
Computers and Mathematics with Applications 161 (2024) 190–201

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Splitting schemes for coupled differential equations: Block Schur-based

approaches & Partial Jacobi approximation

Roberto Nuca a, Erlend Storvik b,c, Florin A. Radu b, Matteo Icardi d,∗

a CEMSE, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
b Center for Modeling of Coupled Subsurface Dynamics, Department of Mathematics, University of Bergen, Allégaten 44, 5007 Bergen, Norway
c Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Svanehaugvegen 1, 6812 Førde,
Norway
d School of Mathematical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK

A R T I C L E I N F O A B S T R A C T

Dataset link: https://

codeocean .com /capsule /6571121 /tree

Keywords:

Partitioned multi-physics

Splitting schemes

Approximate Schur complement

Partial Jacobi

Block-iterative schemes

Sequential coupling

Coupled multi-physics problems are encountered in countless applications and pose significant numerical
challenges. In a broad sense, one can categorise the numerical solution strategies for coupled problems into
two classes: monolithic approaches and sequential (also known as split, decoupled, partitioned or segregated)
approaches. The monolithic approaches treat the entire problem as one, whereas the sequential approaches are
iterative decoupling techniques where the different sub-problems are treated separately. Although the monolithic
approaches often offer the most robust solution strategies, they tend to require ad-hoc preconditioners and
numerical implementations. Sequential methods, on the other hand, offer the possibility to add and remove
equations from the model flexibly and rely on existing black-box solvers for each specific equation. Furthermore,
when problems are non-linear, inner iterations need to be performed even in monolithic solvers, making the
sequential approaches an even more viable alternative. The cost of running inner iterations to recover the multi-

physics coupling could, however, easily become prohibitive. Moreover, the sequential approaches might not
converge at all. In this work, we present a general formulation of splitting schemes for continuous operators
with arbitrary implicit/explicit splitting, like in standard iterative methods for linear systems. By introducing a
generic relaxation operator, we find the conditions for the convergence of the iterative schemes. We show how
the relaxation operator can be thought of as a preconditioner and constructed based on an approximate Schur
complement. We propose a Schur-based Partial Jacobi relaxation operator to stabilise the coupling and show its
effectiveness. Although we mainly focus on scalar-scalar linear problems, most results are easily extended to non-

linear and higher-dimensional problems. The schemes presented are not explicitly dependent on any particular
discretisation methodologies. Numerical tests (1D and 2D) for two PDE systems, namely the Dual-Porosity model
and a Quad-Laplacian operator, are carried out to investigate the practical implications of the theoretical results.
1. Introduction

Multi-physics phenomena can involve large systems of linear or
non-linear partial differential equations. Important examples of cou-

pled multiphysics problems include bulk coupling (where equations are
solved in the same domain), such as Navier-Stokes equations, porome-

chanics, multi-species reactive transport, and interface couplings such
as fluid-structure interaction and conjugate heat transfer, to name a
few. Many theoretical and numerical studies have been devoted to

The code (and data) in this article has been certified as Reproducible by Code Ocean: https://codeocean .com/. More information on the Reproducibility Badge
Initiative is available at https://www .elsevier .com /physical -sciences -and -engineering /computer -science /journals.

* Corresponding author.

E-mail address: matteo.icardi@nottingham.ac.uk (M. Icardi).

these problems, resulting in optimised monolithic solution approaches
that often need detailed analysis of the system, ad-hoc coupled stable
discretisation techniques and pre-conditioners for the resulting (large)
linear systems. This is not always achievable in computational engi-

neering, where new coupled models often arise from the need to couple
existing sub-models as black-boxes. In this direction, there have recently
been efforts in developing generic frameworks capable of combining ex-

isting solvers, see [1]. These provide a layer of abstraction where solvers
communicate with proper data mapping.
https://doi.org/10.1016/j.camwa.2024.02.042

0898-1221/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access
article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.camwa.2024.02.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2024.02.042&domain=pdf
https://codeocean.com/capsule/6571121/tree
https://codeocean.com/capsule/6571121/tree
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:matteo.icardi@nottingham.ac.uk
https://doi.org/10.1016/j.camwa.2024.02.042
http://creativecommons.org/licenses/by/4.0/

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
The strategies adopted to solve linear systems derived by the dis-

cretisation of coupled problems can be divided into monolithic and seg-

regated/partitioned approaches. In monolithic approaches, the whole
system is discretised in a single matrix, and all unknowns are solved si-
multaneously. In contrast, sequential iterative approaches consider each
equation/sub-problem sequentially in a sequence with an internal loop
to recover the coupled structure of the full problem. We denote here by
“splitting scheme”, the iterative and partitioned strategy that defines
this internal loop. Internal iterations in splitting schemes can be con-

veniently combined with the non-linear iterations (Picard or Newton)
required to solve non-linear problems.

Besides pure numerical aspects, there are software engineering mo-

tivations for why segregated/partitioned approaches could be prefer-

able to monolithic approaches. One motivation is related to memory
management because only one matrix at a time, derived by one sin-

gle equation, needs to be stored. A second and probably most relevant
motivation is the possibility of using many efficient and robust solvers
already available in the scientific computing community to solve each
equation appearing in the multiphysics model.

In this work, we focus on coupled scalar-scalar linear model prob-

lems, although most of the results are valid or easily extendable to
other linear problems. The objective of this work is to develop a new
family of splitting schemes based on approximate Schur complements
and provide a theoretical framework to analyse them. The new frame-

work generalises standard stabilised decoupling methods such as the
fixed-stress splitting scheme [2–5] and the undrained splitting scheme
[6] for the Biot equations of poroelasticity. These are based on adding
a diagonal relaxation operator to stabilise the sequential method. Re-

cent works have discussed the optimisation of this relaxation term for
the fixed-stress splitting scheme in [7]. Here, one of the overarching
goals is to provide some insight into how more general operators can
be used to stabilise coupled operators. While only linear problems are
studied here, the generalisation to non-linear partial differential equa-

tions is straightforward as the splitting approaches proposed here can be
easily combined with linearisation methods, such as those applied for
Richards equation coupled with transport in [8]. Moreover, as with all
fixed-point iterations, the methods proposed can be further improved
by acceleration methods, such as the Anderson acceleration, which is
known to accelerate linearly convergent schemes [9]. This has already
been successfully applied in combination with decoupling methods for
the Biot equations [10] and phase-field methods for brittle fracture
propagation [11].

The paper is organised as follows. In section 2, we introduce two
model problems, the dual-porosity problem and the Quad-Laplacian.
In the next section, we present a unified nomenclature for decoupling
methods, conveniently seen as block-based versions of standard itera-

tive schemes for linear systems. We split the monolithic problem into
an implicit and an explicit operator and then introduce a relaxation op-

erator to improve and stabilise the iterations. In section 4, we extend the
idea behind the Uzawa algorithm and propose a new general decoupling
method for solving iteratively coupled systems of equations based on an
approximation of the Schur complement. In section 5, convergence con-

ditions for generic splitting schemes and convergence proofs for several
special cases, namely the block-symmetric and block-skew-symmetric
cases, are provided for the new method. Eventually, in section 6, nu-

merical results with the Schur-based Partial Jacobi approximation are
compared to standard iterative methods.

2. Model problems

In this section, we present two model problems as examples of a sys-

tem of partial differential equations falling in the generic representation
used in section 3, showing the conditions for well-posedness. In the last
chapter, we will use these models as examples in numerical tests.
191
2.1. Dual-porosity Darcy’s flow

The first model problem we introduce is the so-called “dual-

porosity” Darcy’s flow model [12], which is an effective/mixture model
to describe the flow through a fractured porous medium. Here, 𝑢 and 𝑣
are the matrix and fracture pressures, respectively. The equations read
as follows:

−∇ ⋅
(
𝑚𝑢∇𝑢

)
= 𝛽(𝑣− 𝑢) + 𝑓1 , (1)

−∇ ⋅
(
𝑚𝑣∇𝑣

)
= 𝛽(𝑢− 𝑣) + 𝑓2 ,

where 𝑚(⋅) is the mobility (permeability divided by the fluid viscosity), 𝛽
is the transfer coefficient and 𝑓1,2 are source terms. For the sake of sim-

plicity, we consider homogeneous Dirichlet boundary conditions, but
the methods developed in this paper can be applied to more general
boundary conditions as well.

The continuous variational formulation of problem eq. (1) reads:

Find (𝑢, 𝑣) ∈𝐻1
0 (Ω) ×𝐻1

0 (Ω) such that

𝑎(𝑢,𝜑) + 𝑏(𝑢,𝜑) − 𝑏(𝑣,𝜑) = ⟨𝑓1, 𝜑⟩ ∀𝜑 ∈𝐻1
0 (Ω) , (2)

𝑑(𝑣,𝜗) + 𝑏(𝑣,𝜗) − 𝑏(𝑢, 𝜗) = ⟨𝑓2, 𝜗⟩ ∀𝜗 ∈𝐻1
0 (Ω) ,

where

𝑎(𝑢,𝜑) ∶= ∫
Ω

𝑚𝑢∇𝑢 ⋅∇𝜑𝑑𝑥 𝑑(𝑣,𝜗) ∶= ∫
Ω

𝑚𝑣∇𝑣 ⋅∇𝜗𝑑𝑥

𝑏(𝑢,𝜑) ∶= ∫
Ω

𝛽𝑢𝜑𝑑𝑥.

We can sum eq. (2) and using the bi-linearity property of the form 𝑏(⋅, ⋅)
to get

𝑎(𝑢,𝜑) + 𝑏(𝑢− 𝑣,𝜑− 𝜗) + 𝑑(𝑣,𝜗) = ⟨𝑓1, 𝜑⟩+ ⟨𝑓2, 𝜗⟩
∀(𝜑,𝜗) ∈𝐻1

0 (Ω) ×𝐻1
0 (Ω).

The form

 ∶𝑊 ×𝑊 →ℝ 𝑊 ∶=𝐻1
0 (Ω) ×𝐻1

0 (Ω)

((𝑢, 𝑣), (𝜑,𝜗))↦ 𝑎(𝑢,𝜑) + 𝑑(𝑣,𝜗) + 𝑏(𝑢− 𝑣,𝜑− 𝜗)

is continuous and coercive under the following conditions:

𝑚𝑢,𝑚𝑣 > 0 , 𝛽 ≥ 0 a.e. and 𝑚𝑢,𝑚𝑣 ∈𝐿∞(Ω).

Hence, the problem eq. (1) is well-posed thanks to the Lax-Milgram
Lemma. We will use this problem as a prototype of a block-symmetric
coupled operator.

