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ABSTRACT
Reliability analysis methods are used to evaluate the safety of reinforced concrete
structures by evaluating the limit state function g(Xi). For implicit limit state func-
tion and nonlinear analysis , an advanced reliability analysis methods are needed.
Monte Carlo simulation (MCS) can be used in this case however, as the number
of input variables increases, the time required for MCS also increases, making it a
time-consuming method especially for complex problems with implicit performance
functions. In such cases, MCS-based FORM (First Order Reliability Method) and
Artificial Neural Network-based FORM (ANN-FORM) have been proposed as alter-
natives. However, it’s important to note that both MCS-FORM and ANN-FORM
can also be time-consuming methods in their own right. MCS-FORM involves run-
ning multiple MCS, and the time required increases with problem complexity and
desired precision. ANN-FORM, on the other hand, can be faster for repetitive reli-
ability assessments, but the training phase can be computationally expensive, and
accuracy depends on training data quality and quantity. To address this computa-
tional challenge and enhance the efficiency of reliability analysis, a novel method is
proposed in this paper. This method leverages the capabilities of ABAQUS, in com-
bination with MATLAB. The key objective of this proposed approach is to automate
and streamline the repetitive tasks involved in reliability analysis, thereby signifi-
cantly reducing the computational time required for such analyses. The method is
based on the development of a custom ABAQUS Python script file, which interfaces
with MATLAB. The script serves as a bridge between the finite element analysis
capabilities of ABAQUS and the data processing and analysis capabilities of MAT-
LAB. An illustrative example was considered to demonstrate the application of the
proposed method. In this example, a deteriorated simply supported concrete beam
with an implicit performance function was analyzed. The objective was to assess
the reliability of the beam under the given conditions. To perform this reliability
analysis, the two methods were employed: MCS-FORM and ANN-FORM. Both of
these methods were implemented in conjunction with the newly developed approach
that integrates ABAQUS and MATLAB. The results of this analysis were quite
promising. Both MCS-FORM and ANN-FORM successfully estimated the reliabil-
ity of the concrete beam, and they exhibited a high level of agreement in their
assessments. This presented method demonstrates its suitability for the application
of reliability analysis in scenarios such as the one presented. Its efficiency in au-
tomating repetitive tasks not only simplifies the analysis process but also facilitates
the generation of multiple simulations. By doing so, it significantly minimizes the
time and computational resources required for reliability assessments.
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1. Introduction

Reliability analysis is a method used to assess the safety and performance of structures,
systems, and components under different conditions and uncertainties. It involves eval-
uating the probability of failure and estimating the associated risks, enabling engineers
to design safer and more reliable structures. Generally, reliability analysis of technical
components became an important issue during the Second World War. During this
period significant problems were encountered especially in regard to the performance
of electrical systems (Faber, 2005). Nowadays, reliability analysis has been developed
for different applications and in a wide range of different industries such as the nuclear
industry, chemical industry and building industry(Wang et al., 2022) and (Wang et al.,
2023). Therefore, the application of reliability analysis received a worldwide acceptance
from the engineering profession. Reliability analysis methods are used to assess the
safety of reinforced concrete structures by evaluating a boundary called the limit state
function g(Xi). This function helps determine if a structure is safe or unsafe. It com-
pares the strength or resistance of the structure to the effects of the applied load. The
limit state function in many reliability analysis problems can be expressed explicitly
and the First Order Reliability Method (FORM) can be used to estimate the safety of
structure for explicit limit state function. However, for applications to realistic struc-
tures, e.g., when the structure behaves non-linearly due to cracking and crushing of
concrete, yielding of reinforcement etc., the limit state function is expressed implicitly.
The implicit limit state function is defined for the very complicated problems as long
as an algorithm is available to compute the structural response (e.g. non-linear

finite element analysis). Finite element method is a tool that has become widely used
for analysis of structures since its much more effective than other methods in dealing
with the complexities of material nonlinearity and the 3D structural behaviour. Sev-
eral research studies ((Ghabussi et al., 2020), (Wang et al., 2022), (Ghabussi et al.,
2021) and (Li et al., 2023)) have utilized Finite Element Analysis (FEA), a power-
ful computational method in their work. FEA helps researchers simulate and analyze
complex phenomena and giving a better understanding of how complex stuff works.
In such cases (implicit limit state function), the derivative of g(Xi), with respect to the
random variables X, that is required in searching for the minimum distance point on
the g(Xi) is not available. Therefore, more advanced reliability methods are needed.
Various strategies have been developed to address challenges related to implicit perfor-
mance functions. One such method is the response surface method (RSM)(e.g., (Kim
and Na, 1997), (Kmiecik and Soares, 2002) and (Teixeira and Guedes Soares, 2010)),
which utilizes a polynomial function to approximate the unknown performance func-
tion. While RSM can provide a reasonably accurate estimate of failure probability,
it may be time-consuming with a large number of random variables, and there is no
assurance that the fitted surface closely matches the actual limit state in all regions.
The other possible method of structural reliability analysis for implicit performance
function is the sensitivity based analysis which has been detailed by Mahadevan and
Haldar (2000). The sensitivity based analysis can be computed through a finite differ-
ence approach and perturbation method to compute the gradient of the g(Xi) at each
iteration during the search for the design point at the minimum distance (Mahade-
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van and Haldar, 2000). Although the sensitivity based analysis is more elegant and
more efficient than RSM, it requires a specialized program that are not adaptable for
practical applications (Wísniewski, 2007).

