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A B S T R A C T

The online bin packing problem is a well-known optimization challenge that finds application in a wide
range of real-world scenarios. In the paper, we propose a novel algorithm called FuzzyPatternPack(FPP),
which leverages fuzzy inference and pattern-based predictions of the distribution of item sizes in online bin
packing. In comparison to traditional heuristics like BestFit(BF) and FirstFit(FF), as well as the more recent
PatternPack(PaP) and ProfilePacking(PrP) algorithm based on online predictions, FPP demonstrates competitive
and superior performance in solving various benchmark problems. Particularly, it excels in addressing problems
with evolving distributions, making it a promising solution for real-world applications where the item sizes
may change over time. This research unveils the promising potential of employing fuzzy logic to effectively
address uncertainty in scheduling and planning problems.
1. Introduction

The bin packing problem (BPP) is a classic combinatorial optimiza-
tion problem heavily studied in computer science, operations research,
and logistics. Its real-world applications involve optimizing the utiliza-
tion of limited resources in various domains such as transportation (An
et al., 2021), scheduling (Su et al., 2021), manufacturing (Arbib et al.,
2021), storage (Spencer et al., 2019), and networking (Beloglazov &
Buyya, 2010).

A one-dimensional BPP aims to use the minimum number of bins
of identical size to pack a set of items of different sizes. In its offline
version, the sizes of the items are given prior to the packing. Let 𝐶
denote the capacity of the bins to be used. The problem is to pack all
the items into the fewest number of bins with the same capacity. There
are 𝑁 different sizes of items, and each size 𝑖 has a quantity 𝑞𝑖 and a
size 𝑠𝑖. Let 𝑦𝑗 be a binary variable to indicate whether bin 𝑗 is used in
a solution (𝑦𝑗 = 1) or not (𝑦𝑗 = 0). Let 𝑥𝑖𝑗 be the number of times item
type 𝑖 is packed in bin 𝑗. The problem can be formulated as follows:

minimize
𝑈
∑

𝑗=1
𝑦𝑗 (1)

subject to:
𝑈
∑

𝑗=1
𝑥𝑖𝑗 = 𝑞𝑖 for 𝑖 = 1,… , 𝑁 (2)
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𝑁
∑

𝑖=1
𝑠𝑖𝑥𝑖𝑗 ≤ 𝐶𝑦𝑗 for 𝑗 = 1,… , 𝑈 (3)

where 𝑈 is the maximal number of possible bins available to use.
In this work, we focus on the online version of this problem, where

the items are revealed one by one, and each item must be packed into
a bin immediately upon its arrival, without knowing the future sizes of
items or even the total number of items.

As simple heuristics, classical online BPP algorithms do not rely
on information other than the current items and bins (Coffman et al.,
2013). Any-Fit algorithms make decisions based on simple rules.
Harmonic-based algorithms divide items into different groups and
adopt a technique to reserve capacity for specific types of items during
packing. Conventionally, the worst-case performance would be ana-
lyzed for comparison, usually by evaluating the competitive ratio. The
competitive ratio of an online algorithm is defined as the worst-case
ratio of its cost divided by the optimal cost, over all possible inputs.
It is a number not less than 1. A lower competitive ratio means higher
worst-case performance.

While effective in certain scenarios, these methods, which are as-
sessed by worst-case performance, may not fully capitalize on valuable
insights that could be derived from the regular distributions observed
in real-world input item sequences. With the emergence of learning
vailable online 17 February 2024
957-4174/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.eswa.2024.123515
Received 27 November 2023; Received in revised form 2 February 2024; Accepted
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

16 February 2024

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:Bingchen.Lin@nottingham.edu.cn
mailto:Jiawei.Li@nottingham.edu.cn
mailto:Tianxiang.Cui@nottingham.edu.cn
mailto:Huan.Jin@nottingham.edu.cn
mailto:Ruibin.Bai@nottingham.edu.cn
mailto:Rong.Qu@nottingham.ac.uk
mailto:Jon.Garibaldi@nottingham.ac.uk
https://doi.org/10.1016/j.eswa.2024.123515
https://doi.org/10.1016/j.eswa.2024.123515
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 249 (2024) 123515B. Lin et al.

i

N
&
T
t
r

p
2
s
A
e
b
s
f
s
r

c
s
o
(
r

augmented algorithms (LAA), many new online algorithms have been
developed. Non-traditionally, these algorithms leverage predictive an-
alytics based on historical data, allowing for more informed decisions,
under uncertain environment. Wei and Zhang (2020) reveals that the
trade-off between consistency and robustness are intrinsic in the design
of LAAs.

There has been many recent research exploring different online
algorithms with prediction. Studied online problems include: rent-or-
buy (Antoniadis et al., 2021; Bhattacharya & Das, 2022; Drygala et al.,
2023), set covering (Bamas et al., 2020; Xu & Zhang, 2022; Zey-
nali et al., 2021), scheduling (Angelopoulos & Kamali, 2021; Bampis,
Dogeas et al., 2022; Lindermayr & Megow, 2022), routing (Bampis,
Escoffier et al., 2022; Gouleakis et al., 2023; Kodialam & Lakshman,
2021), network design (Almanza et al., 2021; Jiang et al., 2021),
packing (Im et al., 2021), etc. LAA opens up promising possibilities for
online BPP algorithms.

Recently, two online BPP algorithms have been developed incor-
porating the idea of prediction. Both of them also utilize a practi-
cally stable Any-Fit heuristic as a fallback option for unpredicted
tems. Angelopoulos et al. (2021, 2022) developed ProfilePack-
ing(PrP) catering discrete item sizes. It generates an offline solution
according to a prediction and then packs online items into placehold-
ers in the offline solution. Although it performs better than classical
heuristics under fixed distribution and foreknown prediction, there is a
lack of promising experimental results of the robustness under varying
distribution and adaptive prediction. The authors admit the need for a
more sophisticated mechanism for better adaptability.

Proposed by Lin et al. (2022), PatternPack(PaP) adopts a
trivial prediction mechanism based on historical items. Designed to
tackle continuous input, it discretizes item sizes into types, and forms
bin patterns as a combination of different types of items. Based on
historical data, it regularly generates plans constructively, to guide
online packing adaptively. Its experimentation shows advantages when
dealing with some distributions without prior knowledge. However,
the discretization and planning mechanism is designed conservatively
to avoid bin overflow, which can lead to excessive wasted space in
the solution and lowered consistency. Also, the performance of the
algorithm largely depends on the chosen parameters. A more flexible
mechanism may be needed to reduce waste in patterns and suit more
input distributions.

