
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 1

DTCM: Deep Transformer Capsule Mutual
Distillation for Multivariate Time Series

Classification
Zhiwen Xiao, Member, IEEE, Xin Xu, Huanlai Xing, Member, IEEE,

Bowen Zhao, Xinhan Wang, Fuhong Song, Rong Qu, Senior Member, IEEE, and Li Feng

Abstract—This paper proposes a dual-network-based feature
extractor, perceptive capsule network (PCapN), for multivariate
time series classification (MTSC), including a local feature
network (LFN) and a global relation network (GRN). The LFN
has two heads (i.e., Head A and Head B), each containing two
squash CNN blocks and one dynamic routing block to extract
the local features from the data and mine the connections
among them. The GRN consists of two capsule-based transformer
blocks and one dynamic routing block to capture the global
patterns of each variable and correlate the useful information
of multiple variables. Unfortunately, it is difficult to directly
deploy PCapN on mobile devices due to its strict requirement for
computing resources. So, this paper designs a lightweight capsule
network (LCapN) to mimic the cumbersome PCapN. To promote
knowledge transfer from PCapN to LCapN, this paper proposes
a deep transformer capsule mutual (DTCM) distillation method.
It is targeted and offline, using one- and two-way operations
to supervise the knowledge distillation process for the dual-
network-based student and teacher models. Experimental results
show that the proposed PCapN and DTCM achieve excellent
performance on UEA2018 datasets regarding top-1 accuracy.

Index Terms—Capsule Network, Deep Learning, Data Mining,
Knowledge Distillation, Multivariate Time Series Classification,
Mutual Learning.

I. INTRODUCTION

MULTIVARIATE time series (MTS) data has been
utilized in various real-world applications, such as,

electroencephalogram (EEG) detection [1], electromyography
(EMG) decoding [2], damage anomaly analysis [3], hand

Manuscript received XX, XX. This work was partially supported by
the National Natural Science Foundation of China (No. 62172342 and
No.62202392), the Natural Science Foundation of Hebei Province (No.
F2022105027), the Natural Science Foundation of Sichuan Province (No.
2022NSFSC0568, No. 2022NSFSC0944, and No. 2023NSFSC0459), and
the Fundamental Research Funds for the Central Universities, P. R. China
(Corresponding Author: Huanlai Xing).

Z. Xiao, H. Xing, B. Zhao, X. Wang, and L. Feng are with
the School of Computing and Artificial Intelligence, Southwest Jiao-
tong University, Chengdu 610031, China, also with the Tangshan Insti-
tute of Southwest Jiaotong University, Tangshan 063000, China, and also
with the Engineering Research Center of Sustainable Urban Intelligent
Transportation, Ministry of Education, Chengdu 611756, China (Emails:
xiao1994zw@163.com; hxx@home.swjtu.edu.cn; cn16bz@icloud.com; xh-
wang@my.swjtu.edu.cn; fengli@swjtu.edu.cn).

X. Xu is with the School of Computer Science and Technology, China
University of Mining and Technology, Xuzhou 221166, China (Email:
jhsu99@163.com).

F. Song is with the School of Information, Guizhou University of Finance
and Economics, Guiyang 550025, China (fhsong@mail.gufe.edu.cn).

R. Qu is with the School of Computer Science, University of Nottingham,
Nottingham NG7 2RD 455356, UK (rong.qu@nottingham.ac.uk).

movement recognition [4], abnormal event detection [5], emo-
tion recognition [6], heart diseases analysis [7], and cognitive
impairment [8] [9]. Unlike other data, such as, CIFAR10 1

for image classification, DAQUAR 2 for visual question an-
swering, and YFCC100M 3 for text classification, multivariate
time series is a series of time-ordered data points associated
with multiple time-dependent variables, each containing local
and global patterns. The local patterns disclose the signif-
icant changes in the data, while the global ones unveil its
overall trend. To address multivariate time series classification
(MTSC) problems, one needs to extract the local and global
patterns for each univariate time series (UTS) and discover the
relationships among them [10], [11], [12].

MTSC belongs to time series classification (TSC). TSC
algorithms can be directly used to tackle MTSC problems.
These algorithms can roughly be divided into two categories,
i.e., traditional and deep learning algorithms [13]. Traditional
algorithms capture the features and regularizations from the
input by revealing the significant differences and connections
within the data. These algorithms are primarily distance-
based and feature-based. Especially, combining the nearest
neighbor (NN) and dynamic time warping (DTW) is one of
the commonly used distance-based algorithms that measure
the similarities between spatial features of data [14], such
as, DTWI [15], DTWD [15], and DTWA [13]. There
are a variety of DTW-NN-based ensemble algorithms. For
instance, Lines et al. [16] introduced an elastic ensemble
(EE) integrating 11 1-NN-based elastic distances to explore
the significant differences within the data. Bagnall et al.
[17] put forward the collective of transformation-based en-
sembles (COTE) that used a number of NN-based classifiers
to identify different data representations. Two representative
algorithms in the literature were the hierarchical vote collective
of transformation-based ensembles (HIVE-COTE) [18] and
explainable-by-design ensemble method (XEM) [19].

Feature-based algorithms aim at mining the representative
shapelets from time series data. For example, a bag-of-features
representation framework was adopted to capture the infor-
mation at different locations of sequences [20]. Hills et al.
[21] proposed a single-scan shapelet algorithm to generate a
transformed dataset. Pei et al. [22] presented a hidden-unit

1http://www.cs.toronto.edu/∼kriz/cifar.html
2https://www.mpi-inf.mpg.de/
3http://projects.dfki.uni-kl.de/yfcc100m/

http://www.cs.toronto.edu/~kriz/cifar.html
https://www.mpi-inf.mpg.de/
http://projects.dfki.uni-kl.de/yfcc100m/

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2

logistic model (HULM) to construct the latent structure within
the data. Well-known feature-based algorithms include the
learned pattern similarity [23], bag of SFA symbols (BOSS)
[24], time series forest [25], TS-CHIEF [26], temporal feature
fusion [27], and fuzzy cognitive map [28].

Also, there are other traditional algorithms for TSC. For
instance, Baydogan et al. [29] presented a symbolic represen-
tation to extract the information contained in the MTS data,
called SMTS. In [30], an autoregressive tree-based ensemble
approach (mv-ARF) was applied to extract the non-linear
dependencies and information hidden in the data. In [31],
a generalized random shapelet forest algorithm was adopted
for generating a series of discriminative subsequences of the
data. Schäfer and Leser [32] developed an MTS classifier,
WEASEL+MUSE, to capture the critical information of each
variable and the relationships among the variables.

Deep learning algorithms pay attention to extracting the
intrinsic connections among representations by unfolding the
internal representation hierarchy of data [33]. These algorithms
mainly include single-network-based and dual-network-based
models [34]. To be specific, a single-network-based model
mines the basic representation hierarchy of data and the
significant correlations within the hierarchy by one (usually
hybridized) network. For example, in [35], a multi-channel
deep convolutional neural network was adopted to capture
the latent features from MTS data. The off-the-shelf deep
convolutional neural network (CNN) [36], InceptionTime [37],
ROCKET [38], mini-ROCKET [39], deep contrastive repre-
sentation learning with self-distillation [40], residual network
with ensemble deep random vector functional link [41], echo
state network [42], and the causal dilated convolutional en-
coder [11] are all single-network-based. On the contrary, a
dual-network-based model is composed of two networks, one
for local feature extraction and the other for global relation
extraction. The local-feature extraction network, usually based
on CNNs, pays attention to extracting the local features,
while the global relation extraction network concentrates on
exploring the relationships among the features extracted, for
instance, Huang et al. [43] took advantage of residual networks
(ResNet) and transformer-based networks for feature and rela-
tion extraction, respectively. Karim et al. [44] combined fully
convolutional networks with long short-term memory (LSTM)
networks to capture rich representations from MTS data. In
[45], a time series attentional prototype network (TapNet) with
multivariate time series encoding and LSTM networks was
developed for MTSC. Xiao et al. [34] introduced a robust
temporal feature network (RTFN) consisting of a temporal
feature network and an LSTM-based attention network for
supervised classification and unsupervised clustering. Xing
et al. [46] designed a robust semi-supervised model with
self-distillation model called SelfMatch for semi-supervised
classification, where ResNet–LSTMaN including a residual
network and an LSTM-based network for feature extraction.

Some useful information of an entity (object) is easily lost
due to the translation invariance of neural networks, e.g.,
Maxpooling. To overcome the problem above, Sabour et al.
[47] introduced a capsule network (CapNet) with dynamic
routing mechanism to maintain different information of an

entity, such as, location, orientation, and color. Capsule-based
algorithms have been applied to a spectrum of domains [48],
such as, sequential recommendation [49], machinery fault
diagnosis [50], traffic analysis [51], text classification [52] and
TSC [53] [54].

Addressing TSC problems by capsule-based algorithms has
attracted increasingly more research attention. For example,
Jayasekara et al. [53] introduced a 1-dimensional convolu-
tional capsule network to extract the temporal features from
the electrocardiogram data. Xiao et al. [54] presented a multi-
process collaborative architecture based on multi-head CNN
and capsule mechanism for TSC. However, CNN-based cap-
sule algorithms are not sensitive to the global patterns of UTS,
needless to say the relationships among variables of MTS.
On the other hand, transformer-based capsule algorithms can
relate different location information of data, which helps to
extract the global patterns of UTS and relationships among
multiple variables of MTS [55]. Transformer-based algorithms
are widely adopted to extract the context information of
sequential data and global patterns of time series data [34]
[45] [56]. Some researchers hybridized the transformer- and
capsule-structures for efficient global relation extraction, in-
cluding cascading vanilla transformer and dynamic routing
[57] [58] and embedding routing into the transformer [59].
When faced with MTSC data, the cascading structure is not
sensitive to exploring the global patterns of UTS data and
relationships among variables since the vanilla transformer
easily breaks the rules among capsules during the transmission
process; the embedding structure cannot effectively detect the
relationships among variables because the embedded dynamic
routing mechanism may prevent the transformer from gener-
ating a large number of capsules with rich knowledge.

To handle MTSC problems, this paper proposes a dual-
network-based capsule algorithm, called perceptive capsule
network (PCapN). To be specific, the PCapN primarily con-
tains a local feature network (LFN) and a global relation
network (GRN). The LFN has two heads (i.e., Head A and
Head B), each of which cascades two squash CNN blocks and
one dynamic routing block to extract the local features from
MTS data and the relationships among them. The GRN con-
sists of two capsule-based transformer blocks and one dynamic
routing block to capture the global patterns of each variable
and correlate the useful information of multiple variables.
Nevertheless, it is impossible to deploy the dual-network-based
PCapN on mobile devices for real-world applications, such
as human activity recognition, ECG analysis, audio detection.
This is because mobile devices usually have limited computing
and storage resources, and running the PCapN on mobile
devices is not affordable. It is, hence, meaningful to use a
lightweight model to mimic the cumbersome PCapN in terms
of feature extraction.

Hinton et al. [60] introduced a knowledge distillation (KD)
method to transfer knowledge from a large-scale neural net-
work to a small one, also known as the student-and-teacher
model. Compared with other compression and acceleration
techniques, such as parameter pruning/sharing and low-rank
factorization, KD enables a student model to effectively mimic
the knowledge of a teacher model and regularizes the student

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 3

and teacher models to promote the mutual flow of knowl-
edge between them [61] [62]. In traditional KD, a teacher’s
knowledge was allowed to flow to a student. Recently, some
research findings suggested the knowledge learned by a student
also promoted its teacher’s knowledge [61] [63] [64]. In other
words, KD can be viewed as a mutual learning method (also
called two-way knowledge transfer). Yao et al. [64] designed
a dense cross-layer mutual (DCM) distillation to promote the
dense flow of knowledge among different layers between the
student and teacher models and effectively reduce the loss of
useful features during the distillation process.

DCM achieved decent performance with single-network-
based student and teacher models. Its distillation provides ad-
equate interaction among the layers of these models, ensuring
rich knowledge flowing from teacher to student. Currently,
DCM is regarded as one of the state-of-the-art methods for
mutual learning. However, DCM is not directly applicable to
dual-network-based student and teacher models since a dual-
network-based model consists of two networks with differ-
ent objectives, e.g., one for local feature extraction and the
other for global relation extraction. In other words, the two
networks concentrate on different feature types. If DCM is
applied to dual-network-based student and teacher models, the
dense interactive mutual learning between student and teacher
could generate some incorrect or unnecessary information that
disturbs efficient knowledge transfer between them, possibly
losing the latent information accumulated during the distilla-
tion process. To the best of our knowledge, efficient mutual
learning for dual-network-based student and teacher models
has not received sufficient research attention.

