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Abstract 

Amphipathic, non-ionic, surfactants are widely used in pharmaceutical, food, and agricultural 

industry to enhance product features; as pharmaceutical excipients they are also aimed at 

increasing cell membrane permeability and consequently improving e.g. oral drugs absorption. 

Here we report on the concentration- and time-dependent succession of events occurring 

throughout, and subsequent exposure of Caco-2 epithelium to a ‘typical’ non-ionic surfactant 

(Kolliphor® HS15) to provide a molecular explanation for non-ionic surfactant cytotoxicity. The 

study shows that the conditions of surfactant exposure, which increase plasma membrane fluidity 

and permeability, produced rapid (within 5 minutes) redox and mitochondrial effects. Apoptosis 

was triggered early during exposure (within 10 minutes) and relied upon an initial mitochondrial 

membrane hyperpolarization (5-10 minutes) as a crucial step, leading to its subsequent 

depolarization and caspase-3/7 activation (60 minutes). The apoptotic pathway appears to be 

triggered prior to substantial surfactant-induced membrane damage (observed ≥60 minutes). We 

hence propose that the cellular response to the model non-ionic surfactant is triggered via 

surfactant-induced increase in plasma membrane fluidity - a phenomenon akin to the stress 

response to membrane fluidization induced by heat shock - and consequent apoptosis. Therefore, 

the fluidization effect that confers surfactants the ability to enhance drug permeability may also be 

intrinsically linked to the propagation of their cytotoxicity. The reported observations have 

important implications for the safety of a multitude of non-ionic surfactants used in drug delivery 

formulations, and to other permeability enhancing compounds with similar plasma membrane 

fluidizing mechanisms. 
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Introduction 

Non-ionic surfactants are widely used in pharmaceutical, food, and agricultural industries. In the 

pharmaceutical industry, for example, they are employed to improve drug solubility, or to enhance 

transepithelial drug transport and hence increase its bioavailability.1–3 In addition to a multitude of 

pre-clinical studies, non-ionic surfactants, such as the alkyl glycosides, are employed in 

commercially available permeability enhancing formulations, including Intravil® (Aegis 

Therapeutics).4 Previous studies attribute enhancement in epithelial permeability by non-ionic 

surfactants to increased cell membrane fluidity 2,5 and /or  to formation of  channels (pores) in the 

plasma membrane.6  The consequences of these changes in membrane fluidity and structure further 

extend to changes in function of membrane bound and cytoskeletal proteins, including P-

glycoprotein and F-actin, respectively, whereby at sufficiently high concentrations, destruction of 

plasma membrane integrity and ultimately cell lysis could occur.7–9  Apoptotic and necrotic death 

pathways have both been reported to occur upon cellular exposure to non-ionic surfactants,10–12 

however little is understood about the underlying molecular mechanisms mediating these 

outcomes - the aspect studied in the present work. 

The non-ionic, amphipathic surfactant studied here is composed of polyoxyethylene esters of 12-

hydroxystearic acid (marketed as Kolliphor® HS15, previously known as Solutol® HS15), and is 

used in various pharmaceutical applications including formulation of emulsions, 13,14 

nanoparticles,15,16 and as the primary component of permeability enhancing formulations.17–19 It 

has a critical micellar concentration (CMC) between 0.06 - 0.1 mM, a concentration range above 

which it was shown to enhance bioavailability of co-administered biotherapeutic compounds 

across epithelial cell barrier.8,17,18,20,21 This effect has been attributed to the surfactant’s ability to 

increase plasma membrane fluidity, as reported for other non-ionic surfactants and indeed other 
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permeability enhancer compounds.22,23 Furthermore, subsequent effects on cytoskeletal and 

junctional protein elements have been oberserved.18,21 However, the effects of an increase in 

plasma membrane fluidity on other cell processes and cell health have not been elucidated in these 

studies. The present report hence focuses on deciphering the time-dependent succession of cellular 

events occurring in Caco-2 epithelial cells in response to their exposure to a range of the surfactant 

concentrations below and above the surfactant CMC.  The elucidation of the mechanism of non-

ionic surfactant toxicity on epithelial cells will provide vital information to enable defining 

exposure conditions for safe application of such compounds and aid future development of drug 

delivery formulations.  

 

Materials and Methods 

Cell culture 

Caco-2 human colonic cancer cells were obtained from the American Type Culture Collection 

(ATCC; Manassas, Virginia) and were used at passages 35 – 50.  Cells were cultured in EMEM 

(Sigma-Aldrich) supplemented with 10% (v/v) FBS (Sigma-Aldrich), 0.1 mg/ml streptomycin, 

100 units/ml penicillin, 0.25 µg/ml amphotericin (Sigma-Aldrich) and 2 mM L-glutamine (Sigma-

Aldrich) at 37°C with 5% CO2. Unless otherwise stated, cells were seeded at a density of 1 x 104 

cells per well in 96-well plates (Corning) for 48 hours prior to assay. For the majority of assays 

the culture media was removed, cells washed twice with phosphate buffered saline (PBS; Sigma-

Aldrich) and replaced with Kolliphor® HS15 (BASF) solutions at the required concentrations 

(0.01, 0.1, 1.0, 10.0, 20.0 or 50.0 mM; concentrations used were selected to be above and below 

the surfactant CMC 21), or the positive control 1.0% (v/v) Triton X-100 (TX; Sigma-Aldrich). All 
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treatment solutions were prepared by direct solvation in Hank’s Balanced Salt Solution (HBSS, 

pH 7.4, Sigma-Aldrich) buffered with 1% HEPES (Biochrom). The negative control in all 

experiments was 1% HEPES:HBSS solution.  