Fuzzy logic is a form of logic that can mimic human decision-making
and handle ambiguity. The basic idea is to use fuzzy sets to represent
the truth values of statements. A fuzzy set is a set that has a membership
function that assigns a degree of membership to each element in the
universe of discourse. The degree of membership can range from 0 to
1, where 0 means the element does not belong to the set at all, and 1
means the element fully belongs to the set. For example, a fuzzy set of
empty bins might assign a degree of membership of 0.8 to a bin with 5%
space occupied, and a degree of membership of 0.4 to a bin with 15%
space occupied. Compared to Boolean logic used in all the algorithms
above, fuzzy logic has better flexibility and capability to capture and
process vital statistical data during the handling of uncertain input.

As a branch of computational intelligence, fuzzy logic has been ap-
plied to optimization problems from various aspects. On the one hand,
it can leverage expert knowledge and experience. For instance, Cuevas
et al. (2020) proposed a directed search strategy, as part of a meta-
heuristic, based on a Takagi–Sugeno Fuzzy inference system of expert
human knowledge. On the other hand, it can better model or handle
problems under uncertainty. For example, Hernández et al. (2019)
developed a fuzzy logic classifier for an offline 3-D BPP derived from
the application in package delivery companies. Drakulić et al. (2021)
incorporated fuzzy logic in algorithm design for covering location
problems with probabilistic uncertainty involved. Moreover, Pardalos
et al. (2013) modeled a list of combinatorial problems under the fuzzy
2

setting. a
In this paper, we introduce a new algorithm called FuzzyPat-
ternPack(FPP), which directly extracts patterns from an offline
solution and adopts a fuzzy classification system to perform the bin se-
lection process. Experiments are performed to compare its performance
with PaP, PrP and its variants, as well as some classical heuristics. The
contributions of this study are twofold:

– Our study introduces an innovative approach to online bin packing
problems by drawing inspiration from the impact of prior knowledge on
performance. By extracting valuable insights from historical data, the
proposed algorithm incorporates patterns to approximate optimal solu-
tions. The integration of fuzzy logic adds a dynamic assessment of bin
fitness. This combination of historical data and fuzzy logic represents
a novel advancement in tackling online bin packing problems.

– Our study demonstrates the significant contributions of the pro-
posed algorithm through a comprehensive comparison with existing
methods, including PaP, PrP and classical heuristics. The experimental
results exhibit the algorithm’s superiority, particularly in handling
uncertainties inherent in real-world online bin packing scenarios. No-
tably, the algorithm’s capability in adapting to changing distributions,
whether due to unpredictably arriving items or evolving sizes, is state-
of-the-art, which signifies its potential to address dynamic real-time
challenges effectively.

2. Background

2.1. Online bin packing problem

Online bin packing problem has a long history of study. Best-
Fit(BF), FirstFit(FF) and Harmonick algorithm are three heuris-
tic algorithms for online bin packing problems. As members of the
Any-Fit family, BF and FF are simple and intuitive algorithms that
do not open new bin until an item cannot be packed into any existing
bin. They pack each item into the first bin that has enough space
for it, either in the order of arrival or in the order of decreasing
free space. Based on the idea of bounded-space algorithms (Johnson,
1973) and reservation technique (Yao, 1980), Harmonick algorithm
was presented. It is a more sophisticated algorithm that classifies the
items into 𝑘 classes based on their sizes and assigns each class to a
dedicated set of bins. The algorithm assigns each class, which contains
items with sizes in interval ( 1

𝑘+1 ,
1
𝑘 ], to a dedicated set of bins, so

that each bin can only contain items from one class. This approach
effectively guaranteed a better worst-case performance to Any-Fit.

umerous modified versions of Harmonick have been developed (Lee
Lee, 1985; Ramanan et al., 1989; Richey, 1991; Seiden, 2002).

able 1 lists some key algorithms in a roughly chronological order, with
heir features, adopted techniques, input requirements, and competitive
atios.

Without prediction, for any online bin packing algorithm, the com-
etitive ratio is proven to be no lower than 1.54278 (Balogh et al.,
021). It is proved that the competitive ratio of FF and BF is 1.7 (John-
on et al., 1974). For the Harmonic family, the most recent algorithm
dvanced-Harmonic obtained a competitive ratio of 1.58 (Balogh
t al., 2021). Note that better worst-case performance does not lead to
etter average performance. According to Angelopoulos et al. (2022),
imple heuristics such as FF and BF achieve near-optimal performance
or uniformly distributed input of Coffman et al. (1996) and often
urpass, in practice, many online algorithms with better competitive
atios (Kamali & López-Ortiz, 2015).

Many variants of online BPP have also been extensively researched
oncerning different aspects of real-world applications. Table 2 shows
ome popular variants. Some variants have also been studied under
ffline or multi-dimensional settings. We refer readers to Ali et al.
2022), Christensen et al. (2017) and Coffman et al. (2013) for detailed
esearch progress on online BPP-related problems. Researchers have
lso explored combining features from multiple variants to create a
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Table 1
Key existing algorithms for classic 1-D online Bin Packing Problem (BPP).

Algorithm Feature Technique Input Competitive Ratio Reference
Any-Fit Almost

Any-Fit
Bounded-
Space

Reservation
Technique

Interval
Classification

Continuous Discrete

Next-Fit(NF) ✓ ✓ ✓ 2 Johnson (1973)
and Fisher
(1988)

Worst-Fit(WF) ✓ ✓ ✓ 2 Johnson (1973)
and Johnson
et al. (1974)

Best-Fit(BF) ✓ ✓ ✓ ✓ 1.7

First-Fit(FF) ✓ ✓ ✓ ✓ 1.7
Next-k-Fit(NFk) ✓ ✓ ✓ 1.7+ 3∕10(𝑘−1) Johnson (1973)

and Csirik and
Imreh (1989)

Refined-First-Fit(RFF) ✓ ✓ ✓ ✓ 1.66 Yao (1980)

Harmonick ✓ ✓ ✓ ✓ ✓ 1.69 Lee and Lee
(1985)

Advanced-Harmonic ✓ ✓ ✓ ✓ ✓ 1.58 Balogh et al.
(2017)

Profile-Packing(PrP) ✓ ✓ See
Section 2.2.1

Angelopoulos
et al. (2021)

Pattern-Pack(PaP) ✓ ✓ ✓ ✓ See
Section 2.2.2

Lin et al. (2022)
1
t

H
[

more accurate and realistic model tailored for specific application
scenarios.

Recently, many data-driven BPP algorithms have been developed
with focus on adapting uncertain environment and evaluated by prac-
tical experimentation. Tu et al. (2023) developed a deep reinforcement
learning (DRL) hyper-heuristic for two online packing problems, where
feature fusion is employed to better characterize uncertain environ-
ments. Que et al. (2023) proposed a Transformer model, trained by
DRL, to solve 3D packing problem. There are also attempts to auto-
matically create algorithms. For example, Asta et al. (2016) proposed
a framework to create heuristics via many parameters with a Genetic
Algorithm optimizer. Furthermore, new algorithms have been created
for a broader range of cutting and packing problems. Sato et al. (2023)
developed a separation and compaction algorithm for the two-open
dimension nesting problem. Neuenfeldt Júnior et al. (2019) designed
a data mining based framework to assess solution quality for the
rectangular 2D strip-packing problem.