To tackle the problem above, we present a deep trans-
former capsule mutual (DTCM) distillation to supervise the
knowledge transfer process from the proposed PCapN to
a lightweight capsule network (LCapN). The PCapN and
LCapN are the teacher and student models, respectively. The
LCapN’s architecture is similar to the PCapN’s to ensure
smooth knowledge flow between them. The LCapN includes
a local feature network (LFN) and a global relation network
(GRN). The LFN consists of two lightweight squash CNN
blocks and one dynamic routing block, while the GRN has two
lightweight capsule-based transformer blocks and one dynamic
routing block. In terms of parameter size, the LCapN is three
times smaller than the PCapN.

Our main contributions are summarized below.
• To address MTSC problems, we design PCapN to ex-

tract rich representations from data. The PCapN mainly
consists of a local feature network and a global relation
network. Based on squash CNN block and dynamic
routing, the local feature network extracts local features.
The global relation network is primarily composed of two
capsule-based transformer blocks and one dynamic rout-
ing block, responsible for capturing the global patterns for
all UTS in the MTS data and discovering the relationships
among them.

• To efficiently transfer knowledge from the PCapN to the
LCapN, we design the DTCM distillation. Unlike the
DCM, which is suitable for single-network-based models,
our DTCM is a targeted and offline distillation method for

dual-network-based student and teacher models, provid-
ing adequate knowledge transfer between the PCapN and
LCapN. To our best, DTCM is the first mutual learning
method for dual-network-based distillation models.

• Experimental results show that the PCapN overweighs
a large number of existing MTSC algorithms on 10
UEA2018 datasets in terms of the ‘win’/‘tie’/‘lose’ mea-
sure and AVG rank, both based on the top-1 accuracy.
Compared with 19 state-of-the-art KD methods, DTCM
achieves excellent performance on 13 out of 30 UEA2018
datasets concerning the mean accuracy, ‘win’/‘tie’/‘lose’
measure, and AVG rank.

The rest of the paper is organized below. Section II reviews
capsule-based and KD algorithms. Section III first introduces
the proposed PCapN and LCapN and their key components
and then describes the DTCM method that promotes sufficient
knowledge transfer between the PCapN and LCapN. Section
IV provides and analyzes the experimental results, and the
conclusion draws in Section V.

II. RELATED WORK

This section reviews capsule-based and KD algorithms.

A. Capsule Network

The “capsule” concept was originated from parse trees for
transforming auto-encoders [65]. A capsule consists of multi-
ple neurons, each of which denotes an entity or part of an en-
tity in a parse tree. The output of a capsule is the instantiation
parameters representing properties of a specific type of entity,
with the capsule’s length as the entity’s probability. To further
relate the potential information among capsules at different
locations, Sabour et al. [47] introduced a capsule network
with dynamic routing mechanism. Since then, increasingly
more capsule-based algorithms have been developed to tackle
various real-world applications [48]. CNN- and transformer-
based capsule algorithms are two most representative capsule-
based algorithms. CNN-based capsule algorithms often utilize
CNNs and dynamic routing to explore the local features from
the input data and the relationships among these features.
For example, Huang et al. [50] presented a robust weight-
shared capsule network using 1-dimensional CNNs and multi-
stacked weight-shared capsules for intelligent machinery fault
diagnosis. Yao et al. [51] introduced a deep learning aided
capsule network based on CNNs and dynamic routing for
traffic classification. Peng et al. [52] applied attentional graph
capsule embedding recurrent CNNs to multi-label text classi-
fication, where CNNs were used to learn the semantic features
of word matrices. Zhao et al. [66] adopted a 3D point-capsule
network consisting of multilayer perceptrons, Maxpooling, and
dynamic routing to process sparse 3D point clouds. Yang et al.
[67] presented a hierarchical graph capsule network that used
graph neural networks to extract hierarchical representations
from graph data. A multi-process collaborative architecture
based on multi-head CNNs and capsule mechanism was de-
signed to address TSC problems [54].

Transformer-based capsule algorithms are responsible for
extracting the context information of sequential data and the

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 4

global patterns of time series data efficiently [34] [45], thanks
to its transformer that relates the information at different
locations [55]. Hybridizing transformer- and capsule-structures
is one of the most popular research streams. For example,
in [57] [58], some cascading structures were proposed for
stock movements prediction and tweet act classification, where
vanilla transformer and dynamic routing were stacked to-
gether. An embedding structure was put forward for machine
translation, where routing mechanism was embedded into the
transformer’s attention part [59].

On the one hand, the cascading structure is not appropriate
to handle MTSC data because this structure cannot effectively
detect the global patterns of UTS data and the relationships
among variables. In the vanilla transformer, its vanilla at-
tention module blocks the interaction among capsules during
the knowledge transfer process, causing that the transformer
cannot provide sufficient capsules that carry rich knowledge
for the dynamic routing to explore the relationships among
them. On the other hand, the embedding structure cannot
effectively sense the relationships among variables because the
embedded dynamic routing mechanism may interfere with the
process in the transformer that generates sufficient capsules
with high-level features. This is why we design the GRN for
global relation extraction in the PCapN. The GRN consists
of two capsule-based transformer blocks and one dynamic
routing. These transformers can generate plenty of capsules
full of global patterns of all UTS in the MTS data, because
the attention modules enhance the interaction rules to capture
the potential correlation among the capsules during knowledge
transfer. The dynamic routing relates the previously generated
capsules to discover the intrinsic relationships among the
variables in the MTS data.

B. Knowledge Distillation

KD is a knowledge transfer process from a complex network
to a lightweight network. Currently, KD algorithms can be
roughly divided into four categories, i.e., response-based,
feature-based, relation-based and other KD algorithms [60].
For an arbitrary teacher model, if it is pre-trained, it distills
its student(s) online; otherwise, it distills its student(s) offline.

1) Response-based KD: Given a student and teacher model,
response-based KD algorithms usually make the output (i.e.,
logits) of the student model mimic that of the teacher model
directly [60]. These algorithms are widely used in a variety
of real-world applications. For instance, Chen et al. [68] pre-
sented a KD framework for fast multi-class object detection.
Zhang et al. [69] proposed a fast pose distillation (FPD)
model for knowledge transfer and extraction. Meng et al. [70]
adopted a conditional teacher-student learning to intelligently
select what knowledge to learn from a teacher model. Besides,
some researchers dedicated their efforts to interpret “dark
knowledge” generated by the response-based KD, for example,
Müller et al. [71] regularized the student and teacher models
using soft targets.

2) Feature-based KD: Feature-based KD algorithms trans-
fer knowledge from the teacher to student models using
the feature maps of intermediate layers. Romero et al. [72]

expanded the teacher-student knowledge transfer from the
output-to-output to intermediate-to-intermediate layers. After
this pioneering work, increasingly more research interests have
been dedicated to feature-based KD. Liu et al. [73] introduced
a knowledge representing (KR) method that modeled the
distribution of parameters. Kim et al. [74] used a factor-
transfer-based method to offer efficient flow of knowledge
from teacher to student. Zhou et al. [75] designed a rocket
launching framework using gradient block to improve the
performance of light and booster nets. Guan et al. [76] put
forward a differentiable feature aggregation (DFA) search
method to search for useful knowledge between student and
teacher.

3) Relation-based KD: Relation-based KD ones are re-
sponsible for extracting the relationships among layers in
the student and teacher models. Tung et al. [77] proposed a
similarity-preserving (SP) KD to supervise knowledge transfer
via activation similarity matrices. Yu et al. [78] used a metric
learning KD (MLKD) to ensure that the student model effi-
ciently computes image embeddings. Liu et al. [79] modeled
the feature space transformation across layers of student and
teacher models using instance relationship graph (IRG). Chen
et al. [80] used the feature-embedding-based learning student
networks (LSN) to propagate teacher-to-student knowledge.

4) Other KD: Yuan et al. [62] introduced a teacher-free
knowledge distillation (Tf-KD) framework, where student
learned from either itself or a manually designed regularization
distribution. To further understand the “dark knowledge” in the
KD process, Zhang et al. [63] assumed that the knowledge
flow between student and teacher could be bidirectional, i.e.,
both student and teacher could learn from each other. There-
fore, they proposed a deep mutual learning (DML) framework,
also called the two-way KD, to facilitate the knowledge
transfer between student and teacher. As DML was based
on layer-to-layer monitoring only, it was impossible for high-
level representations to have a direct yet positive impact on
low-level representations, easily resulting in the loss of useful
information during distillation. To this end, Yao et al. [64]
designed a dense cross-layer mutual (DCM) distillation to
promote the dense flow of knowledge among different layers
between student and teacher and alleviate feature loss during
distillation.

DCM, one of the well-known methods for mutual learning,
is suitable for distillation between single-network-based stu-
dent and teacher models but not between dual-network-based
student and teacher models. A dual-network-based model con-
sists of two networks emphasizing extracting different feature
types. If not appropriately designed, DCM could damage
the previously extracted latent information, causing inefficient
distillation supervision. This motivates us to develop DTCM,
an appropriate targeted and offline distillation method for dual-
network-based student and teacher models, providing adequate
knowledge transfer between the PCapN and LCapN. To the
best of our knowledge, DTCM is the first mutual learning
method for dual-network-based distillation models.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 5

!"#$%& '((

)*#+,-.

!"#"$"!"%"&

'()*+% '$/%#0123$%14

56$-%7*6816

)*#+,-.

!
"#
$
%
"&
'
(
"%
)*
#
+
&,
(
)-
#
.
/
&0
!
'
,
1

2
#
3
%
"&
4
(
%
)5
.(
&,
(
)-
#
.
/
&0
2
4
,
1

!"#$% &"#$%

6-#7-%8&9:

;+(7-%8&9:

!"#$%& '((

!"#$%& '((

)*#+,-.

!"#$%& '((
'$/%#0123$%14

56$-%7*6816

!!"#$%&
'

!!"#$%(
'

!)*+
'

!,-./01
'

!,-./01
2

!34+
' !)*+

2
!34+
2

'$/%#0123$%14

56$-%7*6816

)*#+,-.

'$/%#0123$%14

56$-%7*6816

!"#$%&9'((

)*#+,-.

!"#$%&9'((

'()*+,

< , => 6

!"#"$"!"%"& !"#"$"!"%"&

;>6=>6;>6=>6;>6=>6 ;>6=>6;>6=>6 ;>6=>6

!"#$%

2
#
3
%
"&
4
(
%
)5
.(
&,
(
)-
#
.
/
&0
2
4
,
1

!
"#
$
%
"&
'
(
"%
)*
#
+
&,
(
)-
#
.
/
&0
!
'
,
1

Fig. 1. Structure of DTCM. Note: V T
Head A, V T

Head B , V T
LFN , V T

GRN are the outputs of Head A, Head B, LFN, and GRN in the PCapN, respectively;
V T
logits denotes the output of PCapN; V S

LFN and V S
GRN represent the outputs of LFN and GRN in the LCapN, respectively; V S

logits is the output of LCapN.

III. TEACHER AND STUDENT MODELS WITH DTCM

This section first introduces the PCapN’s and LCapN’s
structures and their key components, including the squash
CNN block, dynamic routing block, and capsule-based trans-
former block. Then, it describes the DTCM method that
promotes efficient knowledge transfer between the PCapN and
LCapN.

A. Overview

The PCapN, as the teacher model, primarily consists of a
local feature network (LFN) and a global relation network
(GRN), as shown in Fig. 1. The LFN includes two heads,
namely, Head A and Head B, each of which stacks two
squash CNN blocks and one dynamic routing block together to
extract the local features from MTS data and the relationships
among these features. The GRN consists of two capsule-
based transformer blocks and one dynamic routing block to
capture each variable’s global patterns and correlate the useful
information of multiple variables. On the other hand, LCapN
is also composed of an LFN and a GRN. Its LFN consists of
two lightweight squash CNN blocks and one dynamic routing
block, while its GRN cascades two lightweight capsule-based
transformer blocks and one dynamic routing block.

This paper presents the DTCM method to promote knowl-
edge transfer between the PCapN and LCapN. This method
uses two-way and one-way KD operations to realize efficient
knowledge flow between the student and teacher models,

shown in Fig. 1. On the one hand, by using two-way KD
operations, the outputs of Head A, Head B, and LFN in the
PCapN, interact with the output of LFN in the LCapN; the
output of GRN in the PCapN and that of GRN in the LCapN
interact with each other; the output of PCapN and that of
LCapN interact with each other. These operations promote the
two-way knowledge transfer between the PCapN and LCapN.
On the other hand, by using one-way KD operations, the
PCapN’s output guides the outputs of LFN and GRN in
the LCapN while the LCapN’s output guides the outputs of
Head A, Head B, LFN, and GRN in the PCapN.

