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We study the nonequilibrium dynamics of the Floquet quantum East model (a Trotterized version of the
kinetically constrained quantum East spin chain) at its “deterministic point,” where evolution is defined in
terms of CNOT permutation gates. We solve exactly the thermalization dynamics for a broad class of initial
product states by means of “space evolution.” We prove: (i) the entanglement of a block of spins grows at
most at one-half the maximal speed allowed by locality (i.e., half the speed of dual-unitary circuits); (ii) if
the block of spins is initially prepared in a classical configuration, speed of entanglement is a quarter of the
maximum; (iii) thermalization to the infinite temperature state is reached exactly in a time that scales with

the size of the block.
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Introduction.—Systems with constrained dynamics are
of interest in many areas of nonequilibrium physics.
Kinetically constrained models (KCMs) [1-3] provide a
framework for explaining [4—6] the emergence of slow and
heterogeneous dynamics in glasses [7—10], and their study
has spurred the development of dynamical large deviation
and trajectory ensemble methods [11-13]. Quantum con-
strained dynamics emerges naturally in systems such as
Rydberg atoms under blockade conditions [14—17], leading
to questions about slow thermalization and nonergodicity
in the absence of disorder [18-31].

The simplest setting for implementing kinetic constraints is
in lattice systems with discrete dynamics, such as cellular
automata [32,33] or quantum circuits [34]. For such setups it
has been possible to obtain many exact results that underpin
our understanding of quantum dynamics, including on
operator dynamics, information spreading, and thermalixa-
tion (see, e.g., Refs. [35-66]). Quantum circuits are also vital
for experimental simulation of quantum systems and quan-
tum computation, having been used to demonstrate quantum
advantage, perform randomized benchmarking, and to study
nonequilibrium Floquet dynamics [67-77]. Here we consider
this setting to characterize the dynamical effects of kinetic
constraints by studying a circuit version of the quantum East
model [78-80], itself a quantum generalization of the
classical East model [2]. Using methods similar to those
employed for dual-unitary circuits [53,61,61], we solve
exactly the thermalization dynamics.
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Model setting.—More specifically, we consider the
nonequilibrium dynamics of the Floquet Quantum East
model [80] at its deterministic point, which we refer to as
the “deterministic Floquet quantum East” (DFQE) model.
This system can be thought of as a brickwork quantum
circuit, see Fig. 1, acting on a chain of 2L qubits and with
the local gate given by

U=1QP+XQ®P, (1)

where P =1—P = (1 + Z)/2 is the projector to the up
state |1) of the qubit (the down state is denoted by |0)) and
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FIG. 1. Deterministic Floquet quantum East model. (a) Dia-
grammatic representation of the gate Eq. (1). Thick lines corre-
spond to the folded representation of the forward and backward
branches. (b) Time evolution of the state as a quantum circuit,
|¥(7)) = U'|¥y). The dashed and solid-line boxes indicate the
initial state |¥,)) and the evolution operator U/ for one time step.
(c) One point function of a local operator (lhs) and it folded
representation (rhs). The dashed and full boxes outline the space
transfer matrices.
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{X, Y, Z} are Pauli matrices [81]. The quantum circuit with
local gate (1) was first studied in Ref. [82] (see also
Ref. [83]) and is the quantum counterpart of the classical
Floquet East model of Ref. [84]. The gate (1) determin-
istically implements the constraint that defines both the
classical [2,3] and quantum [78-80] East models, where a
site can flip only if its right neighbour is in the up state. The
local gate (1) is part of the so called second hierarchy of
generalized dual-unitary circuits (DU2s) introduced in
Ref. [85]. In the jargon of quantum circuits, Eq. (1) is a
CNOT (controlled NOT) gate [86], and as such it is a
Clifford gate [87,88]. This implies that there exists a class
of initial stabilizer states whose dynamics can be efficiently
simulated classically. Our discussion, however, is not
restricted to this class.

