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ABSTRACT 
 
Iceberg calving at outlet glaciers contributes to global sea-level rise in the context of climate change. This study 
investigates tsunamis generated by iceberg calving, so-called iceberg-tsunamis. Such tsunamis reached 
amplitudes of 50 m in the recent past and endanger human beings and coastal infrastructure. 66 unique large-
scale experiments have been conducted in a 50 m × 50 m large basin. These experiments involved the five 
iceberg calving mechanisms: A: capsizing, B: gravity-dominated fall, C: buoyancy-dominated fall, D: gravity-
dominated overturning and E: buoyancy-dominated overturning. Gravity-dominated icebergs essentially fall into 
the water body whereas buoyancy-dominated icebergs essentially rise to the water surface. The iceberg-
tsunamis from gravity-dominated mechanisms (B and D) are roughly an order of magnitude larger than from 
mechanisms A, C and E. The maximum wave heights and their decay with distance from the calving locations 
are correlated with six dimensionless parameters, where the Froude number, the relative iceberg width and the 
relative released energy were identified as the most important ones. Empirical equations for preliminary iceberg-
tsunami hazard assessment for the five iceberg-calving mechanisms individually and all mechanisms combined 
were derived predicting the wave heights reasonably well. Ongoing and future work aims to analyse the wave 
parameters in further detail, compare iceberg- with landslide-tsunamis and investigate iceberg-tsunamis 
numerically. 
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1 INTRODUCTION 
 Iceberg calving accounts for a significant part of the mass losses of the Antarctic and Greenland Ice Sheets 
and contributes to global sea-level rise in the context of climate change (Hanna et al., 2013; Enderlin et al., 
2014). Iceberg calving generates so-called iceberg-tsunamis (Heller et al., 2019b). Significant iceberg-tsunamis 
have been observed in Greenland at the Eqip Sermia glacier where a wave amplitude of 50 m destroyed some 
infrastructure in 2014 (Lüthi and Vieli, 2016) and at the Helheim outlet glacier where approximately 25 km from 
the glacier front the measured wave was still 24 cm large (Vaňková and Holland, 2016). An iceberg-tsunami 
was also observed at the mountain glacier Tasman Glacier in New Zealand in 2011 (Dykes et al., 2016) and 
iceberg-tsunamis generated by capsizing icebergs destroyed a Greenlandic harbour in 1995 (N24, 2009). 
 Figure 1(a,b) shows iceberg calving events in nature. The icebergs interact with the surrounding water via 
different iceberg calving mechanisms (Benn et al., 2007; Massel and Przyborska, 2013; Minowa et al., 2018; 
Heller et al., 2019a,b). Five idealised mechanisms have been investigated in this work as illustrated in Figure 
1(c): A: capsizing, B: gravity-dominated fall, C: buoyancy-dominated fall, D: gravity-dominated overturning and 
E: buoyancy-dominated overturning. Gravity-dominated icebergs essentially fall into the water body whereas 
buoyancy-dominated icebergs essentially rise to the water surface. The current understanding of iceberg-
tsunamis is limited and only small-scale flume experiments of the capsizing mechanism A (Burton et al., 2012) 
have been conducted thus far.  
 The tsunamigenic potentials of mechanisms A to E have been investigated in a 50 m × 50 m large wave 
basin. The main objectives were (i) to quantify the iceberg-tsunami features under variation of the iceberg 
calving mechanisms (capsizing, fall, overturning), the iceberg volume and kinematics, (ii) to compare the new 
findings to established empirical equations for landslide-tsunamis and (iii) to provide benchmark test cases to 
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the numerical modelling community and apply them to calibrate and validate own numerical simulations (Heller, 
2019; Heller et al. 2019a). This article provides a general overview about the experiments and presents some 
key results and empirical equations to predict the iceberg-tsunami heights. The numerical simulations of the 
experiments are presented by Chen et al. (2019a,b). 
 