The conventional Monte Carlo simulation (MCS) can also handle implicit perfor-
mance functions g(Xi) (Mahadevan and Haldar, 2000). Monte Carlo simulation is
one of the methods that is used to calculate the probability of failure for any limit
state function. This method is applicable when the limit state function is defined
explicitly or implicitly. It can be applied to a variety of practical problems and can
handle any type of probability distribution for random variables. Additionally, MCS
can accurately compute the probability of failure and is easy to implement. How-
ever, this method can be computationally intensive and time-consuming, particularly
when dealing with nonlinear systems with many input variables. According to Cardoso
et al. (2008), the probability of failure for ultimate limit states typically falls within
the range of 10−4 to 10−6. To ensure a 95% confidence level with a 5% margin of error,
a minimum of 1.6×107 to 1.6×109 analyses should be conducted. In such contexts, the
computational cost and time required for MCS can become exceedingly burdensome,
prompting the exploration of more efficient methodologies to expedite the reliability
analysis process. Therefore, it can be clearly seen that the main issues in structural
reliability assessment are the excessive computational cost as well as the accuracy and
applicability of the method to complex structural problems involving implicit limit
state function.

Two notable approaches that have emerged as potential alternatives to traditional
MCS in this regard are Monte Carlo Simulation-based FORM (MCS-FORM) and
Artificial Neural Network-based FORM (e.g., (Gomes and Awruch, 2004), (Elhewy
et al., 2006), (Cardoso et al., 2008), (Papadrakakis et al., 1996) (Chojaczyk et al.,
2015)) (ANN-FORM). These methods aim to strike a balance between computational
efficiency and accuracy in reliability analysis. However, it’s essential to acknowledge
that even these advanced techniques, while offering advantages in specific scenarios,
come with their own computational demands, which can be considered time-consuming
relative to particular problem characteristics. MCS-FORM involves repeatedly running
Monte Carlo simulations to estimate the probability of failure. Each simulation involves
sampling random input variables and performing an analysis to evaluate the system’s
response. This process is repeated multiple times to obtain reliable statistics. The time
required for this method increases significantly as the complexity of the problem and
the desired level of precision grow. Moreover, when implicit performance functions are
involved, the computational effort may further escalate.

ANN-FORM relies on artificial neural networks to approximate the system’s be-
havior and estimate the probability of failure. While this approach can be faster than
traditional MCS for repetitive reliability assessments, the initial phase of training the
neural network can be computationally expensive, particularly for complex models
and when a significant amount of training data is needed. Moreover, the accuracy of
ANN-based FORM depends on the quality and quantity of the training data, which
can pose challenges in certain situations.

In this paper, a novel approach is introduced aimed at increasing computational
efficiency in case of implicit LSF. This methodology capitalizes on the functionalities
of ABAQUS in conjunction with MATLAB. The principal objective of this innovative
strategy is the automation and streamlining of iterative tasks substantial to reliability
analysis leading to a substantial reduction in the computational time required for
such analysis. The method is based on the development of a custom ABAQUS Python
script file, which interfaces with MATLAB. The script serves as a bridge between the
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finite element analysis capabilities of ABAQUS and the data processing and analysis
capabilities of MATLAB.

An illustrative example was considered to demonstrate the application of the pro-
posed method. In this example, a deteriorated simply supported concrete beam with an
implicit performance function was analyzed. The objective was to assess the reliability
of the beam under the given conditions.

To perform this reliability analysis, two methods were employed: Monte Carlo
Simulation-based FORM (MCS-FORM) and Artificial Neural Network-based FORM
(ANN-FORM). Both of these methods were implemented in conjunction with the
newly developed approach that integrates ABAQUS and MATLAB.

The results of this analysis were quite promising. Both MCS-FORM and ANN-
FORM successfully estimated the reliability of the concrete beam, and they exhibited
a high level of agreement in their assessments.

This presented method demonstrates its suitability for the application of reliability
analysis in scenarios such as the one presented. Its efficiency in automating repeti-
tive tasks not only simplifies the analysis process but also facilitates the generation of
multiple simulations. By doing so, it significantly minimizes the time and computa-
tional resources required for reliability assessments. Overall, this approach showcases
its practicality and effectiveness in addressing complex problems and can be a valuable
tool for researchers and engineers seeking to enhance the efficiency of their reliability
analysis endeavors.

2. Monte Carlo simulation

Monte Carlo simulation is one of the methods that is used to calculate the probabil-
ity of failure for any limit state function. This method is applicable when the limit
state function is defined explicitly or implicitly (when limit state function obtained
from finite element analysis). In this approach, the most important task is to gener-
ate random samples of the random variables in order to simulate a large number of
experiments. The generation of random numbers according to a specific distribution
is the heart of Monte-Carlo simulation.
In structural reliability, a large number of samples are generated (simulated). For each
sample outcome, the value of the limit state function is computed. The probability of
failure after N simulations is estimated through:

Pf =
nf
N

(1)

where nf is the number of simulations in which the failure is occurred (g(Xi) < 0)
and N is the total number of simulations. By using a large number of simulations, the
estimation of the probability of failure becomes close to the exact solution. This means
that the estimation will converge to the correct answer when N is near ∞. Therefore,
this method is less suitable for complex structures because large simulations are re-
quired to estimate the probability of failure and that requires many time consuming
numerical calculations. The simulation of the N outcomes of the joint density func-
tion in Equation 1 is in principle simple and may be seen as consisting of two steps
as shown in Figure 1. In the first step, a uniformly distributed random number, zji,
is generated between 0 and 1 for each component of x̂j using pseudo random number
generator (PRNG). In the second step the outcomes of the pseudo random numbers
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zji are transformed to outcomes of x̂ji by:

xji = F−1
Xi

(zji) (2)

where F−1
Xi

() is the CDF for the random variable Xi.
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Figure 8.4 Principle for simulation of a random variable. 
 
