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Coupled multi-physics problems are encountered in countless applications and pose significant numerical 
challenges. In a broad sense, one can categorise the numerical solution strategies for coupled problems into 
two classes: monolithic approaches and sequential (also known as split, decoupled, partitioned or segregated) 
approaches. The monolithic approaches treat the entire problem as one, whereas the sequential approaches are 
iterative decoupling techniques where the different sub-problems are treated separately. Although the monolithic 
approaches often offer the most robust solution strategies, they tend to require ad-hoc preconditioners and 
numerical implementations. Sequential methods, on the other hand, offer the possibility to add and remove 
equations from the model flexibly and rely on existing black-box solvers for each specific equation. Furthermore, 
when problems are non-linear, inner iterations need to be performed even in monolithic solvers, making the 
sequential approaches an even more viable alternative. The cost of running inner iterations to recover the multi-

physics coupling could, however, easily become prohibitive. Moreover, the sequential approaches might not 
converge at all. In this work, we present a general formulation of splitting schemes for continuous operators 
with arbitrary implicit/explicit splitting, like in standard iterative methods for linear systems. By introducing a 
generic relaxation operator, we find the conditions for the convergence of the iterative schemes. We show how 
the relaxation operator can be thought of as a preconditioner and constructed based on an approximate Schur 
complement. We propose a Schur-based Partial Jacobi relaxation operator to stabilise the coupling and show its 
effectiveness. Although we mainly focus on scalar-scalar linear problems, most results are easily extended to non-

linear and higher-dimensional problems. The schemes presented are not explicitly dependent on any particular 
discretisation methodologies. Numerical tests (1D and 2D) for two PDE systems, namely the Dual-Porosity model 
and a Quad-Laplacian operator, are carried out to investigate the practical implications of the theoretical results.
1. Introduction

Multi-physics phenomena can involve large systems of linear or 
non-linear partial differential equations. Important examples of cou-

pled multiphysics problems include bulk coupling (where equations are 
solved in the same domain), such as Navier-Stokes equations, porome-

chanics, multi-species reactive transport, and interface couplings such 
as fluid-structure interaction and conjugate heat transfer, to name a 
few. Many theoretical and numerical studies have been devoted to 
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these problems, resulting in optimised monolithic solution approaches 
that often need detailed analysis of the system, ad-hoc coupled stable 
discretisation techniques and pre-conditioners for the resulting (large) 
linear systems. This is not always achievable in computational engi-

neering, where new coupled models often arise from the need to couple 
existing sub-models as black-boxes. In this direction, there have recently 
been efforts in developing generic frameworks capable of combining ex-

isting solvers, see [1]. These provide a layer of abstraction where solvers 
communicate with proper data mapping.
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The strategies adopted to solve linear systems derived by the dis-

cretisation of coupled problems can be divided into monolithic and seg-

regated/partitioned approaches. In monolithic approaches, the whole 
system is discretised in a single matrix, and all unknowns are solved si-
multaneously. In contrast, sequential iterative approaches consider each 
equation/sub-problem sequentially in a sequence with an internal loop 
to recover the coupled structure of the full problem. We denote here by 
“splitting scheme”, the iterative and partitioned strategy that defines 
this internal loop. Internal iterations in splitting schemes can be con-

veniently combined with the non-linear iterations (Picard or Newton) 
required to solve non-linear problems.

Besides pure numerical aspects, there are software engineering mo-

tivations for why segregated/partitioned approaches could be prefer-

able to monolithic approaches. One motivation is related to memory 
management because only one matrix at a time, derived by one sin-

gle equation, needs to be stored. A second and probably most relevant 
motivation is the possibility of using many efficient and robust solvers 
already available in the scientific computing community to solve each 
equation appearing in the multiphysics model.

In this work, we focus on coupled scalar-scalar linear model prob-

lems, although most of the results are valid or easily extendable to 
other linear problems. The objective of this work is to develop a new 
family of splitting schemes based on approximate Schur complements 
and provide a theoretical framework to analyse them. The new frame-

work generalises standard stabilised decoupling methods such as the 
fixed-stress splitting scheme [2–5] and the undrained splitting scheme 
[6] for the Biot equations of poroelasticity. These are based on adding 
a diagonal relaxation operator to stabilise the sequential method. Re-

cent works have discussed the optimisation of this relaxation term for 
the fixed-stress splitting scheme in [7]. Here, one of the overarching 
goals is to provide some insight into how more general operators can 
be used to stabilise coupled operators. While only linear problems are 
studied here, the generalisation to non-linear partial differential equa-

tions is straightforward as the splitting approaches proposed here can be 
easily combined with linearisation methods, such as those applied for 
Richards equation coupled with transport in [8]. Moreover, as with all 
fixed-point iterations, the methods proposed can be further improved 
by acceleration methods, such as the Anderson acceleration, which is 
known to accelerate linearly convergent schemes [9]. This has already 
been successfully applied in combination with decoupling methods for 
the Biot equations [10] and phase-field methods for brittle fracture 
propagation [11].

The paper is organised as follows. In section 2, we introduce two 
model problems, the dual-porosity problem and the Quad-Laplacian. 
In the next section, we present a unified nomenclature for decoupling 
methods, conveniently seen as block-based versions of standard itera-

tive schemes for linear systems. We split the monolithic problem into 
an implicit and an explicit operator and then introduce a relaxation op-

erator to improve and stabilise the iterations. In section 4, we extend the 
idea behind the Uzawa algorithm and propose a new general decoupling 
method for solving iteratively coupled systems of equations based on an 
approximation of the Schur complement. In section 5, convergence con-

ditions for generic splitting schemes and convergence proofs for several 
special cases, namely the block-symmetric and block-skew-symmetric 
cases, are provided for the new method. Eventually, in section 6, nu-

merical results with the Schur-based Partial Jacobi approximation are 
compared to standard iterative methods.

2. Model problems

In this section, we present two model problems as examples of a sys-

tem of partial differential equations falling in the generic representation 
used in section 3, showing the conditions for well-posedness. In the last 
chapter, we will use these models as examples in numerical tests.
191
2.1. Dual-porosity Darcy’s flow

The first model problem we introduce is the so-called “dual-

porosity” Darcy’s flow model [12], which is an effective/mixture model 
to describe the flow through a fractured porous medium. Here, 𝑢 and 𝑣
are the matrix and fracture pressures, respectively. The equations read 
as follows:

−∇ ⋅
(
𝑚𝑢∇𝑢

)
= 𝛽(𝑣− 𝑢) + 𝑓1 , (1)

−∇ ⋅
(
𝑚𝑣∇𝑣

)
= 𝛽(𝑢− 𝑣) + 𝑓2 ,

where 𝑚(⋅) is the mobility (permeability divided by the fluid viscosity), 𝛽
is the transfer coefficient and 𝑓1,2 are source terms. For the sake of sim-

plicity, we consider homogeneous Dirichlet boundary conditions, but 
the methods developed in this paper can be applied to more general 
boundary conditions as well.

The continuous variational formulation of problem eq. (1) reads:

Find (𝑢, 𝑣) ∈𝐻1
0 (Ω) ×𝐻1

0 (Ω) such that

𝑎(𝑢,𝜑) + 𝑏(𝑢,𝜑) − 𝑏(𝑣,𝜑) = ⟨𝑓1, 𝜑⟩ ∀𝜑 ∈𝐻1
0 (Ω) , (2)

𝑑(𝑣,𝜗) + 𝑏(𝑣,𝜗) − 𝑏(𝑢, 𝜗) = ⟨𝑓2, 𝜗⟩ ∀𝜗 ∈𝐻1
0 (Ω) ,

where

𝑎(𝑢,𝜑) ∶= ∫
Ω

𝑚𝑢∇𝑢 ⋅∇𝜑𝑑𝑥 𝑑(𝑣,𝜗) ∶= ∫
Ω

𝑚𝑣∇𝑣 ⋅∇𝜗𝑑𝑥

𝑏(𝑢,𝜑) ∶= ∫
Ω

𝛽𝑢𝜑𝑑𝑥.

We can sum eq. (2) and using the bi-linearity property of the form 𝑏(⋅, ⋅)
to get

𝑎(𝑢,𝜑) + 𝑏(𝑢− 𝑣,𝜑− 𝜗) + 𝑑(𝑣,𝜗) = ⟨𝑓1, 𝜑⟩+ ⟨𝑓2, 𝜗⟩
∀(𝜑,𝜗) ∈𝐻1

0 (Ω) ×𝐻1
0 (Ω).

The form

 ∶𝑊 ×𝑊 →ℝ 𝑊 ∶=𝐻1
0 (Ω) ×𝐻1

0 (Ω)

((𝑢, 𝑣), (𝜑,𝜗))↦ 𝑎(𝑢,𝜑) + 𝑑(𝑣,𝜗) + 𝑏(𝑢− 𝑣,𝜑− 𝜗)

is continuous and coercive under the following conditions:

𝑚𝑢,𝑚𝑣 > 0 , 𝛽 ≥ 0 a.e. and 𝑚𝑢,𝑚𝑣 ∈𝐿∞(Ω).

Hence, the problem eq. (1) is well-posed thanks to the Lax-Milgram 
Lemma. We will use this problem as a prototype of a block-symmetric 
coupled operator.