Packing-related algorithms have been increasingly used to solve
more complex and practical production problems. Other than exam-
ples mentioned in Introduction, Li et al. (2022) proposed a container
loading algorithm with the integration of a heuristic packing algo-
rithm. Bartmeyer et al. (2022) developed an expert system for textile
industry, to quickly generate alternative layouts for cutting irregular
pieces from raw materials, while avoiding defective areas. Abohamama
and Hamouda (2020) designed a hybrid energy–Aware virtual machine
placement algorithm for cloud environments, where the formulation
of variable sized bin packing problem was adopted. Al-Moalmi et al.
(2021) addressed the container placement problem in data centers,
considering the placement as vector bin-packing problem. Luo and
Rao (2023) developed a heuristic to tackle a special knapsack packing
problem arising from aircraft management on the carrier.

2.2. Existing algorithms with prediction

As explained above, most online BPP algorithms were developed
with the aim for better worst-case performance. However, two recent
algorithms - PrP and PaP - utilize predictions to improve performance
n online packing while also preserve an Any-Fit heuristic as a robust
3

fallback option.
2.2.1. ProfilePacking
Proposed in Angelopoulos et al. (2022), PrP algorithm utilizes

predictions on the frequency of item sizes. This algorithm employs a
profile set as an approximation of the expected input and packs items
according to the optimal packing of this profile set. In other words, it
treats each item in the optimal solution as a placeholder for incoming
items of the same size. Before packing, PrP requires a prediction, which
is also called the prefix. The prefix consists of a collection of item sizes
and is packed by an offline algorithm. The offline solution is treated
as a profile group, which will be filled according to the type of each
incoming item.

The algorithm is claimed to have optimal consistency, meaning
that it performs best when the predictions are error-free, and near-
optimal robustness, meaning that its performance degrades slowly as
the prediction error increases. The reported competitive ratio of PrP is
+(2+5𝜖)𝜂𝐶+𝜖, where 𝜖 is any fixed constant less than 0.2, 𝜂 represents
he prediction error.

Two variants are proposed in Angelopoulos et al. (2021). The
ybrid(𝜆) variant integrates the classical FF with a parameter 𝜆 ∈
0, 1]. The value of 𝜆 defines the portion of items handled by PaP.

For instance, when 𝜆 = 0.5, each of the two algorithms would handle
half of the incoming items. This approach is tested and found to have
higher robustness compared to PrP. Here we use PrP(𝜆) to represent
both original and Hybrid(𝜆), as Hybrid(1) is identical to PrP. The
other variant is called Adaptive(w), and it is designed from a more
practical perspective. Instead of relying on a pre-known distribution
‘‘prefix’’, it replaces it with a dynamically updating prediction based on
a ‘‘Sliding Window’’ approach. This involves considering a 𝑤 of most
recently received items to make predictions.

The practical experiments on benchmarks show that PrP, along
with its variants, has advantages compared to classical heuristics. How-
ever, the placeholder-based mechanism can only handle items that have
appeared in the profile. If an incoming item is of a size not appeared
in the prediction, called ‘‘special items’’, it would be packed by FF
as a fallback option. In their work, all the tests were done under a
discrete setting where the input item sizes are integers in the range
(0, 102]. Nevertheless, if sizes of items are in a much wider range, such
as (0, 104], it would be very likely to have many more ‘‘special items’’
that are forcibly packed by FF, resulting in degrading performance. For
time efficiency and simplified implementation, they adopt FirstFit
Decreasing(FFD) to generate profile groups, instead of an exact

algorithm.
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Table 2
Variants of 1-D Online Bin Packing Problem (BPP).

Variants Difference to classical online BPP Real-world aspect Reference
Objective Item Bin

Dynamic online BPP / May be deleted after
packed

/ Cloud computing Gupta et al.
(2022)

Relaxed online BPP / May be repacked after
packed

/ Cloud computing Gambosi
et al. (2000)

Fully dynamic online
BPP

/ May be deleted or
repacked after packed

/ Cloud computing Berndt et al.
(2020)

Semi-Online online BPP / A subset of incoming
items visible

/ Packing assembly line Zhao et al.
(2021)

Online open end BPP / / Total size of items per
bin may slightly exceed
C

Task scheduler Epstein
(2022)

Online BPP with
rejection

To minimize bin usage,
plus all rejection costs

May be rejected / Distributed storage with
transfer cost

Dósa and He
(2006)

p-Cardinality
constrained online BPP

/ / The number of packed
item could not exceed
p per bin

Multi-processor
scheduling

Balogh et al.
(2020)

Class constrained online
BPP

/ Additionally tied to a
‘color’

Each bin has at most Q
colors of items

Video on demand Xavier and
Miyazawa
(2008)

Online BPP with
conflicts

/ May be conflicting Cannot be packed into
the same bin

Task scheduling with
security concern

Epstein and
Levin (2008)

Stochastic online BPP / Size may follow a
stochastic distribution

Size may follow a
stochastic distribution

Uncertainty Gupta and
Radovanović
(2020)

Online BPP with advice / / Certain level of prior
knowledge provided

Decision making with
untrusted prediction

Boyar et al.
(2016)
i
s

2.2.2. PatternPack
PaP, proposed by Lin et al. (2022), also utilizes the idea of pre-

diction and proposes a mechanism that could overcome the ‘‘special
item’’ problem. The bin capacity 𝐶 is divided into 𝑁𝑠 sections. Items
re categorized based on the section they belong to. An 𝑆𝑗 item is any
tem with size ranging from ( 𝑗−1𝑁𝑠

, 𝑗
𝑁𝑠

], where 𝑗 ∈ [1, 𝑁𝑠]. A pattern is

made up of one or more types of items. The algorithm would attempt to
generate 𝑁𝑝 patterns beforehand with a constraint that the maximum
size of all items capped at 𝐶, starting from {𝑆𝑁𝑠

}. For example, if
𝑁𝑠 = 4 and 𝑁𝑝 = 4, we could form a list of pattern: {𝑆4}, {𝑆1, 𝑆3},
{𝑆2, 𝑆2}, {𝑆1, 𝑆1, 𝑆2}.

During the packing process, the input items are recorded regularly
into a sample, which is a collection of the at most 𝑁𝑢 recently received
items. The sample is treated as a prediction and would be cleared when
a plan is generated. A plan will be generated when the number of items
in the sample reaches 𝑁𝑢. During planning, each pat tern would be
assigned a quota to determine how many times the pattern should be
used in the next 𝑁𝑢 items.

If a pattern consists of 𝑡 items, the waste after fully packed would be
𝑡× 𝐶

𝑁𝑠
in the worst case. This leads to an approximation ratio of 𝑁𝑠

𝑁𝑠−𝑡𝐶
.