This process is the continued until all components of the vector jx̂  have been generated. 
 
Importance Sampling Simulation Method 
As already mentioned the problem in using Equation (8.41) is that the sampling function 
f ( )x x  typically is located in a region far away from the region where the indicator function 
[ ]( ) 0I g ≤x  attains contributions. The success rate in the performed simulations is thus low. 

In practical reliability assessment problems where typical failure probabilities are in the order 
of 10-3 – 10-6 this in turn leads to the effect that the variance of the estimate of failure 
probability will be rather large unless a substantial amount of simulations are performed. 
 
To overcome this problem different variance reduction techniques have been proposed aiming 
at, with the same number of simulations to reduce the variance of the probability estimate. In 
the following we shall briefly consider one of the most commonly applied techniques for 
variance reduction in structural reliability applications, namely the importance sampling 
method. 
 
The importance sampling method takes basis in the utilisation of prior information about the 
domain contribution to the probability integral, i.e. the region that contributes to the indicator 
function.  Let us first assume that we know which point in the sample space ∗x  contributes 
the most to the failure probability. Then by centring the simulations on this point, the 
important point, we would obtain a higher success rate in the simulations and the variance of 
the estimated failure probability would be reduced. Sampling centred on an important point 
may be accomplished by rewriting Equation (8.38) in the following way 
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in which ( )sf x  is denoted the importance sampling density function. It is seen that the 

integral in Equation (8.44) represents the expected value of the term [ ] ( )( ) 0
( )s

fI g
f

≤ x xx
x

 where 

the components of s are distributed according to ( )fV x . The question in regard to the choice 
of an appropriate importance sampling function ( )Sf s , however, remains open. 
 

Figure 1. Principle for simulation of a random variable (Faber, 2005)

3. Artificial Neural Network method (ANN)

The ANN is a numerical algorithm introduced by McCulloch and Pitts (1943) by
proposing a mathematical model to simulate neuron behaviour. The ANN model
consists of multiple neurons linked together and situated in three or more layers:
Input layer, Output layer and one or more hidden layers as shown in Figure 2.

Each neuron in the input layer will receive an input component of a signal vector
that represents the input random variables Xi = x1, x2, ....xn. After that, each random
variable will be multiplied by a coefficient wmk which reflecting the importance of the
input channel k. The activation of neuron am is then calculated from Equation 3.

am =

n∑
k=1

wmk.xk + bm (3)

where bm is the bias, which is a constant corrective term that allows having a non-
negative activation am. The output signal sm of neuron is the numerical value that
results from the computation of an activation hyperbolic tangent sigmoid function
f(am), which is the common choice used for this purpose, and it can be calculated
from Equation 4.

f(am) = sm =
2

1 + e−2am
− 1 (4)
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when the number of variables in the reliability problem rises.
Moreover, the samples should be spread over the whole domain
for each variable and for this purpose training set improvement
techniques can be applied. To start the training process, training
data need to be scaled before introducing to network. The scale
range depends on the type of the transfer function used. For
instance, while using the hyperbolic tangent function the input
range is � �1;þ1½. However, scaling is needed because differ-
ences between two very high or low values will result in negligible
difference in the function output, which turns the training process
difficult. The output values range of, xie �1;1½ � as represented on
Fig. 3, also need scaling to adapt to the desired function range.The
default error function used for training feed forward networks is
the mean squared error (MSE) – the average squared difference
between the network output values si and the target outputs ti,
defined as:

MSE ¼ 1
N

XN

i¼1

ðti � siÞ2 ð3Þ

where N is the number of training samples.

3. Survey of applications of ANN in structural reliability analysis

Despite the fact that the concept of numerical algorithms based
on biological neurons was introduced in 1943 by McCulloch and
Pitts [23], the first work that foresees the opportunity of applying
Artificial Neural Networks (ANNs) in structural analysis was pub-
lished by Hornik et al. [24]. Since the greatest challenge in reliabil-
ity analysis is the computation of the limit state function (LSF),
research on ANN capability to approximate LSF was performed
and several ANN-based structural reliability methods were pro-
posed, compared and modified over the years. An overview of
ANN-based reliability methods in a chronological order is pre-
sented in Table 1.

3.1. Types of ANNs

ANN can have different architectures that translate into differ-
ent approximation advantages and disadvantages. For reliability
analysis purposes, two most popular networks are used – back
propagation multi-layer network and radial basis functions net-
work (RBF). Hurtado and Alvarez [29] tested both and concluded
that RBF networks have the following desirable features: high
training speed, very small error, accuracy in probability estimation
and robustness with respect to changes in model parameters,
training sample size and generation procedures. In a subsequent
work [1], the same authors analyse, compare and classify not only
network types, cost functions, optimization algorithms, sampling
methods but also different purposes of use of ANNs. They also rec-
ommend procedures for applying ANN in the structural reliability
calculations. They stressed that, when combined with Monte Carlo
simulation, two approaches can be used, the regression or the clas-
sification approach. In the former, the ANN are trained to learn the
LSF or the functions used in the LSF, while in the latter the ANN are
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Fig. 2. Multi-layer neural network.