Laurdan generalized polarization (GP) 

To assess the effect of the surfactant on plasma membrane fluidity the Laurdan probe (Thermo 

Fisher Scientific) was employed (Sanchez et al. 2007). Cells were first incubated for 30 minutes 

with 2.0 µM Laurdan solution, applied in HBSS buffer at 37ºC. Fluctuations in Laurdan 

fluorescence were measured continuously during exposure, i.e. in the presence of surfactant 

solutions. Fluorescence was excited at 380 nm and emission intensity read at 440 and 490 nm (I440 

and I490 respectively).  Laurdan GP values were calculated by GP =  (I440- I490)/(I440+ I490 ) as 

determined by Parasassi et al.24 

LDH release assay  

The lactate dehydrogenase (LDH) assay was performed according to the manufacturer’s 

instructions (Sigma Aldrich, TOX7 kit).  75 µl per well of supernatant sample was removed from 

treated cells and transferred to a 96-well plate. 150 µl per well of LDH reagent was then added 

and the resulting mix incubated for 25 min at room temperature in the dark. Absorbance was then 

measured at 492 nm. Relative LDH release was calculated with the absorbance at 492 nm for 

untreated control cells taken as 0%, and the positive control, 1.0 % TX-100, assumed to cause total 

cell lysis, as 100%. This concentration of TX-100 was determined to be capable of inducing total 

cell lysis at exposures ≥ 5 minutes (Supplementary Figure S1). 
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Cellular internalization of FITC-dextran 4000 Da (FD4)  

To assess the permeability of the plasma membrane to cell impermeable solutes, FITC-Dextran 

4000 Da (FD4; Sigma-Aldrich) was employed as a model permeant.25,26  Solutions containing 

surfactant at specified concentration and FD4 (200 µg/ml) were applied to cells for 5-240 minutes.  

Following exposure, cells were washed three times with PBS buffer and fluorescence measured at 

490/525 nm (excitation/emission) to detect the presence of internalized FD4.  

MTS assay 

The cellular reduction of MTS reagent (CellTiter 96 Aqueous Cell Proliferation Assay, Promega) 

was assessed following surfactant exposure for predetermined times (5-240 minutes).  Cells were 

incubated with 120 µl MTS solution (17 % v/v applied in EMEM) for 120 minutes, after which 

absorbance was measured at 492 nm. MTS reduction data was normalized by setting values of the 

untreated control cells as 1, and values from cells treated with 1% TX-100 as 0. 

JC-1 assay 

Changes in mitochondrial membrane potential were monitored by a JC-1 (Biotium) aggregation 

assay.27 Following cells exposure to the surfactant solutions under different conditions, these were 

removed and cells washed twice with PBS buffer, prior to incubation with 50 µl JC-1 dye (5 µg/ml 

in EMEM) for 15 min at 37°C. Following removal of dye solution, wells were washed with PBS 

buffer prior to measuring fluorescence at 550/600 nm (excitation/emission) for detection of JC-1-

aggregates, and 485/535 nm (excitation/emission) for detection of JC-1 monomers.  J-

aggregate:monomer ratios were then normalized to values induced by the untreated control (set to 
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a value of 1) and 1 µM valinomycin (Sigma-Aldrich) (set to a value of 0) was employed as a 

known depolarizing agent 28 (Supplementary Figure S2).  

CellTox green assay 

Integrity of the nuclear membrane was measured by the binding of CellTox Green (Promega) to 

nuclear DNA.29 Following cells exposure to the surfactant solutions under different conditions, 

CellTox Green reagent (150 µl; 1:500 dilution of CellTox Green Dye in Assay Buffer) was added 

per well and the resulting solution incubated at room temperature for 15 min in the dark. 

Fluorescence was measured at 495/519 nm (excitation/emission).  Relative CellTox Green binding 

DNA was calculated with the control, untreated cells (HBSS buffer containing 1% HEPES) set as 

0%, and the positive control (1.0% TX-100) set as 100%.  

Hoechst 33342 /propidium iodide microscopy 

Integrity of the nuclear membrane and nuclear fragmentation was measured by propidium iodide  

(PI; Thermo Fisher Scientific) uptake.30 6x104 Caco-2 cells per well were seeded in 24 well plates 

(Corning) and cultured for 48 hours.  Wells were washed twice with PBS before addition of 

Kolliphor HS15 solution at the required concentration, or 100% ice cold ethanol (positive control; 

Fisher Chemical) for 240 minutes. Treatment solutions were then aspirated, cells washed with 

PBS, followed by addition of 1 µM Hoechst 33342 (Thermo Fisher Scientific) in PBS for 5 minutes 

and then 0.1 mg/ml propidium iodide (PI) in PBS (final concentration ~ 2 µg/ml PI) and the cells 

incubated for a further 5 minutes after which the solution was removed, and the cells washed with 

PBS.  Cells were then imaged on an inverted EVOS fluorescent microscope using a DAPI filter 

(357/447 nm; excitation /emission) for detection of Hoechst signal, and RFP filter (531/593 nm; 

excitation /emission) for PI signal. 
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Determination of ROS induction 

Intracellular ROS levels were assessed using the CM-H2DCFDA probe (Thermo Fisher 

Scientific).31  After exposure to treatments, cells were loaded with 10 µM CM-H2DCFDA in 

HBSS for 30 minutes at 37°C.  The probe was removed, cells washed, and fluorescent intensity 

measured at 492/520 nm (excitation /emission).  Measured values were then normalized to the 

untreated control (set as a value of 1). 

