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Deviations from general relativity can alter the quasinormal mode (QNM) ringdown of perturbed black
holes. It is known that a shift-symmetric (hence massless) scalar can only introduce black hole hair if it
couples to the Gauss-Bonnet invariant, in which case the scalar charge is fixed with respect to the black hole
mass and controlled by the strength of that coupling. The charge per unit mass decreases with the mass and
can, therefore, be used as a perturbative parameter for black holes that are sufficiently large with respect to
the scale suppressing the deviation from general relativity or the Standard model. We construct an effective
field theory scheme for QNMs using this perturbative parameter to capture deviations from Kerr for both
the background and the perturbations. We demonstrate that up to second order in the charge per unit mass,
QNMs can be calculated by solving standard linearized perturbation equations for the Kerr metric with
sources depending on solutions of the same equations up to first order. It follows that corrections to the
QNM frequencies are heavily suppressed for sufficiently massive black holes, meaning that LISA is very
unlikely to detect any evidence of scalar hair in ringdown signals.
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I. INTRODUCTION

The detection of gravitational waves (GWs) emitted by
compact binary sources with the LIGO, Virgo, and
KAGRA (LVK) interferometers [1–4] has opened a new
window on the physics of black holes and neutron stars.
The data from the 90 binary mergers observed thus far have
shed new light on the dynamical, strong field regime of
gravity, leading to tests of general relativity (GR) [5–10]
that complement previous tests in the weak regime [11], as
well as tests performed using pulsars [12,13]. The exten-
sion of the ground-based detector network to include the
Einstein Telescope [14] and Cosmic Explorer [15], as well
as the planned launch of the space-based detector LISA
[16], promises to bring higher precision constraints on
deviations from GR [17–21].
A key prediction of GR is encoded in uniqueness

theorems that state that black holes belong to the Kerr
family [22] and are characterized exclusively by their mass
and angular momentum [23,24], neglecting electric
charges. The detection of a black hole endowed with hair
(scalar or of another kind) would, therefore, challenge GR
or reveal the existence of new fundamental fields. Such a

detection could involve the GWs emitted by a perturbed
black hole as it reaches equilibrium, for example, in the
“ringdown” phase of a binary black hole merger.
The ringdown emission of a black hole in GR is modeled

using quasinormal modes (QNMs) (see Refs. [25–27] for
reviews), characterized by complex frequencies. That is,
the time dependence of QNM perturbations hμν can be
expressed as

hμν ∼ e−iωt; ð1Þ

where ω ¼ ωR þ iωI . QNMs decay as they radiate into the
black hole horizon and future null infinity; therefore, ωI is
negative. The QNM frequencies, ω, depend only on the
mass and angular momentum of the black hole, due to the
uniqueness theorems. In principle, GWobservations can be
used to perform “black hole spectroscopy” [28,29], i.e., to
determine the parameters of the black hole starting from the
spectrum of the QNM frequencies; two or more frequencies
would need to be extracted from GW data for this process
to work. Thus far, confident detections of fundamental
modes have been reported [5,8,9]. At the same time, there
are ongoing debates regarding the significance of including
higher overtones in ringdown models [30–33] and the
putative detections of overtones in LVK data [34–37].
Similarly, there is interest in including second-order QNMs
in models and the prospect of detecting the so-called
quadratic second-order modes [38–43]. Future LVK
observing runs, as well as the new detectors, will bring
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more precise measurements and are therefore expected to
clarify the significance of these subtle GR effects.
Advances in black hole spectroscopy could also provide

a method of probing any additional black hole hair; indeed,
the spectra of hairy black holes will generically differ from
that of Kerr [44]. Using a Bayesian analysis, Ref. [45]
found that ringdown signals detected by LISA could be
used to constrain deviations to GR within 10% and, at best
1%. A key question is: how large are the deviations one
expects to get from well-motivated theories beyond GR and
the Standard Model (SM)?
Light scalar fields are ubiquitous in extensions of GR