When 𝑁𝑠 = 17 and 𝑡 ≤ 3 for all patterns applied, for example, the
pproximation ratio for pattern-based packing is 17

14 = 1.214286 given
accurate prediction of the item distribution.

During the packing, there are two groups of bins - pattern bins
and BestFit bins. For each pattern, 𝑁𝑠 queues are constructed for bins
waiting for different item types. Opened pattern bins would be waiting
in queues until fully packed according to the corresponding patterns.
First, for each item, the algorithm attempts to find a pattern bin that is
waiting for this item, in the order of patterns. If no pattern bin matches,
the algorithm tries to match a pattern by reviewing the pattern list
sequentially. A pattern is matched only when it contains this item type.
A pattern is available only when it still has a quota. If a pattern is
matched and available, a new pattern bin would be opened and used
for packing. If no pattern is matched or available, the items would be
packed by BF and inserted into the BF bin collection. In this way, items
4

are grouped into limited categories, so unseen items could be packed
according to similar items in the prediction.

This algorithm was evaluated with 𝑛 = 105 and 𝐶 = 104, to
mitate continuous input. Higher performance was observed on middle-
ized item distributions, compared to BF, under a certain configuration.

However, this algorithm has several drawbacks. Firstly, the patterns
generated come with wasted space. The more items in a pattern, the
more wasted space could occur. Although the priority of patterns has
been considered during pattern generation, some pattern bins still have
higher wasted space compared to BF. Secondly, the number of auto-
matically generated patterns grows exponentially as 𝑁𝑠 increases. This
means that using large 𝑁𝑠 is computationally unavailable. Additionally,
although this algorithm has been designed to adapt to different input
distributions, it is difficult to find appropriate parameters - 𝑁𝑠, 𝑁𝑢,
and 𝑁𝑝 - to obtain reasonable performance across a wide range of
distributions.

3. Our proposed method

Algorithm 1 Pattern-based Online Bin Packing Algorithm with Fuzzy Logic
Bin Selector
1: function Main
2: initialize the item recorder 𝑠𝑎𝑚𝑝𝑙𝑒 ⊳ max size 𝑁𝑢
3: initialize pattern list 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ⊳ 𝑁𝑠 × 𝑛𝑝 of integers
4: initialize pattern plan 𝑝𝑙𝑎𝑛 ⊳ 𝑛𝑝 of integers
5: initialize bin waiting list 𝑙 ⊳ 𝑁𝑠 × 𝑛𝑝 of multi-sets
6: initialize avg. item sizes 𝑝𝑆𝑖𝑧𝑒𝑠 ⊳ 𝑁𝑠 × 𝑛𝑝 of integers
7: initialize a collection of Best-Fit bins 𝐵𝑏
8: while there is unpacked 𝑖𝑡𝑒𝑚 do ⊳ fetch next item from input
9: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

10: Push(𝑠𝑎𝑚𝑝𝑙𝑒, 𝑖𝑡𝑒𝑚) ⊳ record 𝑖𝑡𝑒𝑚
11: Pack(𝑝𝑙𝑎𝑛, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝐵𝑏, 𝑙, 𝑖𝑡𝑒𝑚,...)
12: if Size(𝑠𝑎𝑚𝑝𝑙𝑒) = 𝑁𝑢 then
13: 𝑝𝑙𝑎𝑛, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝑝𝑆𝑖𝑧𝑒𝑠 ←Update(𝑠𝑎𝑚𝑝𝑙𝑒)
14: push bins in 𝑙 into 𝐵𝑏 ⊳ pattern bins turn to BF bin
15: clear 𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑙
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Algorithm 2 Pattern Plan Update

1: function Update(𝑠𝑎𝑚𝑝𝑙𝑒)
2: 𝑂𝑃𝑇 ← an optimal solution of 𝑠𝑎𝑚𝑝𝑙𝑒
3: initialize 𝑝𝑙𝑎𝑛
4: initialize 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
5: initialize 𝑝𝑆𝑖𝑧𝑒𝑠
6: for each bin 𝑏 in 𝑂𝑃𝑇 do
7: initialize 𝑐𝑢𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ⊳ 𝑁𝑠 of integers
8: for each 𝑖𝑡𝑒𝑚 in 𝑏 do ⊳ identify pattern of 𝑏
9: 𝑠 ← Ceil(𝑖𝑡𝑒𝑚∕𝐶∕𝑁𝑠) ⊳ round-up

10: 𝑐𝑢𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← 𝑐𝑢𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 + 1
11: 𝑐𝑢𝑟𝑆𝑖𝑧𝑒𝑠𝑠 ← 𝑐𝑢𝑟𝑆𝑖𝑧𝑒𝑠𝑠 + 𝑖𝑡𝑒𝑚
2: 𝑖 ← FindMatch(𝑐𝑢𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠)

13: if 𝑖 is found then ⊳ pattern already identified
14: 𝑝𝑙𝑎𝑛𝑖 ← 𝑝𝑙𝑎𝑛𝑖 + 1
15: else ⊳ new pattern identified
16: Push(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝑐𝑢𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛)
17: Push(𝑝𝑙𝑎𝑛, 1)
18: 𝑖 ← index of the last element in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
19: for 𝑗 ← 1 to 𝑁𝑠 do ⊳ accumulate item sizes
20: 𝑝𝑆𝑖𝑧𝑒𝑠𝑖𝑗 < −𝑝𝑆𝑖𝑧𝑒𝑠𝑖𝑗 + 𝑐𝑢𝑟𝑆𝑖𝑧𝑒𝑠𝑗
21: for 𝑖 ← 1 to Size(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠) do
22: for 𝑗 ← 1 to 𝑁𝑠 do ⊳ calculate avg. size
23: 𝑝𝑆𝑖𝑧𝑒𝑠𝑖𝑗 < −𝑝𝑆𝑖𝑧𝑒𝑠𝑖𝑗∕𝑝𝑙𝑎𝑛𝑖

return 𝑝𝑙𝑎𝑛, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝑝𝑆𝑖𝑧𝑒𝑠

FPP improves PaP in pattern generation and bin selection. Algo-
rithm 1 shows the general framework of our proposed approach, which
are mostly inherited from PaP. Initially, when an item is received, it is
acked into a bin by BF with its size recorded into the sample. After the
ample size reaches 𝑁𝑢, a new pattern list and plan would be generated
ased on the sample. Recall that a pattern is a combination of different
ypes of items; each pattern has a quota to limit usage; a plan is a
ist of quotas for all extracted patterns. For the next 𝑁𝑢 items, they

would guide the packing. There are two parameters: sample size 𝑁𝑢
nd number of sections 𝑁𝑠. 𝑁𝑝 is not needed for configuration, as we
ave a variable number of patterns 𝑛𝑝.