Following a standard quantum quench protocol [89], the
system is prepared in an initial state |¥,), which we take to
be a product state in space, and then let to evolve unitarily as
in Fig. 1(b). We characterize the ensuing dynamics using the
so called space evolution approach (also known as folding
algorithm) [90] (see also Refs. [91-95]). This can be used
to characterize the evolution of general local observa-
bles [53,56,57,96], quantum information [58,60,97-102],
and even spectral properties [44,46—48,51,52], but is most
easily explained by considering the one-point function
of an operator, O,, acting on a single qubit. We represent
this via a tensor-network diagram and fold on the portions
of the network representing forward and backward evolu-
tion, see Fig. 1(c), and contract the network horizontally
(in space rather than time). Namely, we write the one-point
function using the space transfer matrices T and T, defined
in Fig. 1(c), as

(P(1)]O]®(1)) = u[ToTH]. (2)

Note that the transfer matrices appearing in this expressions
act on the vertical folded lattice, i.e., they act on the Hilbert
space H, = C**, and for simplicity we assumed the initial
state to be two-site shift invariant. This latter assumption is
not necessary for our analysis and will be explicitly lifted in
the second part of this work.

Because of unitarity and locality of the interactions the
transfer matrix T has a very simple spectrum: its only
eigenvalues are 1 and 0 [57,99]. The transfer matrix itself is
not rank one, since the eigenvalue zero has generically a
nontrivial Jordan structure. However, the size of its Jordan
blocks are bounded by 27, which implies that T2 is rank
one. It can be written as T? = |R)(L|, where |R) and |L)
are the right and left fixed points of T [103]. In other words,
for L > 2t the one-point function of interest is fully
specified the fixed points. In particular we have

Jim (¥(1)|O,|¥(1)) = (L[To|R). (3)

This expression suggests an interesting physical interpre-
tation of the fixed points: they are the mathematical objects

encoding the influence of the rest of the system on the
subsystem where O acts. For this reason they are also
referred to as influence matrices [96].

Equation (3) might seem to be a drastic simplification of
Eq. (2), as it replaces a complicated matrix product with a
matrix element between two fixed points. This form offers
practical advantage only when the influence matrices can
be computed efficiently, e.g., when they can be represented
by matrix product states with low bond dimension. This is
not possible in general: for generic systems and initial
states, influence matrices have volume law entanglement in
time [104]. Some systems, however, avoid this general rule.
This includes a class of chaotic dual-unitary circuits [61]
evolving from a family of compatible initial states [53], and
evolution from compatible states in the Rule 54 quantum
cellular automaton [56,57]. In fact, Ref. [105] argued that
in the presence of integrability every low entanglement
initial state should generate low entangled influence matri-
ces. Here we show that also the nonintegrable DFQE model
admits solvable initial states generating analytically trac-
table influence matrices. We find three distinct families of
initial states with influence matrices in dimer-product form,
i.e., entangling together only pairs of sites along time. We
then use this result to study the exact quench dynamics of a
block of spins when the rest of the system is prepared in a
solvable state. We show that, regardless of the initial state,
the block relaxes to the infinite temperature state in a finite
number of time steps. Moreover, we provide an exact
description of the full entanglement dynamics if the block
is initially prepared in a solvable state.

Exact fixed points.—We begin by observing that U in
Eq. (1), see Fig. 1, obeys the local relations

e

which define DU2 circuits [85]. Relations (4) imply [85]
that if the initial states of two neighboring sites fulfil

a0 > T G

$1 P2 é1 b2

the fixed points of the transfer matrix T are of the form
given in Fig. 2(a). To see this consider (LT, with (L]
given in Fig. 2(a). Starting from above we apply repeatedly
the first of (4) until we remove the leftmost column of gates.
We then proceed with removing the second column up to
the gate applied on the initial state. The latter can be
removed using the first of (5) while the numerical factors
combine to give (L |T = (L,|. Analogously, using the right
relations of (4) and (5) gives T|R) = |R;). Here and in the
following we add the subscript “s” to quantities computed
for initial states fulfilling (5).
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FIG. 2. Fixed points of space transfer matrices. (a) Initial states
|p1,) fulfilling Eq. (5). (b) Flat initial states, |¢;,) = |—).
(c) Classical initial states, in the notation of Eq. (8), where s} =
s;+ s (mod 2), ) =s,, and s, =s)_, +5,_, (mod 2) for
2 <t <t (see [106] for details).

Expressing a general qubit state as |¢) = re'®|0) +
V1 —r?e|1), a simple calculation reveals that all states
|p1) ® |¢hy) fulfilling (5) can be parameterized as follows

0=riry\/1 =r3\/1 =ricos(a; — ) cos(ay — f3),
0= (t-3)(3-3). (©

where the subscripts 1,2 refer to parameters of |¢, ). The
first equation is fulfilled if and only if the first of (5) holds
while the second if and only if the second of (5) holds.