and the SM, so efforts to determine the QNM spectrum
for black holes with scalar hair are receiving considerable
attention. We highlight a few approaches that have
recently been proposed to perform this task. The first
consists of developing an effective field theory (EFT)
for perturbations on a background spacetime before
studying the dynamics of the perturbations in this model-
independent framework. In one such study [46], the EFT
for perturbations of static, spherically symmetric black
holes with a spacelike scalar profile in scalar-tensor
theories was formulated. After defining the metric per-
turbations in the traditional form of Regge and Wheeler
[47], and separating even- and odd-parity perturbations,
the equations of motion for the perturbations can be
obtained from the EFT, paving the way for calculations of
QNM frequencies. In principle, the analysis can also
proceed in the opposite direction, with direct measure-
ments of QNM frequencies leading to constraints on the
EFT parameters. This framework was subsequently
extended to slowly rotating black holes [48].
In a similar vein, an EFT for black hole perturbations in

scalar-tensor theories about an arbitrary background geom-
etry, with a timelike scalar profile, has been developed [49],
and later applied to static, spherically symmetric back-
grounds to derive the analogue of the Regge-Wheeler
equation for the odd perturbations [50]. From this equation,
the QNM frequencies of the odd perturbations have been
found for the stealth-Schwarzschild [51] and Hayward [52]
solutions. A further EFT-based approach has been devel-
oped in the context of higher-derivative models of gravity,
followed by the derivation of a Teukolsky equation and the
calculation of QNM frequencies for rotating black holes
[53–56]. The derivation of a Teukolsky equation, which is
satisfied by the perturbed Weyl scalars (in terms of which
gravitational perturbations can be expressed), represents a
second approach to calculating QNM spectra in modified
theories of gravity. A different approach to obtaining a
modified Teukolsky equation has been derived for pertur-
bations to non-Ricci-flat Petrov type I black hole back-
grounds [57]. Finally, in [58], a perturbative treatment in
the couplings controlling the deviations from GR has been
used to develop a formalism for calculating QNM spectra
with a Teukolsky equation.

In practice, “no-hair” theorems significantly limit the
range of theoretical scenarios that lead to black hole hair.
For example, a broad range of couplings of scalar fields to
gravity are covered by no-hair theorems [59–63] for
asymptotically flat, stationary black holes. For shift-
symmetric scalars, there exists a no-hair theorem [64]
for static and spherically symmetric black holes, which
has been extended to slowly rotating black holes [65]. It has
been shown that the only coupling between a shift-
symmetric, and hence massless, scalar and gravity that
can evade this no-hair theorem, without leading to more
degrees of freedom and without compromising local
Lorentz symmetry [66], is a linear coupling with the
Gauss-Bonnet invariant, G ¼ RμνλκRμνλκ − 4RμνRμν þ R2

[65]. Even when one includes other shift-symmetric cou-
plings, as we will discuss in more detail below, the scalar
charge per unit mass q is given by

4πq ¼ α

M2

Z
H
nμGμ; ð2Þ

where α is the coupling controlling the ϕG interaction,M is
the black hole mass, nμ is the normal to the horizonH, and
Gμ is implicitly defined by G≡∇μGμ (recalling that G is a
total divergence) [66]. Equation (2), together with the
assumption that the new shift-symmetric terms do not
introduce new length scales that are significantly larger
than the one associated with α, implies that the charge per
unit mass scales as M−2 for any given theory. Hence, large
enough black holes, with respect to the scale associated
with α, will be very weakly charged.
Motivated by this observation, we develop an alternative

approach for calculating deviations from the GR spectrum
of QNM frequencies in the small charge/large mass limit.
Restricting attention to a metric and a massless scalar, we
work with the shift-symmetric Horndeski action. This
pragmatic approach is much simpler than theory agnostic
methods, where one attempts to construct an EFT for black
hole perturbations using symmetries, analogous to the EFT
of inflation, even though the symmetries are far more
limited in the black hole case. Of course, as the most
general action that yields second-order field equations (up
to field redefinitions), the shift-symmetric Horndeski action
automatically includes all interactions for the chosen field
content. Making use of the scaling of the charge with the
black hole mass, we then perform a double expansion in the
charge (per unit mass) and in linear dynamical perturba-
tions. This reduces the action to a well-defined EFT,
faithfully describing perturbations in the small charge/large
mass limit, and allows us to define a hierarchical set of
perturbative field equations.
We expect our framework to be particularly well suited