Detection of activated caspase-3/7 

The CellEvent ® caspase-3/7 green detection reagent (Thermo Fisher Scientific) was employed to 

evaluate levels of activated caspase-3 or 7.32 After exposure to surfactant solutions, 150 µl 2% 

(v/v) CellEvent probe in PBS was applied per well for 30 minutes at 37°C. Fluorescent intensity 

was measured at 502/530 nm excitation /emission) and normalized to the untreated control (set as 

a value of 1). 

Calcium imaging 

Intracellular Ca2+ was monitored by epifluorescent microscopy with the Ca2+ fluophore, FLUO-4 

AM (Thermo Fisher Scientific).33  Caco-2 cells were seeded on 15 mm borosilicate coverslips at 

a density of 1.2x105 cells per well and cultured for 48 hours in complete EMEM.  Cells were 

incubated with 1 µM FLUO-4 (in HBSS) for 30 mins, and then perifused with HBSS buffer with 

or without 50.0 mM Kolliphor HS15 at 32°C. Cells were imaged on an inverted Axiovert 135TV 

microscope under continual illumination at 490 nm. Cell fluorescence at >510 nm was captured 

with 20x magnification at 1 Hz with a Coosnap HQ2 camera (Photometrics, UK) using Imaging 

Workbench (Version 6, Indec).  
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For each visual field studied, regions of interest (ROI) were drawn around single and cluster of 

cells. These were corrected for background fluorescence by subtraction, and fluorescence intensity 

traces generated as a function over time. Image analysis was performed with custom scripts written 

in Labtalk (OriginLab Corporation, MA USA).  

Statistical analysis 

Concentration-response relationships were quantified by fitting the data with the equation:   

R =  
Rmin + (Rmax – Rmin)

1 + (
[S]

EC50
)h

 

where R is the response magnitude, Rmin is the minimum value, Rmax is the maximum value,  h is 

the slope index, [S] is the surfactant concentration and EC50 the concentration that produces half-

maximal effect.  

Statistical analysis, unless otherwise stated, was performed by one-way ANOVA with Dunnett’s 

multiple comparison post hoc test using GraphPad Prism (version 7.0). In the figures, statistical 

probability is indicated by: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. With 

multiple plots the statistical significance placed close to the relevant plot, and written in a 

coordinated colour to the plot. All data are presented as mean ± S.D from triplicates of three 

independent experiments, unless stated otherwise. 
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Results 

Surfactant exposure effect on Caco-2 cell membrane fluidity 

Initially the effect of cells exposure to the non-ionic surfactant on plasma membrane fluidity was 

assessed using Laurdan general polarisation (GP) (Figure 1). The analysis reveals that prior to the 

surfactant treatments (-4 to 0 minutes), Caco-2 cells maintained in HBSS buffer had baseline GP 

value of 0.19 ± 0.04, in agreement to Laurdan GP value reported in the literature for this cell line. 

34 Addition of the surfactant resulted in an almost immediate (evident at the first time- point of 

measurement, 1 minute) concentration-dependent decline in GP value for solutions at 

concentrations of ≥0.1 mM (Figure 1b). Following the initial decline, GP values maintained 

constant for at least 30 minutes for low concentration solutions (for example for ≤1.0 mM 

Kolliphor HS15 ΔGP for from 1-40 minutes time period was not significantly different to the 

buffer control (Figure 1c)), whilst higher concentrations (for example 10 mM solution) displayed 

a significant decay in GP over the same time period (1-40 minutes). Most prominent second decline 

in GP was then seen between 30-40 minutes (Figure 1c). In comparison, exposure of Caco-2 cells 

to 1% v/v Triton X-100 solution resulted in a significant initial decline in GP value (0-1 minutes) 

that was considerably larger in magnitude than for Kolliphor HS15 solutions, apart from the 

highest 10.0 mM concentration applied, which did not differ statistically (P>0.05) (Figure 1c). 

However, unlike Kolliphor HS15 solutions, Triton X-100 induced a gradual, significant decay in 

GP value between 1-40 minutes of -1.2x10-3 ΔGP/min (Figure 1c). GP values obtained at 90 and 

180 minutes of exposure show further statistically significant decrease for solutions ≥1 mM, 

relative to values at 1 minute of exposure time point (Figure 1a). Thus, the Laurdan study data 

reveal statistically significant increase in cell membrane fluidity early on exposure to the surfactant 

at concentrations ≥0.1 mM, and which further increases on prolong exposure.  
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Figure 1d provides a comparison of Laurdan probe’s behaviour when Caco-2 plasma membrane 

fluidization was induced by a temperature (42ºC). It shows the comparable Laurdan GP values of 

cells exposures to surfactant and to increased temperature (42ºC) at early time points. Cell 

exposure to 42oC treatment was reported to induce an increase in cell membrane fluidity and the 

heat shock response.35,36 
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Figure 1. Laurdan generalised polarisation (GP) of Caco-2 cells.  (a) Time dependency of GP 

in response to treatments indicated: HBSS buffer control; 0.01-10.0 mM Kolliphor HS15 and 1.0% 

v/v Triton X-100 (1.0% TX). Arrow indicates starting point of exposure. * signifies significant 

difference (P<0.05) between GP values measured at 1 and 90 minutes, and # signifies significance 

(P<0.05) between 90 and 180 minutes. Statistical inference between various times at the different 

surfactant concentrations are by 1-way ANOVA with Tukey’s multiple comparison test. (b) 

Expanded time scale of GP values between -2 and 5 minutes highlights significant decreases in 

GP observed between 0 and 1 minute (as denoted with asterisks). (c) Rate of Laurdan GP change 

per minute (ΔGP/min) for data gathered between 1-40 and between 30-40 minutes time points. (d) 

GP measurements after heat shock (HBSS applied at 42°C). For reference, GP profiles of HBSS 

applied at 37°C, 10.0 mM Kolliphor HS15and TX are displayed.  Insert displays average (mean) 

temperature of system (interior of TECAN plate reader) measured throughout repeats.  Data are 

all shown as mean ± S.D (N=3, n=3). 

