigroup specifies a patch of tiles with two
distinguished tiles that specify the domain and range of the translation between them. The self-
similarity arises from the fact that translation across patches of tiles can be lifted to translations
between supertiles, with these structures being analogous at all levels of the hierarchy in the
topological Markov chain.

In [1], Anderson and Putnam define a branched manifold from a substitution tiling, now called
the Anderson–Putnam (AP) complex. Starting with a collection of prototiles, the AP complex is
the quotient space defined by the relation that two prototiles are glued along their codimension-1
faces if those faces ever meet in a tiling. For a substitution tiling, one can define addresses of
points of prototiles by a left-infinite topological Markov shift. We define the limit space of a
general self-similar semigroup action, in an analogous way to the self-similar group case [4], as
a quotient space of such left-infinite topological Markov shifts by asymptotic equivalence, which
itself we modify for the semigroup case (Definition 4.1). We prove that the limit space of a tiling
semigroup is homeomorphic to the AP complex. The limit space naturally inherits a self-map
from the shift map of the Markov shift, which corresponds to the usual self-map by substitution
on the AP complex, which thus has inverse limit homeomorphic to the tiling space.

The paper is organised as follows. In Section 2 we recall the basic facts required about aperiodic
tilings, their tiling semigroups, tiling spaces and tiling substitutions. In Section 3 we prove that
tiling semigroups of substitution tilings (with standard restrictions) are self-similar. We give a
general notion of a self-similar semigroup being contracting (Definition 3.5) and show this property
holds for substitution tiling semigroups. In Section 4 we introduce the asymptotic equivalence
relation for self-similar semigroups (Definition 4.1). The associated quotient space, called the limit
space, is shown to be homeomorphic to the Anderson–Putnam complex (Theorem 4.7). Finally,
in Section 5, we see how the definitions given apply to various examples.

Acknowledgements. We are grateful to Charles Starling for discussions around this paper. We
thank the referee for their many helpful suggestions.

2. Nonperiodic tilings and their semigroups

Tilings will be built from a finite set P of prototiles, where a prototile consists of its support,
which is a compact subset supp(p) ⊂ Rd that is equal to the closure of its interior, together with
its label, which is simply an element from a finite set of possible labels for P. Often, labels are
not required and can be dropped (so that a tile may be identified with its support), they are used
simply to allow for different tiles that have the same geometric shape. A translate of a prototile
is called a tile and a finite, connected set of tiles which overlap only on their boundaries is called
a patch. By connected here, we mean that any two tiles can be connected through a path of
meeting tiles. By tiles meeting we allow two options: that the tiles are adjacent, meaning
that they intersect non-trivially (on their boundaries) or alternatively, if the tiles and patches
have cell decompositions (for example, the tiles are polyhedra), then the tiles meet along a shared
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codimension-1 face. When cells have a cellular decomposition, the constructions to follow will
hold for whichever of these two conventions the reader prefers. The set of all finite patches is
denoted P∗. A tiling T is a covering of Rd by tiles which intersect only on their boundaries.
Given a tiling T and bounded subset S ⊆ Rd we define

T ⊓ S := {t ∈ T | supp(t) ∩ S ̸= ∅}.

If S is a closed ball of radius r then T ⊓ S is called an r-patch. If T is a tiling and x ∈ Rd, the
translate of T by x is T + x := {t + x | t ∈ T} and the orbit of T is O(T ) := {T + x | x ∈ Rd}.
We say that T is nonperiodic if T + x = T implies that x = 0.

Definition 2.1. For tilings T , T ′ we define their distance in the tiling metric as

d(T, T ′) := inf{ε, 1 | (T − x) ⊓B1/ε = (T ′ − x′) ⊓B1/ε, x, x′ ∈ Rd, |x|, |x′| < ε},

where Br denotes the closed ball of radius r centred at 0 ∈ Rd.

Two tilings T , T ′ are close if T and T ′ have the same patch of tiles on a large ball centred about
the origin, up to a small translation. The continuous hull (or tiling space) ΩT of a tiling T is
the space of tilings whose finite patches all belong to T , up to translation, with topology induced
by the tiling metric (that is, it is the space of tilings which are locally indistinguishable from
T ). Equivalently, ΩT may be regarded as the completion of O(T ) under the tiling metric. We call
T repetitive if, for every finite patch P , there exists some r > 0 so that a translated copy of P
can be found in every r-patch of T . In this case, every element of ΩT has the same set of finite
patches and thus ΩT = ΩT ′ for all T ′ ∈ ΩT . In particular, if T is nonperiodic and repetitive, then
T is strongly aperiodic, that is, every element of ΩT is nonperiodic. A tiling T is said to have
finite local complexity (FLC) if there are only a finite number of two-tile patches in T , up
to translation (equivalently, there are finitely many r-patches for each r > 0). Of course, every
repetitive tiling has FLC. With the topology above, FLC is equivalent to compactness of ΩT [17,
Lemma 2].

A substitution on a set of prototiles P is a map φ : P → P∗ for which there is a scaling factor
λ > 1 with supp(φ(p)) = λ · supp(p) for each p ∈ P. Since the support of a substituted tile is
exactly equal (rather than just covering) its inflated tile, φ is more specifically a stone inflation.
This property is necessary in what follows, but the inflation being a similarity x 7→ λx is not and
can instead be taken as an expansive linear map; we assume an expansion constant merely for
expository convenience. A substitution φ on a tile t = p + x is defined to be φ(t) := φ(p) + λx.
Then a substitution may be applied to a patch, which by a slight abuse of notation we also denote
φ : P∗ → P∗; similarly, substitution may be applied to tilings. An n-supertile is a translate of
the patch φn(p) for some p ∈ P. We will always assume that φ generates FLC tilings, which is
to say that it generates only finitely many two-tile patches (up to translation equivalence) under
iteration. We call φ primitive if there exists some k ∈ N so that, for each a, b ∈ P, we have that
φk(a) contains a translated copy of b.

A tiling T is admitted by the substitution if every finite patch of T is contained in some n-
supertile. The set of such tilings is denoted Ωφ. It follows easily from FLC that Ωφ is non-
empty and, if φ is primitive, then every admitted tiling is repetitive, so that Ωφ = ΩT for any
T ∈ Ωφ.

The induced map φ : Ωφ → Ωφ is always surjective, so that for each tiling T there is a corre-
sponding ‘supertiling’, which decomposes under φ to T . If φ is additionally injective, then we say
that φ is recognisable. This means that, for any T ∈ Ωφ, there is a unique way to group tiles
into supertiles, whose associated tiling in Ωφ decomposes to T under substitution. By continuity
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and compactness, this may always be done by a locally defined rule for a recognisable substitu-
tion. Recognisability is equivalent to non-periodicity of the tilings of Ωφ [21]. We will assume
throughout that φ is recognisable.

We always assume that φ forces the border [10, p.24]. This means that there is some k ∈ N so
that any k-supertile φk(p), for p ∈ P, extends uniquely to a valid patch containing φk(p) and any
tiles intersecting the boundary of φk(p) (that is, φk(p) uniquely extends to its 1-corona). Border
forcing may always be assumed by passing to a dynamically equivalent substitution by collaring
tiles (see [1, 18]).

The Anderson–Putnam complex of a tiling is the compact Hausdorff topological space formed
through taking the transitive closure of gluing together prototiles in all ways their translations
can be adjacent in a tiling, see [1, Section 4].

In this paper we make use of the discrete hull of a tiling, a particular subset of the continuous hull.
Let T be a tiling with prototile set P. Following Kellendonk [10, Section 2.1], for each p ∈ P,
choose a point in the interior of supp(p) called a puncture and denote it by x(p). This naturally
punctures tiles t = p+ y by x(t) := x(p) + y and defines sets of punctures for patches and tilings.
The discrete hull of a tiling T is given by

Ωpunc := {T ′ ∈ ΩT | there exists t ∈ T ′ with x(t) = 0} ⊂ ΩT ,

i.e., the subset of tilings with a puncture over the origin of Rd. If T is repetitive, non-periodic
and has FLC then Ωpunc is a Cantor set. In particular, Ωpunc is a compact metric space that has
a basis of clopen sets. Indeed, for a patch P and a tile t in P , the set

(2.1) U(P, t) := {T ′ ∈ Ωpunc | P − x(t) ⊂ T ′}
is clopen in Ωpunc, and the set of all such sets forms a basis for the metric topology on Ωpunc.