to LISA observations of supermassive (and intermediate-
mass) black hole mergers [67]. Observations of black holes
in the range of a few solar masses by LVK and other strong
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field observations tend to yield constraints on the length
scale of new couplings of the order of km [68–75]. In
particular, this would imply that supermassive black holes
of 105–106 solar masses would indeed have very small
charges.
Similar considerations have recently been used to sim-

plify the problem of modelling extreme mass ratio inspirals
(EMRIs) in theories with an additional scalar field [76–79].
The deviation due to any charge of the supermassive
primary has been shown to be entirely negligible, and
instead, observations are expected to place stringent con-
straints on the charge of the secondary [76]. This is in stark
contrast with conventional thinking about EMRIs, which
sees the motion of the secondary as a probe of the
spacetime of the primary. In the case of QNMs with
LISA, however, the focus is on a single, postmerger excited
black hole. This is the case we are considering here to
assess if LISA measurements of the QNM ringdown can be
used to detect deviations from the Kerr spacetime and GR.
Throughout this paper, unless otherwise specified, we

employ geometric units with c ¼ G ¼ 1.

II. THEORETICAL BACKGROUND

The action for shift-symmetric Horndeski gravity, invari-
ant under a shift ϕ → ϕþ constant of the scalar ϕ, is

SH ¼ 1

16π

X5
i¼2

Z
d4x

ffiffiffiffiffiffi
−g

p
Li þ SM; ð3Þ

where the Lagrangians Li are given by

L2 ¼ KðXÞ
L3 ¼ −G3ðXÞ□ϕ

L4 ¼ G4ðXÞRþ G4XðXÞ½ð□ϕÞ2 − ð∇μ∇νϕÞ2�

L5 ¼ G5ðXÞGμν∇μ∇νϕ −
G5X

6
½ð□ϕÞ3

− 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�; ð4Þ

with K and Gi arbitrary functions of X ¼ − 1
2
∇μϕ∇μϕ in

the shift-symmetric case [80]. Above, we have employed
the notation fX ¼ df=dX, ð∇μ∇νϕÞ2 ¼ ∇μ∇νϕ∇μ∇νϕ,
ð∇μ∇νϕÞ3 ¼ ∇μ∇νϕ∇ν∇λϕ∇λ∇μϕ, while R and Gμν are
the Ricci scalar and the Einstein tensor, respectively. The
matter action is SM; here, we do not consider additional
matter beyond the scalar ϕ.
Shift-symmetric theories described by Eq. (3) have been

divided into three classes, according to whether they admit
solutions with the trivial scalar field profile ϕ ¼ 0 in flat
space or curved spacetimes [66]. The first class consists of
theories allowing ϕ ¼ 0 solutions and, therefore, all GR
solutions. The second class comprises theories that admit
Minkowski as a solution with ϕ ¼ 0 but otherwise have

solutions with nontrivial scalar field configurations. The
third class does not admit flat space with constant scalar as
a solution and is in clash with Local Lorentz symmetry. The
first two classes are actually related; if L̃ belongs to the first
class and L is in the second class, then

L ¼ L̃þ αϕG; ð5Þ

where α is a coupling constant with dimensions length
squared. Moreover, the Lagrangian L̃ can be written as the
sum of the terms in Eq. (4), with coefficients G̃iðXÞ
satisfying specific analyticity conditions as X → 0 [66].
These conditions are met for the choice,

K̃ðXÞ ¼ X þOðX2Þ;
G̃3ðXÞ ¼ τ3X þOðX2Þ;
G̃4ðXÞ ¼ 1þ τ4X þOðX2Þ;
G̃5ðXÞ ¼ τ5X þOðX2Þ: ð6Þ