B. Squash CNN Block

There are two squash CNN blocks in the PCapN. The first
block extracts the basic local features from the input. The
second one mines the high-level features from the features
extracted by the first block. The two CNN blocks generate
sufficient capsules with rich features which are then fed to
the dynamic routing block that mines the connections among
these capsules. A squash CNN block includes a 1-dimensional
CNN module, a batch normalization module, and a squashing
non-linear activation function, defined as:

Vsquash cnn = fsquash(fBN (fconv(X))) (1)

where, Vsquash cnn and X are the output and input of the
squash CNN block, respectively. fsquash, fBN , and fconv
represent the squashing non-linear activation, batch normal-
ization, and CNN functions, respectively.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 6

Fig. 2. Top-1 accuracy values of PCapN with various activation functions
on 7 popular UEA datasets, including BasicMotions (BM), DuckDuck-
Geese (DDG), FingerMovements (FM), Libras (LIB), NATOPS (NATO),
PEMSF (PEMS), and UWaveGuestureLibrary (UM). Abbreviations: ReLU–
rectified linear unit, LeakReLU–leaky ReLU, P-ReLU–Parametric ReLU,
ELU–exponential linear unit, R-ReLU–randomized leaky ReLU.

A CNN module is used to extract the local features from
the data [33], as defined in Eq. (2).

fconv(Xconv) = Xconv ⊗Wconv + bconv (2)

where, Xconv , Wconv and bconv are the input, weight and bias
metrics of the CNN, respectively. ⊗ denotes the convolutional
computation operation.

Following [34] [54], we use batch normalization to elim-
inate the internal covariate shift, ensuring a relatively fast
training process. Also, it enhances the local-feature extraction
ability of LFN on the MTS data. Following [47] [48] [49]
[50], we adopt the squashing activation function to activate
neurons. fsquash is defined in Eq. (3).

fsqaush(Xsquash) =
||Xsquash||2

1 + ||Xsquash||2
Xsquash

||Xsquash||
(3)

where, Xsquash = {X 1
squash,X 2

squash, ...,X
nsquash

squash }
is the input of squashing activation function, and
nsquash is the size of the input. ||Xsquash|| =√

(X 1
squash)

2 + (X 2
squash)

2 + ...+ (Xnsquash

squash)2 outputs
the length of Xsquash, ensuring that Xsquash can derive its
length regardless of whether it is positive or not.

Distinct from conventional neural network architectures,
CapsNet transmits data in the form of vectors rather than
scalars [47]. As a result, employing the squashing activation
function, specifically tailored for vectors, enhances the feature
extraction capabilities of our PCapN. We study the influence
of different activation functions on PCapN on 7 popular UEA
datasets in Fig. 2. The experimental results demonstrate that
compared with widely used activation functions, e.g., the
rectified linear unit (ReLU) and the leaky ReLU, the squashing
activation function empowers our PCapN to extract more high-
quality semantic information from the data.

Algorithm 1 Dynamic Routing Mechanism

1: procedure ROUTING(sinpj , r) ▷ sinpj is the input vector
of capsule j, and r denotes the number of iterations.

2: Initialize weight matrix Wij ;
3: Set v̂j|i = Wijs

inp
j and bij = 0;

4: for r iterations do
5: Calculate kij by using Eq. (5);
6: Calculate v̂j|i and sj by using Eq. (4);
7: Calculate vj = fsquash(sj) by using Eq. (3);
8: Calculate bij by using Eq. (6);
9: end for

10: return vj ;
11: end procedure

C. Dynamic Routing Block

As [34] [52] [53] [54] suggested, we use dynamic routing
to promote the interaction among capsules, helping to mine
the relationships among them. For an arbitrary capsule j, its
input sj is computed as:

sj =
∑
i

kij v̂j|i, v̂j|i = Wijvi (4)

where, v̂j|i is the prediction vector calculated by multiplying
the output of capsule i in the previous layer (i.e., vi) by
the weight matrix Wij . The coupling coefficient between all
capsules in the current layer and capsule i in the previous layer,
kij , is obtained by a softmax function through an iterative
routing process [53], [54], [55]. kij is defined in Eq. (5).

kij = fsoftmax(bij) (5)

where, fsoftmax is a commonly used function to compute the
possibilities of a given matrix, and bij is the logits representing
the log prior probabilities that capsule i couples to capsule j.
bij is refined iteratively by measuring the “agreement”

between the current output vj and the prediction v̂j|i obtained
by capsule i from the previous layer, defined in Eq. (6).

bij = bij + vj · v̂j|i (6)

where, vj is the output of capsule j and calculated by
“squashing” its input, sj , in the current layer. The pseudo-
code of dynamic routing is given in Alg. 1.

D. Capsule-based Transformer Block

In the PCapN, two capsule-based transformer blocks are
cascaded to generate sufficient number of capsules with ade-
quate global patterns of all UTS in the MTS data. The first
block extracts the basic relationships from the MTS data while
the second one relates these basic relationships at different
locations to discover the potential representations hidden in
the data. In this way, plenty of capsules with rich relationship
information are generated and passed to the dynamic routing
block for further processing.

A capsule-based transformer block extracts the internal re-
lationships and rules among those representations, by relating
the representations at different locations of the MTS data,
as shown in Fig. 3. The multi-head capsule-based attention

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 7

Fig. 3. Diagram of the capsule-based transformer. Note: Vinp and Vout denote the input and output vectors of the capsule-based transformer block, respectively;
natt is the number of capsule-based attention modules; ||.|| outputs the length of a given vector; ‘MatMul’ is a matrix multiplication operation.

network is the block’s core and consists of natt capsule-based
attention modules. For an arbitrary capsule-based attention
module, i.e., Attentioni, it maps a query, Queryi ∈ Rn×L×d,
and a set of key-values, Keyi-V aluei ∈ Rn×L×d, to an output,
V i
att, where n is the the number of input samples, L represents

the length of the MST data, and d indicates the number of
univariate signals or variables within the MST data. Unlike the
vanilla attention module [57][58], the capsule-based attention
module considers the interaction rules among capsules, e.g.,
the length of each capsule’s vector represents the probabil-
ity that the capsule’s entity exists, which is beneficial for
extracting the intrinsic connections between a query and its
corresponding key-value pairs. V i

att is defined in Eq. (7).

V i
att = ||Queryi ·KeyTi√

d
|| · V aluei (7)

where, KeyTi is the transpose of Keyi.
Let Vmul denote the output of the multi-head capsule-

based attention network. Vmul combines the outputs of the
natt capsule-based attention modules through the CONCAT
function, fconcat, to provide adequate global features. Vmul is
defined in Eq. (8).

Vmul = fconcat([V
1
att, V

2
att, ..., V

natt
att]) (8)

We add a residual operation to compensate for the loss of
useful information during the feature transmission process.
The output of the capsule-based transformer block, Vout, is
written as:

Vout = fsquash(fLN (fconnect(Vmul)) + Vinp) (9)

where, fLN presents the layer normalization function, and
Vinp is the input of the capsule-based transformer block.

Like other transformer structures [55] [57] [58], we use layer
normalization to accelerate the model’s convergence and avoid
overfitting during training.

E. Deep Transformer Capsule Mutual Distillation

The DTCM is a targeted distillation method for dual-
network-based student and teacher models, promoting efficient
knowledge flow between them. Let V T

Head A, V T
Head B , V T

LFN ,
V T
GRN be the outputs of Head A, Head B, LFN, and GRN

in the PCapN, respectively. Let V T
logits denote the output of

PCapN. Let V S
LFN and V S

GRN represent the outputs of LFN
and GRN in the LCapN, respectively. Let V S

logits denote the
output of LCapN.

The loss function of PCapN, LT , consists of four compo-
nents, i.e., margin loss, LT

margin, LFN loss, LT
LFN , GRN loss,

LT
GRN , and logits loss, LT

logits, as defined in Eq. (10):

LT = LT
margin + αT LT

LFN + βT LT
GRN + γT LT

logits

(10)
where, αT , βT , and γT are three constant coefficients. As [64]
suggested, we set αT = 1, βT = 1, and γT = 1. We adopt
the commonly used margin loss function for capsule-based
algorithms [47] [48] [53] [54] as LT

margin.
LT
LFN , LT

GRN , and LT
logits are defined as:

LT
LFN =LKD(V T

Head A, V
S
LFN) + LKD(V T

Head B , V
S
LFN)

+ LKD(V T
LFN , V S

LFN)
(11)

LT
GRN = LKD(V T

GRN , V S
GRN) (12)

LT
logits =LKD(V T

logits, V
S
LFN) + LKD(V T

logits, V
S
GRN)

+ LKD(V T
logits, V

S
logits)

(13)

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 8

TABLE I
DETAILS OF 30 MULTIVARIATE TIME SERIES DATASETS. ABBREVIATIONS: HAR - HUMAN ACTIVITY RECOGNITION, AS - AUDIO SPECTRA, EEG -

ELECTROENCEPHALOGRAM, MEG - MAGNETOENCEPHALOGRAPHY, ECG - ELECTROCARDIOGRAM.

Index DatasetName SeriesLength NumDimensions NumClasses TrainSize TestSize Type
AWR ArticularyWordRecognition 144 9 25 275 300 Motion
AF AtrialFibrillation 640 2 3 15 15 ECG
BM BasicMotions 100 6 4 40 40 HAR
CT CharacterTrajectories 182 3 20 1422 1436 Motion
CK Cricket 1197 6 12 108 72 HAR

DDG DuckDuckGeese 270 1345 5 50 50 AS
EW EigenWorms 17984 6 5 128 131 Motion
EP Epilepsy 206 3 4 137 138 HAR
EC EthanolConcentration 1751 3 4 261 263 HAR
ER ERing 65 4 6 30 270 Other
FD FaceDetection 62 144 2 5890 3524 EEG/MEG
FM FingerMovements 50 28 2 316 100 EEG/MEG

HMD HandMovementDirection 400 10 4 160 74 EEG/MEG
HW Handwriting 152 3 26 150 850 HAR
HB Heartbeat 405 61 2 204 205 AS
IW InsectWingbeat 30 200 10 30000 20000 AS
JV JapaneseVowels 29 12 9 270 370 AS

LIB Libras 45 2 15 180 180 HAR
LSST LSST 36 6 14 2459 2466 Other

MI MotorImagery 3000 64 2 278 100 EEG/MEG
NATO NATOPS 51 24 6 180 180 HAR

PD PenDigits 8 2 10 7494 3498 EEG/MEG
PEMS PEMS-SF 144 963 7 267 173 EEG/MEG

PS Phoneme 217 11 39 3315 3353 AS
RS RacketSports 30 6 4 151 152 HAR

SRS1 SelfRegulationSCP1 896 6 2 268 293 EEG/MEG
SRS2 SelfRegulationSCP2 1152 7 2 200 180 EEG/MEG
SAD SpokenArabicDigits 93 13 10 6599 2199 AS
SWJ StandWalkJump 2500 4 3 12 15 ECG
UW UWaveGestureLibrary 315 3 8 120 320 HAR

where, LKD is a knowledge distillation loss function that
measures the average difference between the outputs of the
student and teacher models. To be specific, LKD is based on
the L2 loss function, defined as:

LKD(V T , V S) =
1

nkd

nkd∑
i=1

(fpre(v
T
i)− fpre(v

S
i))

2 (14)

where, V T = {vTi }nkd
i=1 and V S = {vSi }

nkd
i=1 represent the

outputs of the teacher and student models. nkd is the length
of V T . fpre is a prediction function to calculate the probability
of a vector, as defined in Eq. (15).

fpre(vpre in) = ||vpre in/Γ|| (15)

where, Γ is a temperature coefficient for producing a soft
probability distribution over classes. Following [64], we set
Γ = 1 (more details can be found in Section 4.4.1).

The loss function of LCapN, LS , consists of margin loss,
LS
margin, LFN loss, LS

LFN , GRN loss, LS
GRN , and logits loss,

LS
logits, defined as:

LS = LS
margin + αSLS

LFN + βSLS
GRN + γSLS

logits (16)

where, αS , βS , and γS are three constant coefficients for the
LcapN. Following [64], we set αS = 1, βS = 1, and γS = 1
in this paper.