 

Calcium flux on surfactant exposure 

Figure 2 demonstrates that upon application to 50 mM surfactant solution, cells exhibit a 

transiently increased intracellular calcium levels within the first 20 minutes of exposure. This 

response is characterised by an initial peak in calcium, of approximately 5-10% of basal levels, 

occurring within first 3 minutes, and a subsequent decrease to basal levels between 5-20 minutes 

of surfactant exposure. On longer exposures (≥ 40 min), loss of Ca2+ homeostasis was observed in 

a time-dependent manner (Supplementary Figure S3). 
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Figure 2. Intracellular calcium changes in Caco-2 cells on exposure to Kolliphor HS15.  

Trace displays mean result from three independent experiments, each replicate itself being the 

mean response of at least 15 cells. Data are normalised to the average basal signals of cells prior 

to Kolliphor HS15 application (-5 to 0 mins). 

 

Surfactant influence on permeability of cellular membranes 

Figure 3 summarizes the time- and concentration-dependent effects of surfactant exposure on the 

membrane integrity of Caco-2 cells. At the lowest concentration applied (0.01 mM) the surfactant 

did not affect influx of FD4 hydrophilic probe, release of cytoplasmic LDH protein, or 

permeability of the nuclear membrane for up to 240 minutes, the longest exposure time tested 

(Figure 3a). At concentrations ≥0.1 mM, the surfactant impaired cell membranes integrity; as 

indicated by significant release of LDH, influx of FD4 probe, and increased nuclear membrane 

permeability observed at 60 minutes of the exposure. Regarding permeability of nuclear membrane 

to CellTox green probe, staining of the cell nucleus was observed; suggesting an increased 

permeability of the probe into the cell and nucleus, rather than cellular leakage of DNA material 

(Supplementary Figure S4). 
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Profiles for FD4 internalization and LDH release follow similar trend, indicating that the plasma 

membrane permeability is generally increasing at surfactant solutions of ≥0.1 mM (Figure 3a).  

The release of LDH shows clear concentration dependence; after 240 minutes incubation the EC50 

is 0.56 mM (0.3 to 1.0 mM, 95% C.I.) and h was 0.73 (0.54 to 1.0, 95% C.I) (Figure 3b).  Figure 

3c illustrates that the potency of the surfactant significantly increased with incubation time (r = -

0.993, P< 0.01, Pearson).  

It should be however noticed that at early time points, 5 and 10 minutes, cells exposure to high 

concentrations of the surfactant (≥10.0 mM) show a significantly lower FD4 internalization, 

compared to untreated control (taken as 100%) (Figure 3a).  
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Figure 3. Cell membrane effects of Kolliphor HS15 on Caco-2 cells. (a) Effect of exposure to 

Kolliphor HS15 on Caco-2 plasma membrane permeability as indicated by the release of LDH, 

internalization of FD4 and, as a marker of nuclear membrane permeability, the binding of CellTox 

Green to DNA. Cells were exposed for increasing concentrations of the surfactant as indicated. (b) 

Concentration-effect relationship for the effect of Kolliphor HS15 on LDH release at different 

exposure times. Solid lines are fitted to the data by sigmoidal dose-response (variable slope) curves 

(GraphPad 7.0). (c) Relationship between Log EC50, as determined from b, and time of exposure. 

Data are mean ± S.D (N = 3, n = 3) and are displayed as the relative response to that observed with 

control (described in materials and methods). Statistical inference between various times for each 

assay are by 1-way ANOVA with Dunnett’s multiple comparison test. 

 

Surfactant effect on mitochondrial and cell metabolism 

The mitochondrial effects of surfactant exposure are shown in Figure 4. As observed in Figure 3, 

exposure to a surfactant concentration below its CMC (0.01 mM) did not result in measurable 

changes in MTS reduction, mitochondrial membrane potential, or ROS levels, relative to untreated 

cells. However, exposures to concentrations above the CMC (≥0.1 mM) demonstrate statistically 

significant increases in MTS reduction, hyperpolarization of the mitochondrial membrane 

potential, and increased ROS levels at 5, 10 and 20 minutes exposure (Figure 4). Cells exposure 

to 1 mM H2O2 for 20 minutes was determined to induce a 6.5-fold increase in ROS levels 

(Supplementary Figure S5). 