  
Figure 1. Real and idealised iceberg calving and iceberg-tsunami generation: (a) falling iceberg at Neko 

Harbour, Antarctica (courtesy of Alek Komarnitsky - www.komar.org), (b) overturning iceberg at Perito Moreno 
Glacier, Argentina (courtesy of Victor Qixiang Chen - http://photo.qyer.com/7259134/allphoto), (c) sketches of 
investigated idealised iceberg calving mechanisms from left to right: A: capsizing, B: gravity-dominated fall, C: 
buoyancy-dominated fall, D: gravity-dominated overturning and E: buoyancy-dominated overturning (Heller et 

al., 2019b). 
 

2 EXPERIMENTAL METHOD 
 

2.1 Experimental procedure 
 The experiments have been conducted under Froude similarity in the 50 m × 50 m basin at Deltares in 
Delft, as shown in Figure 2. Blocks consisting of polypropylene homopolymer with a density similar to ice (≈920 
kg/m3) were released offshore (capsizing, Figure 1c) and at the vertical boundary of the basin (fall, overturning, 
Figures 1c and 2). The sizes of the two blocks were 0.800 m × 0.500 m × 0.500 m (block type 1, Figure 2) and 
0.800 m × 0.500 m × 0.250 m (block type 2) and they weighted up to 187 kg. 
 The experimental programme is shown in Table 1 and included 66 experiments (55 individual tests plus 11 
repetitions) and two water depths h = 1.000 and 0.750 m. The capsizing mechanism involved 16 experiments, 
the fall mechanism 30 (21 gravity- and 9 buoyancy-dominated) and the overturning mechanism 20 (14 gravity- 
and 6 buoyancy-dominated) experiments. Videos of the experiments are available in Heller et al. (2019b).  The 
experimental procedures for the five calving mechanisms (Figure 1c) were as follows: 
 Capsizing (mechanism A in Figure 1c): The blocks in the capsizing case were hold in position with a 
wooden rod guided through the centre of the blocks. This rod was hold in position on both sides with steel 
profiles and was able to heave (but not to sway or surge) and pitch. The rotation of the block was initiated in 
most cases by removing a fitting which stabilised the block. Block type 1 had to be slightly pushed by hand, with 
a force in the order of 1 N, to capsize. In some tests the blocks were pushed harder to investigate the effect of 
an increased rotation speed on the wave features. 
 Fall (mechanisms B and C in Figure 1c): The blocks were hold in position with an electromagnet prior to 
release, which was connected to a rope as shown in Figure 2. The supporting frame for this electromagnet and 
the blocks was fixed to a steel plate at the basin wall. The blocks were moved in vertical direction with a winch 
system which was fixed to a support structure outside the wave basin (Figure 2). For the buoyancy-dominated 
fall case, the block was pulled under water with a rope attached to the centre of the block bottom to oppose the 
buoyancy force of up to 150 N. For some buoyancy-dominated tests the block had to be stabilised in addition 
with a steel beam from above and both the steel beam and the rope were then released simultaneously.  

http://www.komar.org/
http://photo.qyer.com/7259134/allphoto
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 Overturning (mechanisms D and E in Figure 1c): The blocks rotated around a fixed steel rod of 30 mm 
diameter. This rod was fed through two ball bearings fixed to the block surface. This ensured that the blocks 
underwent a pure rotation and no translation. The rod was hold in position on the sides with steel profiles (Figure 
2). The rod was located either below (gravity-dominated mechanisms) or above (buoyancy-dominated 
mechanisms) the block. For some buoyancy-dominated tests the block had to be stabilised in addition with a 
steel beam from above and the blocks started to move once the steel beam was removed. 

 
Table 1. Experimental parameters of all 66 conducted experiments involving the five iceberg calving mecha-

nisms A to E; the number of tests marked with + included repetitions. SWL = still water level and Neut. = Neutrally. 

 
 

 
Figure 2. Picture of a gravity-dominated fall experiment (mechanism B) at the wall of the basin with block type 

1 in the initial position and most of the 35 wave probes. 
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2.2 Measurement system 
 The block kinematics was recorded with a sampling rate of ≈74 Hz with a 9 Degree of Freedom motion 
sensor (Adafruit BNO055). The sensor was located in a black enclosure and attached to the block surface. Two 
cameras (5 MP PointGrey ZBR2-PGEHD-50S5C-CS (which recorded at 15 Hz) and 2 MP IOIndustries Flare 
2M280-CXP (at 100 Hz)) were used for general observations. The wave features were recorded at 100 Hz in 
different directions on one side of the block axis, given that the wave field is symmetric, with up to 35 resistance 
type wave probes.  
 