The coupling constant preceding the leading order term in
K̃ðXÞ can be set to one without loss of generality by
rescaling the scalar. K̃ does not include a constant term, as
that corresponds to a cosmological constant which we
assume to vanish; constant terms in G̃3ðXÞ and G̃5ðXÞ give
total derivatives, so their values can be safely set to zero,
and the expansions start at order X; G̃4 starts with a
constant term whose value is chosen to be one, so that we
get GR as X → 0.
We can then write the Lagrangian for our shift-symmetric

theory as in Eq. (5), where L̃ admits GR solutions, and the
full theory admits curved spacetimes with non-trivial scalar
profiles. This statement highlights the importance of the
linear coupling of the scalarwith theGauss-Bonnet invariant,
which, as discussed in Sec. I, is the unique term in Lorentz
invariant, shift-symmetric Horndeski theories which allows
for the evasion of a no-hair theorem, leading to solutionswith
nontrivial scalar field profiles.We note that the actionwritten
in this form is still shift-symmetric, as G ¼ ∇μGμ is a total
divergence in four dimensions.
Bounds on the value of α have been obtained from

astrophysical observations of black hole low mass x-ray
binaries [68] and neutron stars [69], and from gravitational
wave observations of binary black holes [70–73] and
neutron star black hole binaries [74] in the first three
LVK observing runs. The strongest bound to date has been
found by studying the minimum mass of a black hole in
theories with a nonminimal coupling between ϕ and G; for
the linear coupling ᾱϕG, with ᾱ ¼ 1

16π α, the upper bound isffiffiffī
α

p ≲ ð0.82� 0.03Þ km [75].
The coupling constants α, τ3 and τ4 have dimensions of

length squared, while τ5 has dimensions of length to the
power of 4. These couplings are expected to be related in a
natural theory. Indeed, the Lagrangian for an EFT with
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natural couplings can be written schematically as L ¼P
k
f4

μk
Ok½φν�where f, μ, ν are the corresponding mass scales

of the theory,φ describes the canonically normalized bosonic
degrees of freedom, and the operators Ok are assumed to
contain k derivatives and coefficients of order one [81]. If we
focus on the structure of the canonically normalized kinetic
terms, we can easily identify f ∼ ffiffiffiffiffi

μν
p

[82]. All of this
suggests that natural Horndeski theories can bewritten in the

formL ¼ μ2M2
PF ðgαβ; Rαβγδ

μ2
;ϕ; ∇αϕ

μ ; ∇α∇βϕ

μ2
Þwhere the scalar

ϕ is taken to be dimensionless andF admitting an expansion

in Rαβγδ

μ2
;ϕ; ∇αϕ

μ and ∇α∇βϕ

μ2
with order one coefficients. Note

that we have also temporarily reinstated the Planck scale,
M2

P ¼ 1=8πG. When applied to the Lagrangian of Eq. (5),
naturalness considerations now imply that α ∼ τ3 ∼ τ4 ∼
1=μ2 and τ5 ∼ 1=μ4. However, as we will see later, our
effective description remains under control even when the τi
are much larger than their natural values.
In a standard EFT approach one could consistently

consider higher order operators that yield higher order
equations of motion. Such operators should remain as small
corrections to the leading order results presented. This is
expected to be the case, since on grounds of naturalness,
each new derivative comes with a power of 1=μ∼ffiffiffi
α

p
∼ ffiffiffi

q
p

. If such terms do become dominant, we have
excited the new degrees of freedom associated with those
higher derivatives, representing a breakdown of our effec-
tive description in terms of the degrees of freedom of a
massless scalar and a massless tensor.
In the absence of any additional matter content in the

theory beyond the scalar ϕ, the field equation for the metric
is of the form,

Gμν ¼ Tϕ
μν; ð7Þ

where Tϕ
μν is the energy-momentum tensor for ϕ. The full

equation for the general Horndeski theory without shift-
symmetry can be found in [83]; the contribution of the ϕG
term to Eq. (7) is given in [80].
The equation of motion for the scalar in the theory L̃

belonging to the first class of shift-symmetric Horndeski
theories can be written as the conservation law,