Longer exposures (≥ 60 minutes) resulted in depolarization of the mitochondrial membrane 

potential, decrease in ROS levels and decreased MTS reduction for surfactant solutions ≥1.0 mM 

(Figure 4).  Prolonged exposure (180 and 240 minutes) caused mitochondrial depolarization and 

metabolic effects even for low concentrations of surfactant solution (0.1 mM) (Figure 4). It should 

be noted that the latter events occur in the same time frame as the membrane permeabilization 

illustrated in Figure 3. Responses assessed with MTS reduction based and JC-1 based 



 18 

mitochondrial membrane potential assays corroborate with alternative tests, including the 

PrestoBlue assay (Supplementary Figure S6) and Mitotracker probe (Supplementary Figure S7), 

respectively.  
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Figure 4. Effect of Kolliphor HS15 on Caco-2 mitochondrial and metabolic activity.  Cells 

were exposed for 5-240 minutes to increasing concentrations of Kolliphor HS15 solutions as 

indicated. Mitochondria membrane potential was evaluated using the JC-1 assay, metabolic 

activity by MTS reduction and intracellular ROS levels assessed using the CM-H2DCFDA 

probe.  Data are mean ± S.D (N = 3, n = 3) and are displayed normalized to that observed with 

control (described in materials and methods). Statistical inference between various times for each 

assay are by 1-way ANOVA with Dunnett’s multiple comparison test. 

 

Post exposure metabolic-decline and activation of effector caspases 

To explore the reversibility of cellular effects to surfactant exposure, particularly reversibility of 

effects of short exposures (5-20 minutes), exposed cells were subjected to a ‘recovery’ post-

exposure period and evaluated, as illustrated in Figure 5a. The MTS assay conducted at different 

post-exposure times reveals a general trend - as initial exposure time is increased, the emergence 

of metabolic decline appears at earlier post-exposure times. Regarding caspases 3 and 7, following 

different exposure times these were observed activated at 6 hours post surfactant exposure when 

surfactant concentrations of ≥1.0 mM were applied for ≥10 minutes (One way ANOVA) (Figure 

5b) but, interestingly, when applied for a short period of 5 minutes a concentration-dependent 

decrease in caspase-3/7 activation was observed even for high surfactant solutions (1-10 mM) to 

values below that measured under control conditions (treatment with HBSS buffer).  For reference, 

staurosporine (10.0 µM), a known inducer of apoptosis,37 induced a normalized caspase 3/7 

activation value of approximately 5.5-fold the negative control (Supplementary Figure S8).  



 20 

 

Figure 5. Post-exposure assessment of surfactant effects. (a) MTS reduction in Caco-2 cells 

exposed to Kolliphor HS15 (0.01-50 mM solutions) for 5, 10, 20 and 60 minutes as different 

post-exposure, ‘recovery’ times. (b) Concentration and time dependence of caspase-3 and 7 

activation in Caco-2 cells. Cells were initially exposed to Kolliphor HS15 for 5, 10, 20 and 60 

minutes and subjected to a ‘recovery’ period of 360 minutes in the absence of surfactant 
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followed by the assessment of caspase activation. Data are mean ± SD (N = 3, n = 3) and are 

displayed normalized to that observed with control (described in materials and methods). 

Statistical inference between various times at any given concentration are by 1-way ANOVA 

with Dunnett’s multiple comparison test. 

 

Assessment of nuclear morphology and permeability 

Figure 6 presents fluorescence microscopy images of Hoechst 33342 (Ho) and propidium iodide 

(PI) double staining of Caco-2 nuclei. It depicts that 240 minutes exposure to 10.0 mM surfactant 

solution induces positive PI staining of all cells, as indicated by the purple colour of nuclei in the 

merged images (Ho/PI), indicating increased plasma and nuclear membrane permeability.  Neither 

the negative (HBSS buffer) nor the positive apoptotic controls (10.0 µM staurosporine) induced 

PI staining (Figure 6). In some surfactant treated cells (10.0 mM, 240 minutes) the pro-apoptotic 

feature of nuclear fragmentation is noted, this was also evident in the staurosporine treated cells 

(Figure 6; inserts i and ii; indicated by white arrows). Nuclear fragmentation was not observed in 

the negative control or in cells exposed in the necrotic (100% ethanol) treatment group. Cells 

treated with the necrotic control appeared to have swollen nuclei (Figure 6; insert ii), while cell 

exposure to the surfactant or the apoptotic control for 240 minutes did not result in significant 

changes in nuclei size (Figure 6; bar chart).  Figure 6 corroborates results from the DNA binding 

assay in Figure 3.  
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Figure 6. Hoechst 33342 and propidium iodide double staining of Caco-2 nuclei.  Top row, 

propidium iodide (PI) staining imaged on RFP filter (λex 531/40 nm; λem 593/40 nm).  Middle row 

(Ho/PI) shows merged images of PI staining with Hoechst 33342 (Ho), Ho stain was imaged on 

DAPI filter (λex 357/44 nm; λem 447/60 nm) and images merged using ImageJ software.  Images 

shown are representative of 3 sets of independent images.  Cells were exposed to treatments for 

240 minutes and imaged on EVOS microscope 40X magnification (scale bar 100 µm).  Bottom 

row, bar chart illustrates the mean ± S.D of nuclei size (µm2) of treated cells (Neg, negative control; 

Kol., 10 mM Kolliphor HS15; Apop., 10 µM Staurosporine; Nec., Ethanol) measured using 

ImageJ analysis software and counting of at least 100 cells per group.  Statistical significance 

measured using one-way ANOVA.  Inserts (i, ii and iii) represent enlarged areas highlighted by 

white dotted boxes from Ho/PI micrographs and highlight morphological differences of nuclei 

between treatments. White arrows indicate nuclei with apoptotic features. 