 
Figure 3. Sketches of experimental set-ups with some wave probes: (a) plan view of capsizing case, (b) side 

view of a gravity-dominated fall experiment and (c) plan view of a gravity-dominated fall experiment (Heller, 2019). 
 

 The coordinate origins of the cylindrical coordinate systems (r, z, ) are shown in Figure 3. The origins are 
located for all calving mechanisms in vertical direction z on the water surface. In the horizontal plan the origin 
is located at the block centre for the capsizing case (Figure 3a) and at the front of the steel plate in the centre 
of the block in cross-shore direction for all other calving mechanisms (Figure 3c). The wave propagation angle 

 (angular angle) is defined positive in clockwise direction. The wave probes are numbered anti-clockwise 

starting at  = 0° and from smaller to higher radial distance r (Figure 3a,c). Table 2 shows the locations of all 
wave probes. 
 The time in all experiments was adjusted such that t = 0 s corresponds to when the blocks started to move 
for experiments where they were initially in contact with the surrounding water, or when the blocks reached the 
water surface when they were initially located above the water body. The raw data of the motion sensor were 
further analysed in Matlab to transform the accelerations in global coordinates and to derive the block velocities 
and positions. The wave probe time series were individually shortened to remove data affected by reflection 
from the basin boundaries. The wave probe data were then filtered with a low-pass filter with a cut off frequency 
at 9 to 11 Hz. For wave probes A9, A17 and A25 in the capzising experiments and B21/C21, B24/C24 and 
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B32/C32 for all fall and overturning experiments a low-pass filter with a cut off frequency at 3.0 or 3.5 Hz was 
applied to remove large high-frequency noise. For 3 out of all 2278 wave probe locations the wave probe signals 
remained noisy after filtering given that the waves were extremely small. These 3 data series were excluded 
from further analysis. 
 

Table 2. Name and locations of wave probes and cameras. 
Iceberg 
calving 
mechanism 

Device Water 
depth h 
(m) 

Locations in function of the radial distance r (m) and the wave 

propagation angle  (°) (Figure 3a,c) 

Capsizing Wave 
probes 

1.000 A1 (2, 0); A10 (3, 0); A19 (5, 0); A28 (10, 0); A32 (15, 0); 
A2 (2, –15); A11 (3, –15); A20 (5, –15); A29 (10, –15); 
A3 (2, –30); A12 (3, –30); A21 (5, –30); 
A4 (2, –60); A13 (3, –60); A22 (5, –60); 
A5 (2, –90); A14 (3, –90); A23 (5, –90); 
A6 (2, –120); A15 (3, –120); A24 (5, –120); 
A7 (2, –150); A16 (3, –150); A25 (5, –150); 
A8 (2, –165); A17 (3, –165); A26 (5, –165); A30 (10, –165); 
A9 (2, –180); A18 (3, –180); A27 (5, –180); A31 (10, –180); A33 (15, –180) 

Capsizing Cameras 1.000 5 MP at 15 Hz: (6, –45); 2 MP at 100 Hz: (6, –95) 

Fall/ 
overturning 

Wave 
probes 

1.000 B1 (2, 0); B7 (3, 0); B13 (5, 0); B19 (10, 0); B25 (15, 0); B31 (22.5, 0); B34 (35, 0); 
B2 (2, –15); B8 (3, –15); B14 (5, –15); B20 (10, –15); B26 (15, –15); B32 (22.5, –15); 
B35 (35, –15); 
B3 (2, –30); B9 (3, –30); B15 (5, –30); B21 (10, –30); B27 (15, –30); B33 (22.5, –30); 
B4 (2, –45); B10 (3, –45); B16 (5, –45); B22 (10, –45); B28 (15, –45); 
B5 (2, –60); B11 (3, –60); B17 (5, –60); B23 (10, –60); B29 (15, –60); 
B6 (2, –75); B12 (3, –75); B18 (5, –75); B24 (10, –75); B30 (15, –75) 