We adopt the same margin loss function for capsule-based
algorithms [47] [48] [53] [54] as LS

margin. LS
LFN , LS

GRN , and
LS
logits are defined as:

LS
LFN =LKD(V S

LFN , V T
Head A) + LKD(V S

LFN , V T
Head B)

+ LKD(V S
LFN , V T

LFN)
(17)

LS
GRN = LKD(V S

GRN , V T
GRN) (18)

LS
logits = LKD(V S

logits, V
T
Head A) + LKD(V S

logits, V
T
Head B)

+ LKD(V S
logits, V

T
LFN) + LKD(V S

logits, V
T
GRN)

+ LKD(V S
logits, V

T
logits)

(19)
Similar to other mutual learning algorithms [63] [64], we

adopt gradient descent to jointly optimize the parameters of
the student and teacher models. Let θTi and θSi denote the
parameters of the teacher and student in the i-th training epoch,
respectively. θTi and θSi are defined in Eq. (20).

θTi = θTi−1 − ηT ∇θT
i−1

L(θTi−1),

θSi = θSi−1 − ηS∇θS
i−1

L(θSi−1)
(20)

where, ∇θT
i−1

and ∇θS
i−1

are the gradients of the teacher
and student in the (i-1)-th training epoch, respectively. ηT

and ηS represent the teacher’s and student’s learning rates,
respectively. The DTCM’s pseudo-code is shown in Alg. 2.

IV. EXPERIMENTS AND ANALYSIS

This section first introduces the experimental setup and
performance metrics. After that, it thoroughly evaluates the

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 9

Algorithm 2 DTCM
Input: D = {Dtrain, Dval, Dtest}; ▷

Dtrain, Dval, and Dtest are the training, validation, and
testing data, respectively.

Output: Y T and Y S ; ▷ Y T and Y S are the prediction
results of PCapN and LCapN, respectively.

1: Initialize the PCapN’s and LCapN’s parameters, θT0 and
θS0 ;

2: //Training on training and validation data
3: for i = 1 to M do ▷ M is the number of epochs.
4: Feedforward Dtrain into the PCapN and LCapN;
5: Compute LT and LS by using Eqs. (10)(16);
6: Update θTi and θSi by using Eq. (20);
7: if i%2 == 0 then
8: Validate the PCapN and LCapN using Dval;
9: end if

10: end for
11: //Testing
12: Use the trained PCapN to predict Y T of Dtest;
13: Use the trained LCapN to predict Y S of Dtest.

TABLE II
FLOPS, PARAMETERS, AND INFERENCE TIME RESULTS WITH THE PCAPN

AND LCAPN ON DIFFERENT TESTING DATASETS. ABBREVIATION:
FLOPS–FLOATING POINT OPERATIONS.

Dataset
Index

PCapN LCapN
FLOPs

(M)
Parameters

(M)
GPU
(s)

CPU
(s)

FLOPs
(M)

Parameters
(M)

GPU
(s)

CPU
(s)

AWR 22.283 11.143 4.560 11.277 6.957 3.479 3.765 4.330
AF 11.927 5.965 3.553 2.558 3.721 1.861 3.321 1.800
BM 2.606 1.304 3.802 1.338 0.808 0.405 3.410 1.006
CT 22.624 11.313 7.955 49.719 7.041 3.521 5.683 18.141
CR 88.513 44.258 5.314 23.741 27.633 13.817 3.915 16.074

DDG 14.473 7.238 4.813 4.636 4.435 2.218 3.390 2.377
EP 5.222 2.612 3.654 2.940 1.621 0.811 3.431 1.793
EC 43.180 21.591 6.624 114.801 13.485 6.743 5.900 101.262
ER 2.591 1.297 3.705 2.272 0.793 0.397 3.650 1.364
FD 1.541 0.772 10.067 9.337 0.465 0.233 8.637 5.625
FM 0.874 0.438 3.921 1.230 0.263 0.132 3.305 0.958

HMD 9.997 5.000 4.709 4.000 3.117 1.559 4.354 2.748
HW 24.419 12.211 5.789 30.560 7.625 3.813 4.518 11.153
HB 5.390 2.696 3.865 6.954 1.671 0.836 3.646 5.416
IW 2.432 1.217 52.337 60.794 0.731 0.366 41.567 28.353
JV 1.863 0.933 4.953 2.064 0.560 0.280 4.775 1.282
LIB 4.418 2.210 3.683 2.176 1.348 0.675 3.429 1.317

LSST 3.246 1.625 7.339 11.847 1.008 0.505 6.753 5.258
MI 37.272 18.637 7.412 45.329 11.638 5.819 6.540 38.658

NATO 2.128 1.065 4.228 1.657 0.654 0.328 3.440 1.149
PD 0.623 0.313 9.128 4.222 0.188 0.095 8.262 3.258

PEMS 10.630 5.316 5.235 6.291 3.262 1.631 3.819 3.145
PS 52.532 26.267 17.307 250.919 16.342 8.172 9.683 82.594
RS 0.910 0.457 3.576 1.475 0.273 0.137 3.383 1.043

SRS1 11.158 5.580 4.654 33.330 3.480 1.741 4.277 30.533
SRS2 14.309 7.156 4.791 33.190 4.465 2.233 4.092 30.722
SAD 5.987 2.995 7.637 19.961 1.847 0.924 7.376 8.300
SWJ 46.220 23.111 5.293 15.390 14.437 7.219 5.097 13.740
UW 15.643 7.823 5.042 11.859 4.877 2.439 3.998 6.386

performance of PCapN and DTCM. Finally, it concludes with
an elucidation of the case study.

A. Experimental Setup

This section gives the dataset and implementation details.
1) Dataset Description: Following [17] [18] [23] [24]

[25] [34] [45], we use the University of East Anglia MTS

archive (UEA2018) for performance evaluation. UEA2018 is
one of the most authoritative MTS archives [81], including
30 datasets from seven application areas, i.e., audio spec-
tra, electrocardiogram, electroencephalogram, human activity
recognition, motion, eagnetoencephalography and other. Table
I shows the datasets’ details.

2) Implementation Details: Firstly, we introduce the pa-
rameter settings of PCapN. In the first block of Head A, the
CNN’s kernel size, stride size, and channel number are set to
9, 2, and 128, respectively. In the second block of Head A,
they are set to 9, 1, and 128, respectively. The CNN’s kernel
size, stride size, and channel number are set to 7, 2, and
128, respectively in the first block of Head B, while they
are set to 7, 1, and 128, respectively in the second block of
Head B. In the GRN, each capsule-based transformer block
has 8 capsule-based attention modules, i.e., natt = 8, and each
fully-connected layer owns a unit size of 96.

Secondly, we describe the parameter settings of LCapN. In
the first block of LFN, the CNN’s kernel size, stride size, and
channel number are set to 9, 2, and 64, respectively. In the
second block of LFN, they are set to 9, 1, and 64, respectively.
In the GRN, we set natt = 8 and each fully-connected layer
owns a unit size of 24. Table II collects the results of FLOPs,
parameter count, and inference time with the PCapN and
LCapN on various testing datasets. LCapN is much smaller
than PCapN, in terms of parameter count and FLOPs. For
instance, on the ArticularyWordRecognition (AWR) dataset,
the number of parameters and FLOPs for PCapN are 11.143M
and 22.283M, whereas those for LCapN are 3.479M and
6.957M. Besides, on most datasets, the inference time of
PCapN is significantly longer than that of LCapN, e.g., when
utilizing CPU on the CharacterTrajectories (CT) dataset, the
inference time results of the PCapN and LCapN are 49.717s
and 18.141s, respectively. These results convincingly demon-
strate that PCapN requires more computational resources than
LCapN.

Last but not least, we use the Adam Optimizer to optimize
the PCapN’s and LCapN’s parameters. The weight decay
and initial learning rate values are set to 0.0005 and 0.001,
respectively. We use the L2 regularization to avoid overfitting
during the training process. We run all experiments on a
computer with Ubuntu 18.04 OS, one Nvidia GTX 1080Ti
GPU with 11GB, and one AMD R5 1400 CPU with 16G
RAM. The whole experiments took over 45 days.

B. Performance Metrics

To evaluate the performance of various MTSC algorithms,
we adopt the ‘win’/‘tie’/‘lose’, mean accuracy (MeanACC),
and AVG rank as performance metrics. These metrics are
statistics based on the top-1 accuracy results obtained. For an
arbitrary algorithm, its ‘win’, ‘tie’, and ‘lose’ values reflect
on how many datasets it is better than, equivalent to, and
worse than the other algorithms, respectively; its ‘best’ score
is the summation of the corresponding ‘win’ and ‘tie’ scores.
Besides, we use AVG rank to rank all compared algorithms,
where the results are based on the Wilcoxon signed-rank test
with Holm’s alpha (5%) correction [34] [35] [37] [44].

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 10

TABLE III
TOP-1 ACCURACY RESULTS OF DIFFERENT ALGORITHMS ON 7 UEA DATASETS.

Dataset
Index

LFN LRN GRN
w/o Routing

Vanilla
Trans

Embed
Trans TimeBERT TimeGPT GRN PCapN

Head A-(1) Head A Head A-(3)
Head A

w/o Routing Head B-(1) Head B Head B-(3)
Head B

w/o Routing
BM 0.8 0.975 0.975 0.675 0.6 0.85 0.85 0.65 0.975 0.9 0.9 0.95 1 1 0.95 1

DDG 0.3 0.4 0.4 0.32 0.4 0.5 0.6 0.3 0.54 0.56 0.5 0.56 0.56 0.54 0.58 0.74
FM 0.58 0.6 0.61 0.45 0.58 0.6 0.6 0.4 0.63 0.58 0.58 0.58 0.6 0.54 0.6 0.66
LIB 0.267 0.311 0.317 0.267 0.25 0.283 0.289 0.267 0.361 0.306 0.567 0.667 0.667 0.633 0.706 0.789

NATO 0.639 0.706 0.717 0.517 0.6 0.667 0.689 0.467 0.889 0.567 0.889 0.889 0.733 0.889 0.9 0.933
PEMS 0.359 0.651 0.669 0.431 0.338 0.376 0.401 0.327 0.827 0.699 0.827 0.847 0.847 0.827 0.908 0.931
UW 0.716 0.791 0.8 0.684 0.7 0.716 0.775 0.596 0.816 0.469 0.684 0.816 0.775 0.684 0.841 0.856

MeanACC 0.523 0.633 0.641 0.478 0.495 0.570 0.601 0.430 0.720 0.583 0.707 0.758 0.740 0.730 0.784 0.844

C. Effectiveness of PCapN

This section first provides an ablation study on the PCapN
and then compares it with a number of MTSC algorithms.

1) Ablation Study: As aforementioned, The LFN and GRN
in the PCapN are used for local-feature and global-relation
extraction, respectively. To study the impact of LFN and
GRN on the performance of PCapN, we evaluate their perfor-
mance on 7 popular datasets, i.e., BasicMotions (BM), Duck-
DuckGeese (DDG), FingerMovements (FM), Libras (LIB),
NATOPS (NATO), PEMSF (PEMS), and UWaveGuestureLi-
brary (UM).

Local Feature Network The LFN includes Head A and
Head B, each of which stacks two squash CNN blocks and
one dynamic routing block together. To study the effectiveness
of these heads, we compare eight LFN variants listed below:

- Head A-(1): containing one squash CNN block and one
dynamic routing block, where each block’s CNN is with
a kernel size of 9.

- Head A: containing two squash CNN blocks and one
dynamic routing block, where each block’s CNN is with
a kernel size of 9.

- Head A-(3): containing three squash CNN blocks and
one dynamic routing block, where each block’s CNN is
with a kernel size of 9.

- Head A w/o Routing: Head A without the dynamic
routing block.

- Head B-(1): containing one squash CNN blocks and one
dynamic routing block, where each block’s CNN is with
a kernel size of 7.

- Head B: containing two squash CNN blocks and one
dynamic routing block, where each block’s CNN is with
a kernel size of 7.

- Head B-(3): containing three squash CNN blocks and
one dynamic routing block, where each block’s CNN is
with a kernel size of 7.

- Head B w/o Routing: Head B without the dynamic
routing block.

- LFN: the combination of Head A and Head B.
The top-1 accuracy results obtained by various algorithms on
7 UEA2018 datasets are shown in Table III. First, as the
number of squash CNN blocks increases, the accuracy of
Head A becomes higher and higher. This is because Head A
with multiple squash CNN blocks can capture richer local
representations from the data. Meanwhile, the MeanACC value
of Head A-(3) is only 0.08 higher than Head A, reflecting

that Head A and Head A-(3) have similar performance
in some way. Compared with Head A, Head A-(3) needs
to consume more computational resources. This is why we
choose Head A to own two squash CNN blocks rather
than three. The same experimental phenomena also appear in
Head B. This is why Head B has two squash CNN blocks
instead of three.