2.2. Quad-Laplacian

The second problem we study is composed of four Laplace operators, 
and we name it as Quad-Laplacian. The main motivation for introducing 
this synthetic model is to study scalar problems with non-trivial off-

diagonal “coupling” operators. The strong form of Quad-Laplacian reads

−∇ ⋅
(
𝑚𝑢𝑢∇𝑢

)
−∇ ⋅

(
𝑚𝑢𝑣∇𝑣

)
= 𝑓1 , (3)

−∇ ⋅
(
𝑚𝑣𝑢∇𝑢

)
−∇ ⋅

(
𝑚𝑣𝑣∇𝑣

)
= 𝑓2 ,

where 𝑚(⋅,⋅) are diffusivity coefficients. Its weak form we get

𝑎(𝑢,𝜑) + 𝑏(𝑣,𝜑) = ⟨𝑓1, 𝜑⟩ ∀𝜑 ∈𝐻1
0 (Ω) , (4)

𝑐(𝑢, 𝜗) + 𝑑(𝑣,𝜗) = ⟨𝑓2, 𝜗⟩ ∀𝜗 ∈𝐻1
0 (Ω) ,

𝑎(𝑢,𝜑) = ∫ 𝑚𝑢𝑢∇𝑢 ⋅∇𝜑𝑑𝑥, 𝑏(𝑣,𝜑) = ∫ 𝑚𝑢𝑣∇𝑣 ⋅∇𝜑𝑑𝑥,
Ω Ω
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𝑐(𝑢, 𝜗) = ∫
Ω

𝑚𝑣𝑢∇𝑢 ⋅∇𝜗𝑑𝑥, 𝑑(𝑣,𝜗) = ∫
Ω

𝑚𝑣𝑣∇𝑣 ⋅∇𝜗𝑑𝑥.

Assuming 𝑚𝑢𝑣 = −𝑚𝑣𝑢, i.e., 𝑏(𝑣, 𝑢) = −𝑐(𝑢, 𝑣),

 ∶𝑊 ×𝑊 →ℝ 𝑊 ∶=𝐻1
0 (Ω) ×𝐻1

0 (Ω)

((𝑢, 𝑣), (𝜑,𝜗))↦ 𝑎(𝑢,𝜑) + 𝑑(𝑣,𝜗) + 𝑏(𝑣,𝜑) + 𝑐(𝑢, 𝜗)

is continuous and coercive under the following conditions:

𝑚𝑢𝑢,𝑚𝑣𝑣 > 0 a.e. and 𝑚𝑢𝑢,𝑚𝑣𝑣,𝑚𝑢𝑣 ∈𝐿∞(Ω).

Hence, the problem eq. (3) is well-posed due to the Lax-Milgram 
Lemma. In the following, we will assume this condition to be valid, 
making the system block-skew-symmetric. This structure is typical in 
many coupled problems arising from mass and momentum conserva-

tion and semi-discrete poroelasticity. For the quad-Laplacian case, each 
operator is also symmetric (i.e., self-adjoint), making the whole system 
skew-symmetric.

2.3. Well-posedness conditions and connection with saddle-point problems

The models presented above are special cases of the following sys-

tem of equations:

𝑤 =
[
𝐴 𝐵

𝐶 𝐷

][
𝑢

𝑣

]
=
[
𝑓1
𝑓2

]
= 𝑓 (5)

where 𝐴, 𝐵, 𝐶 and 𝐷 represent linear differential operators in the 
strong form. This system is intentionally left without formal definitions 
of operators and involved spaces, as such details are discussed in the 
next section. In this work, we mostly adopt the terminology and con-

cepts from linear algebra theory. Since not all steps are equally applica-

ble to infinite dimensional (e.g. differential) operators, we occasionally 
interpret and indicate specific assumptions and differences for the case 
of differential operators separately. System eq. (5) for Hilbert spaces 
is very general and a simple approach to studying the well-posedness 
conditions, as done in the previous section for the Dual-Porosity and 
Quad-Laplacian system, is deriving a bilinear form acting between the 
Cartesian product of proper spaces and applying the hypotheses of Lax-

Milgram lemma. However, one of the most relevant cases of eq. (5) is 
the case of 𝐷 = 0 and 𝐵 = 𝐶⊤ corresponding to the well-known sad-

dle point problem (SPP) and its generalisations. For SPP, a robust and 
comprehensive theory has been developed [13,14]. A generalisation of 
SPP where 𝐷 ≠ 0 is sometimes referred to as a perturbed saddle point 
problem like those arising for nearly incompressible materials, recently 
analysed by [15]. The SPP and perturbed SPP are examples where 
applying the Lax-Milgram lemma provides an unsatisfactory stability 
estimate because of the nature of the perturbative term [14, Sec. 4.3, 
p. 238]. Another generalisation of SPP is where 𝐷 = 0 but 𝐵 and 𝐶 are 
generic. This case has been studied in [16] as a direct generalisation 
of Brezzi-Babuska Theory. Even non-variational methods can be used 
to study the well-posedness of eq. (5) provided proper spaces for the 
monolithic operator  [17, Ch. 5]. In the context of PDEs, the continu-

ity of the operators is a natural hypothesis, while coercivity and strong 
monotonicity for variational and non-variational methods, respectively, 
is the key hypothesis to ensure the injectivity of the operator.

In the continuous setting, eq. (5) makes sense once proper spaces 
have been defined. Let 𝑈 and 𝑉 be Hilbert spaces with 𝑢 ∈𝑈 and 𝑣 ∈ 𝑉 . 
We have that

𝐴 ∶𝑈 ⟶𝑈 ′, 𝐵 ∶ 𝑉 ⟶𝑈 ′, 𝐶 ∶𝑈 ⟶ 𝑉 ′, 𝐷 ∶ 𝑉 ⟶ 𝑉 ′,

hence 𝑓1 ∈ 𝑈 ′ and 𝑓2 ∈ 𝑉 ′. We can use the duality pairing in both 
equations and sum:

⟨𝐴𝑢,𝜑⟩∗ + ⟨𝐵𝑣,𝜑⟩∗ + ⟨𝐶𝑢,𝜇⟩⋆ + ⟨𝐷𝑣,𝜇⟩⋆ = ⟨𝑓1, 𝜑⟩∗ + ⟨𝑓2, 𝜇⟩⋆
∀(𝜑,𝜇) ∈𝑈 × 𝑉 ,
192
i.e.,

𝑎(𝑢,𝜑) + 𝑏(𝑣,𝜑) + 𝑐(𝑢,𝜇) + 𝑑(𝑣,𝜇) = ⟨𝑓1, 𝜑⟩⋆ + ⟨𝑓2, 𝜇⟩⋆
∀(𝜑,𝜇) ∈𝑈 × 𝑉 .

This expression defines a bilinear form

 ∶𝑊 ×𝑊 ⟶ℝ

(𝑤,𝜂) = ⟨𝑓, 𝜂⟩ ∀𝜂 ∈𝑈 × 𝑉 ,

where 𝑊 ∶= 𝑈 × 𝑉 and 𝑓 is the functional defined by the sum of 𝑓1
and 𝑓2. In the following, we will always assume 𝑎(⋅, ⋅) and 𝑑(⋅, ⋅) to be 
continuous and coercive with coercivity constants 𝛼𝑎 and 𝛼𝑑 , respec-

tively (i.e., the discrete operator 𝐴 and 𝐷 to be positive definite), and 
the monolithic operator  to be trivially well-posed by assuming its 
continuity and coercivity. This can be a consequence of the hypotheses 
introduced for the dual-porosity or the quad-Laplacian model problems, 
or, more in general, by assuming that there exists a coercivity constant 
𝛼 > 0 such that

0 < 𝛼 ≤ min(𝛼𝑎, 𝛼𝑑 ) −
‖𝑏‖+ ‖𝑐‖

2
, (6)

where 𝛼𝑎 and 𝛼𝑑 are the coercivity constants of the bilinear forms 𝑎(⋅, ⋅)
and 𝑑(⋅, ⋅) respectively. In fact we have that, ∀𝑢, 𝑣 ∈𝑈 × 𝑉 ,

|𝑏(𝑣, 𝑢) + 𝑐(𝑢, 𝑣)| ≤ (‖𝑏‖+ ‖𝑐‖)‖𝑣‖‖𝑢‖ ≤ ‖𝑏‖+ ‖𝑐‖
2

(‖𝑣‖2 + ‖𝑢‖2) .
Throughout the paper, although something else is specified, we use 
Euclidean norms for vectors and the induced matrix norm. In the con-

tinuous case, on any generic normed spaces (𝑉 , || ⋅ ||𝑉 ), (𝑊 , || ⋅ ||𝑊 ), we 

are using the operator norm ||𝐴|| = 𝑠𝑢𝑝𝑢≠0
||𝐴𝑢||𝑊||𝑢||𝑉 . In the following 

analysis and the convergence theorems below, one can think of discrete 
norms. For any particular model problem, one would have different 
(then specified) continuous norms. The choice of 𝛼 gives

|𝑏(𝑣, 𝑢) + 𝑐(𝑢, 𝑣)| ≤ (
𝛼𝑎 − 𝛼

)‖𝑢‖2 + (
𝛼𝑑 − 𝛼

)‖𝑣‖2 ,
and, therefore,

𝑏(𝑣, 𝑢) + 𝑐(𝑢, 𝑣) ≥ (
𝛼 − 𝛼𝑎

)‖𝑢‖2 + (
𝛼 − 𝛼𝑑

)‖𝑣‖2 ,
where this last inequality implies the coercivity of .