2.1. The substitution graph and discrete hull. For p ∈ P and t ∈ φ(p) we call (t, p) a
supertile extension, and denote the set of such supertile extensions by S. If at most one copy
of each prototile appears in each substituted prototile, then the elements of S can be identified
with all pairs (a, b) ∈ P2 for which a ∈ φ(b), but we do not need to assume this in general (see
Example 2.4 below). Given a supertile extension e = (t, p) ∈ S, we denote r(e) := t (considered as
a prototile in P) and s(e) := p. We construct the substitution graph G with vertex set P, edge
set S and source and range maps s, r : S → P. The associated set of right-infinite (left-pointing)
paths is denoted

F := {e0e1e2 · · · | s(ei) = r(ei+1)},
and comes equipped with the left shift map σ : F → F defined by σ(e0e1e2 · · · ) = e1e2 · · · .
Generally, given a finite graph G, the set F of right-infinite words as above is called a topological
Markov chain.

Remark 2.2. One could use the opposite convention to above, taking an arrow e : t → p as a
‘subtile inclusion’ of a tile t into a p supertile. In that case, all arrows on graphs would be reversed
and one could take F as right-infinite, right-pointing paths. The advantage of the convention we
take here instead is that a string e0e1 · · · en may be read analogously to function composition
(with range on the left, source on the right), and when introducing semigroup elements, which
also have domain/codomain or ‘in/out’ tiles, a valid string has consistently matching adjacent tiles
in the domain/codomain or source/range, whether the term is a semigroup element or supertile
extension term. By this convention arrows point in the direction of substitution application, which
is also similar to standard conventions on inverse limits defining the tiling space, as we shall see
in Section 4.
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Figure 2.1. The border forcing Fibonacci substitution and its graph of supertile extensions.
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Figure 2.2. The AP complex for the border forcing Fibonacci tiling [1].

Example 2.3. We illustrate supertile extensions and the substitution graph by studying a border
forcing version of the Fibonacci tiling, as defined in [1, Section 10.1] (see also [18, Section 2.5]).
Starting with the usual Fibonacci substitution 0 7→ 01 and 1 7→ 0 we define our tiles as a sliding
block code, with a = 0[0]1, b = 1[0]0, c = 1[0]1 and d = 0[1]0. This gives the list of all possible 3-
tile patches in a Fibonacci tiling, where we consider the tile in square brackets as the one ‘collared’
with the information of its immediate neighbours. Substitution acts on collared tiles in a natural
way: the bracketed tile substitutes to a sub-patch of the substitute of the 3-tile patch, which
is used to determine the collaring information of each of the new collared tiles. For example,
consider the substitution of a = 0[0]1. Carrying brackets through the substitution, let us write
0[0]1 7→ 01[01]0, so we see that a 7→ cd, with c = 1[0]1 corresponding to the first collared tile in
the new bracket and d = 0[1]0 the second. From this we obtain the substitution φ : P → P∗ given
by

(2.2) φ(a) = cd, φ(b) = ad, φ(c) = ad and φ(d) = b.

It is routine to check that this substitution is recognisable. Using (2.2) we immediately obtain
the supertile extensions:

(c, a), (d, a), (a, b), (d, b), (a, c), (d, c) and (b, d),

which can unambiguously be labelled by pairs in P2 since at most one copy of each prototile
appears in each supertile. The substitution appears in Figure 2.1, along with the graph associated
with this substitution. Note that a smaller substitution (on a 3-letter alphabet) could be used
to force the border for this example, by only collaring tiles on the left, since every supertile is
adjacent to a 0-tile on the right. □
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Figure 2.3. The supertile extension graph of Example 2.4.

Example 2.4. Consider the substitution on P = {a, b} defined by

φ(a) = abb and φ(b) = ab.

It is easy to see that this substitution is recognisable and forces the border since every supertile is
followed by an a tile to its right and is preceded by a b to its left. In this case there are two ways
tile b is extended into an a supertile: by the b being included as either the second or third letter.
These could be distinguished by denoting them as, say, (b2, a) and (b3, a). The substitution graph
is given in Figure 2.3. □

We have a natural bijection between the space of right-infinite sequences of supertile exten-
sions

(2.3) (t0, t1)(t1, t2)(t2, t3) · · · ∈ F
and the discrete hull Ωpunc of all substitution tilings T generated by φ (where here, and later, we
allow a very minor abuse of notation by denoting a supertile extension by (tn, tn+1) with each tn
simultaneously denoting a subtile of φ(tn+1) and also its corresponding prototile in P). Indeed,
to such a string (2.3) the puncture of tile t0 is placed on the origin and we obtain a sequence of
inclusions t0 ⊆ φ(t1) ⊆ φ2(t2) ⊆ φ3(t3) ⊆ · · · . The nested patches φn(tn) determine the entire
tiling by the border forcing property. Conversely, a punctured tiling determines such a string by
recognisability (which itself follows from FLC and aperiodicity).

There is a natural topology on F whose basis consists of clopen cylinder sets of all infinite strings
starting with some given finite initial string. Under this topology, the above bijection induces a
homeomorphism

(2.4) τ : F
∼=−→ Ωpunc

to the discrete hull Ωpunc with the topology generated by (2.1). The map τ above constructs
an infinite tiling with a puncture on the origin from an infinite string. We may also define τ
on a finite string s = (t0, t1)(t1, t2) · · · (tn−1, tn) to obtain a finite marked patch φn(tn), where
the location of t0 is positioned in this supertile according to how the supertile extensions embed
into each other. In fact, we will define τ(s) to be the finite marked patch containing this one as
well as any tiles that are forced by it. More precisely, τ(s) may be taken as the largest marked
patch contained in every tiling of the form τ(sw), for sw ∈ F . In particular, for any w ∈ F , any
tile of τ(w) is eventually contained in one of the (nested sequence of) patches τ(w0), τ(w0w1),
τ(w0w1w2), . . . , due to border forcing. The homeomorphism (2.4) was a breakthrough result of
Kellendonk [10] and was the primary motivation for the notion of border forcing.

The discrete hull Ωpunc is the object space of the (discrete) translation groupoid [10]

Rpunc := {(T − x(t), T ) ∈ Ωpunc × Ωpunc | t ∈ T}.
We take a non-relatively compact topology on the above: it is not taken as the subspace topology of
Ωpunc×Ωpunc but rather from the subspace topology of Ωpunc×Rd, using the natural identification

of elements of Rpunc and Ωpunc × Rd via Rpunc ∋ (T − x(t), T ) ↔ (T, x(t)) ∈ Ωpunc × Rd. This
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makes Rpunc a principal topological groupoid, with product (T ′′, T ′)(T ′, T ) = (T ′′, T ). Given a
patch P and tiles t, t′ in P , the sets

(2.5) V (t′, P, t) := {(T ′, T ) ∈ Rpunc | P − x(t) ⊂ T and P − x(t′) ⊂ T ′}

are open in Rpunc, and the set of all such sets forms a basis for the product topology. In this
topology, Rpunc is an étale equivalence relation. See [10] for further details.

The open set V (t′, P, t) ⊂ Rpunc defines a bijection from U(P, t) to U(P, t′), which may be thought
of as the ‘partial translation’ which shifts the origin tile from t to t′, within any tiling of Ωpunc with
t ∈ P centred over the origin. For example, moving across a certain face from one prototile to an
adjacent one may be interpreted as such an open subset of the discrete groupoid, or as a partial
bijection within Ωpunc (or, via the identification τ , within the Markov shift F for a substitution
tiling). This collection of partial translations naturally leads us to the tiling semigroup:

2.2. The tiling semigroup. We recall Kellendonk’s construction of the inverse semigroup asso-
ciated to an FLC tiling [12, 13]. We use notation similar to [12] for the elements of this semigroup,
the doubly pointed patches.