∇μJ̃μ ¼ 0; ð8Þ

with the current J̃μ found in [80]. The scalar equation for
Eq. (5) is then

∇μðJ̃μ − αGμÞ ¼ 0: ð9Þ

It has been shown that for stationary black hole solutions
of mass M belonging to the two subclasses of shift-
symmetric Horndeski theories described above, the dimen-
sionless scalar charge q obeys Eq. (2). As α → 0, the
scalar charge vanishes, and the theory Eq. (5) reduces to a

shift-symmetric Horndeski belonging to the first class,
resulting in GR solutions with constant ϕ. Therefore, the
beyond-GR solutions with nontrivial scalar field profiles are
continuously connected to the GR ones, in the limit that α,
and therefore q, go to zero. Consequently, beyond-GR
behavior in this class of shift-symmetric theories is inversely
proportional to the square of the black hole mass. These
statements motivate the development of a perturbative treat-
ment for the ringdown of black holes with scalar hair about a
perturbed GR solution, with q serving as the perturbative
parameter. Note that our formalism does not capture sol-
utions that are parametrically disconnected from those inGR.

III. PERTURBATIVE FRAMEWORK

The analysis of QNMs in shift-symmetric Horndeski
theories arises naturally in a perturbative formalism, allowing
us to calculate the deviations to the GRQNMs in terms of q,
or α. Our approach consists of a double expansion; initially,
we consider a dynamical perturbation, parameterized by ε, of
a GR background. Following the standard first-order pro-
cedure, our formalism results in the GR description of black
hole ringdown, with an additional scalar field perturbation.
We introduce nondynamical perturbations in q in the result-
ing system, generated by the non-GR terms in the action
Eq. (3). We employ the superscripts ðn;mÞ to denote the
order of a quantity with respect to ðε; qÞ.
We limit our expansion to linear perturbations in ε, as is

usual for QNMs, while we go up to quadratic order in q.
The perturbed scalar and metric are then

ϕ ¼ qϕð0;1Þ þ εϕð1;0Þ þ q2ϕð0;2Þ þ εqϕð1;1Þ ð10Þ

gμν ¼ ḡμν þ εhð1;0Þμν þ q2hð0;2Þμν þ εqhð1;1Þμν ; ð11Þ
where ḡμν is the Kerr metric and we set the background
scalar field ϕ̄ to zero using shift-symmetry. The perturba-

tion qhð0;1Þμν is taken to be zero as it is not a physically
excited mode; indeed, in the limit ε → 0, corrections in q to
the metric are due to the scalar perturbations and their
backreaction, and therefore appear at order q2, as is well
known from studying static configurations [80]. Including
higher order corrections in q is straightforward but unnec-
essary considering how small q is expected to be for large
black holes. The size of ε is linked to the amplitude of the
perturbations. It is expected to be larger than q at the onset
of the ringdown, but as QNMs decay the stationary
correction related to q will dominate.

IV. PERTURBATION EQUATIONS

By perturbing Eqs. (7) and (9) with respect to the
background metric and scalar field, using Eqs. (10) and
(11), we obtain the following equations:

δGμν½hð1;0Þμν � ¼ 0; ð12Þ
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δGμν½hð0;2Þμν � ¼ −
1