3. Block-iterative methods for coupled PDEs

Classic static iterative methods for linear systems can be adapted to 
block matrices. In our case, the block pattern of the coupled operator 
 in eq. (5) is determined by the number of equations and unknowns, 
while the dimensions and properties of each block are determined by 
the mesh size and discretisation scheme adopted for that particular 
equation. Convergence analysis for the particular case of positive defi-

nite matrices is treated in [18, p. 47]. The same author provides rates of 
convergence in the case of the Poisson equation. In the following para-

graphs, we recall the classical (static) iterative methods in their block 
extensions. The superscript index indicates the iterative step. In general, 
any iterative splitting/decoupling scheme can be represented by a de-

composition of the operator  into an implicit part 𝑖 and an explicit 
part 𝑒:

𝑖𝑤+𝑒𝑤 =𝑤 = 𝑓. (7)

This can be rewritten as a stationary iterative scheme as

𝑖𝑤
𝑘+1 +𝑒𝑤

𝑘 = 𝑓. (8)

While this splitting is often introduced also in monolithic schemes to, 
for example, derive operator-based preconditioners [19], here, for the 
resulting system to be “decoupled”, we require 𝑖 is a block-triangular 
operator. For clarity, we now introduce the block version of the most 
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straightforward stationary iterative schemes: Jacobi, Gauss-Seidel, and 
SOR.

Block-Jacobi Block-Jacobi is the simplest iterative method, and its 
block-version can be formulated as follows:

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘, (9)

𝐷𝑣𝑘+1 = 𝑓2 −𝐶𝑢𝑘, (10)

with

𝑖 =
[
𝐴 0
0 𝐷

]
, 𝑒 =

[
0 𝐵

𝐶 0

]
.

Block-Gauss-Seidel Analogously to the classical Gauss-Seidel method, 
the block-Gauss-Seidel method (starting from the first equation) reads

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘, (11)

𝐷𝑣𝑘+1 = 𝑓2 −𝐶𝑢𝑘+1, (12)

𝑖 =
[
𝐴 0
𝐶 𝐷

]
, 𝑒 =

[
0 𝐵

0 0

]
.

This standard approach is implemented in commercial and applied 
research codes for solving multi-physics problems.

Block-SOR The block version of the SOR method (starting from the 
first equation) can be written as follows:

𝐴𝑢𝑘+1 = (1 −𝜔)𝐴𝑢𝑘 +𝜔
[
𝑓1 −𝐵𝑣𝑘

]
, (13)

𝐷𝑣𝑘+1 = (1 −𝜔)𝐷𝑣𝑘 +𝜔
[
𝑓2 −𝐶𝑢𝑘+1

]
, (14)

or, equivalently,

𝐴𝑢𝑘+1 +𝐵𝑣𝑘 + (1 −𝜔)
𝜔

𝐴(𝑢𝑘+1 − 𝑢𝑘) = 𝑓1, (15)

𝐷𝑣𝑘+1 +𝐶𝑢𝑘+1 + (1 −𝜔)
𝜔

𝐷(𝑣𝑘+1 − 𝑣𝑘) = 𝑓2, (16)

𝑖 =
⎡⎢⎢⎣
(

1
𝜔

)
𝐴 0

𝐶

(
1
𝜔

)
𝐷

⎤⎥⎥⎦ , 𝑒 =
⎡⎢⎢⎣
(

𝜔−1
𝜔

)
𝐴 𝐵

0
(

𝜔−1
𝜔

)
𝐷

⎤⎥⎥⎦ .
3.1. Convergence properties

Theorem 1. The convergence of the iteration eq. (8) is guaranteed if

𝛼 > 2‖𝑒‖ , (17)

or

𝛼𝑖
> ‖𝑒‖ , (18)

where 𝛼 is the coercivity constant of the monolithic operator, 𝛼𝑖
is the 

coercivity constant of the implicit part, and ‖𝑒‖ is the continuity constant 
of the explicit part of the operator.

Proof. From eq. (8) we can derive the following error equations for 
𝑒𝑘 ∶=𝑤 −𝑤𝑘:

𝑒𝑘+1 =𝑒(𝑒𝑘+1 − 𝑒𝑘) ; 𝑖𝑒
𝑘+1 = −𝑒𝑒

𝑘 (19)

If we multiply by 𝑒𝑘+1 both equations, use the coercivity and the 
Cauchy-Schwarz inequality we obtain the following two bounds

𝛼‖𝑒𝑘+1‖ ≤ ‖𝑒‖‖𝑒𝑘+1 − 𝑒𝑘‖ ; 𝛼𝑖
‖𝑒𝑘+1‖ ≤ ‖𝑒‖‖𝑒𝑘‖ ,

i.e.,(
𝛼‖ ‖ − 1

)‖𝑒𝑘+1‖ ≤ ‖𝑒𝑘‖ ; 𝛼𝑖‖ ‖‖𝑒𝑘+1‖ ≤ ‖𝑒𝑘‖ ;

𝑒 𝑒
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The fixed-point iterations converge if the LHS coefficient is larger than 
one, giving the conditions eqs. (17) and (18). □

3.2. Relaxation schemes for iterative splitting

One might find that the block Gauss-Seidel method eqs. (11)

and (12) might not converge (for example, it might not satisfy eq. (17)). 
A remedy is to stabilise the equations, similar to what is done in 
the fixed-stress [2,4,3,7] or undrained [6] splitting methods for poro-

elasticity equations. We introduced here a generalised stabilised/re-

laxed iteration as follows: Given 𝑣𝑘, 𝑢𝑘 find 𝑣𝑘+1, 𝑢𝑘+1 such that

𝐴𝑢𝑘+1 +𝐵𝑣𝑘 +𝐿𝑢

(
𝑢𝑘+1 − 𝑢𝑘

)
= 𝑓1 (20)

𝐶𝑢𝑘+1 +𝐷𝑣𝑘+1 +𝐿𝑣

(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2 , (21)

or, equivalently,(𝑖 +)𝑤𝑘+1 =
(−𝑒

)
𝑤𝑘 + 𝑓 , (22)

where

 =
[
𝐿𝑢 0
0 𝐿𝑣

]
is the relaxation operator and, contrarily to what is typically done in lit-
erature, is not necessarily a diagonal operator. It is interesting to notice 
that there is a strong link between this relaxation and the Block-SOR 
method where, in the SOR method, the relaxation operators are 1

𝜔
𝐴

and/or 1
𝜔
𝐷. Although any relaxation operator can be included in the 

definition of 𝑖 and 𝑒, we treat these terms separately to study their 
influence better.

One of the difficulties with stabilisation is choosing the appropri-

ate operator , as its choice will significantly influence the scheme’s 
performance. In section 4, the relation between the stabilised Gauss-

Seidel method and an approximate Schur complement approach will 
be discussed, providing guidelines to choose the stabilisation operator 
. Moreover, in section 5 convergence proofs for several cases of the 
stabilised block Gauss-Seidel method eqs. (20) and (21) are provided, 
which gives a theoretical justification for the method.

𝓁-scheme A simple but effective choice of relaxation for the operators 
𝐿𝑢 is to be a multiple of the identity and 𝐿𝑣 = 0:

 =
[
𝓁𝐼 0
0 0

]
,

with 𝓁 > 0. This scheme has been used extensively to solve, for exam-

ple, poromechanics equations, see, e.g. [4]. When applied to porome-

chanics, it is often called fixed-stress splitting, and it is the standard 
over-relaxation approach implemented in many commercial codes to 
increase the diagonal dominance of the first equation and stabilise the 
iteration.

4. Approximate Schur-based methods

The Schur complement can be interpreted as the Gaussian elimina-

tion formula for block matrices. One of the Schur complement’s most 
important applications is for the Saddle Point Problem arising, for ex-

ample, when solving the incompressible Navier-Stokes equations. The 
well-known Chorin-Temam algorithm and the analogous Yosida method 
rely on the block-LU decomposition [20], which leads to a Schur com-

plement. These two are special cases of the Uzawa algorithm introduced 
to solve the SPP [21]. A similar method has been applied for the case 
of coupled energy equations [22].

To generalise these approaches for generic block systems, we in-

troduce a general iterative algorithm to stabilise the convergence of 
iterative coupled schemes with approximate Schur complements by 
mimicking the incomplete block-LU factorisation. Furthermore, in sec-

tion 4.2, we propose simple diagonal approximations to avoid explicitly 
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computing matrix inverses, although more advanced techniques could 
also be used [23]. The same strategy has been widely applied to derive 
optimal preconditioners [24].

It is important to notice that if the exact Schur complement were 
used, the iterative scheme would converge to the exact solution in one 
iteration. Therefore, we expect that, by using an approximation, we 
can stabilise the iterations (ensuring their convergence) and reduce the 
number of iterations needed for convergence. In this sense, we could 
also consider these methods as accelerators.