 

Effect of mitochondrial hyperpolarization on surfactant responses  

To investigate the importance of early mitochondrial hyperpolarisation, cells were co-treated with 

the surfactant and a sub-toxic concentration of FCCP (0.5 µM), a mitochondrial protonophore 
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known to depolarize mitochondrial membrane at high (toxic) concentrations and inhibit its 

hyperpolarization at low concentrations.38,39 The applied FCCP concentration (0.5 µM) did not 

induce mitochondrial membrane depolarization, yet was able to diminish the increase in ΔΨm 

elicited by the surfactant (Supplementary Figure S9). 

Profiles in Figure 7a illustrate that FCCP presence diminishes the early (5-20 minutes) 

mitochondrial membrane hyperpolarization induced by 0.1, 1.0 and 10.0 mM surfactant solutions. 

Moreover, co-treatment with FCCP conferred cells the ability to withstand longer surfactant 

exposures (60 and 120 minutes) prior to a decrease in mitochondrial membrane potential ΔΨm 

(depolarization).  

FCCP co-treatment also protected against the surfactant-induced decrease in cellular MTS 

reduction (Figure 7b), as well as increase in ROS production (Supplementary Figure S10). 

Importantly, FCCP suppressed the activation of caspase-3/7 at all surfactant concentrations tested 

up to 240 min exposure (Figure 7c). FCCP treatment did not however influence surfactant-induced 

increases in nuclear membrane permeability (Supplementary Figure S11). 
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Figure 7. Effect of 0.5 µM FCCP on Kolliphor HS15 induced mitochondrial-associated 

effects in Caco-2 cells. Time-dependent changes in (a) mitochondrial membrane potential, as 

indicated by the ratio of J-aggregate to monomer ratio, and (b) MTS reduction at the concentration 

of surfactant indicated. (c) Concentration effect of Kolliphor HS15 on caspase-3/7 activation after 

240 minutes exposure time. All data are presented normalised to the vehicle control (HBSS buffer). 

Statistical differences between Kolliphor HS15 alone and Kolliphor HS15 co-treatment with FCCP 

are by 2-way ANOVA with Sidak’s multiple comparison test. 

 

Discussion 

The increased permeability of epithelial cell layer to different permeants (e.g. small drug molecules 

and biologics) induced by non-ionic surfactants used as permeability enhancers has been 

connected to their effects on cell plasma membranes.2,40  However, studies to decipher the 

mechanism(s) by which increased membrane permeability may be connected to other cellular 
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events, including cytotoxicity of non-ionic surfactants are scarce.3 In the present work we 

corroborate the time-dependent membrane, mitochondrial, and cell death-associated impacts of a 

non-ionic surfactant to develop a toxicity profile that will aid in the understanding of how these 

compounds can be safely utilized. Evaluating surfactant effects on cells as a function of exposure 

time, rather than typical measurements at a single time point, allowed us to discuss the surfactant 

effects in the context of time (as illustrated in Figure 8) and enable mechanistic information to be 

elucidated.   

 

 

Figure 8. Suggested mechanism of toxicity of high concentrations of non-ionic surfactant on 

Caco-2 intestinal epithelial cells. Exposure to surfactant includes rapid fluidization of the cell 

plasma membrane which is associated with minor fluctuations in intracellular Ca2+ levels. This 

could incite a membrane-derived stress response, akin to the heat shock response, and is 

characterised by an early ‘survival’ phase (in red) and the subsequent initiation of a stress-induced 

mitochondrial-mediated apoptotic pathway (in blue).  Occurring in parallel to these responses are 
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the direct membrane effects of surfactant (in yellow) which, over time, progress from stress-

inducing disruptions in membrane fluidity, to membrane perturbations associated with increased 

membrane permeability. LDH, lactose dehydrogenase; FD4, FITC-dextran (4kDa); ΔΨm, 

mitochondrial membrane potential; perm., permeabilization. 

 

Initial, primary surfactant effects 

Changes in the fluorescence profile of the Laurdan probe (Figure 1) indicate the creation of an 

increasingly hydrophilic, fluid environment within the plasma membrane that occurs immediately 

upon surfactant application (within 0-1 minute), indicating fast initial incorporation of surfactant 

molecules into the plasma membrane structure. This initial effect does not appear to induce an 

immediate increase in membrane permeability, or impairment of plasma membrane barrier 

function, as judged from the initial absence of FD4 internalization and LDH release (Figure 3b). 

The transient increase (~10%) in intracellular calcium levels within initial 3 minutes of exposure 

(Figure 2) is most likely associated with plasma membrane fluidization and associated influx of 

extracellular calcium (Figure 8).41  

The initial level of cell membrane fluidization induced by the surfactant (10 mM) within 1 minute 

of exposure appears comparable in magnitude to that of membrane fluidization of cells exposed to 

42°C heat shock (Figure 1e). This similarity suggests that the cells membrane fluidization by the 

surfactant exposure may be capable of triggering response akin to a mitochondrial heat shock 

response (Figure 8).41  In Caco-2 cells, exposure to 42oC conditions employed in the current study 

has been previously demonstrated by others to induce heat shock response and expression of 

associated proteins.35,36  It should be noted however that in cells exposed to a 42oC heat shock the 

Laurdan fluorescence gradually returned to the initial level over time (Figure 1d), unlike in 
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surfactant exposed counterparts. This apparent recovery of Laurdan GP was unexpected as the 