A semigroup S is an inverse semigroup if for each s ∈ S there exists a unique element s∗ ∈ S
such that ss∗s = s and s∗ss∗ = s∗. According to the Vagner–Preston Representation Theorem [9,
Theorem V.1.10], every inverse semigroup is isomorphic to a subsemigroup of I(X), the inverse
semigroup of partial bijections on a set X. An action of an inverse semigroup S on a set X is a
homomorphism π : S → I(X). If the homomorphism π is fixed, we usually write g · x for πg(x).
See [5] for further details.

Definition 2.5. A doubly pointed patch [b, P, a] is given by a finite patch P , which can occur
in a given tiling, and tiles a, b ∈ P , where we take the tuple (b, P, a) up to translation equivalence.
Let T be the set of all doubly pointed patches along with a ‘zero element’ 0 ∈ T .

Let [d,Q, c], [b, P, a] ∈ T be two doubly pointed patches which, without loss of generality (by
translating each, if necessary) have x(b) = x(c). If P and Q agree on any tiles with intersecting
interiors and P ∪Q is a valid patch, then we define

[d,Q, c][b, P, a] = [d, P ∪Q, a].

Otherwise, we define [d,Q, c][b, P, a] = 0. Any product with 0 is defined as 0. We call T = (T , ·)
the tiling semigroup.

Remark 2.6. One could also define the tiling semigroup for a space Ω of tilings, considering
patches over all tilings in Ω. For Ω = ΩT with T a repetitive tiling, all tilings of Ω have the same
finite patches, up to translation, so this does not affect the construction. However, if we consider
Ωφ with φ non-primitive then the sets of finite patches can differ between orbits. We take the full
collection of patches over all of Ωφ in such a case. We note, typically we are most interested in
the case where φ is primitive and Ωφ = ΩT for any T ∈ Ωφ, with each such being repetitive.

Notice that, again, our notation here mirrors function composition: the element [b, P, a] has ‘in
tile’ a and ‘out tile’ b, with a product of elements [d,Q, c][b, P, a] interpreted as applying the
right then the left-hand term, and requiring that the intermediate tiles b and c agree. There
is a bijective correspondence between elements of T and basis elements of the étale topology
for Rpunc as described in (2.5) via [b, P, a] 7→ V (b, P, a) (and where 0 has empty (co)domain).
The product of semigroup elements is identified with the composition of partial bijections on the
largest compatible domain. Thus, the tiling semigroup T naturally acts by partial bijections on
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the discrete hull Ωpunc, where a doubly pointed patch g = [b, P, a] has domain U(P, a) ⊂ Ωpunc

and codomain U(P, b) ⊂ Ωpunc.

It is easy to establish that T is an inverse semigroup. In particular, note that for s = [b, P, a] ∈ T ,
the unique t ∈ T with s = sts and t = tst is given by t = [a, P, b]. We interpret [b, P, a]
as a translation from a to b, within P , where the product of two such translations is allowed
when the union is itself a valid patch. The idempotents (or ‘partial identities’) are of the form
[a, P, a], along with the 0 element. Since T is an inverse semigroup, it naturally inherits a partial
ordering: we have that [b, P, a] ⪯ [d,Q, c] if and only if, up to translation, we have an inclusion
(d,Q, c) ⊆ (b, P, a) of doubly pointed patches; that is, P extends Q as a doubly pointed patch
with a = c and b = d. It is not hard to see that T is generated by idempotents [p, {p}, p] for
p ∈ P, where {p} is a single-tile patch, and elements [b, P, a], where P is a connected two-tile
patch containing distinct a and b.

3. Self-similarity of substitution tiling semigroups

We now show that the above semigroup action of T on F ∼= Ωpunc is self-similar.

Definition 3.1 ([4, Definition 3.6]). Let F be a topological Markov chain over an alphabet X.
An inverse semigroup S acting on F is called self-similar if for every g ∈ S and x ∈ X there

exist y1, . . . , yk ∈ X and h1, . . . , hk ∈ S such that the sets dom(hi) are disjoint,
⋃k

i=1 xdom(hi) =
xF ∩ dom(g), and for every xw ∈ dom(g) we have

(3.1) g · xw = yi(hi · w),
where i is such that w ∈ dom(hi).

Often in the context of self-similar groups and semigroups the action of g on w is denoted by wg,
but here we choose to use g ·w. Note that the hi in (3.1) are not uniquely defined. Indeed, given
a partial bijection hi one could partition its domain and use instead the restrictions of hi to each
such subset. From the opposite perspective, one may always replace the expression g · w with
h · w whenever h is an extension of g to a larger domain. This will be useful later in simplifying
the semigroup elements hi generated by successive application of (3.1).

Remark 3.2. We briefly explain here an equivalent description of self-similarity to highlight its
algorithmic quality (and note that one may equivalently define self-similarity of inverse semigroup
actions by automata, see [15]). We make the standing assumption throughout that all semigroup
elements have clopen domains. For each g ∈ S, there is some N(g) = N ∈ N, given by the distance
required to ‘read forwards’ in the sequence to evaluate the first letter of g ·w, for an infinite word
w ∈ F , as well as determining the necessary semigroup element to apply to the remainder of the
string. Let FN denote the set of words of length N . Self-similarity means that there exist letters
y1, . . . , yℓ ∈ X, elements h1, . . . , hℓ ∈ S and subsets Fi ⊆ FN so that:

(1) dom(g) =
⋃ℓ

i=1 FiF , where FiF denotes the set of infinite words with initial N -letter
string in Fi;

(2) Fi ∩ Fj = ∅ for i ̸= j (so the above is a disjoint union);

(3) for each i = 1, . . . , ℓ we have FiF = xidom(hi) for some xi ∈ X;

Then given an infinite word w ∈ F , to evaluate g ·w we first determine the initial N -letter string
s of w. We have that s ∈ Fi for a unique i, and then we have the rule:

g · w = yi(hi · σ(w)),
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where σ : F → F is the left shift (i.e., the map removing the initial letter xi from w). Thus, the
first letter of g · w is yi. To apply hi to the remainder, we look forward distance N(hi) in σ(w)
to determine the second letter of g · w, as well as the next element of S to apply to σ2(w). This
may be repeated indefinitely. This is best demonstrated here through Example 3.4, which may
help the reader with the following proof.

Theorem 3.3. The tiling semigroup T of a recognisable substitution tiling is self-similar.

Proof. Let g = [b, P, a] be a doubly pointed patch and recall that the domain of g is U(P, a)
corresponding to tilings with patch P at the origin centred at the puncture x(a) of tile a. Since
φ forces the border, for sufficiently large N ∈ N we have that supp(P ) ⊆ supp(τ(s)) for all
s ∈ FN . Thus, there is a finite set S = {s1, . . . , sk} ⊆ FN of all possible length-N strings for
which P ⊆ τ(si), where of course P has a specific position over the origin at tile a.

Fix si ∈ S with N > 1. Writing si = xis
′
i, for xi ∈ S and s′i = σ(si) ∈ FN−1, the patch

φ(τ(s′i)) is naturally identified with a sub-patch P ′ ⊆ τ(si), positioned according to the the initial
supertile extension xi (note that P ′ could be a proper sub-patch of τ(si), since border forcing
may determine more tiles in τ(si) than the appropriate positioning of φ(τ(s′i))). It follows from
border forcing that, by increasing N if necessary, we may assume that not only P ⊆ τ(si), but
also P ⊆ P ′. In particular, the tiles a and b ∈ P are contained in, what may be identified with,
the substitutes of tiles a′ and b′ ∈ τ(s′i). We then define hi ∈ T by

hi = [b′, τ(s′i), a
′],

Let yi ∈ S denote the unique supertile extension that includes b ∈ P ⊂ τ(si) into b′ ∈ τ(s′i).