4.1. Approximate Schur complement factorisation

Let us consider the decomposition

𝐴𝑢 =𝔸𝑢+ (𝐴−𝔸)𝑢 (23)

where 𝔸 is an approximation of 𝐴 with the property of being compu-

tationally easy to invert, for example, the diagonal of 𝐴. We introduce 
the block-Schur matrix factorisation

𝑆 =
[

𝐼 0
−𝐶𝔸−1 𝐼

]
which, left-multiplied to the LHS and RHS of the original system eq. (5), 
gives[

𝐴 𝐵

−𝐶𝔸−1(𝐴−𝔸) 𝐷 −𝐶𝔸−1𝐵

][
𝑢

𝑣

]
=
[

𝑓1
𝑓2 −𝐶𝔸−1𝑓1

]
(24)

which is an approximate Schur-based decomposition. If we apply the 
same technique to the first equation, by using the splitting 𝐷𝑣 = 𝔻𝑣 +
(𝐷 −𝔻)𝑣 and[
𝐼 −𝐵𝔻−1

0 𝐼

]
instead of 𝑆 , combining the results we obtain[

𝐴−𝐵𝔻−1𝐶 −𝐵𝔻−1(𝐷 −𝔻)
−𝐶𝔸−1(𝐴−𝔸) 𝐷 −𝐶𝔸−1𝐵

][
𝑢

𝑣

]
=
[
𝑓1 −𝐵𝔻−1𝑓2
𝑓2 −𝐶𝔸−1𝑓1

]
(25)

which we denote as an alternate approximate Schur-based decomposi-

tion.

These approximate Schur complements do not provide a decoupled 
system (i.e., a block-triangular matrix); therefore, the next step is to 
apply a block-iterative method. If we apply the Gauss-Seidel method, 
the identity eq. (24) results in the following iterative scheme:

(𝐷 −𝐶𝔸−1𝐵)𝑣𝑘+1 = 𝑓2 −𝐶𝔸−1(𝑓1 − (𝐴−𝔸)𝑢𝑘), (26)

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘+1. (27)

Using the fact 𝐴𝑢𝑘 +𝐵𝑣𝑘 = 𝑓1 from the previous iteration, eq. (27) and 
eq. (26) can be rewritten in the following form:

𝐶𝑢𝑘 +𝐷𝑣𝑘+1 −𝐶𝔸−1𝐵
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2, (28)

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1, (29)

where we can identify the relaxation operator  as

 =
[
0 0
0 −𝐶𝔸−1𝐵

]
.

In this formulation, it is interesting to notice the role of the approx-

imate Schur complement 𝐶𝔸−1𝐵 as a stabilisation/acceleration term. 
Similarly, from eq. (25), one can obtain the iterative scheme for the 
alternate approximate Schur-based version, i.e.

(𝐴−𝐵𝔻−1𝐶)𝑢𝑘+1 = 𝑓1 −𝐵𝔻−1(𝑓2 − (𝐷 −𝔻)𝑣𝑘), (30)

(𝐷 −𝐶𝔸−1𝐵)𝑣𝑘+1 = 𝑓2 −𝐶𝔸−1(𝑓1 − (𝐴−𝔸)𝑢𝑘+1). (31)
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As it will be clarified in the next section, it is desirable to reformulate 
the problem again as a relaxed iteration, i.e.,

𝐵𝑣𝑘 +𝐴𝑢𝑘+1 −𝐵𝔻−1𝐶
(
𝑢𝑘+1 − 𝑢𝑘

)
= 𝑓1, (32)

𝐶𝑢𝑘+1 +𝐷𝑣𝑘+1 −𝐶𝔸−1𝐵
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2, (33)

with a relaxation operator

 =
[
−𝐵𝔻−1𝐶 0

0 −𝐶𝔸−1𝐵

]
.

This alternate algorithm eq. (32), however, written in the relaxation 
form, is no longer exactly equivalent to the form directly obtained from 
the Schur factorisation eq. (30). Here, we can no longer guarantee that 
the system is consistent in the coupled sense for each iteration 𝑘, i.e., 
𝐴𝑢𝑘 + 𝐵𝑣𝑘 ≠ 𝑓1 and 𝐶𝑢𝑘 + 𝐷𝑣𝑘 ≠ 𝑓2. In the following, we will focus 
on the second (relaxation-like) form, although our numerical results 
showed that the two have negligible differences in the convergence 
properties.

It is essential to notice that the relaxation operator  constructed as 
above is not always coercive. As discussed in section 5, this means that 
 can act as a stabilisation (e.g., in the Quad-Laplacian problem) or as 
an acceleration (e.g., in the dual-porosity problem).

4.2. Diagonal approximations of Schur operators

In section 4, we have introduced a general method to solve cou-

pled problems iteratively based on approximated Schur complements. 
In section 5, we have shown that provided some key assumptions for 
this relaxing operator, the splitting scheme converges. In this section, 
we introduce practical strategies to approximate the Schur complement, 
suitable to be easily implemented in PDE toolboxes. These approaches 
are tested in section 6.

4.2.1. Schur-based Partial Jacobi

The first case we consider here is when the approximate Schur-based 
iteration eq. (28) (single) or eq. (30) (alternate) is build approximat-

ing 𝐴 by its diagonal (Partial Jacobi). We denote this approach as 
Schur-based Partial Jacobi (SPJ). In its “alternate” version (applying 
the relaxation to both equations), the relaxation operator is:

 =
[
−𝐵diag(𝐷)−1𝐶 0

0 −𝐶diag(𝐴)−1𝐵

]
.

The resulting operator is still the product of two potentially full oper-

ators and a diagonal. While discretising this operator (or assembling it 
from existing sparse matrices) in the general case could be not straight-

forward, the case of the dual-porosity model discussed in section 2, 
where the operators 𝐵 and 𝐶 are diagonal, is particularly simple.

The accuracy of the diagonal approximation is directly linked to 
the condition number of the matrix and, therefore, to the mesh size. 
For example, for a Laplacian operator on a uniform mesh, the diagonal 
approximation has a degenerate spectrum with a single repeated eigen-

value, while the full operator spectrum contains separate eigenvalues 
(with the ratio between the largest and the smallest eigenvalue being 
the condition number). This effect will be investigated numerically in 
section 6.

4.2.2. Schur-based Double Partial Jacobi

The SPJ approach could lead to non-sparse matrices, even if 𝐴, 𝐵, 
𝐶 and 𝐷 are sparse. In fact, the products 𝐵𝔻−1𝐶 and 𝐶𝔸−1𝐵 are not 
sparse in general. Therefore, we approximate two of the three matrices 
involved in the two products to keep the sparsity property. By approxi-

mating 𝐴 and 𝐶 , the system reads[
𝔸 𝐵

ℂ 𝐷

][
𝑢

𝑣

]
=
[
𝑓1 − (𝐴−𝔸)𝑢
𝑓2 − (𝐶 −ℂ)𝑢

]
that can then be solved iteratively with block-Gauss-Seidel as
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(𝐷 −ℂ𝔸−1𝐵)𝑣𝑘+1 = 𝑓2 −ℂ𝔸−1(𝑓1 + (𝔸−𝐴)𝑢𝑘) + (ℂ−𝐶)𝑢𝑘, (34)

𝐴𝑢𝑘+1 = 𝑓1 −𝐵𝑣𝑘+1. (35)

Analogously to the SPJ case, the system can be rewritten in the form

𝐶𝑢𝑘 +𝐷𝑣𝑘+1 −ℂ𝔸−1𝐵(𝑣𝑘+1 − 𝑣𝑘) = 𝑓2, (36)

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1 (37)

which is equivalent to eq. (28) but with a different stabilisation/accel-

eration term ℂ𝔸−1𝐵.

If both approximations are diagonal, the resulting matrices are all 
sparse, and we denote this approach as the double SPJ method (S2PJ). 
This can be done only if the coupling operators 𝐵, 𝐶 are square matri-

ces/operators. In its “alternate” version (applying the relaxation to both 
equations), the S2PJ relaxation operator is:

 =
[
−diag(𝐵)diag(𝐷)−1𝐶 0

0 −diag(𝐶)diag(𝐴)−1𝐵

]
.

This method is readily applicable to any coupled scalar problem as the 
resulting system does not involve any product of operators.

When the two operators approximated by a diagonal are of the same 
type (e.g., the Quad-Laplacian problem, see numerical results in sec-

tion 6), this method has the advantage of being no longer strongly 
dependent on the condition number of the matrix 𝐴, as the spectrum of 
𝐵𝐷−1 is, in fact, clustered and well approximated by the diagonals.

5. Convergence analysis of relaxed splitting schemes

In this section, we study the convergence properties of the generic 
splitting scheme with relaxation, eq. (22). We will first propose a more 
general result based on the properties of the monolithic operators  and 
, following [17,25]. Then we specialise the analysis for the specific 
cases of interest, namely the block-symmetric case (such as the dual-

porosity problem eq. (1)), and the block-skew-symmetric case (such as 
the quad-Laplacian eq. (3) with 𝑚𝑢𝑣 = −𝑚𝑣𝑢). In the following, we will 
make an extensive use of the following

Lemma 1. Let 𝑆 a self-adjoint linear operator, then the following identity 
holds

⟨𝑥,𝑆(𝑥− 𝑦)⟩ = 1
2
(⟨𝑥,𝑆𝑥⟩+ ⟨𝑥− 𝑦,𝑆(𝑥− 𝑦)⟩− ⟨𝑦,𝑆𝑦⟩) ∀𝑥, 𝑦.