2.2. Quad-Laplacian

The second problem we study is composed of four Laplace operators,
and we name it as Quad-Laplacian. The main motivation for introducing
this synthetic model is to study scalar problems with non-trivial off-

diagonal “coupling” operators. The strong form of Quad-Laplacian reads

−∇ ⋅
(
𝑚𝑢𝑢∇𝑢

)
−∇ ⋅

(
𝑚𝑢𝑣∇𝑣

)
= 𝑓1 , (3)

−∇ ⋅
(
𝑚𝑣𝑢∇𝑢

)
−∇ ⋅

(
𝑚𝑣𝑣∇𝑣

)
= 𝑓2 ,

where 𝑚(⋅,⋅) are diffusivity coefficients. Its weak form we get

𝑎(𝑢,𝜑) + 𝑏(𝑣,𝜑) = ⟨𝑓1, 𝜑⟩ ∀𝜑 ∈𝐻1
0 (Ω) , (4)

𝑐(𝑢, 𝜗) + 𝑑(𝑣,𝜗) = ⟨𝑓2, 𝜗⟩ ∀𝜗 ∈𝐻1
0 (Ω) ,

𝑎(𝑢,𝜑) = ∫ 𝑚𝑢𝑢∇𝑢 ⋅∇𝜑𝑑𝑥, 𝑏(𝑣,𝜑) = ∫ 𝑚𝑢𝑣∇𝑣 ⋅∇𝜑𝑑𝑥,
Ω Ω

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
𝑐(𝑢, 𝜗) = ∫
Ω

𝑚𝑣𝑢∇𝑢 ⋅∇𝜗𝑑𝑥, 𝑑(𝑣,𝜗) = ∫
Ω

𝑚𝑣𝑣∇𝑣 ⋅∇𝜗𝑑𝑥.

Assuming 𝑚𝑢𝑣 = −𝑚𝑣𝑢, i.e., 𝑏(𝑣, 𝑢) = −𝑐(𝑢, 𝑣),

 ∶𝑊 ×𝑊 →ℝ 𝑊 ∶=𝐻1
0 (Ω) ×𝐻1

0 (Ω)

((𝑢, 𝑣), (𝜑,𝜗))↦ 𝑎(𝑢,𝜑) + 𝑑(𝑣,𝜗) + 𝑏(𝑣,𝜑) + 𝑐(𝑢, 𝜗)

is continuous and coercive under the following conditions:

𝑚𝑢𝑢,𝑚𝑣𝑣 > 0 a.e. and 𝑚𝑢𝑢,𝑚𝑣𝑣,𝑚𝑢𝑣 ∈𝐿∞(Ω).

Hence, the problem eq. (3) is well-posed due to the Lax-Milgram
Lemma. In the following, we will assume this condition to be valid,
making the system block-skew-symmetric. This structure is typical in
many coupled problems arising from mass and momentum conserva-

tion and semi-discrete poroelasticity. For the quad-Laplacian case, each
operator is also symmetric (i.e., self-adjoint), making the whole system
skew-symmetric.

2.3. Well-posedness conditions and connection with saddle-point problems

The models presented above are special cases of the following sys-

tem of equations:

𝑤 =
[
𝐴 𝐵

𝐶 𝐷

][
𝑢

𝑣

]
=
[
𝑓1
𝑓2

]
= 𝑓 (5)

where 𝐴, 𝐵, 𝐶 and 𝐷 represent linear differential operators in the
strong form. This system is intentionally left without formal definitions
of operators and involved spaces, as such details are discussed in the
next section. In this work, we mostly adopt the terminology and con-

cepts from linear algebra theory. Since not all steps are equally applica-

ble to infinite dimensional (e.g. differential) operators, we occasionally
interpret and indicate specific assumptions and differences for the case
of differential operators separately. System eq. (5) for Hilbert spaces
is very general and a simple approach to studying the well-posedness
conditions, as done in the previous section for the Dual-Porosity and
Quad-Laplacian system, is deriving a bilinear form acting between the
Cartesian product of proper spaces and applying the hypotheses of Lax-

Milgram lemma. However, one of the most relevant cases of eq. (5) is
the case of 𝐷 = 0 and 𝐵 = 𝐶⊤ corresponding to the well-known sad-

dle point problem (SPP) and its generalisations. For SPP, a robust and
comprehensive theory has been developed [13,14]. A generalisation of
SPP where 𝐷 ≠ 0 is sometimes referred to as a perturbed saddle point
problem like those arising for nearly incompressible materials, recently
analysed by [15]. The SPP and perturbed SPP are examples where
applying the Lax-Milgram lemma provides an unsatisfactory stability
estimate because of the nature of the perturbative term [14, Sec. 4.3,
p. 238]. Another generalisation of SPP is where 𝐷 = 0 but 𝐵 and 𝐶 are
generic. This case has been studied in [16] as a direct generalisation
of Brezzi-Babuska Theory. Even non-variational methods can be used
to study the well-posedness of eq. (5) provided proper spaces for the
monolithic operator  [17, Ch. 5]. In the context of PDEs, the continu-

ity of the operators is a natural hypothesis, while coercivity and strong
monotonicity for variational and non-variational methods, respectively,
is the key hypothesis to ensure the injectivity of the operator.

In the continuous setting, eq. (5) makes sense once proper spaces
have been defined. Let 𝑈 and 𝑉 be Hilbert spaces with 𝑢 ∈𝑈 and 𝑣 ∈ 𝑉 .
We have that

𝐴 ∶𝑈 ⟶𝑈 ′, 𝐵 ∶ 𝑉 ⟶𝑈 ′, 𝐶 ∶𝑈 ⟶ 𝑉 ′, 𝐷 ∶ 𝑉 ⟶ 𝑉 ′,

hence 𝑓1 ∈ 𝑈 ′ and 𝑓2 ∈ 𝑉 ′. We can use the duality pairing in both
equations and sum:

⟨𝐴𝑢,𝜑⟩∗ + ⟨𝐵𝑣,𝜑⟩∗ + ⟨𝐶𝑢,𝜇⟩⋆ + ⟨𝐷𝑣,𝜇⟩⋆ = ⟨𝑓1, 𝜑⟩∗ + ⟨𝑓2, 𝜇⟩⋆
∀(𝜑,𝜇) ∈𝑈 × 𝑉 ,
192
i.e.,

𝑎(𝑢,𝜑) + 𝑏(𝑣,𝜑) + 𝑐(𝑢,𝜇) + 𝑑(𝑣,𝜇) = ⟨𝑓1, 𝜑⟩⋆ + ⟨𝑓2, 𝜇⟩⋆
∀(𝜑,𝜇) ∈𝑈 × 𝑉 .

This expression defines a bilinear form

 ∶𝑊 ×𝑊 ⟶ℝ

(𝑤,𝜂) = ⟨𝑓, 𝜂⟩ ∀𝜂 ∈𝑈 × 𝑉 ,

where 𝑊 ∶= 𝑈 × 𝑉 and 𝑓 is the functional defined by the sum of 𝑓1
and 𝑓2. In the following, we will always assume 𝑎(⋅, ⋅) and 𝑑(⋅, ⋅) to be
continuous and coercive with coercivity constants 𝛼𝑎 and 𝛼𝑑 , respec-

tively (i.e., the discrete operator 𝐴 and 𝐷 to be positive definite), and
the monolithic operator  to be trivially well-posed by assuming its
continuity and coercivity. This can be a consequence of the hypotheses
introduced for the dual-porosity or the quad-Laplacian model problems,
or, more in general, by assuming that there exists a coercivity constant
𝛼 > 0 such that

0 < 𝛼 ≤ min(𝛼𝑎, 𝛼𝑑) −
‖𝑏‖+ ‖𝑐‖

2
, (6)

where 𝛼𝑎 and 𝛼𝑑 are the coercivity constants of the bilinear forms 𝑎(⋅, ⋅)
and 𝑑(⋅, ⋅) respectively. In fact we have that, ∀𝑢, 𝑣 ∈𝑈 × 𝑉 ,

|𝑏(𝑣, 𝑢) + 𝑐(𝑢, 𝑣)| ≤ (‖𝑏‖+ ‖𝑐‖)‖𝑣‖‖𝑢‖ ≤ ‖𝑏‖+ ‖𝑐‖
2

(‖𝑣‖2 + ‖𝑢‖2) .
Throughout the paper, although something else is specified, we use
Euclidean norms for vectors and the induced matrix norm. In the con-

tinuous case, on any generic normed spaces (𝑉 , || ⋅ ||𝑉), (𝑊 , || ⋅ ||𝑊), we

are using the operator norm ||𝐴|| = 𝑠𝑢𝑝𝑢≠0
||𝐴𝑢||𝑊||𝑢||𝑉 . In the following

analysis and the convergence theorems below, one can think of discrete
norms. For any particular model problem, one would have different
(then specified) continuous norms. The choice of 𝛼 gives

|𝑏(𝑣, 𝑢) + 𝑐(𝑢, 𝑣)| ≤ (
𝛼𝑎 − 𝛼

)‖𝑢‖2 + (
𝛼𝑑 − 𝛼

)‖𝑣‖2 ,
and, therefore,

𝑏(𝑣, 𝑢) + 𝑐(𝑢, 𝑣) ≥ (
𝛼 − 𝛼𝑎

)‖𝑢‖2 + (
𝛼 − 𝛼𝑑

)‖𝑣‖2 ,
where this last inequality implies the coercivity of .

3. Block-iterative methods for coupled PDEs

Classic static iterative methods for linear systems can be adapted to
block matrices. In our case, the block pattern of the coupled operator
 in eq. (5) is determined by the number of equations and unknowns,
while the dimensions and properties of each block are determined by
the mesh size and discretisation scheme adopted for that particular
equation. Convergence analysis for the particular case of positive defi-

nite matrices is treated in [18, p. 47]. The same author provides rates of
convergence in the case of the Poisson equation. In the following para-

graphs, we recall the classical (static) iterative methods in their block
extensions. The superscript index indicates the iterative step. In general,
any iterative splitting/decoupling scheme can be represented by a de-

composition of the operator  into an implicit part 𝑖 and an explicit
part 𝑒:

𝑖𝑤+𝑒𝑤 =𝑤 = 𝑓. (7)

This can be rewritten as a stationary iterative scheme as

𝑖𝑤
𝑘+1 +𝑒𝑤

𝑘 = 𝑓. (8)

While this splitting is often introduced also in monolithic schemes to,
for example, derive operator-based preconditioners [19], here, for the
resulting system to be “decoupled”, we require 𝑖 is a block-triangular
operator. For clarity, we now introduce the block version of the most

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
straightforward stationary iterative schemes: Jacobi, Gauss-Seidel, and
SOR.