The key data-structures are as follows: 𝑠𝑎𝑚𝑝𝑙𝑒 is a vector of maxi-
mum length 𝑁𝑢. 𝑠𝑎𝑚𝑝𝑙𝑒𝑖 represents the size of the 𝑖th recorded item.
Pattern list 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 is a matrix with width of 𝑁𝑠 and dynamic row
count 𝑛𝑝. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑖 is the 𝑖th pattern; 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑖𝑗 is the number of type-
𝑗 item in the 𝑖th pattern. 𝑝𝑙𝑎𝑛 is an vector of length 𝑛𝑝. 𝑝𝑙𝑎𝑛𝑖 refers
o the quota of 𝑖th pattern, i.e., how many times the pattern could
e applied to bins. Bin waiting list 𝑙 is a matrix of multi-sets, with
idth 𝑁𝑠 and dynamic row count 𝑛𝑝. 𝑙𝑖𝑗 is a multiset of bins following

th pattern, waiting for type-𝑗 items. The multiplicity of a bin in the
ulti-set indicates how many items of this type it is waiting for. To

alculate patterns and plan, instead of having a computer-generated
attern list with a maximum size of each pattern strictly equal to 𝐶,
he new algorithm adopts an offline algorithm to work out an optimal
olution, from which patterns are extracted. In this way, the pattern list
nd plan could be seen as a generalized form of the optimal solution,
uiding the following packing towards optimal. Algorithm 2 describes
he planning process. The bins in optimal solution are grouped based on
he type of items they contain. Each group of bins creates a pattern. For
ach pattern, the frequency of bins would be the quota of the pattern.
lso, the average size of each item type of each pattern is logged to
id future decision-making. The extracted patterns have a possibility
o cause bin overflow. For example, an offline solution may contain
0.48, 0.51} and {0.47, 0.52}; under 𝐶 = 1 and 𝑁𝑠 = 4, they belong to
attern {𝑆2, 𝑆3}. The pattern requires a space of 1.25 at most, which is
reater than 𝐶. Trivial approaches, such as placing the pattern bins in
ueues, may produce invalid results.

To resolve the possibility of bin overflow, a selection mechanism
5

s designed in the packing process (Algorithm 3). Instead of placing
Table 3
Input fuzzy variables, where 𝑋𝑝𝑏 ,𝑠𝑖 is a collection of average sizes of items of pattern
𝑝𝑏 and section 𝑠𝑖 from the optimal solution, 𝐼𝑏 is the collection of all items in 𝑏 after
he current item is packed, 𝑝𝑏 is the pattern followed by 𝑏, 𝑠𝑖 is the section index of
his item, 𝑏 is the current bin under fuzzy assessment.
Fuzzy variable Definition

Waste after packing 𝐶 − 𝛴𝑖∈𝐼𝑏 𝑖, the wasted space after the item
is packed into the bin 𝑏.

Diff. after packing 𝛴𝑖∈𝐼𝑏 |𝑖 −𝑋𝑝𝑏 ,𝑠𝑖 |, the difference between 𝑏
and the optimal bins from which 𝑝𝑏 is
extracted, after packed.

Remaining quota Remaining quota of 𝑝𝑏.

Expected waste The average waste of the extracted optimal
bins of this pattern bin.

opened pattern bins in waiting queues, multi-sets (lists) are used to
store bins of a specific pattern, which wait for a specific type of item.
Note that duplication is allowed as a pattern may contain several items
of the same type. Random access is also not required. For an incoming
item, a bin is a potential bin if it is a pattern bin waiting for the
item or a BestFit bin with sufficient space. We also virtually create
empty pattern bins or BestFit bins. All potential bins with sufficient
remaining space would be gathered for selection, based on a fitness
value, generated with a Mamdani fuzzy classification system.

Algorithm 3 Pack Item

1: function Pack(&𝑝𝑙𝑎𝑛, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠,&𝐵𝑏, 𝑙, 𝑖𝑡𝑒𝑚, ...)
2: 𝑠 ← Ceil(𝑖𝑡𝑒𝑚∕𝐶∕𝑁𝑠)
3: 𝐵 ← FindAllPotentialBins(𝐵𝑏, 𝑙, 𝑖𝑡𝑒𝑚)
4: initialize 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 with Size(𝐵)
5: for 𝑖 ← 1 to Size(𝐵) do
6: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 ← CalcFitness(𝐵𝑖, 𝑖𝑡𝑒𝑚, ...)
7: 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛 ← the bin with the highest fitness value
8: if 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛 is a BestFit bin then
9: PackIn(𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛, 𝑖𝑡𝑒𝑚)

10: if 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛 is a new bin then
11: Push(𝐵𝑏, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛)
12: else
13: PackIn(𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛, 𝑖𝑡𝑒𝑚)
14: 𝑝𝑙𝑎𝑛𝑝 ← 𝑝𝑙𝑎𝑛𝑝 − 1
15: 𝑝 ← GetPID(𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛) ⊳ pattern index
16: if 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛 is a new bin then
17: for 𝑖 ← 1 to 𝑁𝑠 do
18: for 𝑗 ← 1 to 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑝𝑖 do
19: Push(𝑙𝑖𝑗 ,&𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛) ⊳ to wait in 𝑙

20: 𝑠 ← Ceil(𝑖𝑡𝑒𝑚∕𝐶∕𝑁𝑠)
21: Erase(𝑙𝑝𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛)
22: if 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛 has been packed to full then
23: Push(𝐵𝑏, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛)

Fitness levels are the defuzzified output of a fuzzy classification
process. This process classifies each bin into two categories - ‘low’
fitness and ‘high’ fitness. It is based on four input variables ( Table 3),
of which the membership functions are manually tuned (Fig. 1). The
datasets used in tuning is different to the ones used in this paper for
evaluation. This process involves three parallel sets of rules, aiming to
classify three categories of bins: BestFit bins, existing pattern bins, and
new pattern bins.

Table 4 shows the rule sets for the fuzzy classification process.
For BestFit bins, the rules are made very similar to the original BF
algorithms. The bin with the lowest remaining capacity would gain the
highest fitness level. For existing pattern bins, the goal is to maximize
similarity to the optimal solution. We only consider ‘‘diff. after pack-
ing’’. For new pattern bins, three factors should be considered. The
remaining quota is a general pattern-wise guidance. The ‘‘diff. after
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Fig. 1. Membership functions of fuzzy variables.
Table 4
Fuzzy rule matrix (fuzzy associative matrix) for evaluating different type of bins. (a) is
the rules for BestFit bins, with 1 input. (b) is the rules for existing pattern bins, with
1 input. (c) is the rules for new pattern bins, with 3 inputs. L and H represent low
and high, respectively.