We may now check that the above assignments fulfil the definition of self-similarity. Take any
w ∈ dom(g). Then w has initial N -letter string si ∈ S. We must check that

(3.2) g · w = yi(hi · σ(w)).

By definition, τ(w) is a tiling T ∈ U(P, a) and τ(g · w) = T − x(b) so that T − x(b) ∈ U(P, b).
Let T ′ = τ(σ(w)) which is the 1-supertiling of T with the puncture of tile a′ at the origin. Note
that although T corresponds to (an appropriate shift of) the substitution of T ′, we refer to T ′

as the ‘1-supertiling’ since its tiles can be naturally viewed as combinations of tiles in T ; it is
instructive to think of the tiles of T ′ as ‘larger’ than those of T and that substitution breaks these
tiles up to the tiles of T . Then our definition of hi implies that τ(hi · σ(w)) is the 1-supertiling
with the puncture of tile b′ at the origin. Pre-appending yi corresponds to substituting this
tiling, translated appropriately to position the puncture of b over the origin. Thus (3.2) holds, as
required. □

Example 3.4. We consider the Fibonacci substitution from Example 2.3. We denote by xy the
connected two-tile patch consisting of x, y ∈ P, with x on the left and y on the right. Later,
in Example 5.1, we give a complete set of rules on applying doubly-pointed two-tile patches to
strings. To be applied, such elements need to look at either the next term, or the next two terms.
However, we quickly give an example application to give the flavour of the definitions above,
where one sees the group element working algorithmically through the string:

Take the infinite word

w = (b, d)(d, a)(a, c)z ∈ F
where (b, d), (d, a) and (a, c) are specified supertile extensions in S and z ∈ F is an infinite tail. We
apply the element [a, ba, b] to w according to the rules found in Example 2.3, which corresponds
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c d b a d b a d c d b

a d c d b a d

b a d b

d c d

[a, ba, b]
(b, d)

[b, db, d]

(a, b)

(d, a)

[d, ad, a]

(b, d)

(a, c) (d, c)

[c, c, c]

‡ ‡ ‡ ‡ ‡‡ ‡ ‡

‡‡‡ ‡ ‡

‡‡ ‡ ‡

‡‡ ‡ ‡

Figure 3.1. A graphical representation of the patch formed by the prefix
(b, d)(d, a)(a, c) of the word w. Tile lengths are increased by the golden ratio
at each increasing level. The vertical arrows on the left denote the supertile exten-
sions (b, d)(d, a)(a, c). The bottom horizontal arrow depicts the action of moving
one tile to the right by a semigroup element and a non-idempotent element of T
acts on the remainder of the string if we translate across a supertile boundary,
denoted by double daggers. Thus, the vertical arrows on the right represent the
output of applying the semigroup element [a, ba, b] to (b, d)(d, a)(a, c) as shown in
(3.3). Note that the solid tiles are given directly from the supertile extensions and
the dashed tiles are defined implicitly by the border forcing property; looking at
the top row of tiles and referring to Figure 2.2, we see that c (whose collars are 1
tiles) is always preceded and followed by d tiles (as this is the only way of collaring
a 1 tile), which forces the top row and thus also lower rows by substitution.

to moving one tile to the right in the tiling formed by w. It is important to note that all these
relations can be deduced from the information given, as depicted in Figure 3.1.

[a, ba, b] · (b, d)(d, a)(a, c)z = (a, b) ([b, db, d] · (d, a)(a, c)z)
= (a, b)(b, d) ([d, ad, a] · (a, c)z)(3.3)

= (a, b)(b, d)(d, c) ([c, c, c] · z)
= (a, b)(b, d)(d, c)z,

where the last line is fully evaluated, since the idempotent [c, c, c] is the identity on its domain.

If we translate left one tile instead, by applying [d, db, b] to w, then we find:

[d, db, b] · (b, d)(d, a)(a, c)z = (d, c) ([c, cd, d] · (d, a)(a, c)z)
= (d, c)(c, a) ([a, a, a] · (a, c)z)
= (d, c)(c, a)(a, c)z

and the application is fully evaluated, again because [a, a, a] is an idempotent. As an enjoyable
and informative exercise, we encourage the reader to try some further examples for themselves.
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Notice the necessary consistency in the above strings: there is agreement between adjacent tile
types of both the supertile extension pairs (y, x) and the ‘in/out’ tiles of the doubly pointed patches
[y, P, x]. As in Remark 2.2, this follows from the convention of orientation in the substitution
graph and writing strings in an order corresponding to function composition. □

One should observe that, in terms of the action of T on F , there is some degree of superfluous
information in the semigroup elements: for g ∈ T and T ∈ dom(g), all that is required to evaluate
g(T ) is the relative displacement of the ‘in and out’ tiles. This fact is also reflected algebraically
in terms of the inverse semi-group: For a general inverse semigroup one has the partial ordering
defined by letting x ⪯ y if there is an idempotent e for which x = ey. For the tiling semigroup T ,
this says that [b, P, a] ⪯ [d,Q, c] if and only if, up to translation, we have an inclusion of doubly
pointed patches (d,Q, c) ⊆ (b, P, a) (i.e., P extends Q with a = c and b = d). If x ⪯ y then
dom(x) ⊆ dom(y) and x · τ−1(T ) = y · τ−1(T ) for all T ∈ U(P, a).

A consequence of the above is that there is significant choice of semigroup elements satisfying the
self-similarity rule (3.1). This is easily dealt with in practice since, if we ignore the domain and
range of elements, we may always replace a term such as hi ·w with j ·w for any j ⪰ hi in (3.1).
In fact, after enough iterations, we see that we may take j to be a ‘small’ patch. This is made
precise via the following more general definition.

Definition 3.5. Let (S,F) be a self-similar inverse semigroup. We call S contracting if there
exists some finite N ⊆ S satisfying the following: For any g ∈ S there exists some k ∈ N for
which, for any uw ∈ dom(g) with u ∈ Fk, there exists some v ∈ Fk and h ∈ N with

(3.4) g · (uw) = v(h · w).

Remark 3.6. We can write the above definition in the following alternative way. There exists
some finite N ⊆ S satisfying the following: For any g ∈ S there exists some k ∈ N for which, for
every w ∈ dom(g), there is some v ∈ Fk and h ∈ N with

(3.5) g · w = v(h · (σkw)).

In the standard language of self-similar group actions, the above says that after sufficiently many
applications of the ‘restriction’ of g (the elements hi of (3.1)) the new semigroup element to apply
to the remainder of the string may be taken in the finite set N , at least after an appropriate
adjustment of its domain and range.

Definition 3.7. Let (S,F) be a contracting self-similar inverse semigroup. Call N a semi-
nucleus if it satisfies the contracting condition above and is such that for all g ∈ N and ew ∈
dom(g) with e ∈ S = F1, there is some f ∈ S and h ∈ N so that

(3.6) g · (ew) = f(h · w).

The above says that not only do all semigroup elements eventually ‘restrict’ to elements in N
(possibly after extending the domain and range), we also have that a single iteration of restriction
of an element of N can be chosen to remain in N . That is, we may take k = 1 for any g ∈ N in
Definition 3.5.

Lemma 3.8. A contractive self-similar inverse semigroup has a semi-nucleus.

Proof. Let N ⊆ S be as required for the definition of contractivity and g ∈ N , satisfying (3.5) for
k = k(g) ∈ N. Let u = u1 · · ·uk ∈ Fk and w ∈ F with uw ∈ dom(g).
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Consider the elements h11, h
1
2, . . . , h

1
n ∈ S arising from (3.1) for g and x = u1. For each h1i ,

apply (3.1) again with x = u2 to obtain elements h21, h
2
2, . . . , h

2
m. We continue this procedure to

generate elements hji for j = 1, . . . , k.