Block-Jacobi Block-Jacobi is the simplest iterative method, and its
block-version can be formulated as follows:

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘, (9)

𝐷𝑣𝑘+1 = 𝑓2 −𝐶𝑢𝑘, (10)

with

𝑖 =
[
𝐴 0
0 𝐷

]
, 𝑒 =

[
0 𝐵

𝐶 0

]
.

Block-Gauss-Seidel Analogously to the classical Gauss-Seidel method,
the block-Gauss-Seidel method (starting from the first equation) reads

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘, (11)

𝐷𝑣𝑘+1 = 𝑓2 −𝐶𝑢𝑘+1, (12)

𝑖 =
[
𝐴 0
𝐶 𝐷

]
, 𝑒 =

[
0 𝐵

0 0

]
.

This standard approach is implemented in commercial and applied
research codes for solving multi-physics problems.

Block-SOR The block version of the SOR method (starting from the
first equation) can be written as follows:

𝐴𝑢𝑘+1 = (1 −𝜔)𝐴𝑢𝑘 +𝜔
[
𝑓1 −𝐵𝑣𝑘

]
, (13)

𝐷𝑣𝑘+1 = (1 −𝜔)𝐷𝑣𝑘 +𝜔
[
𝑓2 −𝐶𝑢𝑘+1

]
, (14)

or, equivalently,

𝐴𝑢𝑘+1 +𝐵𝑣𝑘 + (1 −𝜔)
𝜔

𝐴(𝑢𝑘+1 − 𝑢𝑘) = 𝑓1, (15)

𝐷𝑣𝑘+1 +𝐶𝑢𝑘+1 + (1 −𝜔)
𝜔

𝐷(𝑣𝑘+1 − 𝑣𝑘) = 𝑓2, (16)

𝑖 =
⎡⎢⎢⎣
(

1
𝜔

)
𝐴 0

𝐶

(
1
𝜔

)
𝐷

⎤⎥⎥⎦ , 𝑒 =
⎡⎢⎢⎣
(

𝜔−1
𝜔

)
𝐴 𝐵

0
(

𝜔−1
𝜔

)
𝐷

⎤⎥⎥⎦ .
3.1. Convergence properties

Theorem 1. The convergence of the iteration eq. (8) is guaranteed if

𝛼 > 2‖𝑒‖ , (17)

or

𝛼𝑖
> ‖𝑒‖ , (18)

where 𝛼 is the coercivity constant of the monolithic operator, 𝛼𝑖
is the

coercivity constant of the implicit part, and ‖𝑒‖ is the continuity constant
of the explicit part of the operator.

Proof. From eq. (8) we can derive the following error equations for
𝑒𝑘 ∶=𝑤 −𝑤𝑘:

𝑒𝑘+1 =𝑒(𝑒𝑘+1 − 𝑒𝑘) ; 𝑖𝑒
𝑘+1 = −𝑒𝑒

𝑘 (19)

If we multiply by 𝑒𝑘+1 both equations, use the coercivity and the
Cauchy-Schwarz inequality we obtain the following two bounds

𝛼‖𝑒𝑘+1‖ ≤ ‖𝑒‖‖𝑒𝑘+1 − 𝑒𝑘‖ ; 𝛼𝑖
‖𝑒𝑘+1‖ ≤ ‖𝑒‖‖𝑒𝑘‖ ,

i.e.,(
𝛼‖ ‖ − 1

)‖𝑒𝑘+1‖ ≤ ‖𝑒𝑘‖ ; 𝛼𝑖‖ ‖‖𝑒𝑘+1‖ ≤ ‖𝑒𝑘‖ ;

𝑒 𝑒

193
The fixed-point iterations converge if the LHS coefficient is larger than
one, giving the conditions eqs. (17) and (18). □

3.2. Relaxation schemes for iterative splitting

One might find that the block Gauss-Seidel method eqs. (11)

and (12) might not converge (for example, it might not satisfy eq. (17)).
A remedy is to stabilise the equations, similar to what is done in
the fixed-stress [2,4,3,7] or undrained [6] splitting methods for poro-

elasticity equations. We introduced here a generalised stabilised/re-

laxed iteration as follows: Given 𝑣𝑘, 𝑢𝑘 find 𝑣𝑘+1, 𝑢𝑘+1 such that

𝐴𝑢𝑘+1 +𝐵𝑣𝑘 +𝐿𝑢

(
𝑢𝑘+1 − 𝑢𝑘

)
= 𝑓1 (20)

𝐶𝑢𝑘+1 +𝐷𝑣𝑘+1 +𝐿𝑣

(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2 , (21)

or, equivalently,(𝑖 +)𝑤𝑘+1 =
(−𝑒

)
𝑤𝑘 + 𝑓 , (22)

where

 =
[
𝐿𝑢 0
0 𝐿𝑣

]
is the relaxation operator and, contrarily to what is typically done in lit-
erature, is not necessarily a diagonal operator. It is interesting to notice
that there is a strong link between this relaxation and the Block-SOR
method where, in the SOR method, the relaxation operators are 1

𝜔
𝐴

and/or 1
𝜔
𝐷. Although any relaxation operator can be included in the

definition of 𝑖 and 𝑒, we treat these terms separately to study their
influence better.

One of the difficulties with stabilisation is choosing the appropri-

ate operator , as its choice will significantly influence the scheme’s
performance. In section 4, the relation between the stabilised Gauss-

Seidel method and an approximate Schur complement approach will
be discussed, providing guidelines to choose the stabilisation operator
. Moreover, in section 5 convergence proofs for several cases of the
stabilised block Gauss-Seidel method eqs. (20) and (21) are provided,
which gives a theoretical justification for the method.

𝓁-scheme A simple but effective choice of relaxation for the operators
𝐿𝑢 is to be a multiple of the identity and 𝐿𝑣 = 0:

 =
[
𝓁𝐼 0
0 0

]
,

with 𝓁 > 0. This scheme has been used extensively to solve, for exam-

ple, poromechanics equations, see, e.g. [4]. When applied to porome-

chanics, it is often called fixed-stress splitting, and it is the standard
over-relaxation approach implemented in many commercial codes to
increase the diagonal dominance of the first equation and stabilise the
iteration.

4. Approximate Schur-based methods

The Schur complement can be interpreted as the Gaussian elimina-

tion formula for block matrices. One of the Schur complement’s most
important applications is for the Saddle Point Problem arising, for ex-

ample, when solving the incompressible Navier-Stokes equations. The
well-known Chorin-Temam algorithm and the analogous Yosida method
rely on the block-LU decomposition [20], which leads to a Schur com-

plement. These two are special cases of the Uzawa algorithm introduced
to solve the SPP [21]. A similar method has been applied for the case
of coupled energy equations [22].

To generalise these approaches for generic block systems, we in-

troduce a general iterative algorithm to stabilise the convergence of
iterative coupled schemes with approximate Schur complements by
mimicking the incomplete block-LU factorisation. Furthermore, in sec-

tion 4.2, we propose simple diagonal approximations to avoid explicitly

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
computing matrix inverses, although more advanced techniques could
also be used [23]. The same strategy has been widely applied to derive
optimal preconditioners [24].

It is important to notice that if the exact Schur complement were
used, the iterative scheme would converge to the exact solution in one
iteration. Therefore, we expect that, by using an approximation, we
can stabilise the iterations (ensuring their convergence) and reduce the
number of iterations needed for convergence. In this sense, we could
also consider these methods as accelerators.

4.1. Approximate Schur complement factorisation

Let us consider the decomposition

𝐴𝑢 =𝔸𝑢+ (𝐴−𝔸)𝑢 (23)

where 𝔸 is an approximation of 𝐴 with the property of being compu-

tationally easy to invert, for example, the diagonal of 𝐴. We introduce
the block-Schur matrix factorisation

𝑆 =
[

𝐼 0
−𝐶𝔸−1 𝐼

]
which, left-multiplied to the LHS and RHS of the original system eq. (5),
gives[

𝐴 𝐵

−𝐶𝔸−1(𝐴−𝔸) 𝐷 −𝐶𝔸−1𝐵

][
𝑢

𝑣

]
=
[

𝑓1
𝑓2 −𝐶𝔸−1𝑓1

]
(24)

which is an approximate Schur-based decomposition. If we apply the
same technique to the first equation, by using the splitting 𝐷𝑣 = 𝔻𝑣 +
(𝐷 −𝔻)𝑣 and[
𝐼 −𝐵𝔻−1

0 𝐼

]
instead of 𝑆 , combining the results we obtain[

𝐴−𝐵𝔻−1𝐶 −𝐵𝔻−1(𝐷 −𝔻)
−𝐶𝔸−1(𝐴−𝔸) 𝐷 −𝐶𝔸−1𝐵

][
𝑢

𝑣

]
=
[
𝑓1 −𝐵𝔻−1𝑓2
𝑓2 −𝐶𝔸−1𝑓1

]
(25)

which we denote as an alternate approximate Schur-based decomposi-

tion.

These approximate Schur complements do not provide a decoupled
system (i.e., a block-triangular matrix); therefore, the next step is to
apply a block-iterative method. If we apply the Gauss-Seidel method,
the identity eq. (24) results in the following iterative scheme:

(𝐷 −𝐶𝔸−1𝐵)𝑣𝑘+1 = 𝑓2 −𝐶𝔸−1(𝑓1 − (𝐴−𝔸)𝑢𝑘), (26)

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘+1. (27)

Using the fact 𝐴𝑢𝑘 +𝐵𝑣𝑘 = 𝑓1 from the previous iteration, eq. (27) and
eq. (26) can be rewritten in the following form:

𝐶𝑢𝑘 +𝐷𝑣𝑘+1 −𝐶𝔸−1𝐵
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2, (28)

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1, (29)

where we can identify the relaxation operator  as

 =
[
0 0
0 −𝐶𝔸−1𝐵

]
.

In this formulation, it is interesting to notice the role of the approx-

imate Schur complement 𝐶𝔸−1𝐵 as a stabilisation/acceleration term.
Similarly, from eq. (25), one can obtain the iterative scheme for the
alternate approximate Schur-based version, i.e.