Fig. 3. Hyperbolic tangent function.
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Figure 2. Multi-layer neural network (Chojaczyk et al., 2015)

The number of neurons on the input layer is equal to the number of input variables
while the number of outputs it depends on the number of limit state functions that
need to be approximated. The number of hidden layers and also the number of neurons
in the hidden layers can be changed and there are no applicable general rules to choose
them. Trial and error is usually used to find the suitable number of hidden layers.
The basic idea of ANN is to train a neural network model which can be used later on
other values. The training of a network is an iterative process which consists of ob-
taining the unknown coefficients wmk and bm required to approximate the prescribed
function. The most common training process, called Back Propagation training al-
gorithm, consists in generating random values for the initial weights and biases and
then adjusting values using a training algorithm to minimize the error between the
predicted output produced by the ANN and the exact value of the function. There-
fore, to perform this training test, a training data set, which includes input and target
values, should be previously prepared. The iterative training algorithm performs an
error minimization procedure that is repeated until the network outputs converges to
the target value. The error is evaluated using the following equation (Mean Squared
Error):

MSE =
1

N

N∑
i=1

(ti − si)2 (5)

where N is the number of training samples, si is the network output values and ti is
the target output.
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Table 1. Deterministic values of beam geome-

try, material properties and load parameters

Parameter Value Units

Length (L) 9.5 m
Clear span (Lcs) 9 m

Height (h) 0.4 m
Width (b) 0.25 m

Effective depth (d) 0.38 m
Compressive strength (fck) 30 MPa
Steel yield strength (fyk) 500 MPa

Permanent load (gk) 4 kN/m
Live load (qk) 6 kN/m

4. Reliability analysis of a RC beam with implicit performance function

In this section, an example application of reliability analysis of a deteriorated RC
beam with implicit performance function will be presented. Two methods have been
used and compared:

• Combining MCS and FORM.
• ANN-based FORM.

4.1. Beam details and random variables

A simply supported reinforced concrete beam subjected to corrosion is considered
in this study to assess the effect of corrosion and material strength variability on
beam resistance and probability of failure over 90 years of the beam service life. The
deterministic values of beam geometry, material properties and loads are listed in
Table 1. Four reinforcement bars are embedded in the beam with diameter 16 mm as
shown in Figure 3.
As the beam is tested under bending, the failure mode criteria is flexural and the
ultimate limit state function occurs when the beam resistance is less than or equal to
the bending action. Therefore, the limit state function is written as:

g(Xi) = θR.MR − θE .MS (6)

where θR and θE are the resistance and load model uncertainties. MR is the beam
resistance moment that can be evaluated from ABAQUS. MS is the beam action
moment which can be calculated according to the applied dead and live load from the
following equation:

MS = wl2/8 (7)

where w = g + q. Then the limit state function is written as:

g(Xi) = θR.MR − (
l2

8
(g + q)).θE = 0 (8)

In the reliability analysis, the compressive strength of concrete (fc), the tensile strength
of concrete (ft), the yield stress of reinforcement steel (fy), dead load (g), live load (q),
the concrete modulus of elasticity (Ec), the resistance model uncertainty (θR) and the
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Figure 3. Simply supported RC beam section

Table 2. Statistical parameters of random variables for ultimate limit state analysis

Variables Units µ σ COV Distribution Source

Concrete compressive strength (fc) MPa fcnom - 0.15 Lognormal JCSS (2001)

Concrete tensile strength (ft) MPa 0.3(fc)2/3 - 0.2 Normal Spaethe(1992) cited in Wísniewski (2007)
Yield stress (fy) MPa Snom + 2σ 30 - Normal JCSS (2001)
Modulus of elasticity (Ec) GPa 22(0.1fc)0.3 - 0.08 Normal Eurocode-2 (2004)
Dead load (g) kN/m 4 - 0.1 Normal Nowak (1993)
Live load (q) kN/m 6 - 0.4 Gumbel Nowak (1993)
Load uncertainty (θE) - 1 0.1 0.1 Lognormal JCSS (2001)
Resistance uncertainty(θR) - 1 0.15 0.15 Lognormal JCSS (2001)

load model uncertainty (θE) are treated as random variables and their distribution,
mean and standard deviation are presented in Table 2.
The analysis assumes deterministic values for corrosion rate (icorr = 3µ.A/cm2) and
pitting factor (R = 4) for simplicity. Furthermore, time to corrosion initiation (ti)
is assumed to be zero. According to the classification of corrosion rate in Middleton
and Hogg (1998), icorr > 1.0 represents a high corrosion rate typical of aggressive
environments such as surfaces exposed to sea-spray.
The other relevant parameters for the mechanical properties for steel and concrete are
included as implicit random variables.