2
αð0;1Þ½ḡρμḡδν þ ḡρνḡδμ� · ∇σð∇γϕ

ð0;1Þϵ̄ληρσϵ̄αβγδR̄ληαβÞ þ
1

2
∇μϕ

ð0;1Þ∇νϕ
ð0;1Þ −

1

4
ð∇αϕ

ð0;1ÞÞ2ḡμν

þ τ4

�
□ϕð0;1Þ∇μ∇νϕ

ð0;1Þ −∇λ∇μϕ
ð0;1Þ∇λ∇νϕ

ð0;1Þ −
1

2
ḡμν½ð□ϕð0;1ÞÞ2 − ð∇α∇βϕ

ð0;1ÞÞ2�

− R̄μανβ∇αϕð0;1Þ∇βϕð0;1Þ
�
; ð13Þ

δGμν½hð1;1Þμν � ¼ −
1

2
αð0;1Þ½ḡρμḡδν þ ḡρνḡδμ� · ∇σð∇γϕ

ð1;0Þϵ̄ληρσϵ̄αβγδR̄ληαβÞ þ∇ðμϕð0;1Þ∇νÞϕð1;0Þ −
1

2
∇αϕ

ð0;1Þ∇αϕð1;0Þḡμν

þ τ4

�
□ϕð0;1Þ∇μ∇νϕ

ð1;0Þ þ□ϕð1;0Þ∇μ∇νϕ
ð0;1Þ − 2∇λ∇ðμϕð1;0Þ∇λ∇νÞϕð0;1Þ

− ḡμν½□ϕð0;1Þ
□ϕð1;0Þ −∇α∇βϕ

ð0;1Þ∇α∇βϕð1;0Þ� − 2R̄μανβ∇ðαϕð1;0Þ∇βÞϕð0;1Þ
�
: ð14Þ

□ϕð0;1Þ ¼ −αð0;1ÞR̄μνρσR̄μνρσ; ð15Þ

□ϕð1;0Þ ¼ 0: ð16Þ

∇μ and R̄μανβ are associated with the background metric
ḡμν, while we introduce αð0;1Þ by α ¼ qαð0;1Þ, to make it
easier to keep track of perturbation orders, given that
α ∼OðqÞ by Eq. (2). The linearized Einstein operator
acting on the metric perturbations in Eqs. (12) to (14) is

δGμν ¼ δ

�
Rμν−

1

2
gμνR

�
¼
�
ḡμαḡνβ−

1

2
ḡμνḡαβ

�
δRαβ; ð17Þ

with the Lichnerowicz operator,

δRμν½h� ¼ −
1

2
ð□hμν − 2hαðμ;νÞα þ hαα;μνÞ ð18Þ

acting on a general perturbation hμν.

As can be seen from Eq. (12), hð1;0Þμν is a solution of the
homogeneous version of Eqs. (13) and (14), and hence one

only needs to solve for hð1;1Þμν to determine what the detector
would measure. The source in Eq. (14) is therefore non-

stationary, so the particular solution hð1;1Þμν will contain
detectable non-GR QNM perturbations. Moreover,
Eqs. (13) and (14) are sourced by ϕð0;1Þ and ϕð1;0Þ but
not by ϕð0;2Þ and ϕð1;1Þ, which is why we have omitted the
equation for the latter two. We assume ϕð1;0Þ contains all the
homogeneous dynamical QNM content, being a solution to
Eq. (16), and ϕð0;1Þ is the particular solution to Eq. (15),
which is stationary. The particular solution to hð0;2Þ in
Eq. (13) is entirely stationary and does also not contribute

to hð1;1Þμν at the orders we consider; therefore, its contribution
is not detectable, and we do not need to calculate it.
We now focus on the source terms in Eq. (14) and their

magnitude. These include a τ4 contribution but no

contributions from τ3 and τ5. It is important that the τi
are dimensionful and that, in obtaining the equations above
we have assumed they can each be as large as order one in
units of the astrophysical scale M. Even for such large
couplings, the τ3 and τ5 contributions to Eq. (14) are
already beyond εq. This is because these terms contain at
least two copies of the scalar field. However, we have
constructed our expansion under the (small charge)
assumption α ∼ qM2. Assuming that the scale associated
with α is roughly the same as those associated with the τi,
would imply τ3 ∼ τ4 ∼ qM2 and τ5 ∼ q2M4. The absence of
the scale hierarchy is indeed what one expects from the
naturalness arguments we presented earlier, and it intro-
duces a further suppression of the τi contributions. In
particular, it pushes the τ4 contribution in Eq. (14) to order
εq2. One is then left with the much simpler system,

δGμν½hð1;1Þμν � ¼ −
1

2
αð0;1Þ½ḡρμḡδν þ ḡρνḡδμ�

·∇σð∇γϕ
ð1;0Þϵ̄ληρσϵ̄αβγδR̄ληαβÞ

þ∇ðμϕð0;1Þ∇νÞϕð1;0Þ −
1

2
∇αϕ

ð0;1Þ∇αϕð1;0Þḡμν;