A remarkable property of the DFQE model is that we do
not need to fulfil both these conditions to have simple fixed
points. If ¢ ) are both classical configurations |0) or |1),
only the first of (5) is fulfilled, however, the fixed points
display the simple form of Fig. 2(b). Similarly, if both
|p1,) are the flat superpositions |¢;) = |¢p,) =|—) =
(|0) + [1))/+/2, only the second of (5) holds but the fixed
points take the simple form in Fig. 2(c). This is because the
local gate fulfils the following relations:

— S51+$5

l_
ew om0

where we have introduced the diagrams and notation

1L=]-)&|-), ; = |smod 2) ®, |[smod2), s € Ny,

(8)

and ®, indicates that the tensor product is between the
states of the same site in the forward and backward
branches, see Fig. 1(a). The simplification mechanism is

very similar to the one discussed after Eq. (5) and we refer
the reader to the Supplemental Material [106]. In the
following we add the subscripts “cl” and “F” to quantities
computed respectively for initial states that are classical
configurations and flat superpositions of them [107].
Subsystem dynamics.—The exact expressions for the
fixed points in Fig. 2 represent our first main result. To
illustrate their power, we use them to determine the
relaxation time of a block of 2¢ qubits in a region denoted
by A. In particular, we focus on the quench from the state
[®o) = (If1) ® [¢h2))® " @ |[¥), where |¢1) ® |¢h,) are
solvable states (5) and |¥') is arbitrary [108]. Using the
exact expressions in Fig. 2(a) we find that the reduced
density matrix at time ¢ can be simplified as follows:

(W) @)

Note how Eq. (9) does not contain explicitly the environ-
ment (A, the complement of A): its effect is encoded in the
boundaries of the time-evolution operator of A. In other
words, the superoperator formed by two subsequent hori-
zontal layers of the tensor network in Eq. (9),

1
o T

2z

x
¥

retains information on A only through its depolarizing
boundaries. In general, tracing out part of a unitarily
evolving system gives rise to non-Markovian dissipative
evolution on the subsystem [109]. In contrast, for the case
of the DFQE model the evolution of the subsystem is
Markovian and the superoperator C, is a time-local quan-
tum map. Equation (9) represents a drastic simplification:
the dynamics of a block of 2Z spins can be fully determined
by diagonalizing a 4° x 4% matrix, which can be done
analytically for small # and numerically for larger values of
¢. Moreover, one can use Eq. (9) to show [106] that p,(¢) =
1/2% for any t > 27, so that the subsystem reaches the
maximal entropy state in a finite number of steps. This
result contrasts with what happens in generic systems,
where the presence of exponential corrections means that
the stationary state is only reached exactly at infinite
time. An analogous situation to the one here is found in
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FIG. 3. Rényi entropies and entanglement dynamics. (a) Diagrammatic representation of tr[p%] for n = 3. (b) Comparison of

entanglement growth between the DFQE model (solid lines) and dual-unitary circuits (dashed line). For the DFQE model, the system A
of length £ < L is initially prepared in a solvable state |} fulfilling (5) and (18) (red line), or one of (5) and one of (7) (blue line). For

t > 2¢ all curves reach the infinite-temperature value 2¢ In 2.

dual-unitary circuits [49], with an important difference: in
the DFQE model the number of steps to approach statio-
narity is twice larger than for dual unitaries.

Entanglement.—Using the above properties we can
compute the growth of entanglement from various homo-
geneous and inhomogeneous initial states. For concreteness
we consider a system that is prepared in a solvable state
everywhere, except for a finite subsystem A of length
¢ = |A|. At some later time ¢ the Rényi entanglement
entropy between A and the rest is defined as

S (1) = ——trlp! (1)), (11)

1—n
where 7 is the Rényi index, and p, y (?) is given in Eq. (9).
Within A the system is prepared in one of the classes of
solvable states: those fulfilling both Egs. (5), homogeneous
flat states, or classical configurations.