Proof. It is sufficient to expand both sides of the equation and use the 
fact that ⟨𝑆𝑦, 𝑥⟩ = ⟨𝑆𝑥, 𝑦⟩ since 𝑆 = 𝑆⊤. □

5.1. Convergence of the monolithic iteration

The generic relaxed splitting scheme can be written as

𝑤𝑘+1 +𝑖𝑤
𝑘+1 = 𝑓 −𝑒𝑤

𝑘 +𝑤𝑘. (38)

Theorem 2. Under the assumptions of  symmetric and coercive, and 
coercive, the iteration eq. (38) converges if‖𝑒‖2
2𝛼

≤ 2𝛼 − 𝜀𝛼 (39)

where 𝜀 ≥ 0 is the constant such that ‖‖ = (1 + 𝜀)𝛼. Furthermore, the 
optimal convergence rate, obtained choosing 𝛼𝑜𝑝𝑡

 = ‖𝑒‖2
2𝛼 is

𝑟(𝛼𝑜𝑝𝑡

 ) =

√√√√(1 + 𝜀)
‖𝑒‖2‖𝑒‖2 + 2𝛼2

. (40)

Proof. Subtracting the iteration eq. (38) from the exact equation (7), 
and substituting 𝑖 = −𝑒, the error equation reads:
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(𝑒𝑘+1 − 𝑒𝑘) +𝑒𝑘+1 =𝑒(𝑒𝑘+1 − 𝑒𝑘), (41)

where 𝑒𝑘 ∶= 𝑤 − 𝑤𝑘. The multiplication of eq. (41) by 𝑒𝑘+1 and the 
application of Lemma 1 leads to

⟨𝑒𝑘+1 − 𝑒𝑘,(𝑒𝑘+1 − 𝑒𝑘)⟩+ 2⟨𝑒𝑘+1,𝑒𝑘+1⟩+ ⟨𝑒𝑘+1,𝑒𝑘+1⟩
= ⟨𝑒𝑘,𝑒𝑘⟩+ 2⟨𝑒𝑘+1,𝑒(𝑒𝑘+1 − 𝑒𝑘)⟩.
Thanks to the coercivity of  and  applied to the LHS of the equation 
and the Cauchy-Schwarz/𝛿-Cauchy-Schwarz inequality on the last term 
of the RHS we obtain

𝛼‖𝑒𝑘+1 − 𝑒𝑘‖2 + 2𝛼‖𝑒𝑘+1‖2 + ⟨𝑒𝑘+1,𝑒𝑘+1⟩
≤ ⟨𝑒𝑘,𝑒𝑘⟩+ 𝛿‖𝑒𝑘+1‖2 + ‖𝑒‖2

2𝛿
‖𝑒𝑘+1 − 𝑒𝑘‖2,

we can collect the terms and obtain(
𝛼 −

‖𝑒‖2
2𝛿

)‖𝑒𝑘+1 − 𝑒𝑘‖2 + (
2𝛼 − 𝛿

)‖𝑒𝑘+1‖2 + ⟨𝑒𝑘+1,𝑒𝑘+1⟩
≤ ⟨𝑒𝑘,𝑒𝑘⟩. (42)

To make the first term in the LHS of eq. (42) non-negative, we re-

quire that

𝛿 ≥ ‖𝑒‖2
2𝛼

(43)

and remove the first term from the LHS, leading to(
2𝛼 − 𝛿

)‖𝑒𝑘+1‖2 + ⟨𝑒𝑘+1,𝑒𝑘+1⟩ ≤ ⟨𝑒𝑘,𝑒𝑘⟩ .
To obtain a bound for the convergence rate, we can use the coercivity 
and continuity of  to obtain(
2𝛼 + 𝛼 − 𝛿

)‖𝑒𝑘+1‖2 ≤ ‖‖‖𝑒𝑘‖2.
Since 𝛼 ≤ ‖‖, there exists 𝜀 ≥ 0 such that ‖‖ = (1 + 𝜀)𝛼, leading 
to the following expression(
2𝛼 + 𝛼 − 𝛿

)‖𝑒𝑘+1‖2 ≤ (1 + 𝜀)𝛼‖𝑒𝑘‖2.
We can rewrite this expression to emphasise the rate of convergence as 
follows:

‖𝑒𝑘+1‖ ≤√
(1 + 𝜀)𝛼

2𝛼 + 𝛼 − 𝛿
‖𝑒𝑘‖ . (44)

The convergence is guaranteed if

0 <
(1 + 𝜀)𝛼

2𝛼 + 𝛼 − 𝛿
< 1

hence 𝛿 < 2𝛼 − 𝜀𝛼 and 𝛿 < 2𝛼 + 𝛼. In conjunction with eq. (43)

we can write

0 ≤ ‖𝑒‖2
2𝛼

≤ 𝛿 ≤ 2𝛼 − 𝜀𝛼 (45)

which leads to eq. (39). Since we want to minimise the coefficient in 
front of ‖𝑒𝑘‖ we want to pick the smallest possible value of 𝛿, which 
is ‖𝑒‖2∕2𝛼 according to eq. (45), hence we chose 𝛼 in order to 
minimise

𝑟(𝛼) ∶=
√√√√ 2(1 + 𝜀)𝛼2

2𝛼2 + 4𝛼𝛼 − ‖𝑒‖2 .
The study of this single variate optimal problem leads to the optimal 
contraction rate

𝛼
𝑜𝑝𝑡

 =
‖𝑒‖2
2𝛼

,

which gives the rate of convergence eq. (40). □
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Remark 1. To recover the classical 𝓁-scheme stabilisation, where  =
𝓁𝐼 , we can choose 𝜀 = 0 and 𝛼 = ‖‖ = 𝓁 > 0 and the converges 
condition eq. (45) becomes:

𝛼𝓁 ≥ ‖𝑒‖2
2𝛼

, (46)

with the minimiser of the contraction rate being again the equality. This 
means that we can always guarantee the convergence of the scheme by 
choosing appropriately 𝛼 for any given block-iterative approach given 
by 𝑖 and 𝑒. The presence of a more complex relaxation operator, 
with 𝜀 > 0, seems to penalise the convergence rate. This is because, in 
this analysis, we have not exploited the operator  structure but used 
only its coercivity and continuity. This result, therefore, cannot fully 
explain the advantages of using more complex relaxation operators such 
as the Schur-based factorisation. Nevertheless, this allows us to ensure 
its convergence.

The stabilisation  could also be included in the definition of 𝑖 and 
𝑒, and its convergence would be covered by Theorem 1. Neverthe-

less, this would not allow us to apply the theorem above, and for many 
practical applications, it is helpful to design a (coercive) extra term to 
stabilise the splitting. In the case of Schur-based operators , the coer-

civity is not always guaranteed (such as in the dual-porosity problem 
introduced above and further studied below). In a case of non-coercive 
, Theorem 1 could be applied rewriting eq. (17) as a condition on the 
norm of :

‖‖ ≤ 𝛼
2

− ‖𝑒‖ (47)

5.2. Convergence for block-Gauss-Seidel iterations with single relaxation

The proof above has the advantage of being more general, but it 
also requires conditions for a coercive and symmetric monolithic re-

laxation operator , chosen based on the continuity constant 𝑒 and 
the coercivity constant of the monolithic operator . In this section, 
we consider more in detail the case of the Dual-Porosity model (where 
𝐵 = 𝐶 or 𝐵 = 𝐶⊤, and the Quad-Laplacian (when 𝐵 = −𝐶⊤) and we fo-

cus on the block-Gauss-Seidel iterations, with a generic relaxation (e.g., 
the Schur-based explained above) applied on one equation only, i.e.,

𝐶𝑢𝑘 +𝐷𝑣𝑘+1 +𝐿(𝑣𝑘 − 𝑣𝑘+1) = 𝑓2, (48)

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1, (49)

where 𝐿 is, for example, an approximate Schur complement, such as 
𝐿 = 𝐶𝔸−1𝐵.

5.2.1. Block-skew symmetric case 𝐶 = −𝐵⊤

We first consider the block-skew symmetric case, which corresponds 
to the Quad-Laplacian problem section 2.2

Theorem 3. Let 𝐶 = −𝐵⊤, 𝐿 symmetric and coercive, such that

𝛼𝐿 ≥ ‖𝐵‖4
𝛼𝐷𝛼2

𝐴

, (50)

where 𝛼𝐿, 𝛼𝐷 and 𝛼𝐴 are the coercivity constants of 𝐿, 𝐷, and 𝐴 respec-

tively. Then the splitting scheme eqs. (48) and (49) converges.

Proof. Define the error functions 𝑒𝑘
𝑣
∶= 𝑣𝑘 − 𝑣 and 𝑒𝑘

𝑢
= 𝑢𝑘 − 𝑢, and 

subtract the exact equation eq. (5) from eq. (49) and eq. (48). The scalar 
product against 𝑒𝑘+1

𝑢
and 𝑒𝑘+1

𝑣
) leads to:

⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩− ⟨
𝐿
(
𝑒𝑘
𝑣
− 𝑒𝑘+1

𝑣

)
, 𝑒𝑘+1

𝑣

⟩
−
⟨
𝐵⊤𝑒𝑘

𝑢
, 𝑒𝑘+1

𝑣

⟩
= 0, (51)⟨

𝐴𝑒𝑘+1
𝑢

, 𝑒𝑘+1
𝑢

⟩
+
⟨
𝐵𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑢

⟩
= 0. (52)

Adding the two equations above gives the equality
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⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩+ ⟨
𝐴𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣

⟩
+ ⟨𝐵⊤(𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
), 𝑒𝑘+1

𝑣
⟩ = 0. (53)

By applying Lemma 1 we obtain

⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩+ ⟨
𝐴𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+ 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+ (54)

+ 1
2
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣

⟩
− 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ ⟨𝐵⊤(𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
), 𝑒𝑘+1

𝑣
⟩

= 0.