(a)

Waste After Packing
L H

H L

(b)

Diff. After Packing
L H

H L

(c)

Expected Waste
L H

Diff. After Packing Diff. After Packing
L H L H

Remaining Quota L L L L L
H H L L L

packing’’ ensures the item could form a similar bin to optimal. The
expected waste evaluates the quality of the pattern: if a pattern leads
to a higher waste than BF, it should not be used.

The fitness level would be defuzzified by the Centroid method:

𝑧∗ =
∫ 𝜇𝐶 (𝑧) ⋅ 𝑧 d𝑧

∫ 𝜇𝐶
(𝑧)d𝑧

where 𝐶 is the fuzzy set, 𝑧 is a member of the fuzzy set, 𝜇𝐶 (𝑧) is the
membership degree of 𝑧.

Due to BPP’s NP-Hard nature and time-intensive exact solution
search, it is impractical to call an exact solver frequently in exhaustive
tests. Similar to PrP, which uses FF for online fallback and FFD for
offline solutions in implementation, we adopt BestFit Decreas-
ing(BFD) solutions to approximate optimal.

4. Datasets

In this section, we would describe the datasets we used in the
problem instance generation. Overall 10 problem instances are gen-
erated. The first 4 are locally generated, based on the distribution
configuration taken from Lin et al. (2022); the others follows the
adoption of Angelopoulos et al. (2021, 2022). For the experiments, we
6

compare our novel algorithm with PaP and PrP separately, with 10
input sequences.

4.1. Instance 1 to 4

Datasets 1 to 4 were used by Lin et al. (2022) to demonstrate
the performance of PaP with continuous input item size over fixed
distribution. They are regular distributions generated with standard
library functions in C++. Since PrP is designed for discrete problem
input, we would not test them on these datasets.

Lin et al. (2022) created four problem instances for algorithm
evaluation. These problems are based on uniform distribution and
triangular distribution. The bin capacity is 104, the number of items
is set to 105. The problem instance is created by C++ standard library
functions mt19937 and piecewise_linear_distribution. The
configurations are detailed in Table 5.

4.2. Instance 5 to 10

Datasets 5 to 10 were previously adopted by Angelopoulos et al.
(2021, 2022) to assess the performance of PrP under discrete input.

4.2.1. Benchmarks
These instances are based on two types of benchmarks. The first

type (Dataset 5) is based on the Weibull distribution, and was first
studied by Castiñeiras et al. (2012) as a model of several real-world
applications of bin packing, e.g., the 2012 ROADEF/EURO Challenge
on a data center problem provided by Google and several examination
timetabling problems. The Weibull distribution is specified by two
parameters: the shape parameter 𝑠ℎ and the scale parameter 𝑠𝑐 (with
𝑠ℎ, 𝑠𝑐 > 0). The shape parameter defines the spread of item sizes:
lower values indicate greater skew towards smaller items. The scale
parameter, informally, has the effect of stretching out the probability
density. In our experiments, we chose 𝑠ℎ ∈ [1.0, 4.0]. This is because
values outside this range result in trivial sequences with items that are
generally too small (hence easy to pack) or too large (for which any
online algorithm tends to open a new bin). The scale parameter is not
critical, since we scale items to the bin capacity; we thus set 𝑠𝑐 = 1000,
in accordance with (Castiñeiras et al., 2012).

The second type of benchmarks (Dateset 6-10) is from the BP-
PLIB Bin Packing Library (Delorme et al., 2018). This is a collec-
tion of bin packing benchmarks used in various works on (offline)
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Table 5
Specification for instance 1–4.

ID Distribution type Parameters(×103)

Min Mode Max Seed

1 Uniform 3.0 N/A 6.0 1
2 Triangular 3.0 4.5 6.0 0
3 Uniform 2.0 N/A 6.0 1
4 Triangular 2.0 4.0 6.0 0
Table 6
Statistic comparison of bin usage of PaP and FPP across various configurations and test cases. 𝑁𝑢 = 250, 𝑛 = 105 and 𝐶 = 104.

Algorithm on bin usage Test case Average
(1) (2) (3) (4)

FPP (36 confs)
Average 47 513 49 502 41 431 42 821 45317
Std. Dev. 91 53 82 97 81
Surpassing BF 36 36 36 36 36(100%)

PaP (1224 confs)

Average 48 760 47 308 45 857 44 406 46 583
Std. Dev. 696 125 639 477 484
Surpassing BF 671 695 616 154 534(44%)
Equivalent to BF 469 479 469 480 474(39%)
Inferior to BF 84 50 139 590 216(18%)
algorithms for bin packing. We report experimental results for dif-
ferent benchmarks of the BPPLIB Bin Packing Library, in particular
the benchmarks ‘‘GI’’ (Gschwind & Irnich, 2016), ‘‘Schwerin’’ (Schw-
erin & Wäscher, 1997), ‘‘Randomly_Generated’’ (Delorme et al., 2016),
‘‘Schoenfield_Hard28’’ and ‘‘Wäscher’’ (Wäscher & Gau, 1996). Each
benchmark consists of multiple problem instances for offline BPP.

4.2.2. Input generation
The problem generator (Kamali, 2021) converts the offline problems

above into online input sequences consisting of 106 item with bin
capacity 100. It is because these datasets could not be directly used
without shuffling and normalizing 𝑛 and 𝐶 in advance. It scale down
each item to the closest integer in [1, 100]. Their choice is relevant
for applications such as Virtual Machine placement. We generate two
classes of input sequences.

Sequences from a fixed distribution. For Weibull benchmarks,
the input sequence consists of items generated independently and
uniformly at random, for the shape parameter set to 𝑠ℎ = 3.0. For
BPPLIB benchmarks, each item is chosen uniformly and independently
at random from the item sizes in one of the benchmark files; this file is
also chosen uniformly at random.

Sequences from an evolving distribution. Here, the distribution
of the input sequence changes every 50 000 items. Namely, the input
sequence is the concatenation of 106∕50000 subsequences. For Weibull
benchmarks, each subsequence is a Weibull distribution, whose shape
parameter is chosen uniformly at random from [1.0,4.0]. For BPPLIB
benchmarks, each subsequence is generated by choosing a file uni-
formly at random, then generating 50 000 items uniformly at random
from that specific file.

5. Experimental results

5.1. Comparison to PatternPack

In this experiment, our objective is to uncover enhancements in
both performance and insensitivity to parameters, compared to the
initial pattern-based online BPP algorithm PaP, under continuous item
sizes. The overall performance of the algorithm on numerous parameter
settings would be evaluated by comparing the average and standard
deviation on the bin usage as well as the comparison to BF and BFD.
We will also observe whether there exists a set of parameters that works
stably across different test cases.