The entanglement entropies show different scalings
depending on the ratio between the subsystem size ¢,
and time 7. In particular, we expect a simple result in the
limit ¢+ - co, where the entropies saturate at a value
extensive in ¢ [see Fig. 3(b)]. In fact, the finite-time
relaxation discussed above implies that for any initial state
in A and ¢ > 27 all Rényi entropies are the same,

sW@|  =2¢m2.
>2¢

(12)

For times that are shorter than 27, there are no immediate
simplifications at the level of the single reduced density
matrix, but we need to consider the full trace in Eq. (11).
Assuming for definiteness that inside of the subsystem A
the initial state ¥’ is a product state and is invariant under
lattice shifts by an even number of sites, the generalized
purity can be compactly expressed in terms of the corre-
sponding space transfer-matrix T as

trlpl g (1)] = (L,[®"R, TOAI] R, )07,

(13)

where P, is an operator that implements the permutation of
n copies, see Fig. 3(a). This expression suggests another
conceptually simple regime: the “early time” regime where
t is fixed and |A| is large. In this regime Eq. (13) is written
in terms of a large power of a finite matrix expressible in
terms of a fixed point: whenever ¢ < £/2 the powers of the
transfer matrix factorize

T 0, = [Ryr) (L], (14)

and (13) reduces to a product of two matrix elements,

[ (1)] = (Ly|®"Py Ry )" (Lo ["P5 |R,)®".  (15)
With the specific form of fixed points, Fig. 2, we can evaluate
these overlaps and obtain for the three classes [106]

SO (1) |yep = 2102,
S& Dlaze =S¢ (Dlicp = 12 (16)
Interestingly, we see that the Rényi entanglement entropies
with different n all grow with the same slope. Moreover, for
classical configurations and their flat superposition this
slope is reduced by 2: this is an explicit example of the
initial-state dependence of the entanglement velocity. Note
that for the flat superposition the range of validity of the early
time expression is larger (¢ < ¢ rather than 27 < £) due to
the flat state being locally invariant under the dynamics.
The hardest regime to access is the intermediate-time
regime /2 < t < 2¢. In this case Eq. (13) does not directly
factorize, and cannot be determined only knowing the fixed
points. Remarkably, and in contrast to other known solvable
examples [56,58], Eq. (13) can be evaluated also in this
regime for the three cases considered here. This leads to a
complete description of the entanglement dynamics so far
only attained for dual-unitary circuits [53,61]. In particular,
when the subsystem is prepared in a classical configuration,
or the flat state, the partition sum (13) evaluates to 20=n)1 for
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all ¢ in the intermediate regime, i.e., £/2 < t < 2¢. This
gives [106]

S (1) = U (r) = min(z,2¢) In2. (17)

Instead, if the subsystem is prepared in a solvable state that
additionally satisfies

=

) ¢2:¢>1 ¢’ +

oSO o

o (18)

o O oo
o o oo
_ o O O

the stationary state is reached at t = £ (rather than 2¢), and
for /2 < t < £ Eq. (13) gives 220=")_ This implies

Sy(f) = min(2¢,2£) In 2. (19)

An interesting question is whether this surprising result can
be ascribed to a general property of the initial states. While
the DFQE model is a Clifford circuit, the above is not a
consequence of initial states being stabilizer states: even
though classical configurations and the flat state are stabi-
lizers, the solvable states fulfilling Eqs. (5) and (18) are
generically not. As shown in [106], the exact results in
Egs. (17) and (19) rely on three different “microscopic
mechanisms” of simplifications that combine properties of
the initial states and the time evolution. The overall effect,
however, is similar in the three cases: the microscopic
simplifications decouple the entanglement production at
the two boundaries between A and A. This allows us to treat
the problem as if it were always in the early time regime.
Importantly, Eq. (18) is a necessary requirement for this to
happen: finite-time numerics show that for solvable states
that do not satisfy that condition the entanglement entropy
deviates from (19) at intermediate times.
Conclusions.—We have solved exactly the entanglement
dynamics of the deterministic Floquet quantum East model,
a quantum circuit defined in terms of local CNOT gates
that implement the same kinetic constraint as the East
model [2,78]. To our knowledge, these are the first exact
results for entangling dynamics in an interacting non-
integrable circuit beyond those in the dual-unitary class.
The simplicity of the DFQE model allows its dynamics to
be solved in the large size limit for a broad class of initial
product states that extends beyond Clifford stabilizers,
exploiting the techniques of propagation in space. One
can think of many avenues for future research. An
immediate one is to characterize exactly operator spreading
by extending the results of Ref. [110] on the butterfly
velocity of DU2 circuits to determine the full profile of out-
of-time-ordered correlators. Other directions include study-
ing the effect of local measurements on entanglement at
the level of quantum trajectories [62,63,111,112] and the

quantification of dynamical fluctuations as is done in the
classical Floquet East [84].
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