42oC temperature was maintained throughout 2 hours experiment. At this stage, we cannot propose 

a clear explanation for Laurdan ‘recovery’ or support the observations with similar literature 

reports. Possible reasons may include the activation of membrane stabilizing proteins and their 

opposing effect on the cell membrane fluidization.42,43  

Changes in cell membrane barrier function, i.e. increased membrane permeability, were 

manifested later, after ≥60 minutes of exposure to surfactant concentrations ≥1.0 mM, as evidenced 

by the cell influx and efflux of relatively large molecular weight permeants, FITC-dextran (4 kDa) 

and LDH enzyme, respectively (Figure 3b). The appearance of the increased permeability 

coincides approximately with further decrease in Laurdan GP values (between 30-40 minutes; 

Figure 1c) for surfactant concentrations ≥0.1 mM. The current study corroborates with previous 

reports,2,44,45 that increased membrane permeability by non-ionic surfactants the can be associated 

with surfactant mediated membrane fluidization, but it further reveals that increased membrane 

fluidity is characterized by an initial (0-1 minute) and secondary stage (>30-40 minutes change in 

Laurdan polarization, Figure 1b and c), where it is the latter stage of membrane environment 

change which is responsible for increased permeability. Further studies would be needed to 

understand how is this time-related phenomenon connected to the non-ionic surfactant molecular 

structure (Kolliphor HS15), and its consequent trans-bilayer diffusion (‘flip-flop’) and/or 

formation of pores in the membrane bilayer.7,46,47 
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Stress-induced survival response  

Incorporation of surfactant molecules into, and consequent fluidization of the plasma membrane, 

have been demonstrated to induce clustering of membrane raft regions;48 a phenomenon which 

alters the spatial coordination of membrane proteins involved in cellular thermal sensing and 

triggers the cellular heat shock response.49 In addition to this membrane ‘restructuring’ on 

surfactant exposure and increased membrane fluidity (Figure 1), the observed transient increase in 

intracellular calcium (Figure 2) may also play a role in activating the heat shock response; a 

phenomenon previously observed by others (Figure 8).41,50,51  

The heat shock response has traditionally been attributed to protein denaturation,52 however it is 

now widely established that cellular sensing and responding to stress signals occurs via the 

induction of membrane-associated signalling pathways.53–55 Due to the nature of its structural 

molecules, membrane lipid bilayer organization is sensitive to temperature and confers the plasma 

membrane the ability to act as a ‘membrane thermosensor’. The use of non-proteotoxic membrane 

fluidisers has demonstrated that alterations in membrane fluidity are the first events in the heat 

sensing pathway;56 indeed ‘membrane fluidisers’, such as benzyl alcohol and hydroxylamine 

derivatives, have been demonstrated to activate the heat shock  pathway.41,57,58 By inference it is 

possible that the conventional non-ionic surfactant, Kolliphor HS15, can induce the heat shock 

response in a similar manner to these membrane fluidisers. 

Interestingly, a short 5 minutes exposure to ≥1.0 mM surfactant solutions causes a concentration-

dependent decrease, relative to control, in effector caspase activation when measured during post-

exposure ‘recovery’ stage (Figure 5b). Thus, short exposure to the surfactant treatment reduces 
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constitutive apoptosis. This may be related to the heat shock response induced by the surfactant, 

as caspase inhibition has been recognized as a part of an anti-apoptotic environment and cell 

survival mechanisms,59 including a survival response to heat shock (Figure 8).60,61  In addition, 

certain heat shock proteins are capable of binding to, and stabilizing heat shock perturbed 

membranes.43 This membrane ‘stabilization’ may be protecting against further surfactant-induced 

membrane fluidization (between 1-30 minutes, Figure 1) and regulating calcium flux during early 

exposure times (Figure 2).62,63 In a similar manner, elements of the heat shock response may be 

responsible for the decrease in FD4 internalization observed at 5 and 10 minutes (Figure 3), which 

is further supported by a study conducted by Szöllősi et al.  who report a decrease in FITC-dextran 

internalization in response to heat stress.64 Thus the activation of the heat shock response may aim 

/ attempt to protect the cell from early lysis by ‘consolidating’ the membrane and may limit 

surfactant-induced increase in membrane permeability at early time points by upregulating the 

membrane stabilizing proteins.42,43,62,65 

Metabolic effects 

The reduction of the MTS tetrazolium salt to a formazan salt is mediated via NADH-dependent 

enzymes.66 Accordingly, the marked increase in MTS reduction observed at early time points (5 

and 10 minutes) on surfactant exposure (≥10.0 mM) probably reflects higher cellular levels of 

NADH and, consequently, an imbalance in the NADH/NAH+ redox state of cells. To overcome 

this early redox imbalance, regeneration of NAD+ via mitochondrial Complex I (NADH-

ubiquinone oxidoreductase) is initiated. NADH oversupply could however overwhelm Complex 

I,67 leading to mitochondrial membrane potential hyperpolarization and an increase in ROS 

formation;68 events consistent with those observed in this study (Figure 4).  In fact the observed  

increase in NADH activity (reflected in MTS reduction) may result from the enhancement of 
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glycolysis as an element of a survival response, providing energy for rapid cellular adaptation 69 

to address the stress stimuli.70 

Mitochondrial hyperpolarization has been suggested to be an early, key signalling element in the 

heat shock response.41  Moreover, mitochondrial  hyperpolarization is recognized as an early step 

in apoptosis.39,71 In the present study, it appears that the induction of subsequent effector caspases 

via mitochondrial hyperpolarization is a time-dependent process; the induction of hyperpolarized 

mitochondria alone does not appear to trigger cell death (0-5 minutes), however its prolonged 

presence (>5 minutes) does (Figure 8). In support of this idea, our data demonstrate that the 

inhibition of surfactant induced membrane hyperpolarization by FCCP prevents the activation of 

caspase 3/7 (Figure 7c).  