(𝐴−𝐵𝔻−1𝐶)𝑢𝑘+1 = 𝑓1 −𝐵𝔻−1(𝑓2 − (𝐷 −𝔻)𝑣𝑘), (30)

(𝐷 −𝐶𝔸−1𝐵)𝑣𝑘+1 = 𝑓2 −𝐶𝔸−1(𝑓1 − (𝐴−𝔸)𝑢𝑘+1). (31)
194
As it will be clarified in the next section, it is desirable to reformulate
the problem again as a relaxed iteration, i.e.,

𝐵𝑣𝑘 +𝐴𝑢𝑘+1 −𝐵𝔻−1𝐶
(
𝑢𝑘+1 − 𝑢𝑘

)
= 𝑓1, (32)

𝐶𝑢𝑘+1 +𝐷𝑣𝑘+1 −𝐶𝔸−1𝐵
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2, (33)

with a relaxation operator

 =
[
−𝐵𝔻−1𝐶 0

0 −𝐶𝔸−1𝐵

]
.

This alternate algorithm eq. (32), however, written in the relaxation
form, is no longer exactly equivalent to the form directly obtained from
the Schur factorisation eq. (30). Here, we can no longer guarantee that
the system is consistent in the coupled sense for each iteration 𝑘, i.e.,
𝐴𝑢𝑘 + 𝐵𝑣𝑘 ≠ 𝑓1 and 𝐶𝑢𝑘 + 𝐷𝑣𝑘 ≠ 𝑓2. In the following, we will focus
on the second (relaxation-like) form, although our numerical results
showed that the two have negligible differences in the convergence
properties.

It is essential to notice that the relaxation operator  constructed as
above is not always coercive. As discussed in section 5, this means that
 can act as a stabilisation (e.g., in the Quad-Laplacian problem) or as
an acceleration (e.g., in the dual-porosity problem).

4.2. Diagonal approximations of Schur operators

In section 4, we have introduced a general method to solve cou-

pled problems iteratively based on approximated Schur complements.
In section 5, we have shown that provided some key assumptions for
this relaxing operator, the splitting scheme converges. In this section,
we introduce practical strategies to approximate the Schur complement,
suitable to be easily implemented in PDE toolboxes. These approaches
are tested in section 6.

4.2.1. Schur-based Partial Jacobi

The first case we consider here is when the approximate Schur-based
iteration eq. (28) (single) or eq. (30) (alternate) is build approximat-

ing 𝐴 by its diagonal (Partial Jacobi). We denote this approach as
Schur-based Partial Jacobi (SPJ). In its “alternate” version (applying
the relaxation to both equations), the relaxation operator is:

 =
[
−𝐵diag(𝐷)−1𝐶 0

0 −𝐶diag(𝐴)−1𝐵

]
.

The resulting operator is still the product of two potentially full oper-

ators and a diagonal. While discretising this operator (or assembling it
from existing sparse matrices) in the general case could be not straight-

forward, the case of the dual-porosity model discussed in section 2,
where the operators 𝐵 and 𝐶 are diagonal, is particularly simple.

The accuracy of the diagonal approximation is directly linked to
the condition number of the matrix and, therefore, to the mesh size.
For example, for a Laplacian operator on a uniform mesh, the diagonal
approximation has a degenerate spectrum with a single repeated eigen-

value, while the full operator spectrum contains separate eigenvalues
(with the ratio between the largest and the smallest eigenvalue being
the condition number). This effect will be investigated numerically in
section 6.

4.2.2. Schur-based Double Partial Jacobi

The SPJ approach could lead to non-sparse matrices, even if 𝐴, 𝐵,
𝐶 and 𝐷 are sparse. In fact, the products 𝐵𝔻−1𝐶 and 𝐶𝔸−1𝐵 are not
sparse in general. Therefore, we approximate two of the three matrices
involved in the two products to keep the sparsity property. By approxi-

mating 𝐴 and 𝐶 , the system reads[
𝔸 𝐵

ℂ 𝐷

][
𝑢

𝑣

]
=
[
𝑓1 − (𝐴−𝔸)𝑢
𝑓2 − (𝐶 −ℂ)𝑢

]
that can then be solved iteratively with block-Gauss-Seidel as

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
(𝐷 −ℂ𝔸−1𝐵)𝑣𝑘+1 = 𝑓2 −ℂ𝔸−1(𝑓1 + (𝔸−𝐴)𝑢𝑘) + (ℂ−𝐶)𝑢𝑘, (34)

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘+1. (35)

Analogously to the SPJ case, the system can be rewritten in the form

𝐶𝑢𝑘 +𝐷𝑣𝑘+1 −ℂ𝔸−1𝐵(𝑣𝑘+1 − 𝑣𝑘) = 𝑓2, (36)

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1 (37)

which is equivalent to eq. (28) but with a different stabilisation/accel-

eration term ℂ𝔸−1𝐵.

If both approximations are diagonal, the resulting matrices are all
sparse, and we denote this approach as the double SPJ method (S2PJ).
This can be done only if the coupling operators 𝐵, 𝐶 are square matri-

ces/operators. In its “alternate” version (applying the relaxation to both
equations), the S2PJ relaxation operator is:

 =
[
−diag(𝐵)diag(𝐷)−1𝐶 0

0 −diag(𝐶)diag(𝐴)−1𝐵

]
.

This method is readily applicable to any coupled scalar problem as the
resulting system does not involve any product of operators.

When the two operators approximated by a diagonal are of the same
type (e.g., the Quad-Laplacian problem, see numerical results in sec-

tion 6), this method has the advantage of being no longer strongly
dependent on the condition number of the matrix 𝐴, as the spectrum of
𝐵𝐷−1 is, in fact, clustered and well approximated by the diagonals.

5. Convergence analysis of relaxed splitting schemes

In this section, we study the convergence properties of the generic
splitting scheme with relaxation, eq. (22). We will first propose a more
general result based on the properties of the monolithic operators  and
, following [17,25]. Then we specialise the analysis for the specific
cases of interest, namely the block-symmetric case (such as the dual-

porosity problem eq. (1)), and the block-skew-symmetric case (such as
the quad-Laplacian eq. (3) with 𝑚𝑢𝑣 = −𝑚𝑣𝑢). In the following, we will
make an extensive use of the following

Lemma 1. Let 𝑆 a self-adjoint linear operator, then the following identity
holds

⟨𝑥,𝑆(𝑥− 𝑦)⟩ = 1
2
(⟨𝑥,𝑆𝑥⟩+ ⟨𝑥− 𝑦,𝑆(𝑥− 𝑦)⟩− ⟨𝑦,𝑆𝑦⟩) ∀𝑥, 𝑦.

Proof. It is sufficient to expand both sides of the equation and use the
fact that ⟨𝑆𝑦, 𝑥⟩ = ⟨𝑆𝑥, 𝑦⟩ since 𝑆 = 𝑆⊤. □

5.1. Convergence of the monolithic iteration

The generic relaxed splitting scheme can be written as

𝑤𝑘+1 +𝑖𝑤
𝑘+1 = 𝑓 −𝑒𝑤

𝑘 +𝑤𝑘. (38)

Theorem 2. Under the assumptions of  symmetric and coercive, and 
coercive, the iteration eq. (38) converges if‖𝑒‖2
2𝛼

≤ 2𝛼 − 𝜀𝛼 (39)

where 𝜀 ≥ 0 is the constant such that ‖‖ = (1 + 𝜀)𝛼. Furthermore, the
optimal convergence rate, obtained choosing 𝛼𝑜𝑝𝑡

 = ‖𝑒‖2
2𝛼 is

𝑟(𝛼𝑜𝑝𝑡

) =

√√√√(1 + 𝜀)
‖𝑒‖2‖𝑒‖2 + 2𝛼2

. (40)

Proof. Subtracting the iteration eq. (38) from the exact equation (7),
and substituting 𝑖 = −𝑒, the error equation reads:
195
(𝑒𝑘+1 − 𝑒𝑘) +𝑒𝑘+1 =𝑒(𝑒𝑘+1 − 𝑒𝑘), (41)

where 𝑒𝑘 ∶= 𝑤 − 𝑤𝑘. The multiplication of eq. (41) by 𝑒𝑘+1 and the
application of Lemma 1 leads to

⟨𝑒𝑘+1 − 𝑒𝑘,(𝑒𝑘+1 − 𝑒𝑘)⟩+ 2⟨𝑒𝑘+1,𝑒𝑘+1⟩+ ⟨𝑒𝑘+1,𝑒𝑘+1⟩
= ⟨𝑒𝑘,𝑒𝑘⟩+ 2⟨𝑒𝑘+1,𝑒(𝑒𝑘+1 − 𝑒𝑘)⟩.
Thanks to the coercivity of  and  applied to the LHS of the equation
and the Cauchy-Schwarz/𝛿-Cauchy-Schwarz inequality on the last term
of the RHS we obtain

𝛼‖𝑒𝑘+1 − 𝑒𝑘‖2 + 2𝛼‖𝑒𝑘+1‖2 + ⟨𝑒𝑘+1,𝑒𝑘+1⟩
≤ ⟨𝑒𝑘,𝑒𝑘⟩+ 𝛿‖𝑒𝑘+1‖2 + ‖𝑒‖2

2𝛿
‖𝑒𝑘+1 − 𝑒𝑘‖2,

we can collect the terms and obtain(
𝛼 −

‖𝑒‖2
2𝛿

)‖𝑒𝑘+1 − 𝑒𝑘‖2 + (
2𝛼 − 𝛿

)‖𝑒𝑘+1‖2 + ⟨𝑒𝑘+1,𝑒𝑘+1⟩
≤ ⟨𝑒𝑘,𝑒𝑘⟩. (42)

To make the first term in the LHS of eq. (42) non-negative, we re-

quire that

𝛿 ≥ ‖𝑒‖2
2𝛼

(43)

and remove the first term from the LHS, leading to(
2𝛼 − 𝛿

)‖𝑒𝑘+1‖2 + ⟨𝑒𝑘+1,𝑒𝑘+1⟩ ≤ ⟨𝑒𝑘,𝑒𝑘⟩ .
To obtain a bound for the convergence rate, we can use the coercivity
and continuity of  to obtain(
2𝛼 + 𝛼 − 𝛿

)‖𝑒𝑘+1‖2 ≤ ‖‖‖𝑒𝑘‖2.
Since 𝛼 ≤ ‖‖, there exists 𝜀 ≥ 0 such that ‖‖ = (1 + 𝜀)𝛼, leading
to the following expression(
2𝛼 + 𝛼 − 𝛿

)‖𝑒𝑘+1‖2 ≤ (1 + 𝜀)𝛼‖𝑒𝑘‖2.
We can rewrite this expression to emphasise the rate of convergence as
follows:

‖𝑒𝑘+1‖ ≤√
(1 + 𝜀)𝛼

2𝛼 + 𝛼 − 𝛿
‖𝑒𝑘‖ . (44)