Iteratively applying self-similarity we have

g · (u1u2 · · ·ukw) = · · · = y1 · · · yk−1(h
k−1
ℓ · (uk · w)) = y1 · · · yk(hkj · w) = v(h · w),

for v = y1 · · · yk ∈ Fk and h ∈ N , by (3.4). This shows, at least in the above expression, that
we may replace hkj with h ∈ N . In fact, again by repeated application of self-similarity and with
more careful consideration of the domains, we have

dom(g) ∩ uF =
⊔
ℓ

u(dom(hkℓ )),

where the above is a disjoint union and g · (uw) = v(hkℓ · w) for all w ∈ dom(hkℓ ). Thus, for all

w ∈ dom(hkℓ ), we have hkℓ · w = h · w for some h ∈ N .

Thus, let N be the union of N and all elements hji , for j < k(g), generated by k(g)−1 applications
of the self-similar rule for each g ∈ N . Then (3.6) holds for g ∈ N using some h = h1i ∈ N , by

construction. Similarly, for j < k(g)− 1, each hji ∈ N satisfies (3.6) with h = hj+1
ℓ ∈ N for some

ℓ. Finally, for j = k(g) − 1, (3.6) is satisfied for each h
k(g)−1
ℓ ∈ N using some h ∈ N ⊆ N , as

above, so that N is a semi-nucleus. □

Remark 3.9. For the tiling semigroup, we could define a larger inverse semigroup which does
not demand that patches are connected. Then for every (non-zero) g ∈ T we have g ⪯ z for
some z = [b, P, a] with P a two-tile patch containing a and b (or a 1-tile patch, if a = b). We will
sometimes make temporary use of such partial translations not in T , such as in the proof below.

Proposition 3.10. Let (T ,F) be the self-similar tiling semigroup of an aperiodic substitution
tiling. Then for each g ∈ T there is some k = k(g) ∈ N so that, for all uw ∈ dom(g) with u ∈ Fk,
we have that

g · (uw) = v(h · w)
for some v ∈ Fk and h = [b, P, a] for which a = b or a and b are adjacent. Hence, T defines a
contractive action on F . We may choose N to be a semi-nucleus consisting of all doubly-pointed
star patches [b, P, a], that is, with P a patch of tiles all sharing a common point.

Proof. Without loss of generality, we can take g = [b, P, a] where P is a two-tile patch containing
only tiles a and b (but with P possibly disconnected, see Remark 3.9). Let g = h0 and consider
any element w ∈ dom(g) along with a sequence {hi} ⊂ T arising from recursively applying the
self-similar relation (3.1) to g · w. We may choose each hi = [bi, Pi, ai] using a one or (possibly
disconnected) two-tile patch.

Consider the sequence of tile pairs {(ai, bi)} coming from the doubly pointed patches hi =
[bi, Pi, ai]. Let ri := inf{|x − y| | x ∈ supp(ai) and y ∈ supp(bi)} be the distance between
tiles ai and bi; that is, the infimum of distances between points of ai and bi. It follows from the
proof of Theorem 3.3 that the supertile extensions (of ai−1 into ai and bi−1 into bi) arising from
the self-similar relation (3.1) geometrically embed the two-tile patch (ai−1, bi−1) as a subpatch of
the substitution of (ai, bi). It follows immediately that ri ≤ λ−1ri−1 for all i ∈ N since pairs of
supertile extensions within a patch uniformly scale tiles by λ−1 between the range and source,
and the support of the source covers the support of the range.
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We claim the sequence (ri) is eventually zero. If not, then this would provide an infinite sequence
of two-tile patches with arbitrarily small distance apart. But it follows from FLC that ri can only
take finitely many values less than r0, so this cannot happen. Hence, we have that ri = 0 for
i > k where, by FLC, k can be taken to only depend on (a, b) and thus on g. Since ri = 0 if and
only if ai and bi are equal or adjacent, it follows that hi may be given by a doubly pointed one or
two-tile patch of intersecting tiles for i > k.

Let N be the set of doubly pointed star-patches. By the above, for each g ∈ T there is some
k ∈ N satisfying (3.4) with h ∈ N . Since the source and range tiles of the hi intersect also for
i > k, further restrictions may be taken in N , which is thus a semi-nucleus for T . □

Remark 3.11. For self-similar groups one defines the nucleus of a contracting group S to be the
minimal N so that all elements eventually restrict to N . In [15], a notion of contractivity and
(minimal, uniquely defined) nucleus is given in the case of self-similar semigroups. However, in
this setup self-similar semigroups are treated via automatons which are ω-deterministic, which
amounts to declaring fixed restrictions of partial bijections in (3.1) as part of the structure. In
our setup we have allowed this to remain flexible, which is an alternative approach which we feel
may be of further interest. Indeed, it was beneficial in the proof above that it was not necessary
to manage the shapes of patches under restriction down to the semi-nucleus. It is also clear that,
in this setting, it may be impossible and unnatural to have a unique and minimal semi-nucleus
N . For example, for a cellular 2-dimensional tiling, if we define connected patches via meeting
tiles merely being adjacent, then we only need 1 and 2-tile doubly pointed patches in N . If we
instead define tiles to be meeting when they meet over a shared edge, then star patches [b, P, a]
with a and b meeting at a shared vertex (but not over an edge) can be removed, and replaced
with star patches [b, P ′, a], with P ′ ⊂ P connected, for which there is some degree of arbitrary
choice.

In the case of a d-dimensional cellular tiling, it is not hard to see that T is generated by idem-
potents (which may be identified with P) together with P2, defined as the finite set of elements
[b, P, a] for a ̸= b and P a two-tile patch consisting of a and b meeting over a particular shared
(d− 1)-dimensional face. Idempotents restrict to idempotents, and elements of P2 restrict to ele-
ments of P ∪P2 (after possibly extending domains). So the action of T on F may be completely
described by the action of the finite set P2 on strings of sufficiently large length, together with
how they restrict to elements of P ∪ P2. However, the semi-nucleus still requires more elements
for tilings of dimension greater than one, since the restriction of a ‘diagonally adjacent doubly
pointed patch’ can remain as such after arbitrarily many restrictions.

4. The limit space

Let G be a finite graph with associated topological Markov shift F (the right-infinite, left-pointing
paths). We define

F− := {· · · e−3e−2e−1 | r(ei) = s(ei−1)};
that is, the space of left-infinite, left-pointing paths, which is equipped with the product topology.
The following is a natural adaptation of the asymptotic equivalence relation from the case of
self-similar groups to semigroups:

Definition 4.1. Two elements x = · · · e−3e−2e−1 and y = · · · f−3f−2f−1 ∈ F− are called asymp-
totically equivalent with respect to the action of the semigroup S if there is a sequence (gn) of
S, with {gn} ⊆ S finite, and some w ∈ F so that for each n ∈ N the element

(4.1) gn · (e−n · · · e−3e−2e−1w) ∈ F
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has initial string of n terms given by f−n · · · f−3f−2f−1 ∈ Fn. In this case we write x ∼ae y. We
define the asymptotic equivalence relation ∼ on F− to be the equivalence relation generated
by ∼ae.

The main difference between the above definition and the case of self-similar groups is that we
need to append the infinite word w to the right of the finite string e−n · · · e−1 so that gn may be
unambiguously applied to it. However, by self-similarity, it is in fact only necessary to append a
finite string of sufficiently large length.

In the lemma below, and henceforth, we will always assume that for each x ∈ F there is some
gx ∈ S with x ∈ dom(gx) and dom(gx) open.

Lemma 4.2. Let S be a self-similar inverse semigroup acting on the Markov chain F . Then ∼ae

is reflexive. Suppose that S is contractive and e ∼ae f . Then we may take each gn ∈ N in (4.1)
for N some semi-nucleus, and there exists w ∈ F and h ∈ N , not depending on n, such that

(4.2) gn · (e−n · · · e−3e−2e−1w) = f−n · · · f−3f−2f−1(h · w)
In particular, ∼ae is symmetric.