Fall/ 
overturning 

Wave 
probes 

0.750 C1 (1.5, 0); C7 (2.25, 0); C13 (3.75, 0); C19 (7.5, 0); C25 (11.25, 0); C31 (16.875, 0); 
C34 (26.25, 0); 
C2 (1.5, –15); C8 (2.25, –15); C14 (3.75, –15); C20 (7.5, –15); C26 (11.25, –15); 
C32 (16.875, –15); C35 (26.25, –15); 
C3 (1.5, –30); C9 (2.25, –30); C15 (3.75, –30); C21 (7.5, –30); C27 (11.25, –30); 
C33 (16.875, –30); 
C4 (1.5, –45); C10 (2.25, –45); C16 (3.75, –45); C22 (7.5, –45); C28 (11.25, –45); 
C5 (1.5, –60); C11 (2.25, –60); C17 (3.75, –60); C23 (7.5, –60); C29 (11.25, –60); 
C6 (1.5, –75); C12 (2.25, –75); C18 (3.75, –75); C24 (7.5, –75); C30 (11.25, –75) 

Fall/ 
overturning 

Cameras 1.000 and 
0.750 

2 MP at 100 Hz: (6, –85); 5 MP at 15 Hz: (6, 45) 

 

2.3 Governing parameters 
 The following nine governing parameters were considered in the correlations of the iceberg-tsunami 

features such as the maximum wave heights and their decay with r and :  

• Released energy E 

• Water depth h 

• Iceberg velocity Vs 

• Iceberg thickness s 

• Iceberg width b  

• Iceberg volume Vs 

• Iceberg density s 

• Water density w 

• Gravitational acceleration g 
A wider variation of s and b was achieved by changing the orientation of the two block types 1 and 2 in the initial 
position (Table 1). The velocity Vs corresponds to the fastest moving section of the block and was derived based 

on the motion sensor data as 0.27 to 4.17 m/s over all experiments. The density s changed slightly with the 
attachments to the block (Table 1). The parameter E was introduced after the test campaign varying between 6 
and 980 J over all experiments making this parameter instrumental to correlate very large and very small waves. 
This energy corresponds to the energy difference of the iceberg between the initial and final positions and is 
thus the maximum available energy to be transferred into tsunami energy. The theoretical expressions and 
values for E were derived by Heller et al. (2019b) in function of the iceberg calving mechanism, iceberg geometry 
and initial position relative to the water surface.  
 The nine governing parameters can be expressed in dimensionless form based on the reference quantities 

g, h and w (Buckingham, 1914). This results in the following six dimensionless parameters and ranges covered 
by the experiments (Attili, 2019):  

• Relative released energy: 0.0006 ≤ Er = E/(wgh4) ≤ 0.3157 

• Froude number: 0.09 ≤ F = Vs/(gh)1/2 ≤ 1.33 
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• Relative iceberg thickness: 0.25 ≤ S = s/h ≤ 0.67 

• Relative iceberg width: 0.50 ≤ B = b/h ≤ 1.07 

• Relative iceberg volume: 0.10 ≤ V = Vs/h3 ≤ 0.47 

• Relative density: 0.91 ≤ D = s/w ≤ 0.94 

 Scale effects due to the kinematic viscosity w and surface tension w were neglected for the analysed 
wave parameters in this Froude scaling experiments given that the Weber number W = ρwgh2/σw ≥ 75,552 and 

Reynolds number R = g1/2h3/2/w ≥ 2,033,835 in the experiments were large and satisfied the limitations W ≥ 
5,000 and R ≥ 300,000 applicable for the physically closely related phenomenon of subaerial landslide-tsunamis 
(Heller et al., 2008). The absolute and relative measurement errors of most dimensional and dimensionless 
parameters are given in Heller et al. (2019b). The six dimensionless parameters are used in the Results and 
Discussion section to correlate the maximum wave heights. 