4.2. 3D-nonlinear FE modelling

In the current paper, the nonlinear finite element method (FEM) is employed to
characterize the model, mirroring the methodology established in (Al-Mosawe et al.,
2022). This includes the modelling of material properties, application of loads, and
the mesh size by performing a mesh sensitivity study. a nonlinear analysis has been
performed to simulate the actual behavior of the beam. Figure 4 shows the 3D FE
mesh for the nonlinear model for the RC simply supported beam. The model includes
eight-node Solid elements (C3D8R) for concrete and Truss elements (T3D2) for
reinforcement steel. The truss elements are embedded in the concrete element using
embedded constraint, which means a perfect bond is assumed between concrete and
steel. Elastic steel plattens are also added at the load positions and near the supports
to avoid the stress concentration in the concrete. A tie constraint (surface based tie)
is used to define the fully constrained contact behaviour between elastic strips and
the concrete beam (Al-Mosawe et al., 2022). For the boundary conditions, the beam
is simply supported and therefore, the movement is eliminated in x and y direction
for the hinge and in y direction for the roller. A displacement control method is used
to test the beams under four point bending.
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Table 3. Concrete damage plasticity input parameters

Dilation angle (ψ) Eccentricity (ε) fb0/fc0 Kc µ

31◦ 0.1 1.16 2/3 10−5

This study conducts a mesh sensitivity analysis on a simply supported concrete
beam to identify the optimal mesh size. While a coarse mesh enhances computational
efficiency, it may yield inaccurate results, and a very fine mesh, though more accurate,
can be excessively time-consuming. Consequently, mesh size is crucial in finite element
analysis. Seven mesh sizes for the beam were assessed, and the ultimate load was
compared against the number of elements. The results indicate a converged mesh
when reducing size produces negligible differences. A decrease in elements (coarse
mesh) corresponds to an increase in ultimate load due to inadequate representation
of stress gradients. Thus, a coarse mesh hinders accurate structural assessment. This
study determined that 9120 and 11232 elements yield close ultimate load values, with
9120 elements chosen for its reduced computational time

The behavior of concrete under tension and compression is simulated using the
Concrete Damage Plasticity model (CDP) in ABAQUS. This model is versatile and
can represent the characteristics of brittle materials like concrete, considering two
main failure mechanisms: tensile cracking and compressive crushing. The reinforce-
ment steel is represented by a simplified stress-strain curve with a Young’s modulus of
200 GPa. The yield stress is set at 500 MPa, and the Poisson’s ratio is 0.3, a standard
value for steel. The damage parameters (dc and dt) are excluded from consideration
within this investigation due to the absence of a cyclic relationship in the analytical
framework. The analysis employs the CDP model incorporating the viscosity param-
eter (µ), the selection of which is informed by a sensitivity analysis detailed in Table
3. The incorporation of the viscosity parameter (µ) serves the purpose of mitigat-
ing convergence challenges encountered in ABAQUS analysis. Challenges in solution
convergence may manifest as a consequence of heightened material non-linearity. Ad-
ditionally, materials exhibiting softening characteristics are associated with negative
tangent stiffness, thereby exacerbating convergence issues. Traditional finite element
methodologies, such as stress increment reduction or an increase in the maximum
number of steps within the Newton-Raphson method, may prove inadequate. Conse-
quently, the CDP model integrates the viscosity parameter µ to facilitate plastic strain
updates, with damage deduction facilitated through an additional relaxation time. The
remaining parameters, including dilation angle ψ, eccentricity ε, yield surface factor
Kc, and the ratio of initial biaxial compressive yield stress to initial uniaxial compres-
sive yield stress (fb0/fc0), adhere to default values within the software, as outlined in
Table 3. The beam is loaded under four point bending using a displacement control
method by applying a target displacement value of 0.3 m. As vertical displacement
increased, cracks due to bending were generated in the middle span of the beam as
shown in Figure 5. The resistance moment at the middle section of the beam is cal-
culated by finding the integration point stress for each element at the middle beam
section and then these stresses are converted to moment by multiplying each element
stress by its area and the distance from element center to the bottom of the beam.
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Figure 4. The three dimensional view of meshing the RC simply supported beam

Figure 5. Beam cracks due to bending

4.3. Effect of pitting on reinforcement steel cross section

For simplicity, Val and Melchers (1997) assumed the pit form to be hemispherical
as shown in Figure 6. The maximum pit depth at time t along a reinforcing bar is
estimated from:

P (t) = 0.0116(t− ti)icorrR (9)

where R is the pitting factor representing the extent of pitting corrosion as the ratio
between the maximum and average corrosion penetration as follows:

R = P (t)/Pav(t) (10)

Pav(t) = 0.0116icorr(t− ti) (11)
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Figure 6. Non-uniform loss of reinforcement due to localized (pitting) corrosion (Val and Melchers, 1997)

The remaining area of the corroded steel at time t after pitting corrosion is then
calculated as the following equations (Val and Melchers, 1997):

Ar(t) =


π.D2

o

4 −A1 −A2 P (t) ≤
√

2

2
Do

A1 −A2

√
2

2
Do < P (t) ≤ Do

0 P (t) > Do

(12)

where

A1 = 0.5
[
θ1.(

Do

2
)2 − a.|Do

2
− P (t)2

Do
|
]

(13a)

A2 = 0.5
[
θ2P (t)2 − a.P (t)2

Do

]
(13b)

a = 2P (t)

√
1−

[P (t)

Do

]2
(13c)

θ1 = 2arcsin
( a
Do

)
and θ2 = 2arcsin

( a

2P (t)

)
(13d)

4.4. Analysis procedure and results

After defining the limit state function and the relevant random variables, time de-
pendent reliability analysis procedure according to Figure 7 has been applied. The
procedure can be summarized in the following steps:

(1) By using MCS, a large number of samples for the resistance random variables
(fc, fy, ft and Ec) have been generated for each time interval.