ð19Þ

□ϕð0;1Þ ¼ −αð0;1ÞR̄μν ρσR̄μν ρσ; ð20Þ

□ϕð1;0Þ ¼ 0: ð21Þ

Remarkably, the only remaining contributions come from
the αϕG term in the action.
Note, δGμν is computed in a background Kerr spacetime

and therefore has the important property that it admits a
separable Teukolsky equation [84,85], even beyond first-
order [86,87]. This property was used by Ref. [58] to derive
a separable Teukolsky equation in theories beyond GR.
Similarly, one can extract sourced, separable Teukolsky
equations from Eqs. (12) to (14).
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Indeed, from Eq. (19) [or similarly Eq. (14) if the τ4
contributions were retained] we can straightforwardly

derive the frequency of the solutions hð1;1Þμν from the time
dependency of the source terms. All parts of the source are
stationary, apart from ϕð1;0Þ. The solutions ϕð1;0Þ are s ¼ 0

QNMs. Hence the frequency of hð1;1Þμν is also the frequency
of s ¼ 0 QNMs. Now we examine how long-lived the
s ¼ 0 QNMs are compared to the s ¼ 2 QNMs we expect
in GR. Looking at the dominant l ¼ 2, m ¼ 2, n ¼ 0
modes in Schwarzschild [26,88]: for s ¼ 0, ω ¼
0.483644 − 0.0967588i; whereas for s ¼ 2, ω ¼
0.373672 − 0.0889623i. That is, the s ¼ 2 mode decays
slower as the imaginary part of its frequency is less
negative, but only by around 10%. In comparison, the
overtone s ¼ 2, l ¼ 2, m ¼ 2, n ¼ 1 has a frequency of
ω ¼ 0.346711 − 0.273915i and so decays much more
rapidly. Similarly, the imaginary parts of the quadratic
QNMs are double that of the linear QNM and, hence, also
decay more rapidly. Therefore, the non-GR QNMs gen-
erated in our formalism are longer lived than any other
contribution apart from the fundamental linear QNMs. If
the non-GR QNMs were not suppressed by q being small,
then it would be the first detectable effect after the
fundamental frequency. While we have used the
Schwarzschild limit as an example here, the relationship
between the frequency of the fundamental mode for s ¼ 0
and s ¼ 2, the overtones, and the quadratic QNMs, is
similar for nonzero a.
It is clear that a nontrivial ϕð0;1Þ is generated from the

source in Eq. (20); this is the usual scalar profile of a scalar
charged black hole due to the scalar-Gauss-Bonnet cou-
pling in the action. However, the sources vanish if
ϕð1;0Þ ¼ 0. This implies that the magnitude of the devia-
tions from GR depends crucially on the amplitude of the
scalar perturbation at the onset of the ringdown. This could
introduce a further suppression if the merger does not lead
to large amplitudes for ϕð1;0Þ. It is worth stressing that,
during the inspiral, scalar radiation is controlled by the
difference in the scalar charges of the two initial black
holes. The scalar field of these black holes will be OðqÞ in
our setup. Hence, the reasonable assumption there is to set
ϕð1;0Þ ¼ 0 [89]. It is tempting to do the same here, invoking
the argument that, in the α → 0 limit, one recovers GR with
a minimally coupled scalar field, and the latter would not
get excited in a merger. In that case, there would be no
correction at OðεqÞ to the tensor modes with respect to GR
in our approximation. We will remain more conservative
and not set ϕð1;0Þ ¼ 0 to remain agnostic about the merger
and the prospect that nonlinearities might lead to a very
large initial scalar amplitude.
Finally, we consider the question of gauge dependency.