 

3 RESULTS AND DISCUSSION 

 Figure 4 shows the free water surface  versus time t of five selected experiments involving all five iceberg 
calving mechanisms. These wave profiles were all measured at relative radial distance r/h = 2 (Figure 3 and 
Table 2). The scales on the y-axes in Figure 4 vary by up to a factor of 20. The wave magnitudes significantly 
differ for the mechanisms A to E; the gravity-dominated overturning mechanism D results in the largest tsunamis 
followed by the gravity-dominated fall mechanism B. The three remaining mechanisms resulted in up to a factor 
of 27 smaller waves (Heller et al., 2019b). Further, the wave trains consist of several nonlinear waves for all 
mechanisms, similar as for subaerial landslide-tsunamis (Heller and Spinneken, 2015). The largest wave 
amplitude is observed in the middle of the wave train for the slower moving mechanisms A, C and E. For the 
gravity-dominated mechanisms B and D the largest wave is observed earlier in the wave train. 
 

 
Figure 4. One selected iceberg-tsunami profile for each calving mechanism A to E. These tsunami profiles 

were recorded at (r/h = 2, ) where the maximum wave height HM was measured. (a) Capsizing, (b) gravity-
dominated fall, (c) buoyancy-dominated fall, (d) gravity-dominated overturning and (e) buoyancy-dominated 

overturning mechanism. The scales on the y-axes change by up to a factor of 20 (Heller et al., 2019b). 
 

 Figure 5 shows the relative maximum wave heights HM/h for all 66 experiments versus the six 
dimensionless parameters. Shown are correlations for each individual iceberg calving mechanism (Figure 5a-
e) and for all mechanisms combined (Figure 5f). The best correlations were found with a regression analysis 
based on the least-square approach with the Matlab function lsqcurvefit. Some restrictions were imposed on 
the exponents (e.g. > 0 for most of them) to obtain physical meaningful results (Attili, 2019). The empirical 
equations and coefficients of determination R2 resulting from Figure 5 are 
 

 Capsizing 
𝐻𝑀

ℎ
= 1.39(𝐸𝑟

0.26F1.73𝑆0.20𝐵0.20𝑉0.48𝐷−1.74)0.92  (R2 = 0.49)  [1] 
 

 Gravity-dominated fall 
𝐻𝑀

ℎ
= 0.25(𝐸𝑟

0.20F1.31𝑆0.60𝐵1.62𝑉0.20𝐷0.15)0.50  (R2 = 0.95)  [2] 
 

 Buoyancy-dominated fall 
𝐻𝑀

ℎ
= 1.41(𝐸𝑟

0.20F1.36𝑆0.10𝐵0.30𝑉0.48𝐷−1.42)0.98  (R2 = 0.64)  [3] 
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 Gravity-dominated overturning 
𝐻𝑀

ℎ
= 0.27(𝐸𝑟

0.20F0.92𝑆0.47𝐵0.91𝑉0.23𝐷0.22)0.50  (R2 = 0.92)  [4] 
 

 Buoyancy-dominated overturning 
𝐻𝑀

ℎ
= 0.13(𝐸𝑟

0.23F1.65𝑆1.27𝐵0.40𝑉0.20𝐷−0.98)0.50  (R2 = 0.95)  [5] 
 

 All mechanisms combined 
𝐻𝑀

ℎ
= 0.26(𝐸𝑟

0.20F1.72𝑆0.53𝐵1.10𝑉0.20𝐷0.10)0.50  (R2 = 0.92)  [6] 

 

 
Figure 5. Maximum relative wave heights HM/h versus dimensionless parameter combinations for (a) 

capsizing with (—) Eq. [1] and (--) ±40% deviation (R2 = 0.49), (b) gravity-dominated fall with (—) Eq. [2] and   

(--) ±30% deviation (R2 = 0.95), (c) buoyancy-dominated fall with (—) Eq. [3] and (--) ±40% deviation (R2 = 

0.64), (d) gravity-dominated overturning with (—) Eq. [4] and (--) ±30% deviation (R2 = 0.92), (e) buoyancy-

dominated overturning with (—) Eq. [5] and (--) ±20% deviation (R2 = 0.95) and (f) all mechanisms combined 

with (—) Eq. [6] and (--) ±40% deviation (R2 = 0.92). For the legend see subfigure (f). 