During the experiment, we employ iterative assessments across all
7

possible settings of 𝑁𝑠 and 𝑁𝑝 for the PaP algorithm. These evaluations
are conducted on the same benchmark configurations as that detailed
in Lin et al. (2022), including 𝑛 = 105, 𝑁 = 250, and 𝐶 = 104.
The range for 𝑁𝑠 spans from 10 to 45. We have excluded tests with
𝑁𝑠 values below 10 due to the considerably reduced performance of
PaP in such scenarios. Additionally, tests with 𝑁𝑠 values surpassing
45 have been omitted to mitigate the exponential growth of computer-
generated patterns. When 𝑁𝑠 > 45, the potential generation of over
105 patterns could lead to impractical computational demands. For the
same reason, the scope for 𝑁𝑝 encompasses values between 20.5 and 217

logarithmically. Note that FPP does not suffer from such computational
difficulty as it only extracts patterns appeared in offline solutions.

The results indicate a significant advantage with FPP. Finding an
adaptable configuration is easier compared to PaP. Table 6 summarizes
the results statistically, across all tested configurations. The perfor-
mance and stability of FPP largely outperformed PaP, as indicated by
lower average and standard deviation of bin usage for each case. All
FPP configurations surpassed BF. In contrast, PaP displayed lower and
more erratic performance. For instances (1)-(3), it produced moderate
results, with most configurations better than BF. Many configurations
equaled BF, while some did worse. However, for instance (4), the
trend reversed, with a large portion of configurations exhibiting worse
performance versus BF.

Fig. 2 depicts three-dimensional response surfaces for the two al-
gorithms across various parameter combinations on the different test
cases. It further reveals the superior performance and the insensitivity
to parameters of the new algorithm. Concerning PaP, higher values
of 𝑁𝑝 and 𝑁𝑠 generally correlated with enhanced performance over
BF; however, exceptions exist, as evidenced in problem (4), where
elevated settings led to unsatisfactory results, even underperforming
BF. Therefore, PaP is noticeably sensitive to parameters. A single
parameter set may not adapt effectively to a wide array of distributions.
On the contrary, FPP consistently surpassed BF across all parameter
settings. FPP also exhibits diminished sensitivity to fluctuations in 𝑁𝑠,
as its results maintained modest variability with varying 𝑁𝑠 values. It
aligned its results more closely with the offline BFD outcomes, even
occasionally surpassing BFD, as observed in the result of problem (4)
of Fig. 2.

5.2. Comparison to ProfilePacking

In the experiment, we compare the performance of PrP and FPP
both under fixed distribution and evolving distribution, over discrete
input. Since the raw algorithm output - bin usage - has a wide range

for different test cases, for evaluation, we adopt ‘‘performance gap’’,
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Fig. 2. Bin usage comparison between PaP and FPP, over 4 Test Cases. Results of PaP are plotted as a function of 𝑁𝑝 and 𝑁𝑠, results of FPP as a function of 𝑁𝑠, results of BF
and BFD as constants. 𝑁𝑢 = 250, 𝑛 = 105 and 𝐶 = 104. The closer the bin usage to BFD, the better.
Table 7
Performance gap comparison for discrete input under fixed distributions among different algorithms. The performance gap is the bin usage
more than FFD. PrP is tested with 𝜆 = {0.5, 0.75, 1.0}. FPP is tested with 𝑁𝑠 = {50, 100} and 𝑁𝑢 = 104. A lower gap indicates better
performance.

Algorithm Absolute performance gap to FFD (×102, Bin Usage)

Weibull GI Schwerin Rand. Hard28 Wascher

FFD 0.0 0.0 0.0 0.0 0.0 0.0
FF 129.0 116.1 164.8 144.3 103.4 35.4
BF 126.1 99.2 164.8 124.9 96.4 34.3
PrP(0.5) 77.1 67.5 127.3 82.2 70.3 26.8
PrP(0.75) 50.2 44.0 120.4 51.4 54.3 22.2
PrP(1.0) 23.6 58.9 102.6 57.3 63.8 29.4
FPP(100) 33.6 36.4 115.6 45.0 41.3 25.3
FPP(50) 50.9 36.4 120.3 87.6 68.1 31.1
which is the difference of bin usage to an offline baseline algorithm.
The gap is assessed in both relative and absolute manner. The closer
the performance gap is to 0, the better. We use FFD as the baseline,
following Angelopoulos et al. (2022), with problem settings: 𝑛 = 106

and 𝐶 = 102.

5.2.1. Fixed distributions
These tests are conducted under an ideal setting, where the dis-

tribution is stable. The result could illustrate the difference in consis-
tency, i.e. the performance under accurate prediction, between both
algorithms.

Two algorithms are tested with various configurations. On the PrP
side, the setting is identical to their paper. Both original algorithm
and its Hybrid(𝜆) are tested with 𝜆 = {0.5, 0.75, 1.0}. The prediction
is generated by randomly selecting items from the input sequence,
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prior to packing. The most accurate prediction (least error) are taken
for comparison. On the FPP side, we tested 𝑁𝑠 = {50, 100}. We use
FPP(𝑁𝑠) to denote FPP with different 𝑁𝑠. We set 𝑁𝑢 = 104, to
enable regular pattern extraction from the historical data. Note that,
the prediction is solely based on the previously packed items without
prior knowledge, i.e. the first 104 items are packed by BF.

Table 7 displays the performance gap in the bin usage between the
algorithms and FFD. It could be seen that, among all benchmarks, no
matter which chosen configuration, PrP and FPP always performed
better compared to BF. Generally, the PrP and FPP is similar: both of
them obtained the highest results in half of the test cases. FPP(100)
achieved the lowest gap in half of the test cases, followed by the
prediction-reliant PrP(1.0). The variability in the gap range across
test cases is likely attributable to differences in item size distribution
for each case.
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Fig. 3. Performance gap comparison for discrete input under fixed distributions among different algorithms. The gap is the ratio of the difference to FFD in bin usage. PrP is
tested with 𝜆 = {0.5, 0.75, 1.0}. FPP is tested with 𝑁𝑠 = {50, 100} and 𝑁𝑢 = 104. The closer the gap is to 0, the better.
Fig. 4. Performance gap comparison for discrete input under evolving distributions among different algorithms. The performance gap is the ratio of the difference to FFD in bin
usage. 𝑤 = 𝑁𝑢 = 10 100. The closer the gap is to 0, the better.
Fig. 3 shows the results as ratio differences in bin usage to FFD
on each problem. Among the three PrP configurations, PrP(0.75)
reached the best performance in a majority of problem instances.
However, for Weibull and Schwerin, the most difficult ones for classical
heuristics, the original PrP(1.0) achieved the highest performance.
One possible reason is that, while gaining robustness from classical
heuristics, the performance is partly tied to FF, and sacrifices some
consistency.