The convergence is guaranteed if

0 <
(1 + 𝜀)𝛼

2𝛼 + 𝛼 − 𝛿
< 1

hence 𝛿 < 2𝛼 − 𝜀𝛼 and 𝛿 < 2𝛼 + 𝛼. In conjunction with eq. (43)

we can write

0 ≤ ‖𝑒‖2
2𝛼

≤ 𝛿 ≤ 2𝛼 − 𝜀𝛼 (45)

which leads to eq. (39). Since we want to minimise the coefficient in
front of ‖𝑒𝑘‖ we want to pick the smallest possible value of 𝛿, which
is ‖𝑒‖2∕2𝛼 according to eq. (45), hence we chose 𝛼 in order to
minimise

𝑟(𝛼) ∶=
√√√√ 2(1 + 𝜀)𝛼2

2𝛼2 + 4𝛼𝛼 − ‖𝑒‖2 .
The study of this single variate optimal problem leads to the optimal
contraction rate

𝛼
𝑜𝑝𝑡

 =
‖𝑒‖2
2𝛼

,

which gives the rate of convergence eq. (40). □

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
Remark 1. To recover the classical 𝓁-scheme stabilisation, where  =
𝓁𝐼 , we can choose 𝜀 = 0 and 𝛼 = ‖‖ = 𝓁 > 0 and the converges
condition eq. (45) becomes:

𝛼𝓁 ≥ ‖𝑒‖2
2𝛼

, (46)

with the minimiser of the contraction rate being again the equality. This
means that we can always guarantee the convergence of the scheme by
choosing appropriately 𝛼 for any given block-iterative approach given
by 𝑖 and 𝑒. The presence of a more complex relaxation operator,
with 𝜀 > 0, seems to penalise the convergence rate. This is because, in
this analysis, we have not exploited the operator  structure but used
only its coercivity and continuity. This result, therefore, cannot fully
explain the advantages of using more complex relaxation operators such
as the Schur-based factorisation. Nevertheless, this allows us to ensure
its convergence.

The stabilisation  could also be included in the definition of 𝑖 and
𝑒, and its convergence would be covered by Theorem 1. Neverthe-

less, this would not allow us to apply the theorem above, and for many
practical applications, it is helpful to design a (coercive) extra term to
stabilise the splitting. In the case of Schur-based operators , the coer-

civity is not always guaranteed (such as in the dual-porosity problem
introduced above and further studied below). In a case of non-coercive
, Theorem 1 could be applied rewriting eq. (17) as a condition on the
norm of :

‖‖ ≤ 𝛼
2

− ‖𝑒‖ (47)

5.2. Convergence for block-Gauss-Seidel iterations with single relaxation

The proof above has the advantage of being more general, but it
also requires conditions for a coercive and symmetric monolithic re-

laxation operator , chosen based on the continuity constant 𝑒 and
the coercivity constant of the monolithic operator . In this section,
we consider more in detail the case of the Dual-Porosity model (where
𝐵 = 𝐶 or 𝐵 = 𝐶⊤, and the Quad-Laplacian (when 𝐵 = −𝐶⊤) and we fo-

cus on the block-Gauss-Seidel iterations, with a generic relaxation (e.g.,
the Schur-based explained above) applied on one equation only, i.e.,

𝐶𝑢𝑘 +𝐷𝑣𝑘+1 +𝐿(𝑣𝑘 − 𝑣𝑘+1) = 𝑓2, (48)

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1, (49)

where 𝐿 is, for example, an approximate Schur complement, such as
𝐿 = 𝐶𝔸−1𝐵.

5.2.1. Block-skew symmetric case 𝐶 = −𝐵⊤

We first consider the block-skew symmetric case, which corresponds
to the Quad-Laplacian problem section 2.2

Theorem 3. Let 𝐶 = −𝐵⊤, 𝐿 symmetric and coercive, such that

𝛼𝐿 ≥ ‖𝐵‖4
𝛼𝐷𝛼2

𝐴

, (50)

where 𝛼𝐿, 𝛼𝐷 and 𝛼𝐴 are the coercivity constants of 𝐿, 𝐷, and 𝐴 respec-

tively. Then the splitting scheme eqs. (48) and (49) converges.

Proof. Define the error functions 𝑒𝑘
𝑣
∶= 𝑣𝑘 − 𝑣 and 𝑒𝑘

𝑢
= 𝑢𝑘 − 𝑢, and

subtract the exact equation eq. (5) from eq. (49) and eq. (48). The scalar
product against 𝑒𝑘+1

𝑢
and 𝑒𝑘+1

𝑣
) leads to:

⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩− ⟨
𝐿
(
𝑒𝑘
𝑣
− 𝑒𝑘+1

𝑣

)
, 𝑒𝑘+1

𝑣

⟩
−
⟨
𝐵⊤𝑒𝑘

𝑢
, 𝑒𝑘+1

𝑣

⟩
= 0, (51)⟨

𝐴𝑒𝑘+1
𝑢

, 𝑒𝑘+1
𝑢

⟩
+
⟨
𝐵𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑢

⟩
= 0. (52)

Adding the two equations above gives the equality
196
⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩+ ⟨
𝐴𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣

⟩
+ ⟨𝐵⊤(𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
), 𝑒𝑘+1

𝑣
⟩ = 0. (53)

By applying Lemma 1 we obtain

⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩+ ⟨
𝐴𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+ 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+ (54)

+ 1
2
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣

⟩
− 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ ⟨𝐵⊤(𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
), 𝑒𝑘+1

𝑣
⟩

= 0.

Now, using Cauchy-Schwarz and Young’s inequalities on ⟨𝐵⊤(𝑒𝑘+1
𝑢

−
𝑒𝑘
𝑢
), 𝑒𝑘+1

𝑣
⟩ we obtain

⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩+ ⟨
𝐴𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+ 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+ 1

2
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣

⟩
(55)

≤ 1
2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ 𝛿‖𝑒𝑘+1

𝑣
‖2 + 1

4𝛿
‖‖‖𝐵⊤

(
𝑒𝑘+1
𝑢

− 𝑒𝑘
𝑢

)‖‖‖2
where 𝛿 > 0 is free to be chosen. From eq. (49), we have⟨
𝐴(𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
), 𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢

⟩
= −

⟨
𝐵(𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
), 𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢

⟩
, (56)

which by the coercivity of 𝐴 (with constant 𝛼𝐴) and Cauchy-Schwarz
inequality gives

𝛼𝐴‖(𝑒𝑘+1𝑢
− 𝑒𝑘

𝑢
)‖2 ≤ ‖𝐵‖‖𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
‖‖𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
‖ (57)

and thereby

‖𝑒𝑘+1
𝑢

− 𝑒𝑘
𝑢
‖ ≤ ‖𝐵‖

𝛼𝐴
‖𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
‖. (58)

Using the coercivity of 𝐴, 𝐷 and 𝐿 (with constants 𝛼𝐴, 𝛼𝐷 and 𝛼𝐿
respectively) we then get from eq. (56)

𝛼𝐷‖𝑒𝑘+1𝑣
‖2 + 𝛼𝐴‖𝑒𝑘+1𝑢

‖2 + 1
2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+

𝛼𝐿

2
‖𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
‖2

≤ 1
2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ 𝛿‖𝑒𝑘+1

𝑣
‖2 + 1

4𝛿
‖𝐵⊤‖2 ‖𝐵‖2

𝛼2
𝐴

‖𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣
‖2. (59)

Collecting terms, we then have

(𝛼𝐷 − 𝛿)‖𝑒𝑘+1
𝑣

‖2 + 𝛼𝐴‖𝑒𝑘+1𝑢
‖2 + 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+

(
𝛼𝐿

2
− 1

4𝛿
‖𝐵‖4
𝛼2
𝐴

)‖𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣
‖2 ≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
. (60)

Choosing 𝛿 = 𝛼𝐷

2 , and using the assumption eq. (50) we sum the equa-

tion eq. (60) from 𝑘 = 0 to 𝑘 = 𝑛 to obtain

𝛼𝐷

2

𝑛∑
𝑘=0

‖𝑒𝑘+1
𝑣

‖2 + 𝛼𝐴

𝑛∑
𝑘=0

‖𝑒𝑘+1
𝑢

‖2 + 1
2
⟨
𝐿𝑒𝑛+1

𝑣
, 𝑒𝑛+1

𝑣

⟩ ≤ 1
2
⟨
𝐿𝑒0

𝑣
, 𝑒0

𝑣

⟩
,

(61)

and it follows that as 𝑛 →∞ the norms of the errors converge to zero; ‖𝑒𝑛+1
𝑣

‖2 → 0, ‖𝑒𝑛+1
𝑢

‖2 → 0. □

Remark 2. Although the proof above does not provide a convergence
rate in the inherent norms, we can obtain one in the weighted 𝐿-norm: ‖𝑥‖2

𝐿
= ⟨𝐿𝑥, 𝑥⟩. To see this, we first realise that ‖𝑥‖𝐿 is a norm due to

the coercivity property of 𝐿. Furthermore, we have the bound

‖𝑥‖2
𝐿
≤ ‖𝐿‖‖𝑥‖2, (62)

and it follows from equation eq. (60) that

𝛼𝐷

2‖𝐿‖‖𝑒𝑘+1𝑣
‖2
𝐿
+ 𝛼𝐴‖𝑒𝑘+1𝑢

‖2 + 1
2
‖𝑒𝑘+1

𝑣
‖2
𝐿
≤ 1

2
‖𝑒𝑘

𝑣
‖2
𝐿
.

Thereby, we have the contraction

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
(
𝛼𝐷‖𝐿‖ + 1

)‖𝑒𝑘+1
𝑣

‖2
𝐿
≤ ‖𝑒𝑘

𝑣
‖2
𝐿
. (63)

5.2.2. Block-symmetric case 𝐶 = 𝐵

We study here the case of the dual-porosity and other models with
a similar structure, namely with block-symmetric square operators with
negative coupling terms. We first study the case of a generic coercive
stabilisation and then consider the case arising from the Schur factori-

sation, which leads to a non-coercive acceleration term 𝐿.

Theorem 4. Under the assumptions of 𝐶 = 𝐵, 𝐴 + 𝐵 and 𝐷 + 𝐵 coer-

cive, −𝐵 coercive and bounded, and 𝐿 symmetric and coercive the solution
strategy eqs. (48) and (49), i.e.,

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1 (64)

𝐵𝑢𝑘 +𝐷𝑣𝑘+1 +𝐿
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2, (65)

converges.