          

 
E-proceedings of the 38th IAHR World Congress 

                          September 1-6, 2019, Panama City, Panama  
 

 

5635                         ©2019, IAHR. Used with permission / ISSN 2521-7119 (Print) - ISSN 2521-716X (Online) - ISSN 2521-7127 (USB) 

 

 
 

Figure 6. Normalised relative maximum wave height HM/h decay for all experiments with the relative distance 
r/h: (a) capsizing with (—) Eq. [7] and (--) ±50% deviation (R2 = 0.40), (b) gravity-dominated fall with (—) Eq. 

[8] and (--) ±50% deviation (R2 = 0.93), (c) buoyancy-dominated fall with (—) Eq. [9] and (--) ±50% deviation 

(R2 = 0.84), (d) gravity-dominated overturning with (—) Eq. [10] and (--) ±50% deviation (R2 = 0.86), (e) 

buoyancy-dominated overturning with (—) Eq. [11] and (--) ±50% deviation (R2 = 0.89) and (f) all mechanisms 

combined with (—) Eq. [12] and (--) ±50% deviation (R2 = 0.80). For the legend see subfigure (f). 
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 The most important parameter in Eqs. [1] to [6] is F with a large exponent in the range of 0.92 to 1.73. 
Further important are the relative slide width B, with an exponent of up to 1.62, as well as Er. Er is influential due 
to the combination of the exponent ≈0.20 with the large range of Er over nearly three orders of magnitude. 
Generally speaking, the influences of S, V and D on the maximum wave height are significantly smaller. The 
pre-sign of the exponent of D is positive for the gravity-dominated mechanisms and negative for the remaining 
three mechanisms, however, the overall influence of D on HM/h is still small given that it varies only in the range 
0.91 to 0.94 (Section 2.3). The data typically scatter ±30% relative to the predictions with a particularly tight fit 
achieved for the buoyancy-dominated overturning mechanism in Figure 5(e). Figure 5 confirms that the tsunami 
heights generated by mechanisms B and D (gravity-dominated) were roughly an order of magnitude larger than 
for mechanisms A, C and E over all conducted experiments. The correlation in Figure 5(f) based on Eq. [6] 
simplifies the prediction with one equation describing all mechanisms combined. Most data lie within the ±40% 
bounds, however, the insert reveals that Eq. [6] tends to overpredict the buoyancy-dominated and capsizing 
mechanisms and therefore operates on the save side for these mechanisms.  

 The decays of the relative maximum wave heights HM/h(r/h, ) for all 66 experiments for each individual 
iceberg calving mechanism and all mechanisms combined are shown in Figure 6. The corresponding empirical 
equations were again found with the Matlab function lsqcurvefit resulting in 
 

 Capsizing 
𝐻𝑀

ℎ
(
𝑟

ℎ
, 𝛾) = 0.40(𝐸𝑟

0.64F1.40𝑆0.80𝐵0.56𝑉0.10𝐷−1.96)0.50 (
𝑟

ℎ
)
−0.99

cos0.5 (
𝛾

2
)  (R2 = 0.40)  [7] 

 

 Gravity-dominated fall 
𝐻𝑀

ℎ
(
𝑟

ℎ
, 𝛾) = 0.46(𝐸𝑟

0.20F1.22𝑆0.67𝐵1.52𝑉0.25𝐷1.02)0.50 (
𝑟

ℎ
)
−0.91

cos (
𝛾

2
)  (R2 = 0.93)  [8] 

 

 Buoyancy-dominated fall 
𝐻𝑀

ℎ
(
𝑟

ℎ
, 𝛾) = 0.26(𝐸𝑟

0.23F1.40𝑆0.80𝐵1.12𝑉0.10𝐷−1.42)0.50 (
𝑟

ℎ
)
−0.98

cos0.5 (
𝛾

2
)  (R2 = 0.84)  [9] 

 