Now, using Cauchy-Schwarz and Young’s inequalities on ⟨𝐵⊤(𝑒𝑘+1
𝑢

−
𝑒𝑘
𝑢
), 𝑒𝑘+1

𝑣
⟩ we obtain

⟨𝐷𝑒𝑘+1
𝑣

, 𝑒𝑘+1
𝑣

⟩+ ⟨
𝐴𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+ 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+ 1

2
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣

⟩
(55)

≤ 1
2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ 𝛿‖𝑒𝑘+1

𝑣
‖2 + 1

4𝛿
‖‖‖𝐵⊤

(
𝑒𝑘+1
𝑢

− 𝑒𝑘
𝑢

)‖‖‖2
where 𝛿 > 0 is free to be chosen. From eq. (49), we have⟨
𝐴(𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
), 𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢

⟩
= −

⟨
𝐵(𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
), 𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢

⟩
, (56)

which by the coercivity of 𝐴 (with constant 𝛼𝐴) and Cauchy-Schwarz 
inequality gives

𝛼𝐴‖(𝑒𝑘+1𝑢
− 𝑒𝑘

𝑢
)‖2 ≤ ‖𝐵‖‖𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
‖‖𝑒𝑘+1

𝑢
− 𝑒𝑘

𝑢
‖ (57)

and thereby

‖𝑒𝑘+1
𝑢

− 𝑒𝑘
𝑢
‖ ≤ ‖𝐵‖

𝛼𝐴
‖𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
‖. (58)

Using the coercivity of 𝐴, 𝐷 and 𝐿 (with constants 𝛼𝐴, 𝛼𝐷 and 𝛼𝐿
respectively) we then get from eq. (56)

𝛼𝐷‖𝑒𝑘+1𝑣
‖2 + 𝛼𝐴‖𝑒𝑘+1𝑢

‖2 + 1
2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+

𝛼𝐿

2
‖𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣
‖2

≤ 1
2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ 𝛿‖𝑒𝑘+1

𝑣
‖2 + 1

4𝛿
‖𝐵⊤‖2 ‖𝐵‖2

𝛼2
𝐴

‖𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣
‖2. (59)

Collecting terms, we then have

(𝛼𝐷 − 𝛿)‖𝑒𝑘+1
𝑣

‖2 + 𝛼𝐴‖𝑒𝑘+1𝑢
‖2 + 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+

(
𝛼𝐿

2
− 1

4𝛿
‖𝐵‖4
𝛼2
𝐴

)‖𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣
‖2 ≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
. (60)

Choosing 𝛿 = 𝛼𝐷

2 , and using the assumption eq. (50) we sum the equa-

tion eq. (60) from 𝑘 = 0 to 𝑘 = 𝑛 to obtain

𝛼𝐷

2

𝑛∑
𝑘=0

‖𝑒𝑘+1
𝑣

‖2 + 𝛼𝐴

𝑛∑
𝑘=0

‖𝑒𝑘+1
𝑢

‖2 + 1
2
⟨
𝐿𝑒𝑛+1

𝑣
, 𝑒𝑛+1

𝑣

⟩ ≤ 1
2
⟨
𝐿𝑒0

𝑣
, 𝑒0

𝑣

⟩
,

(61)

and it follows that as 𝑛 →∞ the norms of the errors converge to zero; ‖𝑒𝑛+1
𝑣

‖2 → 0, ‖𝑒𝑛+1
𝑢

‖2 → 0. □

Remark 2. Although the proof above does not provide a convergence 
rate in the inherent norms, we can obtain one in the weighted 𝐿-norm: ‖𝑥‖2

𝐿
= ⟨𝐿𝑥, 𝑥⟩. To see this, we first realise that ‖𝑥‖𝐿 is a norm due to 

the coercivity property of 𝐿. Furthermore, we have the bound

‖𝑥‖2
𝐿
≤ ‖𝐿‖‖𝑥‖2, (62)

and it follows from equation eq. (60) that

𝛼𝐷

2‖𝐿‖‖𝑒𝑘+1𝑣
‖2
𝐿
+ 𝛼𝐴‖𝑒𝑘+1𝑢

‖2 + 1
2
‖𝑒𝑘+1

𝑣
‖2
𝐿
≤ 1

2
‖𝑒𝑘

𝑣
‖2
𝐿
.

Thereby, we have the contraction
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(
𝛼𝐷‖𝐿‖ + 1

)‖𝑒𝑘+1
𝑣

‖2
𝐿
≤ ‖𝑒𝑘

𝑣
‖2
𝐿
. (63)

5.2.2. Block-symmetric case 𝐶 = 𝐵

We study here the case of the dual-porosity and other models with 
a similar structure, namely with block-symmetric square operators with 
negative coupling terms. We first study the case of a generic coercive 
stabilisation and then consider the case arising from the Schur factori-

sation, which leads to a non-coercive acceleration term 𝐿.

Theorem 4. Under the assumptions of 𝐶 = 𝐵, 𝐴 + 𝐵 and 𝐷 + 𝐵 coer-

cive, −𝐵 coercive and bounded, and 𝐿 symmetric and coercive the solution 
strategy eqs. (48) and (49), i.e.,

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1 (64)

𝐵𝑢𝑘 +𝐷𝑣𝑘+1 +𝐿
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2, (65)

converges.

Proof. Subtracting the exact equation eq. (5) from eq. (65)-eq. (64) we 
obtain the error equations

𝐴𝑒𝑘+1
𝑢

+𝐵𝑒𝑘+1
𝑣

= 0 (66)

𝐵𝑒𝑘
𝑢
+𝐷𝑒𝑘+1

𝑣
+𝐿

(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
= 0. (67)

Take the inner product of equation eq. (66) with 𝑒𝑘+1
𝑢

and eq. (67) with 
𝑒𝑘+1
𝑣

, add the resulting equations and add and subtract 
⟨
𝐵𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+ 

⟨
𝐵⊤𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑣
− 𝑒𝑘+1

𝑢

⟩
−
⟨
𝐵
(
𝑒𝑘+1
𝑣

− 𝑒𝑘+1
𝑢

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘+1

𝑢

⟩
−
⟨
𝐵
(
𝑒𝑘+1
𝑢

− 𝑒𝑘
𝑢

)
, 𝑒𝑘+1

𝑣

⟩
(68)

+
⟨
(𝐴+𝐵)𝑒𝑘+1

𝑢
, 𝑒𝑘+1

𝑢

⟩
+
⟨
(𝐷 +𝐵)𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
+
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣

⟩
= 0.

Using Lemma 1, the coercivity of 𝐴 +𝐵 and 𝐵 +𝐷, the coercivity and 
boundedness of −𝐵 and the Cauchy-Schwarz inequality we get

𝛼𝐵
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘+1
𝑢

‖‖‖2 + 𝛼𝐴+𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐷+𝐵
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (69)

+ 1
2
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣
− 𝑒𝑘

𝑣

⟩
+ 1

2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ ‖𝐵‖‖‖‖𝑒𝑘+1𝑢

− 𝑒𝑘
𝑢

‖‖‖‖‖‖𝑒𝑘+1𝑣

‖‖‖ .
Subtracting equation eq. (66) at iteration 𝑘 from the same equation at 
iteration 𝑘 + 1 together with the boundedness of 𝐵 and coercivity of 𝐴
gives the inequality‖‖‖𝑒𝑘+1𝑢

− 𝑒𝑘
𝑢

‖‖‖ ≤ ‖𝐵‖
𝛼𝐴

‖‖‖𝑒𝑘+1𝑣
− 𝑒𝑘

𝑣

‖‖‖ ,
which together with Young’s inequality with constant 𝛿 and the coer-

civity of 𝐿 can be applied to eq. (69) to obtain

𝛼𝐵
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘+1
𝑢

‖‖‖2 +
(
𝛼𝐷+𝐵 − ‖𝐵‖4

2𝛼2
𝐴
𝛿

)‖‖‖𝑒𝑘+1𝑣

‖‖‖2
+ 𝛼𝐴+𝐵

‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐿

2
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘
𝑣

‖‖‖2 + 1
2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
+ 𝛿

2
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘
𝑣

‖‖‖2 .
By choosing 𝛿 = ‖𝐵‖4

𝛼𝐷+𝐵𝛼2
𝐴

, and 𝛼𝐿 ≥ 𝛿 the inequality reduces to

𝛼𝐵
‖‖‖𝑒𝑘+1𝑣

− 𝑒𝑘+1
𝑢

‖‖‖2 + 𝛼𝐴+𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐷+𝐵

2
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 + 1
2
⟨
𝐿𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑣

⟩
≤ 1

2
⟨
𝐿𝑒𝑘

𝑣
, 𝑒𝑘

𝑣

⟩
,

and by the arguments from Remark 2, the solution strategy con-

verges. □

R
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emark 3. It is important to notice that, although the conditions on 
 + 𝐵 and 𝐷 + 𝐵 seem particularly strong, it must be noticed that, in 
e dual-porosity model 𝐴[⋅] = −∇ ⋅ (𝑚𝑢∇[⋅]) + 𝛽[⋅] and 𝐵[⋅] = −𝛽[⋅], 
erefore 𝐴 +𝐵 is simply the Laplacian operator, and similarly for 𝐷+
. For more general problems, these conditions are necessary for the 

oercivity of the operator .

heorem 5. Under the assumptions of 𝐶 = 𝐵, 𝐴 +𝐵 and 𝐷 +𝐵 coercive, 
𝐵 coercive and bounded, and

𝐷+𝐵 + 𝛼−𝐵 ≥ 2‖𝐿‖+ ‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

+ ‖𝐵‖2
𝛼𝐴

,

e solution strategy eqs. (48) and (49), i.e.,

𝐴𝑢𝑘+1 +𝐵𝑣𝑘+1 = 𝑓1,

𝑢𝑘 +𝐷𝑣𝑘+1 +𝐿
(
𝑣𝑘+1 − 𝑣𝑘

)
= 𝑓2,

onverges. The convergence rate is given by

𝐿‖+ ‖𝐵‖2
4(𝛼𝐴+𝐵+𝛼−𝐵 )

+ ‖𝐵‖2
𝛼𝐴

𝛼𝐷+𝐵 + 𝛼−𝐵 − ‖𝐿‖ . (70)

roof. The proof follows the same lines as the proof of Theorem 4

ntil equation (68). From there, we reorganise and apply coercivity and 
oundedness properties to obtain

−𝐵
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 + 𝛼−𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐴+𝐵
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + 𝛼𝐷+𝐵
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (71)

−
⟨
𝐿
(
𝑒𝑘+1
𝑣

− 𝑒𝑘
𝑣

)
, 𝑒𝑘+1

𝑣

⟩
−
⟨
𝐵𝑒𝑘+1

𝑣
, 𝑒𝑘+1

𝑢

⟩
−
⟨
𝐵𝑒𝑘

𝑢
, 𝑒𝑘+1

𝑣

⟩
.

y the Cauchy-Schwarz inequality, we obtain

𝐴+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + (𝛼𝐷+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (72)

‖𝐿‖‖𝑒𝑘+1
𝑣

‖2+‖𝐿‖‖𝑒𝑘
𝑣
‖‖𝑒𝑘+1

𝑣
‖+‖𝐵‖‖𝑒𝑘+1

𝑣
‖‖𝑒𝑘+1

𝑢
‖+‖𝐵‖‖𝑒𝑘

𝑢
‖‖𝑒𝑘+1

𝑣
‖.

rom equation (66) at iteration 𝑘 we obtain

𝑒𝑘
𝑣
‖ ≤ ‖𝐵‖

𝛼𝐴
‖𝑒𝑘

𝑣
‖, (73)

hich inserted in (72) together with Young’s inequality gives

𝐴+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑢

‖‖‖2 + (𝛼𝐷+𝐵 + 𝛼−𝐵)
‖‖‖𝑒𝑘+1𝑣

‖‖‖2 (74)

‖𝐿‖‖𝑒𝑘+1
𝑣

‖2 +(‖𝐿‖+ ‖𝐵‖2
𝛼𝐴

)‖𝑒𝑘
𝑣
‖‖𝑒𝑘+1

𝑣
‖+ (𝛼𝐴+𝐵 + 𝛼−𝐵)‖𝑒𝑘𝑢‖2

‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

‖𝑒𝑘+1
𝑣

‖2.
ividing by ‖𝑒𝑘+1

𝑣
‖ and collecting terms yield

𝛼𝐷+𝐵 + 𝛼−𝐵 − ‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

− ‖𝐿‖)‖‖‖𝑒𝑘+1𝑣

‖‖‖≤
(‖𝐿‖+ ‖𝐵‖2

𝛼𝐴

)‖𝑒𝑘
𝑣
‖.

ence, we have a contraction provided

𝐷+𝐵 + 𝛼−𝐵 ≥ 2‖𝐿‖+ ‖𝐵‖2
4(𝛼𝐴+𝐵 + 𝛼−𝐵)

+ ‖𝐵‖2
𝛼𝐴

. □

emark 4. We point out that when 𝐿 is non-coercive, it no longer plays 
e role of stabilisation, and therefore, it is not strictly necessary, i.e. the 

onvergence is also ensured for 𝐿 = 0. As we will observe in section 6, a 
roperly constructed non-coercive 𝐿 in the dual-porosity problem will 
ad to acceleration. In the special case that 𝐿 = 0 and 𝛼−𝐵 = ‖𝐵‖ we 
et the condition

𝐷+𝐵 + 𝛼−𝐵 ≥ 𝛼2−𝐵

4(𝛼 + 𝛼 )
+

𝛼2−𝐵

𝛼
.

𝐴+𝐵 −𝐵 𝐴
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6. Numerical tests

This section shows illustrative numerical examples of the one-

and two-dimensional Dual-Porosity and Quad-Laplacian models. We 
will test and compare the following schemes, which are labelled as 
follows: (unrelaxed) Block-Jacobi iterations (𝐵𝐽 ), (unrelaxed) Block-

Gauss-Seidel (𝐵𝐺𝑆), Shur-based Partial-Jacobi on 𝑢 (𝑆𝑃𝐽𝑢), Shur-

based Partial-Jacobi on 𝑣 (𝑆𝑃𝐽𝑣), Shur-based Partial-Jacobi on all 
equations (alternate, 𝑆𝑃𝐽𝑎) and Shur-based Double-Partial-Jacobi on 
𝑢, 𝑣 and both equations (respectively 𝑆2𝑃𝐽𝑢, 𝑆2𝑃𝐽𝑣 and 𝑆2𝑃𝐽𝑎).

One-dimensional finite volumes solver To test the algorithms in a con-

trolled and simple setup, we implemented a one-dimensional finite 
volume solver in Python for which we can control each step of the dis-

cretisation. The finite-volume formulation has a second-order accuracy 
for flux reconstruction and boundary conditions. Ghost nodes are used 
to implement boundary conditions. We adopt the method of manufac-

tured solutions for two one-dimensional coupled problems described in 
the following sections. Both problems are parameterised by the value 𝛽
to change the properties of the resulting monolithic system by tuning 
the coupling terms. The sparse linear systems derived by internal blocks 
are solved with the sparse.spsolve method available in the scipy
library.

OpenFOAM® solver Together with one-dimensional tests, we provide 
two-dimensional tests in the CFD-oriented Finite-Volumes platform 
OpenFOAM®. The same models adopted for one-dimensional tests are 
tested in the unit square domain with Dirichlet and Neumann boundary 
conditions.

Both solvers and the corresponding algorithms are available open-

source [26].

6.1. Dual-porosity model

Here, we present experiments for the Dual porosity model for both 
one and two dimensions.

6.1.1. One-dimensional example

Equations eq. (1) are tested in one dimension over the interval [0, 𝜋]
with Dirichlet boundary conditions in a grid of 128 cells. The model in 
one-dimensional form with forcing terms reads

𝛽 (𝑢− 𝑣) − 𝑑

𝑑𝑥

(
𝑚𝑢

𝑑𝑢

𝑑𝑥

)
= 𝑓1, 𝑥 ∈ (0, 𝜋),

𝛽 (𝑣− 𝑢) − 𝑑

𝑑𝑥

(
𝑚𝑣

𝑑𝑣

𝑑𝑥

)
= 𝑓2, 𝑥 ∈ (0, 𝜋).

Method of manufactured solutions requires to set the solutions 𝑢 and 𝑣. 
In addition, we also choose non-trivial coefficients 𝑚𝑢 and 𝑚𝑣. 𝛽 rep-

resents the so-called transfer coefficient, but here, it is mainly used to 
study the efficiency of the proposed algorithms for increasingly coupled 
and ill-conditioned cases. 𝛽, in fact, controls the coupling between the 
two equations and the dominance of diagonals in the discretised system. 
For the mentioned functions, we choose

𝑢(𝑥) = sin(2𝑥),

𝑣(𝑥) = 𝑒−2𝑥,

𝑚𝑢(𝑥) = 104
[
1 + sin(2𝑥)

2

]
,

𝑚𝑣(𝑥) = 1 + sin(4𝑥)
2

.

The values for Dirichlet boundary conditions are derived by evaluating 
𝑢 and 𝑣 in 𝑥 = 0 and 𝑥 = 𝜋. The forcing terms 𝑓1 and 𝑓2 are derived 
by substituting 𝑢, 𝑣, 𝑚𝑢 and 𝑚𝑣 in the model. In Fig. 1, we report the 
number of iterations needed for the various algorithms to converge up 
198
Fig. 1. One-dimensional Dual-porosity problem. Number of iterations required 
to reach an algebraic residual of 10−6 for several algorithms as a function of 
the parameter 𝛽. The plateau at the top of the plot indicates that the maximum 
number of iterations is reached (100).