Proof. By compactness, one can choose a finite number of xi ∈ F , i = 1, . . . , k, with the union
of dom(gi) covering F , where gi := gxi , as defined above. Thus we have idempotents hi = g−1

i gi
which still have domains dom(hi) = dom(gi) covering F . Given e = · · · e−2e−1 ∈ F− take any
w ∈ F with r(w) = s(e1). Then we may take each gn to be some hi, with e−n · · · e−1w ∈ dom(hi).
Since each hi is an idempotent, we have that gn(e−n · · · e−1w) = e−n · · · e−1w, so e ∼ae e. This
only requires our earlier assumption of open domains of elements covering F and does not need
self-similarity.

Suppose now that S is contractive. By Lemma 3.8 we may choose a semi-nucleus N for S. Given
gn, we have some k(gn) ∈ N as required from Definition 3.5. By finiteness of {gn}, we may take
K = maxn k(gn) <∞. Then

gn+K · (e−(n+K) · · · · · · e−1w) = f−(n+K) · · · f−(n+1)h · (e−n · · · e−1w) = f−(n+K) · · · f−1w
′,

for some w′ ∈ F and h ∈ N , so we may suppose without loss of generality that gn = h ∈ N .
Since this applies for each n ∈ N, and N is finite, we see that we may take {gn} as a sequence in
N .

By repeated application of (3.6), for each n ∈ N we may write

(4.3) gn · (e−n · · · e−3e−2e−1w) = f−n · · · f−3f−2f−1(h · w),
where h ∈ N . By finiteness of N , some h ∈ N as above occurs for infinitely many n. For each n
in this subsequence, we similarly have

gn · (e−n · · · e−3e−2e−1w) = f−n · · · f−3f−2h1 · (e−1w)

for some h1 ∈ N . Some such h1 occurs infinitely often, and we may take g1 = h1. Repeating for
each n ∈ N, the resulting Cantor diagonalisation argument implies that we may take each gn so
that application of (3.6) restricts each gn to gn−1, with the final restriction to the right-infinite
tail h · w not depending on n, as required.

Finally, applying g−1
n to both sides of (4.2), we see that f ∼ae e. □

Whilst the above shows that ∼ae is reflexive and symmetric in the contractive case, it need not
be transitive, as we will see for the tiling semigroup. So ∼ is the transitive closure of ∼ae.
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Remark 4.3. Lemma 4.2 implies that, in the contractive case, we may equivalently define ∼ae

by demanding that the right-infinite tail w′ = h ·w of (4.2) remains constant in n, and that each
gn ∈ N .

Definition 4.4. The limit space J of a self-similar semigroup action is defined as the quotient
space F−/ ∼. The shift map σ : F− → F−, given by · · · e−3e−2e−1 7→ · · · e−4e−3e−2 induces a
map σ : J → J . We denote its inverse limit by

(4.4) Ω := lim←−(J
σ←− J σ←− J σ←− · · · ).

We now return to the case of the tiling semigroup T acting on F ∼= Ωpunc. We construct a
map

(4.5) α : F−−→ Y :=
⊔
p∈P

supp(p),

where the range of the map is the disjoint union of (supports of) prototiles. Since each supp(p) ⊆
Rd, we will occasionally abuse notation by considering a point of Y as also a point of Rd. Let us
recall the following elementary lemma.

Lemma 4.5. Let · · · ⊂ S−3 ⊂ S−2 ⊂ S−1 be a sequence of nested non-empty compact subsets
of Rd such that the corresponding diameters di := supx1,x2∈Si |x1 − x2| → 0 as i → −∞. Then

∩−∞
i=−1Si is a single point in Rd.

We will construct such a nested sequence from elements of F−. This is done using successively
finer partitions of Y under substitution: Given e = · · · e−2e−1 ∈ F−, we let S−1 := supp(s(e−1)).
For n > 1, each supertile extension e−n embeds supp(r(e−n)) into supp(s(e−n)) as subtiles of
scale λ−1 of the original size. Thus, letting S−n := supp(r(e−n)) be the corresponding subset
of S−(n−1), we get a nested sequence of subtile inclusions · · · ⊂ S−2 ⊂ S−1. By Lemma 4.5
their intersection is some point x−∞ ∈ S−n ⊂ Y for each n, and we define a continuous map
α : F−−→ Y by α(e) := x−∞.

Lemma 4.6. Suppose (T ,F) is a self-similar inverse semigroup associated with a recognisable
substitution. We have that e ∼ae f if and only if there is some tiling T ∈ Ωpunc, and tiles t = p+x

and t′ = q + y in T with p, q ∈ P and x, y ∈ Rd such that α(e) ∈ supp(p), α(f) ∈ supp(q) and
α(e) + x = α(f) + y ∈ Rd. That is, α(e) and α(f) are identical points of a prototile, or points on
two different prototile boundaries which can coincide in adjacent tiles in a tiling.

Proof. Suppose that such T ∈ Ωpunc exists with α(e) + x = α(f) + y ∈ Rd considered as points
in the supports of neighbouring tiles t and t′ in T . Using the homeomorphism τ : F → Ωpunc

from (2.4), let we = τ−1(T − x(t)) and wf = τ−1(T − x(t′)). For each n ∈ N, consider the
tilings En = τ(e−n · · · e−2e−1we) and Fn = τ(f−n · · · f−2f−1wf ), respectively. Notice that the
sequences of tilings (En) and (Fn) are given by successive substitution (with initial letters e−n

and f−n determining the exact placement by giving the tiles over the origin that are in the
substitutions of the tiles over the origin in En−1 and Fn−1). It follows from the definition of α
that En and Fn continue to be equal as n increases, up to a shift from the origin tile of En to the
adjacent origin tile of Fn, because these tilings (once scaled down by λ−n and viewed as having
tiles decomposing En−1 and Fn−1) are chosen as those with tiles over the origin still containing
α(e) + x = α(f) + y. It follows that we may choose semigroup elements gn ∈ T corresponding to
translations between adjacent tiles and so that gn · τ−1(En) = τ−1(Fn). This shows that (4.2) is
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satisfied with h = [q, Ppq, p] where Ppq may be taken as a star-patch with p, q meeting analogously
to t and t′. By FLC, there are only finitely many such patches, so e ∼ae f .

Conversely, suppose that e ∼ae f , and take w, (gn) and h as in (4.2). We have that

(4.6) gn · (e−n · · · e−3e−2e−1w) = f−n · · · f−1(h · w),
where each gn ∈ N and h ∈ N . Hence, we have tilings T = τ(w) and T ′ = τ(h · w) which are
equal up to a translation between adjacent origin tiles t = t0 ∈ T and t′ = t′0 ∈ T ′. Moreover,
for each level n of substitution, the tilings En = τ(e−n · · · e−2e−1w) and Fn = τ(f−n · · · f−2f−1w)
remain equal up to translation between adjacent origin tiles tn ∈ φ(tn−1) and t′n ∈ φ(t′n−1). So
we have T − x(t′) = T ′ and, letting t = p + x and t′ = q + y for p, q ∈ P, by definition of α we
have that α(e) + x = α(f) + y, as required. □

Theorem 4.7. Suppose (T ,F) is a self-similar inverse semigroup associated with a recognisable
substitution φ. The limit space J is homeomorphic to the Anderson–Putnam complex of the
substitution, and the inverse limit Ω in (4.4) is conjugate to the continuous hull Ωφ.

Proof. Let x ∼AP y be the the relation on Y that identifies points of prototiles that coincide in
some tiling. The Anderson–Putnam complex Γ0 [1] is defined as the quotient of Y under the
transitive closure of ∼AP. Let us denote the quotient map by qAP : Y → Γ0. We have that
α : F− → Y is also a quotient map, since it is a surjective map between compact Hausdorff
spaces. By Lemma 4.6, we have that e ∼ae f in F− if and only if α(e) ∼AP α(f). It follows
that the quotient map q : F− → J may be identified with composition qAP ◦ α and hence J is
homeomorphic to the Anderson–Putnam complex Γ0.