 Gravity-dominated overturning 
𝐻𝑀

ℎ
(
𝑟

ℎ
, 𝛾) = 0.35(𝐸𝑟

0.20F1.38𝑆0.20𝐵0.47𝑉0.30𝐷0.17)0.50 (
𝑟

ℎ
)
−0.95

cos (
𝛾

2
)  (R2 = 0.86)  [10] 

 

 Buoyancy-dominated overturning 
𝐻𝑀

ℎ
(
𝑟

ℎ
, 𝛾) = 0.10(𝐸𝑟

0.28F1.06𝑆0.93𝐵0.31𝑉0.28𝐷−1.05)0.50 (
𝑟

ℎ
)
−0.92

cos0.5 (
𝛾

2
)  (R2 = 0.89)  [11] 

 

 All mechanisms combined 
𝐻𝑀

ℎ
(
𝑟

ℎ
, 𝛾) = 0.27(𝐸𝑟

0.28F1.08𝑆0.14𝐵0.71𝑉0.20𝐷0.20)0.50 (
𝑟

ℎ
)
−0.90

cos0.5 (
𝛾

2
)  (R2 = 0.80)  [12] 

 

The parameters F, B and Er are also dominant in Eqs. [7] to [12] and S, V and D play a less significant role. The 
data in Figure 6 follow the predictions based on Eqs. [7] to [12] reasonably well and most data lie within the 
±50% bounds. Particularly striking for all mechanisms is the wave decay approximately following (r/h)‒1.0, 
corresponding both to the theoretically expected decay for a wave created by a point source propagating on a 
spatial water surface (Kranzer and Keller, 1959) and the decay previously found for landslide-tsunami 
experiments conducted in a basin (Heller and Spinneken, 2015). Note that the outliers in Figure 6(a) are from 

the pushed block experiments. The wave decay with the wave propagation angle  is expressed with the cosinus 
function, similar as in some landslide-tsunami studies (Huber and Hager, 1997; Heller and Spinneken, 2015). A 
reasonably good fit for the data of all calving mechanisms combined is achieved in Figure 6(f) considering the 
variety of underlying physics involved in the five iceberg calving mechanisms. The corresponding Eq. [12] results 
in a coefficient of determination of R2 = 0.80. However, the data scatter is particularly large in proximity of the 
iceberg calving location at r/h = 2 where water splashes reached the wave probes in some of the experiments.  
 

4 CONCLUSIONS AND OUTLOOK 
Unique large-scale experiments have been conducted in a 50 m × 50 m basin. 66 iceberg-tsunami experiments 
with up to 187 kg heavy blocks under variation of the iceberg volume, geometry, kinematics and initial position 
relative to the water surface have been conducted. The blocks interacted with the surrounding water through 
five iceberg calving mechanisms namely: A: capsizing, B: gravity-dominated fall, C: buoyancy-dominated fall, 
D: gravity-dominated overturning and E: buoyancy-dominated overturning. The main conclusions are: 

• The tsunami heights generated by mechanisms B and D (gravity-dominated) are roughly an order of 
magnitude larger than from mechanisms A, C and E. Icebergs of a given volume and geometry 
released above the water surface are therefore significantly more hazardous in terms of tsunami 
generation than neutrally buoyant icebergs or icebergs released underwater. 

• The tsunami features were expressed in function of six dimensionless parameters where the Froude 
number F, the relative iceberg width B and the relative released energy Er were found to be the most 
dominant ones. 

• The maximum tsunami heights decay approximately with the relative distance (r/h)−1.0, in agreement 
with theory and some landslide-tsunami studies. 

• Empirical equations for the maximum wave height and its decay with the relative propagation distance 

r/h and wave propagation angle  are presented for each individual iceberg calving mechanism and 
all mechanisms combined to support preliminary iceberg-tsunami hazard assessment. 
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Ongoing and future work aims to analyse more wave parameters including the maximum wave amplitudes 
and periods. The iceberg-tsunamis will also be compared in more detail with landslide-tsunamis (Heller and 
Spinneken, 2015). A numerical model is also under development which, in principle, is capable of simulating all 
five iceberg calving mechanisms and iceberg-tsunamis (Chen et al., 2019a,b). 
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