Second, it is easily observed that the Head A and Head B
outperform the Head A w/o Routing and Head B w/o
Routing, respectively. This is because the dynamic routing
mechanism promotes the interaction among capsules to further
extract the potential relationships among them. Compared with
individual Head A or Head B, it is more effective for the
LFN to discover the multi-scaled local features from data. That
is why the LFN is used as the local-feature extractor for the
PCapN.

Global Relation Network In the PCapN, GRN includes
two capsule-based transformer blocks and one dynamic rout-
ing block. To investigate the effectiveness of GRN, we com-
pare six GRN variants listed below:

- GRN: containing two capsule-based transformer blocks
and one dynamic routing block.

- GRN w/o Routing: GRN without the dynamic routing
block.

- VanillaTrans: containing two vanilla transformer blocks
[57] [58] and one dynamic routing block.

- EmbedTrans: containing two embedding transformer
blocks [59] and one dynamic routing block.

- TimeBERT: a modified time series bidirectional trans-
former [82] model containing three transformer blocks.

- TimeGPT: a modified time series generative pre-training
transformer [83] model containing three transformer
blocks.

Clearly, GRN performs better than the GRN w/o Routing on
all seven datasets. This proves again that the dynamic routing
block is crucial for both the LFN and GRN, especially when
extracting the relationships among capsules. The GRN obtains
better MeanACC results than the VanillaTrans, EmbedTrans,
TimeBERT, and TimeGPT. This is because the capsule-based
transformer is able to capture sufficient intrinsic connections
and regulations hiding in data by relating the capsules at
different locations of the given MTS. Thanks to LFN and
GRN, PCapN achieves the best performance model.

2) Comparisons and Analysis: Table IV shows the top-1
accuracy results obtained by different MTSC algorithms on all

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 11

TABLE IV
TOP-1 ACCURACY RESULTS OF VARIOUS MTSC ALGORITHMS ON 30 DATASETS.

OursDataset
Index

Existing
SOTA Best:DTW [19] Best:D

TWN [19] Best:EDN [15] XEM [19] XM [34] RM [15] WM [32] CBOSS [24] MLCapN [44] RISE [18] TSF [25] TapNet [45] MUSE [32] FM [15] Multi-head
Capsule [54]

Supervised
RTFN [34] LCapN PCapN

AWR 0.99 0.987 0.987 0.97 0.993 0.99 0.99 0.993 0.99 0.957 0.963 0.953 0.987 0.993 0.986 0.953 0.993 0.71 0.96
AF 0.267 0.267 0.267 0.267 0.467 0.4 0.333 0.267 0.267 0.333 0.267 0.2 0.333 0.4 0.2 0.533 0.533 0.4 0.533
BM 1 1 1 0.675 1 1 1 1 1 0.875 1 1 1 1 1 1 1 1 1
CT 0.986 1 0.969 0.964 0.979 0.983 0.985 0.99 0.986 0.917 0.986 0.931 0.997 0.986 0.993 0.49 0.993 0.335 0.42
CK – – 1 0.944 0.986 0.972 0.986 0.986 – – – – 0.958 – 0.986 1 0.986 0.958 0.972

DDG 0.48 0.58 0.6 0.275 0.375 0.4 0.4 0.575 0.48 0.38 0.22 0.46 0.575 0.58 0.675 0.58 0.6 0.6 0.74
EW 0.749 0.517 0.618 0.55 0.527 0.55 1 0.89 0.511 0.33 0.626 0.712 0.489 – 0.809 – 0.685 – –
EP 1 1 0.978 0.667 0.986 0.978 0.986 0.993 0.979 0.732 0.979 1 0.971 0.993 0.964 0.732 0.978 0.877 0.92
EC 0.882 0.361 0.323 0.293 0.372 0.422 0.433 0.316 0.304 0.373 0.445 0.487 0.323 0.476 0.274 0.323 0.38 0.293 0.32
ER 0.97 0.926 0.133 0.133 0.2 0.133 0.133 0.133 0.919 0.941 0.881 0.859 0.133 0.974 0.133 0.919 0.941 0.922 0.952
FD 0.656 0.529 0.529 0.519 0.614 0.629 0.614 0.545 0.513 0.555 0.64 0.508 0.556 0.631 0.555 0.614 0.67 0.669 0.679
FM 0.582 0.53 0.53 0.55 0.59 0.53 0.569 0.54 0.519 0.58 0.581 0.562 0.53 0.551 0.61 0.58 0.63 0.62 0.66

HMD 0.414 0.224 0.306 0.279 0.649 0.541 0.5 0.378 0.292 0.544 0.481 0.312 0.378 0.362 0.378 0.662 0.662 0.662 0.703
HW 0.478 0.601 0.607 0.531 0.287 0.267 0.267 0.531 0.504 0.305 0.359 0.191 0.357 0.518 0.547 0.343 0.454 0.112 0.191
HB 0.64 0.604 0.717 0.62 0.761 0.693 0.8 0.727 0.564 0.458 0.535 0.518 0.751 0.515 0.714 0.785 0.785 0.64 0.785
IW – – 0.115 0.128 0.228 0.237 0.224 – – – – – 0.208 – 0.105 0.202 0.467 0.109 0.202
JV – – 0.959 0.949 0.978 0.968 0.97 0.978 – – – – 0.965 – 0.992 0.949 0.973 0.951 0.976

LIB 0.9 0.883 0.894 0.833 0.772 0.767 0.783 0.894 0.894 0.85 0.806 0.806 0.85 0.894 0.922 0.767 0.922 0.522 0.789
LSST 0.391 0.458 0.575 0.456 0.652 0.633 0.612 0.628 0.458 0.39 0.161 0.265 0.568 0.435 0.646 0.367 0.451 0.257 0.333

MI 0.61 0.59 0.51 0.51 0.6 0.46 0.55 0.5 0.39 0.51 0.48 0.55 0.59 – 0.53 0.6 0.6 0.6 0.65
NATO 0.889 0.883 0.883 0.85 0.916 0.9 0.911 0.883 0.85 0.9 0.8 0.839 0.939 0.906 0.961 0.9 0.967 0.861 0.933

PD 0.941 0.977 0.977 0.939 0.977 0.951 0.951 0.969 0.939 0.979 0.892 0.831 0.98 0.967 0.987 0.939 0.987 0.911 0.944
PEMS 0.981 0.981 0.734 0.705 0.942 0.983 0.983 – 0.73 0.745 0.982 0.994 0.751 – 0.653 0.925 0.936 0.913 0.931

PS 0.321 0.195 0.151 0.104 0.288 0.187 0.222 0.19 0.151 0.151 0.137 0.269 0.175 – 0.275 0.33 0.33 0.127 0.33
RS 0.898 0.891 0.868 0.842 0.941 0.928 0.921 0.914 0.854 0.856 0.895 0.823 0.868 0.933 0.882 0.842 0.862 0.875 0.882

SRS1 0.854 0.806 0.775 0.771 0.839 0.829 0.826 0.744 0.765 0.908 0.84 0.724 0.652 0.697 0.867 0.867 0.922 0.899 0.913
SRS2 0.533 0.539 0.539 0.533 0.55 0.483 0.478 0.522 0.533 0.506 0.483 0.494 0.55 0.528 0.522 0.611 0.622 0.583 0.589
SAD – – 0.963 0.967 0.973 0.97 0.968 0.982 – – – – 0.983 – 0.994 0.957 0.986 0.787 0.946
SWJ 0.467 0.333 0.333 0.2 0.4 0.333 0.467 0.333 0.333 0.4 0.333 0.267 0.4 0.267 0.467 0.6 0.667 0.533 0.667
UW 0.897 0.903 0.903 0.881 0.897 0.894 0.9 0.903 0.869 0.859 0.775 0.684 0.894 0.931 0.857 0.838 0.903 0.806 0.856
Best 3 3 3 0 4 1 2 2 1 0 1 3 3 4 5 5 12 1 10

AVG Rank 8.283 10.117 10.133 13.867 7.100 9.767 8.183 9.383 13.100 12.467 12.400 13.617 9.567 10.600 8.167 9.667 4.400 11.283 7.900

the 30 UEA2018 datasets. For each dataset, the existing SOTA
stands for the best-performance algorithm on that dataset,
covering HULM [22], gRSF [31], STC [15], and so on;
similarly, Best:DTW, Best:DTWN, and Best:EDN are the best
DTW-based (e.g., DTWI and DTWA in [19]), DTWN-based
(e.g., DTW -1NNI(n) and DTW -1NND(n) [19].) and ED-
NN-based (e.g., ED-1NN and ED-1NN (Normalized) [15])
algorithms on that dataset, respectively. Note that the PCapN,
LCapN, and multi-head capsule [54] are not validated on the
EW dataset due to the limited computing resources currently
available to the authors.

It is seen that the supervised RTFN and PCapN take the
first and second positions in the competition since their ‘best’
scores are 12 and 10. Both the FM (i.e., FCN-Multivariate
LSTM) and multi-head capsule rank the third as they have a
‘best’ score of 5. Meanwhile, the supervised RTFN, XEM, and
PCapN are the best, second-best, and third-best algorithms in
terms of AVG rank. Best:EDN is the worst algorithm with the
’best’ and AVG rank metrics jointly considered.

The following explains the reasons behind the findings
above. The dual-network-based structures, including the super-
vised RTFN, FM, and PCapN, take advantage of two parallel
networks, one for local-feature extraction and the other for
global-relation extraction. Inspired by the idea of ‘divide-and-
conquer’, these structures can well handle different feature-
extraction tasks simultaneously. This, to a certain extent, sup-
ports our motivation to focus on dual-network-based student
and teacher models.

The XEM, as a state-of-the-art MTSC algorithm, uses an ex-
plicit boosting-bagging approach to capture the latent relation-
ships among dimensions at different timestamps. The multi-

head capsule algorithm relies on multiple capsule network
to capture the multi-scaled features from MST data, where
capsules are used to compensate for the loss caused by the
translation invariance of neural networks, e.g., Maxpooling.
On the contrary, it is quite challenging for the Best:EDN
to simultaneously emphasize the useful representations from
MTS data and the relationships among them as DTW-1NN-
based approaches are not good at discovering the internal
representational hierarchy of the MTS data.

D. Effectiveness of DTCM

As introduced in Section III, DTCM is a targeted and offline
distillation method based on mutual learning for dual-network-
based student and teacher models. This section first offers
an ablation study on the DTCM and then compares it with
19 popular KD algorithms. Following references [58] [60]
[61] [62] [63] [64] [68] [69] [70] [71] [72] [73] [74] [75]
[76] [77] [78] [79] [80], we use the LCapN’s performance
to indicate that of a KD algorithm deployed for knowledge
transfer between the PCapN and LCapN.

1) Ablation Study: The 7 datasets in Table III are used
to study the impact of important parameter settings on the
DTCM’s performance.

DTCM with different Γ values Γ is a temperature
coefficient for producing a soft probability distribution over
classes. Table V shows the top-1 accuracy results of DTCM
with different Γ values. It is easily seen that Γ = 1 is the
best setting as it helps the DTCM to obtain the highest top-1
accuracy value on each dataset.

Offline or Online Table VI shows the top-1 accuracy
results of offline/online DTCM. Compared with the offline

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 12

TABLE V
TOP-1 ACCURACY RESULTS OF DTCM WITH DIFFERENT Γ VALUES ON 7

UEA DATASETS.

Dataset Index DTCM
Γ = 0.5 Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 10

BM 0.975 1 1 1 1 1 1
DDG 0.68 0.72 0.7 0.7 0.7 0.7 0.7
FM 0.6 0.64 0.62 0.62 0.62 0.6 0.6
LIB 0.722 0.772 0.772 0.744 0.744 0.733 0.733

NATO 0.9 0.95 0.95 0.9 0.9 0.9 0.9
PEMS 0.948 0.948 0.948 0.948 0.948 0.931 0.913
UW 0.889 0.9 0.9 0.9 0.9 0.9 0.9

MeanACC 0.814 0.847 0.815 0.802 0.802 0.794 0.791

TABLE VI
TOP-1 ACCURACY RESULTS OF OFFLINE/ONLINE DTCM ON 7 UEA

DATASETS.

Dataset Index DTCM
Online Offline

BM 1 1
DDG 0.72 0.72
FM 0.68 0.64
LIB 0.772 0.772

NATO 0.95 0.95
PEMS 0.948 0.948
UW 0.9 0.9

MeanACC 0.853 0.847

DTCM, the online DTCM takes less training time on each
dataset, e.g., it costs 32 mins for the online DTCM to train
its PCapN and LCapN models on the BM dataset while the
training time increases to 48.3 mins for the offline DTCM.
This is because, the online DTCM involves pre-training,
providing the PCapN with sufficient prior knowledge that
effectively shortens the training time. However, pre-training
is usually time-consuming and requires much computing re-
sources. Meanwhile, the performance of offline and online
methods is almost the same on the 7 datasets. The online
DTCM is slightly better than the offline DTCM on dataset
FM. Hence, this paper adopts the offline DTCM.