Given e ∈ F−, its shift in the limit space may be identified with qAP(α(σ(e))). By the definition
of α, the point α(σ(e)) ∈ Y is given by substituting α(e), considered as a point of a prototile
in Y . Hence σ : J → J agrees with the map induced by substitution on the Anderson–Putnam
complex, so Ω is the continuous hull by [1, Theorem 4.3]. □

Remark 4.8. Definition 4.4 generalises the notion of the limit space and associated inverse limit
(the limit solenoid) for self-similar groups. In the case of self-similar semigroups, a notion of
the limit solenoid has already been defined without use of the intermediary limit space, as a
quotient on the bi-infinite Markov shift FZ by an equivalence relation similar to the asymptotic
equivalence relation above [15, Definition 3.4]. In the case considered here, there is a natural map
β : FZ → Ωφ, defined as follows. Given w = w−w+ ∈ FZ, where w− = · · · e−2e−1 ∈ F− and
w+ = e0e1 · · · ∈ F , we define β(w) to be the tiling τ(w+), translated with the origin over the
point corresponding to α(w−) in the origin tile r(w+) = s(w−). This defines a quotient map to
the tiling space, and it is easy to see that it identifies points of the Markov shift if and only if
they correspond to addresses which are adjacent at all levels, that is, they may be related by a
finite sequence of elements gn ∈ N .

5. examples

In this section we study several well-known 1- and 2-dimensional examples of tiling semigroups
and their self-similar actions.

Example 5.1. We return to the border forcing Fibonacci tiling of Examples 2.3 and 3.4. The
self-similar inverse semigroup is generated by doubly pointed patches consisting of all possible
single tile patches and connected pair patches appearing anywhere in a Fibonacci tiling. Note
that Figures 5.1 and 5.2 show how we geometrically deduce the self-similar relation on a selection
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b

a d

[a, ad, d]
(a, b) (d, b)

‡ ‡

‡ ‡ c

a d

[a, ad, d]
(a, c) (d, c)

‡ ‡

‡ ‡ d b

b a d

[b, ba, a]
(b, d)

[d, db, b]

(a, b)

‡ ‡ ‡

‡‡

Figure 5.1. An illustration of how the first three formulae after (5.1) are deduced.
The double daggers at tile edges denote supertile boundaries.

a d

a d b

b a d

[a, ba, b]
(b, d)

[b, db, d]

(a, b)

(d, a) (b, d)

‡ ‡

‡

‡

‡‡

‡ ‡ b a

a d c d

b a d

[a, ba, b](b, d)

[c, dc, d]

(a, c)

(d, b) (c, a)

‡ ‡

‡

‡

‡‡

‡ ‡

Figure 5.2. An illustration of how the first three formulae after (5.2) are deduced.
The double daggers at tile edges denote supertile boundaries.

of generating elements. The following doubly pointed patches, represented here along with their
self-similar action, generate the semigroup of the Fibonacci tiling.

[a, ad, d] · (d, b)w = (a, b)w;(5.1)

[a, ad, d] · (d, c)w = (a, c)w;

[b, ba, a] · (a, b)w = (b, d) [d, db, b] · w;
[b, ba, a] · (a, c)w = (b, d) [d, dc, c] · w;
[c, cd, d] · (d, a)w = (c, a)w;

[d, db, b] · (b, d)(d, a)w = (d, c) [c, cd, d] · (d, a)w;
[d, db, b] · (b, d)(d, b)w = (d, a) [a, ad, d] · (d, b)w;
[d, db, b] · (b, d)(d, c)w = (d, a) [a, ad, d] · (d, c)w;

[d, dc, c] · (c, a)w = (d, b) [b, ba, a] · w;
[a, ba, b] · (b, d)(d, a)w = (a, b) [b, db, d] · (d, a)w;(5.2)

[a, ba, b] · (b, d)(d, b)w = (a, c) [c, dc, d] · (d, b)w;
[a, ba, b] · (b, d)(d, c)w = (a, b) [b, db, d] · (d, c)w;

[b, db, d] · (d, a)w = (b, d) [d, ad, a] · w;
[b, db, d] · (d, c)w = (b, d) [d, cd, c] · w;
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p2

p3

p4

p5

p0

p1

p0
p0

p2

p3

p4

φ

Figure 5.3. The half-hex prototiles are on the left and the substitution of p0 is
on the right. All other substitutions are rotations of p0 by nπ/3.

p0

p1

p2

p3

p4

p5

Figure 5.4. The substitution graph of the half-hex tiling.

[c, dc, d] · (d, b)w = (c, a) [a, ba, b] · w;
[d, ad, a] · (a, b)w = (d, b)w;

[d, ad, a] · (a, c)w = (d, c)w;

[d, cd, c] · (c, a)w = (d, a) · w.
□

Example 5.2. The simplest border-forcing 2-dimensional example comes from the half-hex tiling.
We note that there are six prototiles {p0, p1, p2, p3, p4, p5}, where the subscript denotes the number
of rotations of p0 by π/3. Similarly, the substitution of each prototile is equivalent up to rotations
by nπ/3, see Figure 5.3. Thus, always taking addition to be mod 6, the supertile extensions can
be written as:

{(pi, pi), (pi+2, pi), (pi+3, pi), (pi+4, pi) | i = 0, 1, 2, 3, 4, 5}.

The substitution of p0 appears in Figure 5.3. The graph associated with this substitution appears
in Figure 5.4.

The self-similar inverse semigroup is generated by the collection of doubly pointed patches con-
sisting of all single tile patches and connected pair patches appearing in a half-hex tiling. All
such tile pairs appear in Figure 5.5 up to rotation. Since we can’t unambiguously represent two
tile patches by a pair of tiles, like in the Fibonacci case, we take a new tact. Here we represent
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pi

pi+3

Api+3pi

pi

pi+1
Bpi+1pi

pi

pi+2
Bpi+2pi

pi

pi+3

Cpi+3pi

pi

pi+4

Cpi+4pi

pi

pi+2

Cpi+2pi

pi

pi+5

Dpi+5pi

pi

pi+4

Dpi+4pi

Figure 5.5. The possible two-tile patches with respect to reference tile pi.

a doubly pointed patch simply by Eqp, where qp represents a two-tile patch q ∪ p and E is the
edge of p connecting p to q. Note also that we are ordering by function composition. So, Eqp

represents the translation vector from x(p) to x(q) across edge E of tile p. For p0, we set edges
A–D to be the 4 edges starting from the bottom and rotating counterclockwise. See Figure 5.5
for clarity.

We begin by describing the self-similar relation for the generating doubly pointed patches across
the long edge of tile pi, labelled A. Note that all subscripts are treated mod 6 and w ∈ F .

Api+3pi · (pi, pi)w = (pi+3, pi+3) Api+3pi · w;(5.3)

Api+3pi · (pi, pi+2)(pi+2, pi+5)w = (pi+3, pi+1) Dpi+1pi+2 · (pi+2, pi+5)w;

Api+3pi · (pi, pi+2)(pi+2, pi+2)w = (pi+3, pi) Dpipi+2 · (pi+2, pi+2)w;

Api+3pi · (pi, pi+3)(pi+3, pi+5)w = (pi+3, pi+5) Cpi+5pi+3 · (pi+3, pi+5)w;

Api+3pi · (pi, pi+3)(pi+3, pi+1)w = (pi+3, pi+1) Cpi+1pi+3 · (pi+3, pi+1)w;
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(p0, p0)

(p3, p3)

Ap3p0

(p0, x)

(p3, x)

Ap3p0

Figure 5.6. An illustration of the first formula

Ap3p0 · (p0, p0)w = (p3, p3) Ap3p0 · w
in (5.3) with i = 0. The left-hand side shows the action Ap3p0 · (p0, p0) = (p3, p3)
and the right-hand side shows that the element Ap3p0 comes from the relationship
between 1-supertiles.

(p0, p2)

(p3, p1)

Ap3p0

(p2, x)

(p1, x)

Dp1p2

Figure 5.7. An illustration of the second formula

Ap3p0 · (p0, p2)(p2, p5)w = (p3, p1) Dp1p2 · (p2, p5)w
in (5.3) with i = 0. The left-hand side shows the action Ap3p0 · (p0, p2) = (p3, p1)
and the right-hand side shows that the element Dp1p2 comes from the relationship
between 1-supertiles.