(2) For each of the generated samples in step 1, the finite element beam model is
prepared and analysed.

(3) The resistance moment is obtained after each finite element analysis for the
beams in step 2.

(4) The statistical parameters of the resistance moment are found at each time
interval.
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(5) FORM method is used to evaluate the probability of failure (Pf ).

Performing the steps listed above is quite complicated because they require a very
long time to prepare the models and analyse them. For example, in this study MCS
is used to generate 150 samples in step 1, which means 150 finite element models (for
each time interval) need to be prepared and analysed in ABAQUS. So, if 10 years
considered in time dependent reliability analysis, then 1500 finite element models
need to be prepared and analysed. Doing that is impossible with the Graphical User
Interface (GUI). Therefore, the ABAQUS Python script file is used in conjunction with
MATLAB to reduce the time required for that, as will be explained in the next sections.
Noting that, this is the first time that such method is used in structural reliability
analysis to speed up the analysis via automating the processing. In conjunction with
the above described method, the files have been prepared and submitted to the High
Performance Computers (HPC) to complete several files at a time and to reduce the
time required for each FEA.

12



Figure 7. Reliability analysis procedure flowchart

4.4.1. ABAQUS Python script file

Python scripting language is a powerful tool used to communicate between modules
like Graphical User Interface (GUI) in ABAQUS and ABAQUS/viewer. Python is
embedded within ABAQUS software products. In some cases, using ABAQUS GUI to
analyse a task can be considered as too time consuming or practically impossible, as
is the case in this reliability analysis. For example, if a load is applied on a cantilever
beam and the bending moment needs to be calculated as increasing the beam length
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then the beam should be recreated several times and if the model is complex then the
sections, load, mesh and boundary conditions should be changed every time also. In
this case, a Python script is a more efficient way to perform this task by considering
e.g. length and load as a variables and rerunning the script in a loop for several times.
Therefore, Python script is used in this study to automate the repetitive tasks that
result from the uncertainty of material properties and geometry. In addition, using
the script can help to extract information from large output databases.

To generate a Python script file for the model database (mdb) in ABAQUS, the
following steps can be taken: First, create a finite element model using ABAQUS/GUI
and complete the analysis. Save the model in a specific working directory. Then, open
the journal file (.jnl) which records all the actions of model creation in ABAQUS and
save it as a Python file (.py). This step generates the model database Python script
file (mdb.py), which contains all the input data, such as model dimensions, material
properties, mesh size, and more.

To generate the Python file for the output database (odb.py), you can follow these
steps: Open the .odb file, which is created in the same directory, and specify the
required results. Save the results in a .rpt file and exit. Finally, open the replay file
(.rpy), which records all the actions of extracting the results from ABAQUS/viewer,
and save it as a Python file (.py).

The odb.py file can be used to avoid the repetition of extracting the data from
ABAQUS/viewer (.odb file). According to that, calculating the resistance moment in
step 3 in Section 4.4 has been found one time, and then the steps of extracting these
results are transformed to odb.py file.

4.4.2. ABAQUS and MATLAB connection

The two software applications ABAQUS and MATLAB can be connected together
using Python file. The connection can help to automate the analysis, generate multiple
simulations easily and minimize the time.
After preparing the mdb.py and the odb.py files, they were combined together in one
file to accelerate the analysis. In MATLAB, the following steps are needed to complete
the connection:

(1) Generate the resistance random variables samples, 150 samples for each year
using MCS.

(2) Create a new Python file in terms of the resistance variables samples values
generated in step 1.

(3) Execute the file prepared in step 2 in the model data base using exec-
file(’filename.py’).

(4) Run ABAQUS through MATLAB using System command. After this step,
MATLAB will firstly read the mdb.py to create the model and secondly the
odb.py to extract the results.

4.4.3. Resistance moment and beam capacity

The pitting corrosion is assumed to be distributed uniformly along the reinforcement
bars. The pit configuration and its geometric model equations that are proposed by
Val and Melchers (1997) is used in this study to predict the cross-sectional area of the
pit (Apit). According to this, the reinforcement corrosion is regarded through the steel
bar area reduction as a function of time (Figure 8b) when the pit depth (Figure 8a)
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is generated over the reinforcement length. Figure 9 shows the deterioration in beam
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Figure 8. Model of steel corrosion (a) Increasing of pit depth with the time; (b) Reduction of the steel cross

sectional area due to pitting corrosion

ultimate load capacity due to corrosion along the years. The ultimate load capacity
of the beam corresponding to the corrosion loss over the years has been listed in
Table 4. The table shows that the percentage reductions in ultimate capacity were in
accordance with the findings of Malumbela et al. (2010), who found that for every 1%
mass loss of steel, there was a corresponding 0.7% reduction in the ultimate capacity
of the beam. Malumbela et al. (2010) performed an experimental test of corroded
reinforced concrete beam to investigate the variation of mass loss of deformed steel
bars along the corroded beam and its relationship with the residual capacity of RC
beam. The result obtained in this paper are consistent to the results of Malumbela
et al. (2010). This indicates that the finite element method used for modelling the
simply supported beam works successfully.
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Figure 9. Load displacement curves at each year. The figure shows the deterioration of beam ultimate load

capacity over the years due to corrosion

Table 4. Ultimate load capacity of the beam corresponding to different
values of corrosion loss

Years Corrosion loss Ultimate load(kN)
Perecentage reduction
in ultimate capacity