Proof. Subtracting the exact equation eq. (5) from eq. (65)-eq. (64) we
obtain the error equations

𝐴𝑒𝑘+1
𝑢

+𝐵𝑒𝑘+1
𝑣

= 0 (66)

𝐵𝑒𝑘
𝑢
+𝐷𝑒𝑘+1

𝑣
+𝐿

(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
= 0. (67)

Take the inner product of equation eq. (66) with 𝑒𝑘+1
𝑢

and eq. (67) with
𝑒𝑘+1
𝑣

, add the resulting equations and add and subtract
⟨
𝐵𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+

⟨
𝐵⊤𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑣
− 𝑒𝑘+1

𝑢

⟩
−
⟨
𝐵
(
𝑒𝑘+1
𝑣

− 𝑒𝑘+1
𝑢

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘+1

𝑢

⟩
−
⟨
𝐵
(
𝑒𝑘+1
𝑢

− 𝑒𝑘
𝑢

)
, 𝑒𝑘+1

𝑣

⟩
(68)

+
⟨
(𝐴+𝐵)𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+
⟨
(𝐷 +𝐵)𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣

⟩
= 0.

Using Lemma 1, the coercivity of 𝐴 +𝐵 and 𝐵 +𝐷, the coercivity and
boundedness of −𝐵 and the Cauchy-Schwarz inequality we get

𝛼𝐵
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘+1
𝑢

‖‖‖2 + 𝛼𝐴+𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐷+𝐵
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (69)

+ 1
2
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣

⟩
+ 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ ‖𝐵‖‖‖‖𝑒𝑘+1𝑢

− 𝑒𝑘
𝑢

‖‖‖‖‖‖𝑒𝑘+1𝑣

‖‖‖ .
Subtracting equation eq. (66) at iteration 𝑘 from the same equation at
iteration 𝑘 + 1 together with the boundedness of 𝐵 and coercivity of 𝐴
gives the inequality‖‖‖𝑒𝑘+1𝑢

− 𝑒𝑘
𝑢

‖‖‖ ≤ ‖𝐵‖
𝛼𝐴

‖‖‖𝑒𝑘+1𝑣
− 𝑒𝑘

𝑣

‖‖‖ ,
which together with Young’s inequality with constant 𝛿 and the coer-

civity of 𝐿 can be applied to eq. (69) to obtain

𝛼𝐵
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘+1
𝑢

‖‖‖2 +
(
𝛼𝐷+𝐵 − ‖𝐵‖4

2𝛼2
𝐴
𝛿

)‖‖‖𝑒𝑘+1𝑣

‖‖‖2
+ 𝛼𝐴+𝐵

‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐿

2
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘
𝑣

‖‖‖2 + 1
2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ 𝛿

2
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘
𝑣

‖‖‖2 .
By choosing 𝛿 = ‖𝐵‖4

𝛼𝐷+𝐵𝛼2
𝐴

, and 𝛼𝐿 ≥ 𝛿 the inequality reduces to

𝛼𝐵
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘+1
𝑢

‖‖‖2 + 𝛼𝐴+𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐷+𝐵

2
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 + 1
2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
,

and by the arguments from Remark 2, the solution strategy con-

verges. □

R

𝐴

th

th

𝐵

c

T

−

𝛼

th

𝐵

c

‖
P

u

b

𝛼

=

B

(𝛼

≤
F

‖
w

(𝛼

≤

+

D(
H

𝛼

R

th

c

p

le

g

𝛼

197
emark 3. It is important to notice that, although the conditions on
 + 𝐵 and 𝐷 + 𝐵 seem particularly strong, it must be noticed that, in
e dual-porosity model 𝐴[⋅] = −∇ ⋅ (𝑚𝑢∇[⋅]) + 𝛽[⋅] and 𝐵[⋅] = −𝛽[⋅],
erefore 𝐴 +𝐵 is simply the Laplacian operator, and similarly for 𝐷+
. For more general problems, these conditions are necessary for the

oercivity of the operator .

heorem 5. Under the assumptions of 𝐶 = 𝐵, 𝐴 +𝐵 and 𝐷 +𝐵 coercive,
𝐵 coercive and bounded, and

𝐷+𝐵 + 𝛼−𝐵 ≥ 2‖𝐿‖+ ‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

+ ‖𝐵‖2
𝛼𝐴

,

e solution strategy eqs. (48) and (49), i.e.,

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1,

𝑢𝑘 +𝐷𝑣𝑘+1 +𝐿
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2,

onverges. The convergence rate is given by

𝐿‖+ ‖𝐵‖2
4(𝛼𝐴+𝐵+𝛼−𝐵)

+ ‖𝐵‖2
𝛼𝐴

𝛼𝐷+𝐵 + 𝛼−𝐵 − ‖𝐿‖ . (70)

roof. The proof follows the same lines as the proof of Theorem 4

ntil equation (68). From there, we reorganise and apply coercivity and
oundedness properties to obtain

−𝐵
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 + 𝛼−𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐴+𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐷+𝐵
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (71)

−
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣

⟩
−
⟨
𝐵𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑢

⟩
−
⟨
𝐵𝑒𝑘

𝑢
, 𝑒𝑘+1

𝑣

⟩
.

y the Cauchy-Schwarz inequality, we obtain

𝐴+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + (𝛼𝐷+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (72)

‖𝐿‖‖𝑒𝑘+1
𝑣

‖2+‖𝐿‖‖𝑒𝑘
𝑣
‖‖𝑒𝑘+1

𝑣
‖+‖𝐵‖‖𝑒𝑘+1

𝑣
‖‖𝑒𝑘+1

𝑢
‖+‖𝐵‖‖𝑒𝑘

𝑢
‖‖𝑒𝑘+1

𝑣
‖.

rom equation (66) at iteration 𝑘 we obtain

𝑒𝑘
𝑣
‖ ≤ ‖𝐵‖

𝛼𝐴
‖𝑒𝑘

𝑣
‖, (73)

hich inserted in (72) together with Young’s inequality gives

𝐴+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + (𝛼𝐷+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (74)

‖𝐿‖‖𝑒𝑘+1
𝑣

‖2 +(‖𝐿‖+ ‖𝐵‖2
𝛼𝐴

)‖𝑒𝑘
𝑣
‖‖𝑒𝑘+1

𝑣
‖+ (𝛼𝐴+𝐵 + 𝛼−𝐵)‖𝑒𝑘𝑢‖2

‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

‖𝑒𝑘+1
𝑣

‖2.
ividing by ‖𝑒𝑘+1

𝑣
‖ and collecting terms yield

𝛼𝐷+𝐵 + 𝛼−𝐵 − ‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

− ‖𝐿‖)‖‖‖𝑒𝑘+1𝑣

‖‖‖≤
(‖𝐿‖+ ‖𝐵‖2

𝛼𝐴

)‖𝑒𝑘
𝑣
‖.

ence, we have a contraction provided

𝐷+𝐵 + 𝛼−𝐵 ≥ 2‖𝐿‖+ ‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

+ ‖𝐵‖2
𝛼𝐴

. □

emark 4. We point out that when 𝐿 is non-coercive, it no longer plays
e role of stabilisation, and therefore, it is not strictly necessary, i.e. the

onvergence is also ensured for 𝐿 = 0. As we will observe in section 6, a
roperly constructed non-coercive 𝐿 in the dual-porosity problem will
ad to acceleration. In the special case that 𝐿 = 0 and 𝛼−𝐵 = ‖𝐵‖ we
et the condition

𝐷+𝐵 + 𝛼−𝐵 ≥ 𝛼2−𝐵

4(𝛼 + 𝛼)
+

𝛼2−𝐵

𝛼
.

𝐴+𝐵 −𝐵 𝐴

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
6. Numerical tests

This section shows illustrative numerical examples of the one-

and two-dimensional Dual-Porosity and Quad-Laplacian models. We
will test and compare the following schemes, which are labelled as
follows: (unrelaxed) Block-Jacobi iterations (𝐵𝐽), (unrelaxed) Block-

Gauss-Seidel (𝐵𝐺𝑆), Shur-based Partial-Jacobi on 𝑢 (𝑆𝑃𝐽𝑢), Shur-

based Partial-Jacobi on 𝑣 (𝑆𝑃𝐽𝑣), Shur-based Partial-Jacobi on all
equations (alternate, 𝑆𝑃𝐽𝑎) and Shur-based Double-Partial-Jacobi on
𝑢, 𝑣 and both equations (respectively 𝑆2𝑃𝐽𝑢, 𝑆2𝑃𝐽𝑣 and 𝑆2𝑃𝐽𝑎).

One-dimensional finite volumes solver To test the algorithms in a con-

trolled and simple setup, we implemented a one-dimensional finite
volume solver in Python for which we can control each step of the dis-

cretisation. The finite-volume formulation has a second-order accuracy
for flux reconstruction and boundary conditions. Ghost nodes are used
to implement boundary conditions. We adopt the method of manufac-

tured solutions for two one-dimensional coupled problems described in
the following sections. Both problems are parameterised by the value 𝛽
to change the properties of the resulting monolithic system by tuning
the coupling terms. The sparse linear systems derived by internal blocks
are solved with the sparse.spsolve method available in the scipy
library.

OpenFOAM® solver Together with one-dimensional tests, we provide
two-dimensional tests in the CFD-oriented Finite-Volumes platform
OpenFOAM®. The same models adopted for one-dimensional tests are
tested in the unit square domain with Dirichlet and Neumann boundary
conditions.

Both solvers and the corresponding algorithms are available open-

source [26].

6.1. Dual-porosity model

Here, we present experiments for the Dual porosity model for both
one and two dimensions.

6.1.1. One-dimensional example

Equations eq. (1) are tested in one dimension over the interval [0, 𝜋]
with Dirichlet boundary conditions in a grid of 128 cells. The model in
one-dimensional form with forcing terms reads

𝛽 (𝑢− 𝑣) − 𝑑

𝑑𝑥

(
𝑚𝑢

𝑑𝑢

𝑑𝑥

)
= 𝑓1, 𝑥 ∈ (0, 𝜋),

𝛽 (𝑣− 𝑢) − 𝑑

𝑑𝑥

(
𝑚𝑣

𝑑𝑣

𝑑𝑥

)
= 𝑓2, 𝑥 ∈ (0, 𝜋).

Method of manufactured solutions requires to set the solutions 𝑢 and 𝑣.
In addition, we also choose non-trivial coefficients 𝑚𝑢 and 𝑚𝑣. 𝛽 rep-

resents the so-called transfer coefficient, but here, it is mainly used to
study the efficiency of the proposed algorithms for increasingly coupled
and ill-conditioned cases. 𝛽, in fact, controls the coupling between the
two equations and the dominance of diagonals in the discretised system.
For the mentioned functions, we choose

𝑢(𝑥) = sin(2𝑥),

𝑣(𝑥) = 𝑒−2𝑥,

𝑚𝑢(𝑥) = 104
[
1 + sin(2𝑥)

2

]
,

𝑚𝑣(𝑥) = 1 + sin(4𝑥)
2

.