Fig. 2. Two-dimensional Dual-porosity problem. Schematic representations of 
boundary conditions for 𝑢 and 𝑣 in the unit square domain.

to an algebraic tolerance of 10−6 or a maximum number of 100 itera-

tions. As seen, the 𝑆𝑃𝐽(⋅) class of algorithms behave as well as 𝐵𝐺𝑆 in 
the worst-case scenario and much better for 𝑆𝑃𝐽𝑎 and 𝑆𝑃𝐽𝑢. Choos-

ing the equation to apply the relaxation to may be important but not 
easy. The alternate algorithm has the advantage of being agnostic and 
applying it to both equations while not compromising its effectiveness. 
We remark that 𝑆𝑃𝐽(⋅) and 𝑆2𝑃𝐽(⋅) coincide because the off diagonal 
operators are diagonal, hence 𝔹 ≡ 𝐵 or ℂ ≡ 𝐶 . This case is limited to a 
very simple mesh to keep it as simple as possible. However, some tests 
regarding the mesh size are presented for the two-dimensional case.

6.1.2. Two-dimensional example

In this two-dimensional example, we consider two continuous, 
highly heterogeneous, strongly anti-correlated fields 𝑚𝑢 and 𝛽. This rep-

resents that fracture flow is dominant where the matrix is negligible 
and vice versa. Fig. 2 shows the boundary conditions for 𝑢 and 𝑣 in the 
square domain. Fig. 3 shows the plots of the function 𝛽, 𝑚𝑢 and the so-

lutions 𝑢 and 𝑣, the value of 𝑚𝑣 is set equal to one and the source terms 
𝑓 are zero. The mesh is uniform and Cartesian.

Table 1 shows the number of iterations for each algorithm imple-

mented in OpenFOAM® for three different meshes. In this simulation, 
we set 10−6 as the tolerance for residuals of 𝑢 and 𝑣. The results show 
that 𝑆𝑃𝐽 acts as an acceleration term and reduces the number of it-
erations, with the alternate version showing the best performances. 
However, this acceleration deteriorates for larger condition numbers 
of the problem.

6.2. Quad-Laplacian model

This section follows the same testing procedure of the Dual-porosity 
case for the Quad-Laplacian problem of eq. (3). This model has non-

trivial off-diagonal blocks, which are discretisations of Laplace oper-

ators. This highlights the effect of the approximations of operators 
in the Schur complement. To our knowledge, there are no direct 
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Fig. 3. Two-dimensional Dual-porosity problem. Plots of the function 𝛽, 𝑚𝑢 and the solutions 𝑢 and 𝑣. We remark that 𝛽 and 𝑚𝑢 are plotted in logarithmic scale.
Table 1

Two-dimensional Dual-porosity problem. Number of 
iterations to reach convergence condition for several 
algorithms implemented in OpenFOAM®. Columns in-

dicate the mesh resolutions in 𝑥 and 𝑦 directions, re-

spectively, and rows indicate the adopted algorithm.

method 50 × 50 100 × 100 200 × 200

𝐵𝐽 90 104 105
𝐵𝐺𝑆 59 60 57
𝑆𝑃𝐽𝑢 43 54 55
𝑆𝑃𝐽𝑣 31 47 53
𝑆𝑃𝐽𝑎 28 40 50

physical interpretations of this model. However, we can imagine that 
in a multi-physics context, equations can get easily coupled through 
diffusive interactions. Therefore, we adopt the Quad-Laplacian as a 
suitable toy problem for numerical tests. We present one- and two-

dimensional tests in the same fashion as the tests presented for the Dual-

porosity model. We consider here a Quad-Laplacian problem in one-

and two-dimensions with a skew-block-symmetric structure, namely 
𝑚𝑢𝑣 = −𝑚𝑣𝑢, in connection with Theorem 3.

6.2.1. One-dimensional example

Equations eq. (3) are tested in one dimension over the interval 
[0, 2𝜋] with Dirichlet boundary conditions in a grid of 128 cells. For 
the manufactured solutions and model coefficients, we choose

𝑢(𝑥) = 𝑒sin𝑥,

𝑣(𝑥) = −𝑥2 + 𝑥− 1,

𝑚𝑢𝑢 = 1 + sin(4𝑥)
2

,

𝑚𝑣𝑣 =
1
𝛽

(
10−2 + 10−2 sin(2𝑥)

2

)
,

𝑚𝑢𝑣 = −𝑚𝑣𝑢 = 𝛽.

The values for Dirichlet boundary conditions are derived by evaluat-

ing 𝑢 and 𝑣 in 𝑥 = 0 and 𝑥 = 𝜋. The forcing terms 𝑓1 and 𝑓2 are derived 
by substituting 𝑢, 𝑣, 𝑚𝑢𝑢, 𝑚𝑣𝑣, 𝑚𝑢𝑣 and 𝑚𝑣𝑢 in the model. The param-

eter 𝛽 appears in the diffusivity coefficients 𝑚𝑣𝑣, 𝑚𝑢𝑣 and 𝑚𝑣𝑢, and it 
plays the same role as in the Dual-porosity problem. In Fig. 4, we report 
199
Fig. 4. One-dimensional Quad-Laplacian problem. Number of iterations re-

quired to reach an algebraic residual of 10−6 for several algorithms as a function 
of the parameter 𝛽. The plateau at the top of the plot indicates that the maxi-

mum number of iterations is reached (100).

Fig. 5. Two-dimensional Quad-Laplacian problem. Schematic representations 
of boundary conditions for 𝑢 and 𝑣 in the unit square domain.

the number of iterations needed for the various algorithms to converge 
up to an algebraic tolerance of 10−6 or a maximum number of 100 it-

erations. Unlike the Dual-Porosity case, the 𝑆2𝑃𝐽(⋅) class of schemes 
behaves much better than 𝑆𝑃𝐽(⋅).

6.2.2. Two-dimensional example

For the two-dimensional case, we consider the domain in Fig. 5, 
and heterogeneous parameters 𝑚𝑢𝑢 and 𝑚𝑣𝑣 as shown in Fig. 6, while 
𝑚𝑢𝑣 = −𝑚𝑣𝑢 = 1. The mesh is uniform and Cartesian OpenFOAM®.
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Fig. 6. Two-dimensional Quad-Laplacian problem. Plots of the function 𝑚𝑢𝑢 , 𝑚𝑣𝑣 and the solutions 𝑢 and 𝑣. We remark that 𝑚𝑢𝑢 and 𝑚𝑣𝑣 are plotted in logarithmic 
scale.
Table 2

Two-dimensional Quad-Laplacian problem. Number 
of iterations to reach the desired residue’s toler-

ance of 10−6 for several algorithms implemented in 
OpenFOAM®. Columns indicate the mesh resolutions 
in 𝑥 and 𝑦 directions, respectively, and rows indicate 
the adopted algorithm. The symbol “×” indicates that 
the algorithm failed to converge.

method 50 × 50 100 × 100 200 × 200

𝐵𝐽 × × ×
𝐵𝐺𝑆 × × ×
𝑆2𝑃𝐽𝑢 37 37 38
𝑆2𝑃𝐽𝑣 26 26 26
𝑆2𝑃𝐽𝑎 15 13 13

Results for different meshes are shown in Fig. 6 and in Table 2. The 
method is robust with respect to the mesh size and the conditioning 
number of the problem. Here, the relaxation operator acts as a stabili-

sation term, ensuring the convergence of the splitting scheme. Since the 
high-level interfaces provided by OpenFOAM® do not allow to com-

pute matrix products of sparse matrices required in the 𝑆𝑃𝐽 , we can 
use here the 𝑆2𝑃𝐽 variant, thanks to the diagonal approximations of 
two operators appearing in the double product; only one of the three 
matrices is sparse, and the other two are simple fields (interpreted as 
diagonal matrices). However, we also recall that this double approxima-

tion makes sense only if the off-diagonal discrete operators are square 
matrices.

The S2PJ performs consistently well due to the structure of the prob-

lem. Being all operators Laplacian, the two diagonal approximations 
tend to cancel each other, leading to an accurate approximation of the 
Schur complement. Therefore, while 𝐵𝐽 and 𝐵𝐺𝑆 diverge, 𝑆2𝑃𝐽 con-

verges in a few iterations.

7. Conclusions

This work focuses on the development of a unified treatment and 
theory for iterative splitting schemes for coupled systems of differential 
equations. We have shown how stationary iterative methods for lin-

ear systems can be applied to systems of Partial Differential Equations 
(PDEs) and demonstrated the need to introduce a relaxation operator 
200
to stabilise the iteration and ensure convergence. We have extended the 
idea of relaxation to include generic operators and shown how these can 
be built based on approximated Schur complements. Convergence theo-

rems are proposed and define sufficient conditions on the relaxation 
operators. Numerical tests in one and two dimensions for the Dual-

Porosity and Quad-Laplacian problems have been performed using two 
different open-source codes, one based on the Python library scipy
and the other on the OpenFOAM®) libraries. The numerical results con-

firm the theory and show the potential of the Schur-based relaxation 
operator, either as a stabilisation term to ensure convergence or as an 
acceleration to reduce the number of iterations, depending on the prob-

lem. The approaches and methods presented here can be extended to 
include the generalisation to 𝑁 ×𝑁 systems of equations and non-linear 
problems. In future works, we aim to include the extension of the con-

vergence theory to better exploit the specific structure of Schur-based 
relaxation operators.
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