1 0 104.24 0
11 0.0175 102.81 0.013
21 0.0615 99.13 0.048
31 0.128 93.89 0.099
41 0.215 86.70 0.16
51 0.318 78.12 0.25
61 0.432 68.97 0.33
71 0.554 58.32 0.44
81 0.678 46.34 0.55
91 0.798 35.50 0.65

For the resistance moment, a lognormal distribution has been fitted and the mean
value is also reduced as the corrosion progressed as shown in Figure 10. For the no
corrosion case, the resistance moment histogram is shown in Figure 11, which shows
that the mean value of the resistance moment is 176 kN.m with 9.1 kN.m standard
deviation. Figure 12 demonstrates the effect of corrosion has on flexural strength ca-
pacity of the RC beam. The figure shows that with time the flexural strength of the
beam decreases considerably. For example, after 51 years since corrosion initiation, the
probability that the flexural resistance is less than 132 kN.m is around 50%. While for
no corrosion case in the first year of the beam service life, the probability of getting
a resistance moment less than 132 kN.m is zero. This indicates that corrosion has
significant effect on the flexural resistance of the RC beams.

4.4.4. Probability of failure evaluation

After computing the resistance moment, the next step is to evaluate the probability
of failure. As mentioned before, the probability of failure can be estimated using MCS
by finding the ratio between the number of samples for which the limit state function
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Figure 11. Histogram of flexural strength for no corrosion case (t = 0)

indicates failure to the total number of samples. However, the number of the generated
samples in this study was small (150 samples) and accordingly, the direct estimation of
the Pf will not be accurate and it might be underestimated by the results. Therefore,
two methods have been used and compared in this study to estimate the Pf .
The first method is a combination between MCS and FORM analysis, while the second
one which is proposed by Elhewy et al. (2006) is by training an ANN model and connect
it with the reliability methods (FORM or MCS). The following sections explain and
show the details and results of the two methods.
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Figure 12. The effect of corrosion on the distribution of the beam resistance moment along the years

• MCS with FORM
In this method, at each time interval, the values of the resistance moments are
used in conjunction with FORM analysis to estimate the limit state function and
the probability of failure. According to Equation 8, the random variables that
are considered in FORM method are the resistance moment (MR), resistance
model uncertainty (θR), permanent load (g), the variable load (q) and the load
model uncertainty (θE).
The initial design points representing the mean values of each random variable
were set for the first iteration. After solving a constrained optimization problem,
when the reliability index β converged, the design points and the limit state
function will be obtained. According to this approach, the reliability index and
the probability of failure for each time interval are shown in Figure 13 a and b
respectively. The results show that for the first year, when there was no corro-
sion, the reliability index was 3.45 which is lower than the target reliability index
(βT ). The standard CEN (1990) recommends βT = 4.7 for a one year reference
period assuming no deterioration. That means the beam has not achieved the
intended safety requirements since the reliability index is lower than the target
one. This might be due to the absence of reinforcement at the top of the beam.
Furthermore, assuming icorr = 3µ.A/cm2 and ti = 0 means a an aggressive en-
vironmental condition has been considered in this study. The reliability index
decreased from 3.45 in the first year to more than half this value after 60 years of
the beam service life, and that looks reasonable comparing with the remaining
area of steel after 60 years, which is also reduced by half due to the aggressive
environmental condition used in this study (icorr = 3µ.A/cm2).
A reliability analysis should be accompanied by a sensitivity analysis. Figure 14
shows the direction cosines at the design points of the random variables as a
function of time. The direction cosines of each variables gives a measure of the
impact that each random variable has on the estimated reliability index. The
figure shows that the variable load (q) plays a fundamental role in the analy-
sis with the largest sensitivity reaching -0.72 and exhibiting a reduction of its
importance as the deterioration increase. This is followed by the resistance and
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load model uncertainties (θR and θE) with weights equal to 0.52 and -0.36 re-
spectively. The influence of the resistance moment was insignificant for the first
few years since the corrosion level was low, however, its importance increased
considerably with the time as the corrosion level increase. The sensitivity co-
efficient of the resistance moment depends on the material properties and the
corrosion rate.
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• ANN-based FORM
In this method, ANN models were prepared and used to predict the limit state
function g(Xi) and the probability of failure Pf that are obtained from the pre-
vious method. 10 ANN models (for each time interval) have been trained in this
study. The ANN models are trained according to training data sets which in-
clude the input and the output (target) values. The training data sets considered
in this study are represented by the 150 samples that are analysed using finite
element analysis to get the limit state function.

Ensuring the efficiency of the training process is contingent upon the careful
selection of a representative sample set, a task of paramount importance. To
optimize training efficacy, it is imperative to incorporate an adequate number
of samples for each variable, facilitating the network’s successful approximation
of the Limit State Function (LSF) across its entire domain during recall. As
the complexity of the reliability problem grows with an increased number of
variables, the expansion of the sample set becomes a necessity. Furthermore,
strategic dispersion of samples throughout the entire domain for each variable is
vital for comprehensive learning. Therefore, the training data sets are prepared
again by repeating the FEA for the beam with the same random variables, but
increasing the standard deviation for each of them. That means, the variables
that are considered in Table 2 are considered again with the same mean and
twice their standard deviation (µ, 2σ).
After the models have been trained, they will be connected with the reliability
method (FORM) to predict the g(Xi) and then Pf . The procedure that is used
to tackle this method is as follows:
◦ Establish ANN model