The values for Dirichlet boundary conditions are derived by evaluating
𝑢 and 𝑣 in 𝑥 = 0 and 𝑥 = 𝜋. The forcing terms 𝑓1 and 𝑓2 are derived
by substituting 𝑢, 𝑣, 𝑚𝑢 and 𝑚𝑣 in the model. In Fig. 1, we report the
number of iterations needed for the various algorithms to converge up
198
Fig. 1. One-dimensional Dual-porosity problem. Number of iterations required
to reach an algebraic residual of 10−6 for several algorithms as a function of
the parameter 𝛽. The plateau at the top of the plot indicates that the maximum
number of iterations is reached (100).

Fig. 2. Two-dimensional Dual-porosity problem. Schematic representations of
boundary conditions for 𝑢 and 𝑣 in the unit square domain.

to an algebraic tolerance of 10−6 or a maximum number of 100 itera-

tions. As seen, the 𝑆𝑃𝐽(⋅) class of algorithms behave as well as 𝐵𝐺𝑆 in
the worst-case scenario and much better for 𝑆𝑃𝐽𝑎 and 𝑆𝑃𝐽𝑢. Choos-

ing the equation to apply the relaxation to may be important but not
easy. The alternate algorithm has the advantage of being agnostic and
applying it to both equations while not compromising its effectiveness.
We remark that 𝑆𝑃𝐽(⋅) and 𝑆2𝑃𝐽(⋅) coincide because the off diagonal
operators are diagonal, hence 𝔹 ≡ 𝐵 or ℂ ≡ 𝐶 . This case is limited to a
very simple mesh to keep it as simple as possible. However, some tests
regarding the mesh size are presented for the two-dimensional case.

6.1.2. Two-dimensional example

In this two-dimensional example, we consider two continuous,
highly heterogeneous, strongly anti-correlated fields 𝑚𝑢 and 𝛽. This rep-

resents that fracture flow is dominant where the matrix is negligible
and vice versa. Fig. 2 shows the boundary conditions for 𝑢 and 𝑣 in the
square domain. Fig. 3 shows the plots of the function 𝛽, 𝑚𝑢 and the so-

lutions 𝑢 and 𝑣, the value of 𝑚𝑣 is set equal to one and the source terms
𝑓 are zero. The mesh is uniform and Cartesian.

Table 1 shows the number of iterations for each algorithm imple-

mented in OpenFOAM® for three different meshes. In this simulation,
we set 10−6 as the tolerance for residuals of 𝑢 and 𝑣. The results show
that 𝑆𝑃𝐽 acts as an acceleration term and reduces the number of it-
erations, with the alternate version showing the best performances.
However, this acceleration deteriorates for larger condition numbers
of the problem.

6.2. Quad-Laplacian model

This section follows the same testing procedure of the Dual-porosity
case for the Quad-Laplacian problem of eq. (3). This model has non-

trivial off-diagonal blocks, which are discretisations of Laplace oper-

ators. This highlights the effect of the approximations of operators
in the Schur complement. To our knowledge, there are no direct

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201

Fig. 3. Two-dimensional Dual-porosity problem. Plots of the function 𝛽, 𝑚𝑢 and the solutions 𝑢 and 𝑣. We remark that 𝛽 and 𝑚𝑢 are plotted in logarithmic scale.
Table 1

Two-dimensional Dual-porosity problem. Number of
iterations to reach convergence condition for several
algorithms implemented in OpenFOAM®. Columns in-

dicate the mesh resolutions in 𝑥 and 𝑦 directions, re-

spectively, and rows indicate the adopted algorithm.

method 50 × 50 100 × 100 200 × 200

𝐵𝐽 90 104 105
𝐵𝐺𝑆 59 60 57
𝑆𝑃𝐽𝑢 43 54 55
𝑆𝑃𝐽𝑣 31 47 53
𝑆𝑃𝐽𝑎 28 40 50

physical interpretations of this model. However, we can imagine that
in a multi-physics context, equations can get easily coupled through
diffusive interactions. Therefore, we adopt the Quad-Laplacian as a
suitable toy problem for numerical tests. We present one- and two-

dimensional tests in the same fashion as the tests presented for the Dual-

porosity model. We consider here a Quad-Laplacian problem in one-

and two-dimensions with a skew-block-symmetric structure, namely
𝑚𝑢𝑣 = −𝑚𝑣𝑢, in connection with Theorem 3.

6.2.1. One-dimensional example

Equations eq. (3) are tested in one dimension over the interval
[0, 2𝜋] with Dirichlet boundary conditions in a grid of 128 cells. For
the manufactured solutions and model coefficients, we choose

𝑢(𝑥) = 𝑒sin𝑥,

𝑣(𝑥) = −𝑥2 + 𝑥− 1,

𝑚𝑢𝑢 = 1 + sin(4𝑥)
2

,

𝑚𝑣𝑣 =
1
𝛽

(
10−2 + 10−2 sin(2𝑥)

2

)
,

𝑚𝑢𝑣 = −𝑚𝑣𝑢 = 𝛽.

The values for Dirichlet boundary conditions are derived by evaluat-

ing 𝑢 and 𝑣 in 𝑥 = 0 and 𝑥 = 𝜋. The forcing terms 𝑓1 and 𝑓2 are derived
by substituting 𝑢, 𝑣, 𝑚𝑢𝑢, 𝑚𝑣𝑣, 𝑚𝑢𝑣 and 𝑚𝑣𝑢 in the model. The param-

eter 𝛽 appears in the diffusivity coefficients 𝑚𝑣𝑣, 𝑚𝑢𝑣 and 𝑚𝑣𝑢, and it
plays the same role as in the Dual-porosity problem. In Fig. 4, we report
199
Fig. 4. One-dimensional Quad-Laplacian problem. Number of iterations re-

quired to reach an algebraic residual of 10−6 for several algorithms as a function
of the parameter 𝛽. The plateau at the top of the plot indicates that the maxi-

mum number of iterations is reached (100).

Fig. 5. Two-dimensional Quad-Laplacian problem. Schematic representations
of boundary conditions for 𝑢 and 𝑣 in the unit square domain.

the number of iterations needed for the various algorithms to converge
up to an algebraic tolerance of 10−6 or a maximum number of 100 it-

erations. Unlike the Dual-Porosity case, the 𝑆2𝑃𝐽(⋅) class of schemes
behaves much better than 𝑆𝑃𝐽(⋅).

6.2.2. Two-dimensional example

For the two-dimensional case, we consider the domain in Fig. 5,
and heterogeneous parameters 𝑚𝑢𝑢 and 𝑚𝑣𝑣 as shown in Fig. 6, while
𝑚𝑢𝑣 = −𝑚𝑣𝑢 = 1. The mesh is uniform and Cartesian OpenFOAM®.

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201

Fig. 6. Two-dimensional Quad-Laplacian problem. Plots of the function 𝑚𝑢𝑢 , 𝑚𝑣𝑣 and the solutions 𝑢 and 𝑣. We remark that 𝑚𝑢𝑢 and 𝑚𝑣𝑣 are plotted in logarithmic
scale.
Table 2

Two-dimensional Quad-Laplacian problem. Number
of iterations to reach the desired residue’s toler-

ance of 10−6 for several algorithms implemented in
OpenFOAM®. Columns indicate the mesh resolutions
in 𝑥 and 𝑦 directions, respectively, and rows indicate
the adopted algorithm. The symbol “×” indicates that
the algorithm failed to converge.

method 50 × 50 100 × 100 200 × 200

𝐵𝐽 × × ×
𝐵𝐺𝑆 × × ×
𝑆2𝑃𝐽𝑢 37 37 38
𝑆2𝑃𝐽𝑣 26 26 26
𝑆2𝑃𝐽𝑎 15 13 13

Results for different meshes are shown in Fig. 6 and in Table 2. The
method is robust with respect to the mesh size and the conditioning
number of the problem. Here, the relaxation operator acts as a stabili-

sation term, ensuring the convergence of the splitting scheme. Since the
high-level interfaces provided by OpenFOAM® do not allow to com-

pute matrix products of sparse matrices required in the 𝑆𝑃𝐽 , we can
use here the 𝑆2𝑃𝐽 variant, thanks to the diagonal approximations of
two operators appearing in the double product; only one of the three
matrices is sparse, and the other two are simple fields (interpreted as
diagonal matrices). However, we also recall that this double approxima-

tion makes sense only if the off-diagonal discrete operators are square
matrices.

The S2PJ performs consistently well due to the structure of the prob-

lem. Being all operators Laplacian, the two diagonal approximations
tend to cancel each other, leading to an accurate approximation of the
Schur complement. Therefore, while 𝐵𝐽 and 𝐵𝐺𝑆 diverge, 𝑆2𝑃𝐽 con-

verges in a few iterations.

7. Conclusions

This work focuses on the development of a unified treatment and
theory for iterative splitting schemes for coupled systems of differential
equations. We have shown how stationary iterative methods for lin-

ear systems can be applied to systems of Partial Differential Equations
(PDEs) and demonstrated the need to introduce a relaxation operator
200
to stabilise the iteration and ensure convergence. We have extended the
idea of relaxation to include generic operators and shown how these can
be built based on approximated Schur complements. Convergence theo-

rems are proposed and define sufficient conditions on the relaxation
operators. Numerical tests in one and two dimensions for the Dual-

Porosity and Quad-Laplacian problems have been performed using two
different open-source codes, one based on the Python library scipy
and the other on the OpenFOAM®) libraries. The numerical results con-

firm the theory and show the potential of the Schur-based relaxation
operator, either as a stabilisation term to ensure convergence or as an
acceleration to reduce the number of iterations, depending on the prob-

lem. The approaches and methods presented here can be extended to
include the generalisation to 𝑁 ×𝑁 systems of equations and non-linear
problems. In future works, we aim to include the extension of the con-

vergence theory to better exploit the specific structure of Schur-based
relaxation operators.

Data availability

All data is available on GitHub, Zenodo and CodeOcean.