An infinitesimal diffeomorphism generated by the vector
field χa ¼ qχð0;1Þa þ εχð1;0Þa þ q2χð0;2Þa þ εqχð1;1Þa shifts
the scalar by ϕ → ϕþ δϕ ¼ ϕþ £χϕ, where £ is a Lie

derivative. For the perturbed scalar field Eq. (10), the
diffeomorphism leads to

δϕ ¼ δϕ̄þ qδϕð0;1Þ þ εδϕð1;0Þ þOðq2; εq; ε2Þ
¼ q£χð0;1Þϕ̄þ ε£χð1;0Þϕ̄þOðq2; εq; ε2Þ: ð22Þ

At order q, the gauge dependence of the perturbed scalar is
then δϕð0;1Þ ¼ £χð0;1Þϕ̄ ¼ 0, and so the ϕð0;1Þ solution is

gauge invariant. The same is true for the ϕð1;0Þ, which has
gauge dependence δϕð1;0Þ ¼ £χð1;0Þ ϕ̄ ¼ 0. We note that the

higher order perturbations ϕð0;2Þ and ϕð1;1Þ, which we do not
need to find, are not gauge invariant.
We also note that Eq. (12), by construction, is the same

as in GR; hence the solutions hð1;0Þμν will be GR solutions,
in the form of QNMs. At this level, the gauge freedom is

hð1;0Þμν → hð1;0Þμν þ £χð1;0Þ ḡμν; ð23Þ

as in linearized GR [90]. As the source terms in Eqs. (13)
and (14) act on the gauge invariant perturbations ϕð0;1Þ and
ϕð1;0Þ, we deduce that the gauge dependence of hð0;2Þμν and

hð1;1Þμν is given by

hð1;1Þμν → hð1;1Þμν þ £χð0;1Þh
ð1;0Þ
μν þ £χð1;1Þ ḡμν ð24Þ

hð0;2Þμν → hð0;2Þμν þ £χð0;2Þ ḡμν þ
1

2
£2
χð0;1Þ ḡμν; ð25Þ

where we have used hð0;1Þμν ¼ 0.

V. DISCUSSION

In this paper, we have developed a framework for
investigating the impact of new gravitational physics on
the quasinormal modes emitted during the ringdown phase
of gravitational wave emission. The framework is particu-
larly well suited to LISA, which is expected to detect
gravitational wave emission from black holes with masses
in the range of 103 to 109 solar masses. Owing to the high
signal-to-noise ratio, potential LISA QNM measurements
are often touted as an effective probe of new gravitational
physics.
Our method makes use of the shift-symmetric Horndeski

action, known to be the most general action yielding second
order field equations for a metric and a massless scalar field
(up to field redefinitions). Assuming that the solutions are
continuously connected to those of GR, the field equations
are then expanded order by order in two small parameters:
the scalar charge per unit of black hole mass alongside
the standard dynamical QNM perturbations of the metric
and the scalar field. This gives rise to a well-defined EFT
for black hole perturbations in the small charge/large
mass limit.
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Two immediate conclusions follow from our analysis:
first, the linear coupling to the Gauss-Bonnet invariant is
the only deviation from GR that persists in the small
charge/large mass limit, provided that the length scales
associated with the other leading order couplings are not
significantly larger than that of the Gauss-Bonnet coupling;
second, for small enough charge per unit mass, the metric
perturbation equations reduce to those of GR sourced by
the leading order fluctuations in the scalar field.
The reference scale here is the characteristic length scale

of the coupling to the Gauss-Bonnet invariant, which
controls the scalar charge. This scale is already constrained
to be of order km or smaller by past and current obser-
vations [68–75]. Hence black holes with masses M ≳
103M⊙ are expected to have negligible charges per unit
mass, q ≲ 10−6, and their perturbations will be comfortably
described within our formalism once the amplitude falls
below the same scale. Corrections to the QNM frequencies
will arise from source terms suppressed by q times the
amplitude of the scalar perturbation in the limit of zero
charge. This makes it very unlikely that LISAwould be able

to detect evidence of the charge in the ringdown of
black holes.
Finally, one could consider applying our formalism to

much smaller black holes, down to 100 solar masses or less.
In this instance, q will be much larger than for super-
massive black holes, but still small enough to be a good
expansion parameter. One could then calculate the shift in
QNM frequencies, quantifying the deviations from Kerr to
how they scale with the mass. If the precision with which
QNMs can be measured by each detector is also factored in,
we could investigate at which mass one expects QNMs to
start giving useful constraints for deviations from Kerr
stemming from scalar charge. We will address this in future
work.
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