To establish an ANN model two stages are needed: ANN model construction
and ANN training and testing. In the first stage, the number of hidden layers
and neurons number should be specified. Tarefder and Zaman (2005) stated
that the accuracy of ANN depends on the network structure; however, there
is no definite rule for choosing the hidden layers and the number of neurons
at each layer. According to that, no rule has been depended in this study to
select the number of hidden layers and neurons. Trial iterations were made
to select the suitable number of layers and neurons for the hidden layer.
To begin with, one layer with 3 and 5 neurons have been used, however,
good results were not achieved as shown in Table 5. Then, ANN model
was built again with using two hidden layers with 3 and 5 neurons at each
layer respectively. The results were worth noticing that a greater number of
layers and neurons can increase the accuracy of estimating the probability
of failure as shown in Table 5. The table shows that using two hidden layers
with 5 neurons at each of them resulted in closer value of reliability index
to the one that is obtained from FORM method. According to that, the
structure of ANN model used in this study consists of one input layer with
5 neurons (5 random variables: MR, g, q, θE and θR), one output layer with
one neuron (g(Xi)) and two hidden layers with 5 neurons at each layer, as
shown in Figure 15.

At the second stage (training and testing), the initial weight and biases
are randomised. The models have been trained in this study using back
propagation training algorithm which is a supervised learning algorithm
that allows for training and adjusting the network by minimizing the error
between the target and ANN output. At each network training, the data set
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Table 5. Estimated reliability index (β)

Number of
hidden layers

Number of
neurons

β (NN)
for year 1

β (FORM)
for year 1

Difference(%)

1 3 3.63 3.45 4.7
1 5 3.50 3.45 1.2
2 3 3.55 3.45 2.6
2 5 3.45 3.45 2.90E-03

Input Hidden1 Hidden 2

Output

Figure 15. Structure of ANN

is processed many times as the connection weights and biases are adjusted
by back propagation. At some desired level of accuracy, which can be eval-
uated by using an R2 value and MSE, the training stops. R2 represents
the correlation factor between the target and the predicted values, while
the MSE represents the difference between the desired and the predicted
output. Therefore, a good prediction is achieved with higher value of R2

and lower value of MSE.
In this study, 70% of the input and output data are used to train the model
while 30% are used to test the model. Table 6 summarises the R2 and the
MSE for the ten trained ANN models. The best results are obtained with
a very small MSE (near to zero) and a high R2 (larger than 98%). Ac-
cording to this, the predicted limit state functions g(Xi) by ANN are very
close to the target or original values of g(Xi) that are obtained from finite
element analysis. Figure 16 shows a comparison between the predicted and
the original values of g(Xi).
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Figure 16. Predicted and target limit state function

22



Table 6. Performance of ANN model

Years R2-Training R2-Testing R2-All data MSE

1 1 0.99539 0.998 2.66E-21
11 1 0.99595 0.99878 1.52E-21
21 1 0.99571 0.99884 1.91E-21
31 1 0.99674 0.99923 1.29E-21
41 1 0.99651 0.99902 1.21E-21
51 1 0.99616 0.99884 4.977E-22
61 1 0.98834 0.99423 1.09E-21
71 1 0.99338 0.9977 1.09E-21
81 1 0.98516 0.99272 1.09E-21
91 1 0.99045 0.99744 5.54E-22

◦ Linking ANN to reliability method (FORM)
After all weights factors are fixed for the ANN models, they were linked
to FORM method to estimate the probability of failure for each year and
compare the results with that getting from the previous method (MCS and
FORM). The simple way to link ANN with FORM is by setting the initial
design points, the mean values of the random variables, at the first iteration.
The trained ANN model will be called to estimate the limit state function
at the given design point, then the calculation will be repeated until the
reliability index converged. Figure 17 shows the comparison between the two
methods. ANN-based FORM shows its efficiency to predict the probability
of failure in which the results are very comparable between the two methods.
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index (b) Probabilty of failure
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5. Conclusion

In this paper, two methods: (a) combining MCS and FORM (b) ANN-based FORM
have been applied on a simple example of RC beam subjected to corrosion. As the
beam is modelled in ABAQUS and the nonlinear analysis is numerically costly, ap-
plying reliability analysis will be exhausted and a time consuming process. Therefore,
by utilizing the ABAQUS and MATLAB connection (via a Python script file), an in-
novative combined process has been developed to enhance the efficiency of reliability
analysis. The two methods have been successfully estimated the reliability of the beam
and they show a good agreement with a very small difference (0.0029%) between them.
The results also show that the effect of corrosion was very significant on the ultimate
and flexural capacity of the beam. The percentage reduction in ultimate capacity were
in accordance with the findings of Malumbela et al. (2010) in which they found that
for every 1% maximum mass loss of steel there was a corresponding 0.7% reduction in
the ultimate capacity of the beam. The computed reliability index is reduced sharply
with the time due to the aggressive environmental condition considered in this study.
The most important parameter for the analysis are traffic loads, followed by model
uncertainties. This means that a correct definition of traffic load CoV is fundamental
since it can drastically impact results. The weight of the resistance moment increased
with the time as the corrosion increase. The method used in this chapter shows its
applicability and efficiency to automate the repetitive tasks which can help to simplify
the analysis, generate a multiple simulations easily and minimize the time.

This approach has the potential to offer a significant advantage in terms of computa-
tional time and resource utilization for researchers and engineers working on reliability
problems in engineering and structural domains.
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