Link to the Reproducible Capsule

https://codeocean .com /capsule /6571121 /tree

Acknowledgements

This work has been funded by the following grants:

• MI has been supported by the European Union’s Horizon 2020
research and innovation programme, grant agreement number
764531, “SECURe – Subsurface Evaluation of Carbon capture and
storage and Unconventional risks”, and by the Nottingham EPSRC
Impact Acceleration Award;

• RN has been supported by the Royal Academy of Engineer-

ing (TSP2021∖100342), with the grants: “GHG-intensive-industry
Medium-scale Capture and Utilization Solutions Assessment In
Colombia” and “Asphaltene dynamics at the pore-scale and the im-

pact on oil production at the field-scale”, and by the Nottingham
Interdisciplinary Fund.

https://codeocean.com/capsule/6571121/tree

R. Nuca, E. Storvik, F.A. Radu et al. Computers and Mathematics with Applications 161 (2024) 190–201
References

[1] H. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B.
Uekermann, preCICE – a fully parallel library for multi-physics surface coupling,
Comput. Fluids 141 (2016), https://doi .org /10 .1016 /j .compfluid .2016 .04 .003.

[2] A. Settari, F. Mourits, A coupled reservoir and geomechanical simulation system,
SPE J. 3 (03) (1998) 219–226.

[3] J. Kim, H. Tchelepi, R. Juanes, Stability and convergence of sequential methods for
coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Meth-

ods Appl. Mech. Eng. 200 (13–16) (2011) 1591–1606.

[4] A. Mikelić, M. Wheeler, Convergence of iterative coupling for coupled flow and
geomechanics, Comput. Geosci. 17 (3) (2013) 455–461.

[5] J. Both, M. Borregales, J. Nordbotten, K. Kumar, F. Radu, Robust fixed stress split-

ting for Biot’s equations in heterogeneous media, Appl. Math. Lett. 68 (2017)
101–108.

[6] J. Kim, H. Tchelepi, R. Juanes, Stability and convergence of sequential methods for
coupled flow and geomechanics: drained and undrained splits, Comput. Methods
Appl. Mech. Eng. 200 (23–24) (2011) 2094–2116.

[7] E. Storvik, J. Both, K. Kumar, J. Nordbotten, F. Radu, On the optimization of the
fixed-stress splitting for Biot’s equations, Int. J. Numer. Methods Eng. 120 (2) (2019)
179–194.

[8] D. Illiano, I. Pop, F. Radu, Iterative schemes for surfactant transport in porous media,
Comput. Geosci. 25 (2) (2021) 805–822.

[9] C. Evans, S. Pollock, L. Rebholz, M. Xiao, A proof that Anderson acceleration im-

proves the convergence rate in linearly converging fixed-point methods (but not in
those converging quadratically), SIAM J. Numer. Anal. 58 (1) (2020) 788–810.

[10] J. Both, K. Kumar, J. Nordbotten, F. Radu, Anderson accelerated fixed-stress splitting
schemes for consolidation of unsaturated porous media, Comput. Math. Appl. 77 (6)
(2019) 1479–1502.

[11] E. Storvik, J. Both, J. Sargado, J. Nordbotten, F. Radu, An accelerated staggered
scheme for variational phase-field models of brittle fracture, Comput. Methods Appl.
Mech. Eng. 381 (2021) 113822.

[12] J. Douglas Jr, T. Arbogast, Dual porosity models for flow in naturally fractured
reservoirs, in: Dynamics of Fluids in Hierarchical Porous Media, 1990, pp. 177–221.

[13] M. Fortin, F. Brezzi, Mixed and Hybrid Finite Element Methods, vol. 3, Springer-

Verlag, New York, 1991.

[14] D. Boffi, F. Brezzi, M. Fortin, et al., Mixed Finite Element Methods and Applications,
vol. 44, Springer, 2013.

[15] Q. Hong, J. Kraus, M. Lymbery, F. Philo, A new practical framework for the sta-

bility analysis of perturbed saddle-point problems and applications, Math. Comput.
(2022).

[16] R. Nicolaides, Existence, uniqueness and approximation for generalized saddle point
problems, SIAM J. Numer. Anal. 19 (2) (1982) 349–357.

[17] W. Han, K. Atkinson, Theoretical Numerical Analysis: A Functional Analysis Frame-

work, Springer, 2009.

[18] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, vol. 95,
Springer, 2016.

[19] O. Axelsson, A survey of robust preconditioning methods, in: Topics in Numerical
Analysis, Springer, 2001, pp. 29–48.

[20] A. Viguerie, M. Xiao, Effective Chorin–Temam algebraic splitting schemes for the
steady Navier–Stokes equations, Numer. Methods Partial Differ. Equ. 35 (2) (2019)
805–829.

[21] G. Golub, C. Greif, On solving block-structured indefinite linear systems, SIAM J.
Sci. Comput. 24 (6) (2003) 2076–2092.

[22] K. Karki, S. Patankar, Application of the partial elimination algorithm for solving
the coupled energy equations in porous media, Numer. Heat Transf., Part A, Appl.
45 (6) (2004) 539–549.

[23] C. Filelis-Papadopoulos, G. Gravvanis, Generic approximate sparse inverse matrix
techniques, Int. J. Comput. Methods 11 (06) (2014) 1350084.

[24] O. Axelsson, R. Blaheta, M. Neytcheva, Preconditioning of boundary value problems
using elementwise Schur complements, SIAM J. Matrix Anal. Appl. 31 (2) (2009)
767–789.

[25] R. Kirby, From functional analysis to iterative methods, SIAM Rev. 52 (2) (2010)
269–293.

[26] R. Nuca, M. Icardi, splittingschemes v1.0, https://doi .org /10 .5281 /zenodo .
7457786, 2022.
201

https://doi.org/10.1016/j.compfluid.2016.04.003
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib2F307084D71CE712E85B8C5E0D33F0ABs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib2F307084D71CE712E85B8C5E0D33F0ABs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib3CF78BCE484178BED85F1C1422052445s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib3CF78BCE484178BED85F1C1422052445s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib3CF78BCE484178BED85F1C1422052445s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibCAEABEB1A80744922BB21124F954970Bs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibCAEABEB1A80744922BB21124F954970Bs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib84F3FEC97B9E6F17DDBA9278F544876Ds1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib84F3FEC97B9E6F17DDBA9278F544876Ds1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib84F3FEC97B9E6F17DDBA9278F544876Ds1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib28375729AA81FF510202AB4CC277E455s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib28375729AA81FF510202AB4CC277E455s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib28375729AA81FF510202AB4CC277E455s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib9D9E7E8D616C53AF0716CFD3DB6FA35Cs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib9D9E7E8D616C53AF0716CFD3DB6FA35Cs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib9D9E7E8D616C53AF0716CFD3DB6FA35Cs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibCDAB4D69334A001A76FCE6CCC9DE8B82s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibCDAB4D69334A001A76FCE6CCC9DE8B82s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib1E7B488B0801F74391029C9A0260C5AAs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib1E7B488B0801F74391029C9A0260C5AAs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib1E7B488B0801F74391029C9A0260C5AAs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib9B1D284AC0920B476E0FA6DB67A70048s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib9B1D284AC0920B476E0FA6DB67A70048s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib9B1D284AC0920B476E0FA6DB67A70048s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibBA9B2E55EEE180AD0D018E28102FEB0Bs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibBA9B2E55EEE180AD0D018E28102FEB0Bs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibBA9B2E55EEE180AD0D018E28102FEB0Bs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib23245B0C1D1F5A0FA2ABC5099169FD57s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib23245B0C1D1F5A0FA2ABC5099169FD57s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibD439EC0F179AD0F0246BE65853D2F88Fs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibD439EC0F179AD0F0246BE65853D2F88Fs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibAB60DBC118771D13AE07B0D99165A588s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibAB60DBC118771D13AE07B0D99165A588s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibD2E0D9895C4EC0D76B614BB43101EA83s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibD2E0D9895C4EC0D76B614BB43101EA83s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibD2E0D9895C4EC0D76B614BB43101EA83s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibA015D3B6A2962DC018C1FA10EFE9BD0Cs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibA015D3B6A2962DC018C1FA10EFE9BD0Cs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib50DE4BEEEA2343C37D5E2ED2D3EBCAB6s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib50DE4BEEEA2343C37D5E2ED2D3EBCAB6s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib3D8365EA6CCD75C1DB60B74055E863D1s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib3D8365EA6CCD75C1DB60B74055E863D1s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib2375D17C99458DE1A8BFA1F3FB85A94Es1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib2375D17C99458DE1A8BFA1F3FB85A94Es1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib0E60C27018BE8D72EB73A0E3FD04B72Fs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib0E60C27018BE8D72EB73A0E3FD04B72Fs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib0E60C27018BE8D72EB73A0E3FD04B72Fs1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibA859D643D67C6EAF12DE493FA89196D1s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibA859D643D67C6EAF12DE493FA89196D1s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib8FED03247D9DBA90584952B5ECFF5AE4s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib8FED03247D9DBA90584952B5ECFF5AE4s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib8FED03247D9DBA90584952B5ECFF5AE4s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib319AE4486D382EC90E69C9CBBEAEE364s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib319AE4486D382EC90E69C9CBBEAEE364s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib92E21D5ABCAF453F74FCBAAB882A4536s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib92E21D5ABCAF453F74FCBAAB882A4536s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bib92E21D5ABCAF453F74FCBAAB882A4536s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibB19B9516044C7A445D29EC8FDF4A9E65s1
http://refhub.elsevier.com/S0898-1221(24)00086-5/bibB19B9516044C7A445D29EC8FDF4A9E65s1
https://doi.org/10.5281/zenodo.7457786
https://doi.org/10.5281/zenodo.7457786

	Splitting schemes for coupled differential equations: Block Schur-based approaches & Partial Jacobi approximation
	1 Introduction
	2 Model problems
	2.1 Dual-porosity Darcy’s flow
	2.2 Quad-Laplacian
	2.3 Well-posedness conditions and connection with saddle-point problems

	3 Block-iterative methods for coupled PDEs
	3.1 Convergence properties
	3.2 Relaxation schemes for iterative splitting

	4 Approximate Schur-based methods
	4.1 Approximate Schur complement factorisation
	4.2 Diagonal approximations of Schur operators
	4.2.1 Schur-based Partial Jacobi
	4.2.2 Schur-based Double Partial Jacobi

	5 Convergence analysis of relaxed splitting schemes
	5.1 Convergence of the monolithic iteration
	5.2 Convergence for block-Gauss-Seidel iterations with single relaxation
	5.2.1 Block-skew symmetric case C=−B⊤
	5.2.2 Block-symmetric case C=B

	6 Numerical tests
	6.1 Dual-porosity model
	6.1.1 One-dimensional example
	6.1.2 Two-dimensional example

	6.2 Quad-Laplacian model
	6.2.1 One-dimensional example
	6.2.2 Two-dimensional example

	7 Conclusions
	Data availability
	Link to the Reproducible Capsule
	Acknowledgements
	References