DTCM with different KD Losses For an arbitrary KD
algorithm, it is crucial to select an appropriate KD loss to
measure the average difference between the outputs of student
and teacher models. To study the impact of KD loss on the
DTCM’s performance, we collect the top-1 accuracy results
of DTCM with different KD losses in Table VII. Obviously,
L2 performs better than the others. Hence we use the L2 loss
to promote the knowledge transfer between the PCapN and
LCapN.

2) Comparisons and Analysis: To thoroughly evaluate the
performance of DTCM, we compare it with 19 state-of-the-
art KD algorithms on 29 UEA datasets against the ‘best’,
MeanACC, and AVG rank values. Note that all algorithms
are not validated on dataset EW due to the limited computing
resources the authors can access to. The top-1 accuracy results
are shown in Table VIII. It is observed that the DTCM
performs the best among all KD algorithms for comparison
since it obtains the highest MeanACC and ‘best’ values,
namely, 0.747 and 13, and the smallest AVG rank score,

TABLE VII
TOP-1 ACCURACY RESULTS OF DTCM WITH DIFFERENT KD LOSSES ON 7

UEA DATASETS. ABBREVIATIONS: L1–L1 LOSS, HL–HUGE LOSS,
CE–CROSS ENTROPY, KL–KULLBACK LEIBLER, FN–FROBENIUS NORM,
EMD– EARTH MOVER DISTANCE, L2–L2 LOSS (I.E., THE MEAN SQUARE

ERROR).

Dataset Index DTCM
L1 HL CE KL FN EMD L2

BM 1 0.95 0.925 0.975 0.975 1 1
DDG 0.48 0.6 0.54 0.62 0.6 0.56 0.72
FM 0.55 0.6 0.59 0.59 0.6 0.58 0.64
LIB 0.8 0.717 0.744 0.739 0.743 0.717 0.772

NATO 0.9 0.85 0.85 0.872 0.883 0.867 0.95
PEMS 0.896 0.892 0.873 0.888 0.878 0.881 0.948
UW 0.878 0.869 0.866 0.869 0.869 0.857 0.9

MeanACC 0.786 0.783 0.770 0.793 0.793 0.780 0.847

Fig. 4. Accuracy plot showing the performance difference between DTCM
and LCapN on 29 UEA datasets.

namely 3.879. In the meantime, the DFA ranks the second
according to the MeanACC value, namely, 0.729, while the
LSN takes the second place against AVG rank , namely, 6.914.
On the other hand, KR achieves the worst performance among
all in terms of MeanACC and AVG rank, namely, 0.511, and
16.534.

The following explains the reasons behind our observations
above. The DTCM is a targeted distillation method for the
dual-network-based PCapN and LCapN, where they are both
composed of two parallel networks with different tasks, one
as a local-feature extractor and the other as a global-relation
extractor. Based on mutual learning, this method enables effi-
cient knowledge transfer between the teacher and student via
two- and one-way KD operations, which helps the LCapN to
capture sufficient intrinsic connections and regulations hidden
in the data. The DFA uses a differentiable feature aggregation
search method to discover the proper connections between
the PCapN and LCapN, while the LSN, based on feature
embedding, encourages the LCapN to inherit the high-level
features extracted by the PCapN. The KR algorithm is suitable
for the distillation between single-network-based teacher and
student models. However, The LCapN with KR leads to poor
performance since the KR’s knowledge aggregation scheme

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 13

TABLE VIII
TOP-1 ACCURACY RESULTS OF VARIOUS KD ALGORITHMS ON 29 UEA DATASETS.

Response-based KD Feature-based KD Relation-based KD Other KDDataset Index LCapN
(Baseline) DKNN [60] FSP [84] CTL [70] FitNet [72] KR [73] FT [74] RL [75] NST [85] DFA [76] LMTN [86] SP [77] MLKD [78] IRG [79] LSN [80] RKT [87] FEKD [88] Tf-KD [62] DML [63] DCM [64] DTCM

AWR 0.71 0.5 0.457 0.817 0.587 0.647 0.973 0.976 0.523 0.967 0.867 0.667 0.967 0.973 0.973 0.976 0.917 0.967 0.95 0.973 0.99
AF 0.4 0.467 0.533 0.467 0.467 0.467 0.533 0.4 0.533 0.533 0.4 0.533 0.4 0.467 0.4 0.333 0.4 0.467 0.467 0.467 0.467
BM 1 0.725 0.85 0.925 0.8 0.625 0.875 1 0.6 1 0.8 0.85 0.65 0.925 1 0.975 1 1 0.95 1 1
CT 0.335 0.341 0.121 0.941 0.264 0.115 0.936 0.934 0.129 0.933 0.218 0.348 0.577 0.958 0.937 0.937 0.971 0.971 0.899 0.906 0.961
CK 0.958 0.375 0.347 0.986 0.236 0.389 0.986 0.986 0.257 0.944 0.5 0.556 0.642 0.944 0.958 0.958 0.972 0.986 0.931 0.861 0.972

DDG 0.6 0.36 0.4 0.64 0.4 0.36 0.62 0.66 0.3 0.64 0.38 0.32 0.32 0.62 0.66 0.62 0.6 0.56 0.46 0.6 0.72
EP 0.877 0.478 0.609 0.906 0.468 0.493 0.906 0.891 0.565 0.87 0.522 0.442 0.529 0.87 0.933 0.877 0.862 0.804 0.725 0.758 0.935
EC 0.293 0.279 0.282 0.297 0.315 0.27 0.254 0.327 0.314 0.336 0.319 0.332 0.315 0.318 0.338 0.367 0.335 0.255 0.319 0.323 0.364
ER 0.922 0.789 0.715 0.937 0.87 0.933 0.922 0.952 0.852 0.956 0.848 0.885 0.87 0.952 0.952 0.948 0.967 0.967 0.97 0.97 0.97
FD 0.669 0.53 0.545 0.7 0.684 0.537 0.666 0.697 0.518 0.694 0.575 0.548 0.527 0.695 0.702 0.685 0.685 0.685 0.684 0.69 0.702
FM 0.62 0.58 0.63 0.61 0.59 0.54 0.57 0.59 0.53 0.58 0.58 0.59 0.63 0.6 0.56 0.67 0.61 0.64 0.57 0.59 0.64

HMD 0.662 0.5 0.554 0.689 0.527 0.431 0.621 0.73 0.419 0.732 0.5 0.446 0.441 0.73 0.73 0.649 0.703 0.716 0.607 0.69 0.716
HW 0.112 0.107 0.216 0.216 0.213 0.1 0.228 0.227 0.222 0.24 0.107 0.115 0.218 0.209 0.233 0.268 0.256 0.362 0.211 0.216 0.299
HB 0.64 0.722 0.727 0.78 0.755 0.731 0.761 0.741 0.735 0.721 0.741 0.721 0.721 0.74 0.731 0.78 0.731 0.74 0.776 0.78 0.78
IW 0.109 0.106 0.103 0.163 0.104 0.108 0.285 0.329 0.105 0.386 0.108 0.104 0.107 0.377 0.34 0.393 0.436 0.393 0.162 0.184 0.215
JV 0.951 0.8 0.749 0.954 0.67 0.622 0.96 0.983 0.805 0.968 0.598 0.751 0.624 0.962 0.954 0.912 0.953 0.954 0.935 0.932 0.97

LIB 0.522 0.433 0.494 0.756 0.5 0.478 0.772 0.806 0.467 0.772 0.411 0.4 0.444 0.811 0.789 0.8 0.767 0.767 0.683 0.756 0.772
LSST 0.257 0.336 0.332 0.349 0.346 0.348 0.378 0.372 0.36 0.358 0.345 0.346 0.347 0.364 0.399 0.396 0.402 0.384 0.361 0.368 0.398

MI 0.6 0.65 0.58 0.62 0.41 0.52 0.62 0.58 0.5 0.5 0.5 0.61 0.53 0.59 0.43 0.62 0.55 0.59 0.54 0.58 0.62
NATO 0.861 0.828 0.667 0.872 0.872 0.661 0.889 0.894 0.717 0.917 0.606 0.683 0.672 0.906 0.906 0.906 0.928 0.9 0.878 0.928 0.95

PD 0.911 0.61 0.842 0.647 0.67 0.697 0.932 0.935 0.571 0.948 0.864 0.593 0.84 0.947 0.949 0.958 0.963 0.965 0.896 0.935 0.923
PEMS 0.913 0.908 0.867 0.936 0.843 0.741 0.896 0.948 0.803 0.954 0.717 0.838 0.885 0.942 0.937 0.903 0.919 0.908 0.874 0.881 0.948

PS 0.127 0.462 0.462 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.463 0.444 0.462 0.463
RS 0.875 0.612 0.559 0.895 0.684 0.691 0.847 0.888 0.572 0.875 0.572 0.651 0.678 0.849 0.895 0.855 0.827 0.868 0.862 0.855 0.868

SRS1 0.899 0.9 0.895 0.888 0.898 0.816 0.815 0.894 0.917 0.894 0.887 0.899 0.897 0.897 0.91 0.921 0.903 0.917 0.893 0.904 0.925
SRS2 0.583 0.507 0.583 0.556 0.589 0.556 0.528 0.506 0.55 0.583 0.527 0.583 0.572 0.544 0.572 0.544 0.573 0.55 0.544 0.544 0.589
SAD 0.787 0.204 0.211 0.896 0.237 0.268 0.957 0.96 0.22 0.953 0.953 0.946 0.946 0.964 0.97 0.959 0.97 0.967 0.858 0.953 0.946
SWJ 0.533 0.467 0.216 0.533 0.533 0.533 0.6 0.4 0.6 0.533 0.533 0.6 0.4 0.4 0.467 0.533 0.467 0.333 0.533 0.6 0.667
UW 0.806 0.694 0.706 0.806 0.6 0.675 0.888 0.878 0.731 0.897 0.647 0.687 0.778 0.891 0.888 0.866 0.891 0.884 0.822 0.859 0.9
Best 1 1 1 4 2 1 3 6 2 4 1 1 1 2 5 3 6 5 1 3 13

MeanACC 0.639 0.527 0.526 0.698 0.538 0.511 0.713 0.722 0.513 0.729 0.555 0.569 0.586 0.721 0.723 0.727 0.725 0.723 0.683 0.709 0.747
AVG Rank 12.052 16.345 15.689 9.207 14.655 16.534 9.259 7.569 15.5 7.328 16.138 14.224 14.759 8.138 6.914 7.034 7.293 7.397 11.983 9.103 3.879

Fig. 5. Accuracy plot showing the performance difference between DTCM
and PCapN on 29 UEA datasets.

is not that effective to model the parameter distributions for
dual-network-based teacher and student models.

To visualize the differences between DTCM and LCapN,
Fig. 4 depicts the accuracy plot of DTCM against DCM
on 29 UEA datasets. The result shows that DTCM achieves
27/1/1 in terms of ‘win’/‘lose’/‘tie’ measure, which reflects
that the proposed DTCM provides adequate knowledge trans-
fer between PCapN and LCapN, effectively improving the
performance of LCapN. Even compared with PCapN, DTCM
has some advantages. We show the accuracy plot of DTCM
against PCapN on 29 UEA datasets in Fig. 5. DTCM obtains
‘win’/‘lose’/‘tie’ in 15/5/9 cases, respectively, reflecting the

effectiveness of DTCM for dual-network-based student and
teacher knowledge transfer.

E. Case Study

To further investigate the impact of DTCM deployed for
knowledge transfer between the PCapN and LCapN, we use
the unsupervised t-distributed stochastic neighbor embedding
(t-SNE) [89] approach to visualize the representations learned
by PCapN, LCapN, and DTCM. Fig. 6 displays the visu-
alization of representations learned by t-SNE, LCapN with
t-SNE, PCapN with t-SNE on the NATOPS (NATO) and
UWaveGestureLibrary (UW) datasets.

In Fig. 6, it is apparent that LCapN and PCapN are more
adept at consolidating data with similar characteristics than t-
SNE, showcasing the remarkable feature extraction capabilities
inherent in both models. Meanwhile, PCapN achieves a better
clustering effect than LCapN, reflecting a stronger feature
extraction prowess. To enhance the feature extraction capa-
bilities of LCapN, DTCM is used to transfer the knowledge
from PCapN to LCapN. Upon closer examination of Fig. 6,
one can easily find that DTCM substantially enhances the
clustering effect of LCapN when compared with its standalone
version. This demonstrates that DTCM effectively facilitates
knowledge transfer between the PCapN and LCapN, helping
LCapN mine rich regularizations and relationships within the
data.