Api+3pi · (pi, pi+3)(pi+3, pi)w = (pi+3, pi) Cpipi+3 · (pi+3, pi)w;

Api+3pi · (pi, pi+4)(pi+4, pi+1)w = (pi+3, pi+5) Bpi+5pi+4 · (pi+4, pi+1)w;

Api+3pi · (pi, pi+4)(pi+4, pi+4)w = (pi+3, pi) Bpipi+4 · (pi+4, pi+4)w.

In order to geometrically understand these relations, we illustrate the first two self-similar relations
from (5.3) in Figures 5.6 and 5.7.

We now describe the semigroup elements Bqp, Cqp and Dqp across the shorter edges of tile p.
Again, we note that all subscripts are treated mod 6 and w ∈ F .
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Figure 5.8. A patch of a Penrose tiling.

Bpi+1pi · (pi, pi+2)w = (pi+1, pi+5) Api+5pi+2 · w;
Bpi+1pi · (pi, pi+3)w = (pi+1, pi+3)w;

Bpi+1pi · (pi, pi+4)w = (pi+1, pi+4)w;

Bpi+2pi · (pi, pi)w = (pi+2, pi)w;

Cpi+2pi · (pi, pi+2)w = (pi+2, pi+2)w;

Cpi+3pi · (pi, pi)w = (pi+3, pi)w;

Cpi+3pi · (pi, pi+3)w = (pi+3, pi+3)w;

Cpi+4pi · (pi, pi+4)w = (pi+4, pi+4)w;

Dpi+4pi · (pi, pi)w = (pi+4, pi)w;

Dpi+5pi · (pi, pi+2)w = (pi+5, pi+2)w;

Dpi+5pi · (pi, pi+3)w = (pi+5, pi+3)w;

Dpi+5pi · (pi, pi+4)w = (pi+5, pi+1) Api+1pi+4 · w.

Let us note that some relations here could have been omitted by also exploiting the reflective
equivariance of substitution. We shall make use of this in the following example. □

Example 5.3. The most well-known 2-dimensional example was given by Penrose [16], repre-
sented here as Robinson triangles. We note that there are forty prototiles {ai, bi, rai, rbi | i =
0, . . . , 9}, where the subscript denotes the number of rotations by π/5. By rai, we mean the
reflection of the tile a0 across the vertical, followed by rotation by iπ/5, and analogously for rbi
(we emphasise that we reflect the tile a0 first, and then rotate). The substitutions of a0 and b0
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a0

φ

a7

b3

b0

φ

rb0 b4

ra6

Figure 5.9. Penrose substitution.

a0

a2

a4a6

a8

ra1

ra3

ra5

ra7

ra9 ra0

ra2

ra4ra6

ra8

a1

a3

a5

a7

a9

rb0

rb2 rb4

rb6

rb8

b5

b7

b9

b1b3

b4

b6 b8

b0

b2

rb1

rb3

rb5

rb7rb9

Figure 5.10. The Anderson–Putnam complex of the Penrose tiling [1].

appear in Figure 5.9. We have not attempted to display the graph of the substitution. All other
prototiles are rigid motions of these and substitution on them is determined by equivariance of
the substitution φ. For example, we have that φ(ra4) = φ(θ4(τa0)) = θ4 ◦ τ(φ(a0)), where θ4
is rotation by 4π/5 and τ is reflection across the vertical. Thus, always taking addition to be
mod 10, the supertile extensions can be written as

(ai+7, ai), (bi+3, ai), (rbi, bi), (rai+6, bi), (bi+4, bi)

along with the required rigid motions of the above (thus there are 20×5 = 100 in total). A patch
of the Penrose tiling appears in Figure 5.8.

The self-similar inverse semigroup is generated by the collection of doubly pointed patches con-
sisting of all single tile patches and adjacent pair patches appearing anywhere in a Penrose tiling.
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The Anderson–Putnam complex [1, Section 10.4], copied in Figure 5.10, neatly illustrates each
possible two-tile patch using the edge identifications. As per the previous example, we will denote
doubly pointed patches by Eqp, which denotes the semigroup element transitioning from tile p to
q across edge E of tile p. Here the edges will be given by {B,L,R}, denoting the edges on the
Bottom, Left, or Right of prototile p with orientation from Figure 5.9. Thus, Lra9a0 represents
the translation across edge L from tile a0 to tile ra9, see the top left of Figure 5.10 to see this
pair (within a 10-gon of tiles).

We now describe the generating two-tile patch elements associated with moving across an edge of
ai. Again, we note that all subscripts are treated mod 10 and w ∈ F .

Brai+5ai · (ai, ai+3)w = (rai+5, bi+9) Lbi+9ai+3
· w;

Lbi+6ai · (ai, ai+3)w = (bi+6, ai+3)w;

Rrai+1ai · (ai, ai+3)w = (rai+1, rai+8) Brai+8ai+3 · w;
Brai+5ai · (ai, rbi+6)(rbi+6, rai+2)w = (rai+5, rai+2) Rrai+2rbi+6

· (rbi+6, rai+2)w;

Brai+5ai · (ai, rbi+6)(rbi+6, bi+6)w = (rai+5, rai+2) Rrai+2rbi+6
· (rbi+6, bi+6)w;

Brai+5ai · (ai, rbi+6)(rbi+6, rbi)w = (rai+5, bi+9) Lbi+9rbi+6
· (rbi+6, rbi)w;

Lbi+6ai · (ai, rbi+6)w = (bi+6, rbi+6)w;

Rrbi+2ai · (ai, rbi+6)w = (rbi+2, rbi+6)w.

Note that reflection acts on tiles by ai ↔ ra−i, bi ↔ rb−i and edge types by B ↔ B, L ↔
R. Therefore, the above relations determine also those for reflections. For example, the last
row determines the relation Lbi+8rai · (rai, bi+4)w = (bi+8, bi+4)w, where we apply the above
conversions, write −2 ≡ 8 mod 10 etc., and also substitute −i with i.

The following relations describe the generating two-tile patch inverse semigroup elements associ-
ated with moving across an edge of bi.

Brbi+5bi · (bi, ai+7)(ai+7, ai)w = (rbi+5, rai+8) Rrai+8ai+7 · (ai+7, ai)w;

Brbi+5bi · (bi, ai+7)(ai+7, rbi+3)w = (rbi+5, rbi+9) Rrbi+9ai+7
· (ai+7, rbi+3)w;

Lai+4bi · (bi, ai+7)w = (ai+4, ai+7)w;

Rrbi+3bi · (bi, ai+7)w = (rbi+3, bi+3) Lbi+3ai+7
· w;

Brbi+5bi · (bi, bi+6)(bi+6, ai+3)w = (rbi+5, rbi+9) Rrbi+9bi+6
· (bi+6, ai+3)w;

Brbi+5bi · (bi, bi+6)(bi+6, bi+2)w = (rbi+5, rai+8) Rrai+8bi+6
· (bi+6, bi+2)w;

Brbi+5bi · (bi, bi+6)(bi+6, rbi+6)w = (rbi+5, rbi+9) Rrbi+9bi+6
· (bi+6, rbi+6)w;

Lrbi+7bi · (bi, bi+6)w = (rbi+7, rbi+1) Brbi+1bi+6
· w;

Rrai+2bi · (bi, bi+6)w = (rai+2, bi+6)w;

Brbi+5bi · (bi, rbi)w = (rbi+5, bi+5) Bbi+5rbi · w;
Lai+4bi · (bi, rbi)w = (ai+4, rbi)w;

Rrbi+3bi · (bi, rbi)(rbi, rai+3)w = (rbi+3, rai+6) Rrai+6rbi · (rbi, rai+3)w;

Rrbi+3bi · (bi, rbi)(rbi, bi)w = (rbi+3, rai+6) Rrai+6rbi · (rbi, bi)w;
Rrbi+3bi · (bi, rbi)(rbi, rbi+4)w = (rbi+3, bi+3) Rbi+3rbi · (rbi, rbi+4)w. □
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