As FPP integrates the classical algorithm BF, a connection to tra-
ditional heuristics is also evident, albeit to a lesser extent. Notably,
in cases like the Schwerin benchmarks, FPP fell short in compet-
ing against PrP(1.0), which heavily relies on predictions. How-
ever, it exhibited superior performance compared to PrP(0.5) and
PrP(0.75), which rely more on FF in packing. This can be at-
tributed to its more advanced bin selection process. Between 2 FPP
configurations, FPP(100) produced better or equal performance in
all instances, compared to FPP(50). It may be due to the discrete
problem setting, where item sizes are small integers. For a low 𝐶 value,
9

such as 102, FPP could achieve good performance without loosening
the offline solution.

5.2.2. Evolving distributions
We also test algorithms’ adaptability and robustness using dynamic

distributions that evolve regularly, approximating real-world condi-
tions. The non-stationary distribution enabled comparison of each
method’s capability to adjust predictions and maintain performance
when the historical data is inaccurate to represent future conditions.

We first compare the performance of both algorithms over different
instances. As 𝑤 and 𝑁𝑢 both define the size of prediction, we use them
interchangeably in this section. They are both set to 10 100, where
both algorithms have reasonable performance. Then, we compare the
performance of both algorithms as functions of 𝑁𝑢, under different test
cases. 100 different values of 𝑁𝑢 are tested, equidistant in [100, 100100].
Here we report the results of evolving Hard28 distribution, which
shows the most typical trends.

Fig. 4 shows the result of the experiment under evolving distri-
butions, as a better imitation of real-world problem input. It could
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Fig. 5. Bin usage of PrP(Adaptive), FPP(100), FF, BF and FFD under evolving distribution Hard28, as a Function of 𝑁𝑢, i.e. 𝑤.
be seen that, for the two algorithms with prediction, the performance
advantage over BF was significantly reduced, or even eliminated. For
the Wascher instance, BF even had better performance than both of
the two algorithms. As BF is a practically robust algorithm, a possible
explanation for the above changes is that the prediction accuracy
affects the robustness of the two algorithms. When the prediction is not
sufficiently accurate, the performance of both algorithms degrades, in
some cases, very severely. Additionally, FPP obtained better results,
compared to PrP, in a majority of instances (5 out of 6). As both
algorithms packs according to the optimal solution of historical data,
the pattern extraction and fuzzy bin selection mechanism have better
performance in tackling degraded prediction accuracy, compared to
trivially converting items in the offline solution into placeholders.

Fig. 5 shows the comparison of two algorithms as the 𝑁𝑢 increases.
We show the result of instance Hard28 as it includes a majority of
common characteristics of all tests. As could be seen, when 𝑁𝑢 is small,
the performance of both algorithms was lower than classical heuristics.
This is because the algorithm does not have sufficient data to construct
a correct distribution in the profile or sample. The performance of both
prediction-based algorithms reached its highest when 𝑁𝑢 is approxi-
mately 8000. Since the input distribution was updated every 50 000
items, this could be seen as a balance point between the correctness and
promptness of the prediction. As 𝑁𝑢 gets larger than the balance point,
both algorithms suffer performance degradation. There could be two
reasons to explain. First, the prediction is updated slower than needed
and thus failed to gain sufficient advantage to outperform classical
advantage timely. Second, the samples from the previous distribution
poison the correctness of the prediction. Notably, although FPP has
more fluctuation with large 𝑁𝑢, it showed an advantage in the vast
majority of values of 𝑁𝑢. In most other instances, this trend could also
be found. It indicates this algorithm’s potential to better handle online
BPP uncertainty with varying input distribution.

6. Conclusions and discussions

In real-world online bin packing problems, information on item
sizes beforehand can lead to significant performance improvements.
Motivated by this, we extract valuable information from historical data
and incorporate it into our packing algorithms. In this paper, we intro-
duce a novel approach that leverages patterns to approximate optimal
solutions and utilizes fuzzy logic to assess the fitness of potential bins.

We have conducted a comprehensive comparison of our proposed
algorithm with PaP, PrP and variants of PrP, as well as classical
heuristics, using various benchmark datasets featuring both fixed and
10
evolving distributions. Through extensive experimentation, the results
demonstrate the superior performance and robustness of our algorithm
over PaP in all cases, as well as PrP in the majority of cases. Notably,
our algorithm exhibits exceptional capabilities in handling uncertainty
and variability inherent in online bin packing problems.

In scenarios with fixed distributions, our algorithm consistently
outperforms PaP and the classical heuristics, showcasing its ability to
find better solutions efficiently. Moreover, the utilization of historical
data and the incorporation of fuzzy logic enables our algorithm to adapt
dynamically to changing distributions in real-time scenarios, where
items may arrive unpredictably, or their sizes may evolve over time,
which is state-of-the-art. These results affirm the promising potential
of our algorithm in solving online bin packing problems, making it a
highly practical and effective solution for a wide range of real-world
applications.

Future work could be done in several directions. Firstly, a compre-
hensive analysis of the algorithm’s competitivity could be explored to
establish a more solid theoretical ground. Secondly, the fuzzy classifi-
cation system can be refined through varied membership functions and
inference rules, automated methods for component optimization, and
simplifying rules into equations. Further investigation could be pursued
to broaden fuzzification, encompassing a wider array of uncertain
information. Thirdly, the algorithm could be extended to handle more
complex online problems.
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Appendix. Nomenclature

List of Symbols

Parameters
𝐶 Bin capacity
𝑁 The number of different sizes of items
𝑈 The maximal number of possible bins available to

use
𝑠ℎ Shape parameter of Weibull distribution
𝑛 The number of items
𝜆 The portion of items handled by PrP
𝑘 The number of partitions in Harmonic
𝑤 The sliding windows width of adaptive variant of

PrP
𝑁𝑠 The number of sections in PaP and FPP
𝑁𝑝 The number of patterns in PaP
𝑁𝑢 The sample size in PaP and FPP
𝑠𝑐 Scale parameter of Weibull distribution
Variables
𝑡 The number of items in a pattern
𝜖 Any fixed constant less than 0.2
𝜂 The prediction error
𝑞𝑖 Quantity of size 𝑖
𝑠𝑖 Size of size 𝑖
𝑥𝑖𝑗 The number of times item type 𝑖 is packed in bin 𝑗
𝑦𝑗 Whether bin 𝑗 is used in a solution
𝑗 A section index
𝑆𝑗 The 𝑗th section, ( 𝑗−1𝑁𝑠

, 𝑗
𝑁𝑠

]
𝑛𝑝 The number of patterns in FPP
𝑏 The current bin under fuzzy assessment
𝑖 ∈ 𝐼𝑏 Items in 𝑏 after the current item is packed
𝑝𝑏 The pattern followed by 𝑏
𝑠𝑖 The section that item 𝑖 belongs

𝑋𝑝𝑏 ,𝑠𝑖 Average size of items of 𝑝𝑏 and 𝑠𝑖 of optimal
solution

𝐶 The fuzzy set
𝑧 A member of 𝐶
𝐶(𝑧) The membership degree of 𝑧 in 𝐶
𝑧∗ The defuzzified value of 𝑧
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