V. CONCLUSION

In the proposed PCapN, the LFN and GRN can capture
sufficient local and global patterns of MTS data and discover
the intrinsic relationships among these patterns. The proposed

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 14

(a) t-SNE on NATO (b) LCapN with t-SNE on NATO (c) PCapN with t-SNE on NATO (d) DTCM with t-SNE on NATO

(e) t-SNE on UW (f) LCapN with t-SNE on UW (g) PCapN with t-SNE on UW (h) DTCM with t-SNE on UW

Fig. 6. Visualization of representations learned by t-SNE, LCapN with t-SNE, PCapN with t-SNE on the NATOPS (NATO) and UWaveGestureLibrary (UW)
datasets.

DTCM offers mutual-learning-based targeted and offline dis-
tillation to supervise efficient knowledge transfer between the
PCapN and LCapN. Experimental results demonstrate that
compared with a large number of MTSC algorithms, the
PCapN performs the best on 10 out of 30 datasets in the
UEA2018 archive, regarding the ‘win’/‘tie’/‘lose’ statistics
and AVG rank; compared with 19 state-of-the-art KD al-
gorithms, the DTCM wins 13 out of 29 datasets in terms
of the MeanACC, ‘win’/‘tie’/‘lose’ statistics, and AVG rank.
The experimental results also indicate that the PCapN has
good potential to handle various real-world MTSC problems;
DTCM is a promising candidate to address KD problems for
dual-network-based student and teacher models in a variety of
time-series applications.

The proposed PCapN only uses a simple concatenation to
fuse LFN and GRN, easily ignoring the loss of instance-level
hierarchical relationships between LFN and GRN. To address
this problem, we plan to propose a dynamic hierarchical
feature fusion method for dual-network-based feature fusion
in the next phase work. This method can explore the valid hi-
erarchical instance-level connections between the local feature
network and the global relational network in a dual-network-
based model, helping the model mine the rich regularizations
and relationships hidden in the data.

KNOWLEDGEMENT

The authors are grateful to the editors and reviews for
providing us with valuable suggestions, improving the quality
and completeness of the article.

REFERENCES

[1] P.-Y. Zhou and K. C. C. Chan, “Fuzzy feature extraction for multichannel
eeg classification,” IEEE Trans. Cogn. Dev. Syst., vol. 10, no. 2, pp. 267–
279, 2018.

[2] Y. Zhang, H. Cai, J. Wu, L. Xie, M. Xu, D. Ming, Y. Yan, and E. Yin,
“Emg-based cross-subject silent speech recognition using conditional
domain adversarial network,” IEEE Trans. Cogn. Dev. Syst., pp. 1–9,
2023.

[3] A. M. Roy and J. Bhaduri, “Densesph-yolov5: An automated damage
detection model based on densenet and swin-transformer prediction
head-enabled yolov5 with attention mechanism,” Adv. Eng. Informatics,
vol. 56, pp. 1–16, 2023.

[4] F. Lin, Z. Wang, H. Zhao, S. Qiu, R. Liu, X. Shi, C. Wang, and W. Yin,
“Hand movement recognition and salient tremor feature extraction with
wearable devices in parkinson’s patients,” IEEE Trans. Cogn. Dev. Syst.,
pp. 1–12, 2023.

[5] N. Li, F. Chang, and C. Liu, “A self-trained spatial graph convolutional
network for unsupervised human-related anomalous event detection in
complex scenes,” IEEE Trans. Cogn. Dev. Syst., vol. 15, no. 2, pp. 737–
750, 2023.

[6] Y. Yan, X. Wu, C. Li, Y. He, Z. Zhang, H. Li, A. Li, and L. Wang,
“Topological eeg nonlinear dynamics analysis for emotion recognition,”
IEEE Trans. Cogn. Dev. Syst., vol. 15, no. 2, pp. 625–638, 2023.

[7] S. Jamil and A. M. Roy, “An efficient and robust phonocardiography
(pcg)-based valvular heart diseases (vhd) detection framework using
vision transformer (vit),” Comp. Bio. Med., vol. 158, pp. 1–15, 2023.

[8] H. Wu, L. Kong, Y. Zeng, and H. Bao, “Resting-state brain connectivity
via multivariate emd in mild cognitive impairment,” IEEE Trans. Cogn.
Dev. Syst., vol. 14, no. 2, pp. 552–564, 2022.

[9] W. Wang, S. Zhang, Z. Wang, X. Luo, P. Luan, A. Hramov, J. Kurths,
C. He, and J. Li, “Diagnosis of early mild cognitive impairment based
on associated high-order functional connection network generated by
multi-modal mri,” IEEE Trans. Cogn. Dev. Syst., pp. 1–11, 2023.

[10] H. Xing, Z. X. R. Qu, Z. Zhu, and B. Zhao, “An efficient federated
distillation learning system for multi-task time series classification,”
IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022.

[11] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised scalable
representation learning for multivariate time series,” in Proc. Adv. neural
inf. proces. syst., 2019, p. 4650–4661.

[12] Z. Xiao, H. Xing, R. Qu, L. Feng, S. Luo, P. Dai, B. Zhao, and
Y. Dai, “Densely knowledge-aware network for multivariate time series
classification,” IEEE Trans. Syst. Man Cy-S., pp. 1–13, 2024.

[13] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller,
“Deep learning for time series classification: a reviewer,” Data Min.
Knowl. Disc., vol. 33, pp. 917–963, 2019.

[14] A. Bagnall., J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances,” Data Min. Knowl. Disc., vol. 31, pp.
1–55, 2017.

[15] A. R. Puiz, M. Flynn, and A. Bagnall, “Benchmarking multivariate time
series classification algorithms,” arXiv preprint arXiv:2007.13156, 2020.

[16] J. Lines and A. Bagnall., “Time series classification with ensembles of
elastic distance measures,” Data Min. Knowl. Disc., vol. 29, pp. 565–
592, 2015.

[17] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time series classification

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 15

with cote: the collective of transformation-based ensembles,” in Proc.
IEEE Int. Conf. Data Eng. (ICDE), 2016, pp. 1548–1549.

[18] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-
cote: the hierarchical of transformation-based ensembles,” ACM Trans.
Knowl. Discov. D., vol. 21, no. 52, pp. 1–35, 2018.

[19] K. Fauvel, É. Fromont, V. Masson, P. Faverdin, and A. Termier, “Xem:
An explainable-by-design ensemble method for multivariate time series
classification,” Data Min. Knowl. Disc., vol. 36, pp. 917–957, 2022.

[20] G. R. M. G. Baydogan and E. Tuv, “A bag-of-features framework to
classify time series,” IEEE Trans. Pattern Anal., vol. 35, no. 11, pp.
2796–2802, 2013.

[21] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classifica-
tion of time series by shapelet transformation,” Data Min. Knowl. Disc.,
vol. 28, p. 851–881, 2014.

[22] W. Pei, H. Dibeklioğlu, D. M. J. Tax, and L. van der Maaten, “Multi-
variate time-series classification using the hidden-unit logistic model,”
IEEE Trans. Neur. Net. Lear., vol. 29, no. 4, pp. 920–931, 2018.

[23] M. G. Baydogan and G. Runger, “Time series representation and
similarity based on local auto patterns,” Data Min. Knowl. Disc., vol. 30,
p. 476–509, 2016.

[24] J. Large, A. Bagnall, S. Malinowski, and R. Tavenard, “From bop to boss
and beyond: time series classification with dictionary based classifier,”
arXiv preprint arXiv:1809.06751, 2018.

[25] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest
for classification and feature extraction,” Inform. Sciences, vol. 239, p.
142–153, 2013.

[26] A. Shifaz, C. Pelletier, F. Petitjean, and G. Webb, “Ts-chief: A scalable
and accurate forest algorithm for time series classification,” Data Min.
Knowl. Disc., vol. 34, p. 742–775, 2020.

[27] C. Ji, M. Du, Y. Hu, S. Liu, L. Pan, and X. Zheng, “Time series
classification based on temporal features,” App. Soft Comput., vol. 128,
pp. 1–11, 2022.

[28] K. Wu, K. Yuan, Y. Teng, J. Liu, and L. Jiao, “Broad fuzzy cognitive
map systems for time series classification,” App. Soft Comput., vol. 128,
pp. 1–13, 2022.

[29] M. G. Baydogan and G. Runger, “Learning a symbolic representation for
multivariate time series classification,” Data Min. Knowl. Disc., vol. 29,
p. 400–422, 2015.

[30] K. S. Tuncel and M. G. Baydogan, “Autoregressive forests for multi-
variate time series modeling,” Pattern Recogn., vol. 73, pp. 202–215,
2018.

[31] I. Karlsson, P. Papapetrou, and H. Bostrôm, “Generalized random
shapelet forests,” Data Min. Knowl. Disc., vol. 30, pp. 1053–1083, 2016.

[32] P. Schäfer and U. Leser, “Multivariate time series classification with
weasel+muse,” arXiv preprint arXiv:1711.11343, 2017.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp. 436–
444, 2015.

[34] Z. Xiao, X. Xu, H. Xing, S. Luo, P. Dai, and D. Zhan, “Rtfn: A robust
temporal feature network for time series classification,” Inform. Sciences,
vol. 571, pp. 65–86, 2021.

[35] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. Zhao, “Time series classification
using multi-channels deep convolutional neural networks,” in Proc. Lect.
Notes Comput. Sci., WAIM, 2014, pp. 298–310.

[36] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff,
“Convtimenet: A pre-trained deep convolutional neural network for time
series classification,” in Proc. Int. Jt. Conf. Neural Networks (IJCNN),
2019, pp. 1–8.

[37] H. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. Schmidt, J. Weber,
G. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean, “Inceptiontime:
finding alexnet for time series classification,” Data Min. Knowl. Disc.,
vol. 34, pp. 1936–1962, 2020.

[38] A. Dempster, F. Petitjean, and G. Webb, “Rocket: exceptionally fast and
accurate time series classification using random convolutional kernels,”
Data Min. Knowl. Disc., vol. 34, p. 1454–1495, 2020.

[39] A. Dempster, D. F. Schmidt, and G. I. Webb, “Minirocket: A very fast
(almost) deterministic transform for time series classification,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2021, pp. 248–257.

[40] Z. Xiao, H. Xing, B. Zhao, R. Qu, S. Luo, P. Dai, K. Li, and Z. Zhu,
“Deep contrastive representation learning with self-distillation,” IEEE
Trans. Emerg. Top. Comput. Intell., pp. 1–13, 2023.

[41] W. Cheng, P. Sunganthan, and R. Katuwal, “Time series classification
using diversified ensemble deep random vector functional link and resnet
features,” Appl. Soft Comput., vol. 112, pp. 1–12, 2021.

[42] Z. Huang, C. Yang, X. Chen, X. Zhou, G. Chen, T. Huang, and W. Gui,
“Functional deep echo state network improved by a bi-level optimization
approach for multivariate time series classification,” Appl. Soft Comput.,
vol. 106, pp. 1–12, 2021.

[43] S. H. Huang, L. Xu, and C. Jiang, “Residual attention net for superior
cross-domain time sequence modeling,” Fintech with Artificial Intelli-
gence, Big Data, and Blockchain. Springer, 2021.

[44] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-
fcns for time series classification,” Neural Networks, vol. 116, pp. 237–
245, 2019.

[45] X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “Tapnet: Multivariate time series
classification with attentional prototypical network,” in Proc. AAAI Conf.
Artif. Intell., 2020, pp. 6845–6852.

[46] H. Xing, Z. Xiao, D. Zhan, S. Luo, P. Dai, and K. Li, “Selfmatch:
Robust semisupervised time-series classification with self-distillation,”
Int. J. Intell. Syst., vol. 37, no. 52, pp. 8583–8610, 2022.

[47] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. Conf. Neural Inf. Process. Syst., 2017, pp. 3856–
3866.

[48] K. Patrick, A. Adekoya, A. Mighty, and B. Edward, “Capsule networks
– a survey,” J. King SAUD Univ. Sci., vol. 34, no. 1, pp. 1295–1310,
2022.

[49] Q. Zhang, B. Wu, Z. Sun, and Y. Ye, “Gating augmented capsule network
for sequential recommendation,” Knowl.-Based Syst., vol. 247, pp. 1–13,
2022.