Stress-induced apoptotic cell death  

Our data reveal that exposure to surfactant concentrations above the CMC induce apoptosis, as 

indicated by effector caspases activation (Figure 5b) and nuclear fragmentation (Figure 6). In 

addition,  unlike the necrotic control (ethanol),72 surfactant exposure did not induce observable 

nuclear swelling (Figure 6). These attributes would point to an induction of a form of apoptotic 

cell death, whereby the observed increases in cell plasma and nuclear membrane permeabilization 

(Figure 3) are a ‘direct’ consequences of surfactant action, as opposed to being associated with 

necrotic processes (Figure 8). 

Time course, ‘recovery’ experiments reveal that the activation of apoptosis appears to occur 

between 5-10 minutes of surfactant exposure at concentrations ≥ 1.0 mM (Figure 5). Activation of 

the apoptosis appears to inhibit the cell survival response, as suggested by the sustained metabolic 

burst that occurs in the absence of mitochondrial hyperpolarization in the presence of FCCP 
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(Figure 7b); highlighting the potential crosstalk between these pathways.73 This could be supported 

by high levels of MTS reduction that continued for almost 180 minutes into the post-exposure 

‘recovery’ (Figure 5a), rather than this metabolic burst subsiding, as seen within 20 minutes in the 

presence of the surfactant (Fig 4).   

The inhibition of apoptosis with FCCP did not however completely prevent mitochondrial 

membrane potential depolarization, as it was still observed after 180 minutes in the presence of 

FCCP (Figure 7a).  This later depolarization is most likely the consequence of direct surfactant 

permeabilization of the mitochondrial membranes. Moreover, nuclear membrane 

permeabilization, which is also evident after ~120 minutes of exposure, was unresponsive to FCCP 

treatment (Supplementary Figure 10), a feature that indicates permeabilization of this membrane 

is also occurring as a direct surfactant effect. Both of these phenomena suggest the presence of 

surfactant molecules in intracellular organelle membranes after prolonged exposure. 

How the surfactant molecules access membranes of intracellular organelles remains to be 

ascertained. Given the amphipathic nature of non-ionic surfactants, their molecules would, 

according to current understanding, at least initially (Figure 1) accumulate in the plasma 

membrane. This insertion would (initially) occur into the outer leaflet of the membrane bilayer 

and, for non-ionic surfactants, the head group appears to strongly influence (if/when) a subsequent 

trans-bilayer diffusion occurs; estimated half-times ranging from 350 ms to several hours for e.g. 

octaethylene glycol monododecyl ether and dodecylmaltoside, respectively.46,74 Beyond plasma 

membrane incorporation (and effects on its fluidity), a possible contribution to surfactant 

molecules reaching intracellular membranes could be via the normal internalization of damaged 

membrane sections containing incorporated surfactant by plasma membrane repair mechanisms, 

as has been observed for membrane injury induced by pore-forming toxins or mechanical force.75 
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A recent study illustrates accumulation of the surfactant molecules in the cell interior prior to its 

lysis, although it should be noticed that the work was conducted using ionic surfactant (sodium 

dodecyl sulphate).76 The study proposes that intracellular membrane trafficking contributes to the 

surfactant uptake mechanism. Non-ionic surfactants have also been demonstrated to interact with, 

and form channels through lipid membranes in vitro.77 As a consequence, surfactant molecules 

may diffuse though created pores (Figure 8), an event that would occur at latter times and higher 

surfactant concentrations, as potentially indicated by later influx of FD4 and LDH leakage (Figure 

3).   

Finally, one could view apoptotic cell death as actually conferring protection to the cell population, 

or tissue as a whole, from surfactant-induced immunogenicity. The loss of cell membrane barrier 

function, and the consequent leakage of intracellular components, will likely promote 

immunogenic response in the surrounding cells and tissue.78,79 The induction of rapid 

mitochondrially-mediated apoptosis can thus be viewed as advantageous, as it might minimize the 

toxic potential of surfactant exposure.   

 

Conclusions 

The primary observation of this study is that cell membrane fluidization caused by exposure to 

non-ionic surfactant is a process akin to thermal stress, resulting in the cellular heat shock response. 

This has a relevance to the behaviour of other non-ionic surfactants used in therapeutic 

formulations, such as the alkylglycosides2,44 and polysorbates,45 which have been suggested to 

mediate their increases in cell membrane permeability via the induction of membrane fluidization. 

Taken together, our data suggest that the safe use of non-ionic surfactants which operate by such 
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a mechanism may be limited by the fact that their membrane permeability action is intrinsically 

linked to alterations in membrane fluidity and, an induction of apoptotic cell death. The work 

performed here therefore provides a foundation from which the study of other non-ionic surfactants 

could be furthered. Similarly, the findings reported here on intestinal epithelium may be applicable 

to permeability studies performed on other epithelial layers, such as airway epithelium.   

Our study indicates that non-ionic surfactant cytotoxicity is induced by membrane effects, 

however, it is the mitochondrial function and mitochondria associated responses, that are 

consequently triggered, that in fact mediate the majority of observed cytotoxicity, not membrane 

perturbations per se.  This novel finding, arising from the time-course studies, may inform the way 

the toxicity of surfactants and other amphipathic compounds are evaluated.   
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