[50] R. Huang, J. Li, S. Wang, G. Li, and W. Li, “A robust weight-shared
capsule network for intelligent machinery fault diagnosis,” IEEE Trans.
Ind. Inform., vol. 16, no. 10, pp. 6466–6475, 2020.

[51] H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, and Z. Han, “Capsule
network assisted iot traffic classification mechanism for smart cities,”
IEEE Internet Things J., vol. 6, no. 5, pp. 7515–7525, 2019.

[52] H. Peng, J. Li, S. Wang, L. Wang, Q. Gong, R. Yang, B. Li., P. Yu,
and L. He, “Hierarchical taxonomy-aware and attentional graph capsule
rcnns for large-scale multi-label text classification,” IEEE Trans. Knowl.
Data En., vol. 33, no. 6, pp. 2505–2519, 2021.

[53] H. Jayasekara, V. Jayasundara, J. Rajasegaran, S. Jayasekara, S. Senevi-
ratne, and R. Rodrigo, “Timecaps: learning time series data with capsule
networks,” arXiv preprint arXiv: 1911.11800, 2019.

[54] Z. Xiao, X. Xu, H. Zhang, and E. Szczerbicki, “A new multi-process
collaborative architecture for time series classification,” Knowl.-Based
Syst., vol. 220, pp. 1–11, 2021.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Conf.
Neural Inf. Process. Syst., 2017, p. 6000–6010.

[56] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers:
a survey,” arXiv preprint arXiv: 2009.06732, 2020.

[57] J. Liu, X. Liu, H. Lin, B. Xu, Y. Ren, Y. Diao, and L. Yang,
“Transformer-based capsule network for stock movements prediction,”
in Proc. FinNLP@IJCAI 2019, 2019, pp. 66–73.

[58] T. Saha, S. R. Jayashree, S. Saha, and P. Bhattacharyya, “Bert-caps: A
transformer-based capsule network for tweet act classification,” IEEE
Trans. Comput. Social Sys., vol. 7, no. 5, pp. 1168–1179, 2020.

[59] S. Duan, J. Cao, and H. Zhao, “Capsule-transformer for neural machine
translation,” arXiv preprint arXiv: 2004.14649, 2020.

[60] G. Hinton, O. Vinyals, and J. Dean, “Distillation the knowledge in a
neural network,” arXiv preprint arXiv: 1503.02531, 2015.

[61] J. Guo, B. Yu, S. Maybank, and D. Tao, “Knowledge distillation: A
survey,” Int. J. Comput. Vision, vol. 129, p. 1789–1819, 2021.

[62] L. Yuan, F. Tay, G. Li, T. Wang, and J. Feng, “Revisit knowledge
distillation via label smoothing regularization,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vision Pattern Recognit. (CVPR), 2020, pp. 3902–
3910.

[63] Y. Zhang, T. Xiang, T. Hospedales, and H. Lu, “Deep mutual learning,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit.
(CVPR), 2018, pp. 4320–4328.

[64] A. Yao and D. Sun, “Knowledge transfer via dense cross-layer mutual-
distillation,” in Proc. Lect. Notes Comput. Sci., ECCV, 2020, pp. 294–
311.

[65] G. Hinton, A. Krizhevsky, and S. Wang, “Transforming auto-encoders,”
in Proc. Lect. Notes Comput. Sci., ICANN, 2011, pp. 44–51.

[66] Y. Zhao, T. Birdal, H. Deng, and F. Tombari, “3d point capsule
networks,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recognit. (CVPR), 2018, pp. 1009–1018.

[67] J. Yang, P. Zhao, Y. Rong, C. Yao, C. Li, H. Ma, and J. Huang,
“Hierarchical graph capsule network,” in Proc. AAAI Conf. Artif. Intell.,
2019, pp. 1–9.

[68] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models,” in Proc. Conf. Neural Inf. Process. Syst., 2017,
pp. 742–751.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 16

[69] F. Zhang, X. Zhu, and M. Ye, “Fast human pose estimation,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit. (CVPR),
2019, pp. 3512–3521.

[70] Z. Meng, J. Li, Y. Zhao, and Y. Gong, “Conditional teacher-student
learning,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), 2019, pp. 6445–6449.

[71] R. Müller, S. Kornblith, and G. Hinton, “When does label smoothing
help?” in Proc. Adv. neural inf. proces. syst., 2019, p. 4694–4703.

[72] A. Romero, N. Ballas, S. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
“Fitnet: hints for thin deep nets,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–13.

[73] J. Liu, D. Wen, H. Gao, W. Tao, T. Chen, K. Osa, and M. Kato, “Knowl-
edge representing: efficient, sparse, representation of prior knowledge
for knowledge distillation,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vision Pattern Recognit. Workshop (CVPRW), 2019, pp. 638–646.

[74] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network: network
compression via factor transfer,” in Proc. Conf. Neural Inf. Process.
Syst., 2018, pp. 2765–2774.

[75] G. Zhou, Y. Fan, R. Cui, W. Bian, X. Zhu, and K. Gai, “Rocket launch-
ing: a universal and efficient framework for training well-performing
light net,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 4580–4587.

[76] Y. Guan, P. Zhao, B. Wang, Y. Zhang, C. Yao, K. Bian, and J. Tang,
“Differentiable feature aggregation search for knowledge distillation,” in
Proc. Lect. Notes Comput. Sci., ECCV, 2020, pp. 469–484.

[77] F. Tang and G. Mori, “Similarity-preserving knowledge distillation,” in
Proc. IEEE Int. Conf. Comput. Vision (ICCV), 2019, pp. 1365–1374.

[78] L. Yu, V. Yazici, X. Liu, J. Weijer, Y. Chen, and A. Ramisa, “Learning
metrics from teachers: compact networks for image embedding,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit. (CVPR),
2019, pp. 2902–2911.

[79] Y. Liu, J. Gao, B. Li, C. Yuan, W. Hu, Y. Li, and Y. Duan, “Knowledge
distillation via instance relationship graph,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vision Pattern Recognit. (CVPR), 2019, pp. 7089–7097.

[80] H. Chen, Y. Wang, C. Xu, C. Xu, and D. Tao, “Learning student
networks via feature embedding,” IEEE Trans. Neur. Net. Lear., vol. 32,
no. 1, pp. 25–35, 2021.

[81] A. Bagnall, H. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh, “The uea multivariate time series classi-
fication archive, 2018,” arXiv preprint arXiv: 1811.00075, 2018.

[82] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. N. Am. Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol.,
2019, pp. 4171–4186.

[83] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Proc. Adv.
neural inf. proces. syst., 2020, p. 1877–1901.

[84] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
fast optimization, network, minimization and transfer learning,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit. (CVPR),
2017, pp. 7130–7138.

[85] Z. Huang and N. Wang, “Like what you like: knowledge distill via
neuron selectivity transfer,” arXiv preprint arXiv: 1707.01219, 2017.

[86] S. You, C. Yu, C. Xu, and D. Tao, “Learning from multiple teacher
networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
2017, p. 1285–1294.

[87] N. Passalis, M. Tzelepi, and A. Tefas, “Probabilistic knowledge transfer
for lightweight deep representation learning,” IEEE Trans. Neur. Net.
Lear., vol. 32, no. 5, pp. 2030–2039, 2021.

[88] S. Park and N. Kwak, “Feature-level ensemble knowledge distillation for
aggregating knowledge from multiply networks,” in Proc. Front. Artif.
Intell. Appl., 2020, pp. 1–8.

Zhiwen Xiao (M), received the B.Eng. degree in
network engineering from the Chengdu University of
Information Technology in 2019, Chengdu, China,
and the M.Eng. degree in computer science from
the Northwest A & F University in 2023, Yangling,
China. He is pursuing the Ph.D. degree in computer
science at Southwest Jiaotong University, Chengdu,
China. His research interests include semantic com-
munication, federated learning (FL), representation
learning, data mining, and computer vision.

Xin Xu, received her B. Eng. degree in computer
science from Central South University in 2016, and
her M. Eng. degree in computer science from China
University of Mining and Technology in 2021. Her
interests lie in deep learning, computer version,
data mining, video segmentation, and representation
learning.

Huanlai Xing (M), received Ph.D. degree in com-
puter science from University of Nottingham (Su-
pervisor: Dr Rong Qu), Nottingham, U.K., in 2013.
He was a Visiting Scholar in Computer Science, The
University of Rhode Island (Supervisor: Dr. Haibo
He), USA, in 2020-2021. Huanlai Xing is with
the School of Computing and Artificial Intelligence,
Southwest Jiaotong University (SWJTU), and Tang-
shan Institute of SWJTU. He was on Editorial Board
of SCIENCE CHINA INFORMATION SCIENCES.
He was a member of several international conference

program and senior program committees, such as ECML-PKDD, MobiMedia,
ISCIT, ICCC, TrustCom, IJCNN, and ICSINC. His research interests include
semantic communication, representation learning, data mining, reinforcement
learning, machine learning, network function virtualization, and software
defined networking.

Bowen Zhao, received his B. Eng. degree in Com-
puter Science and Technology in 2020, from South-
west Jiaotong University, Sichuan, China. He is
currently pursuing the Ph.D. degree in the School
of Computing and Artificial Intelligence, Southwest
Jiaotong University, Chengdu, China. His research
interests include deep reinforcement learning, cloud
computing, and deep learning.

Xinhan Wang, received his B. Eng. degree in
Computer Science and Technology in 2016, from
Southwest University, Chongqing, China. He re-
ceived his Ph.D. degree in Computer Science in
2023, from Southwest Jiaotong University, Chengdu,
China. His research interests include network func-
tion virtualization, software defined networking, and
evolutionary algorithm.

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 17

Fuhong Song, received the M.Eng. degree in com-
puter technology and the Ph.D. degree in computer
science and technology from Southwest Jiaotong
University, Chengdu, China, in 2018 and 2022,
respectively. He is currently a Lecturer with the
School of Information, Guizhou University of Fi-
nance and Economics. His research interests include
edge computing, multi-objective optimization and
reinforcement learning.

Rong Qu (SM’12), is a full Professor at the School
of Computer Science, University of Nottingham. She
received her B.Sc. in Computer Science and Its
Applications from Xidian University, China in 1996
and Ph.D. in Computer Science from The University
of Nottingham, U.K. in 2003. Her research interests
include the modelling and optimisation for logistics
transport scheduling, personnel scheduling, network
routing, portfolio optimization and timetabling prob-
lems by using evolutionary algorithms, mathemati-
cal programming, constraint programming in oper-

ational research and artificial intelligence. These computational techniques
are integrated with knowledge discovery, machine learning and data mining
to provide intelligent decision support on logistic fleet operations at SMEs,
workforce scheduling at hospitals, policy making in education, and cyberse-
curity for connected and autonomous vehicles.

Dr. Qu is an associated editor at Engineering Applications of Artificial
Intelligence, IEEE Computational Intelligence Magazine, IEEE Transactions
on Evolutionary Computation, Journal of Operational Research Society, and
PeerJ Computer Science. She is a Senior IEEE Member since 2012 and
the Vice-Chair of Evolutionary Computation Task Committee since 2019
and Technical Committee on Intelligent Systems Applications (2015-2018) at
IEEE Computational Intelligence Society. She has guest edited special issues
on the automated design of search algorithms and machine learning at the
IEEE Transactions on Pattern Analysis and Machine Intelligence and IEEE
Computational Intelligence Magazine.

Li Feng, received the Ph.D. degree in control science
and engineering from the Xi’an Jiaotong University,
Xi’an, China, in 2005, under the supervision of Prof.
Xiaohong Guan (Academian of CAS, IEEE Fellow).
He is a Research Professor and PhD supervisor with
the School of Computing and Artificial Intelligence,
Southwest Jiaotong University, Chengdu. His re-
search interests include artificial intelligence, cyber
security and its applications.

	Introduction
	Related Work
	Capsule Network
	Knowledge Distillation
	Response-based KD
	Feature-based KD
	Relation-based KD
	Other KD

	Teacher and Student Models with DTCM
	Overview
	Squash CNN Block
	Dynamic Routing Block
	Capsule-based Transformer Block
	Deep Transformer Capsule Mutual Distillation

	Experiments and Analysis
	Experimental Setup
	Dataset Description
	Implementation Details

	Performance Metrics
	Effectiveness of PCapN
	Ablation Study
	Comparisons and Analysis

	Effectiveness of DTCM
	Ablation Study
	Comparisons and Analysis

	Case Study

	Conclusion
	References
	Biographies
	Zhiwen Xiao (M),
	Xin Xu,
	Huanlai Xing (M),
	Bowen Zhao,
	Xinhan Wang,
	Fuhong Song,
	Rong Qu (SM'12),
	Li Feng,

