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Abstract
Telomeres are repetitive DNA sequences located at the ends of chromosomes. Dur-
ing cell division, an incomplete copy of each chromosome’s DNA is made, causing
telomeres to shorten on successive generations. When a threshold length is reached
replication ceases and the cell becomes ‘senescent’. In this paper, we consider popula-
tions of telomeres and, from discrete models, we derive partial differential equations
which describe how the distribution of telomere lengths evolves over many genera-
tions.We initially consider a population of cells each containing just a single telomere.
We use continuum models to compare the effects of various mechanisms of telomere
shortening and rates of cell division during normal ageing. For example, the rate (or
probability) of cell replicationmay be fixed or itmay decrease as the telomeres shorten.
Furthermore, the length of telomere lost on each replication may be constant, or may
decrease as the telomeres shorten. Where possible, explicit solutions for the evolution
of the distribution of telomere lengths are presented. In other cases, expressions for
the mean of the distribution are derived. We extend the models to describe cell popula-
tions in which each cell contains a distinct subpopulation of chromosomes. As for the
simpler models, constant telomere shortening leads to a linear reduction in telomere
length over time, whereas length-dependent shortening results in initially rapid telom-
ere length reduction, slowing at later times. Our analysis also reveals that constant
telomere loss leads to a Gaussian (normal) distribution of telomere lengths, whereas
length-dependent loss leads to a log-normal distribution.We show that stochasticmod-
els, which include a replication probability, also lead to telomere length distributions
which are skewed.
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1 Introduction

Repetitive DNA sequences at the end of chromosomes—known as telomeres—are
shortened when cells divide, leading to one aspect of cellular aging. In this paper we
derive and analyse mathematical models which describe the evolution of the distribu-
tion of telomere lengths over many generations of the cell-cycle.

In the 1960s Hayflick and Moorehead (1961) performed a series of experiments
which overturned the prevailing view that normal cells were immortal. In experiments
involving normal human fibroblasts cells, they found that after a finite number of
divisions cell numbers reached a finite size, which is now called the Hayflick limit.
Once this limit is reached, the cells become senescent: that is, they stop replicating
but remain functional (Cristofalo et al. 2004). In later work, Hayflick and Moorehead
observed that, the number of senescent cells in the mouse lens epithelium increases
with age. Processes that contribute to senescence include oxidative stress, as shown
by Muller et al. (2007) and Wei and Lee (2002); mitochondrial dysfunction (Passos
and von Zglinicki 2005); somatic mutation (Kirkwood and Proctor 2003); and, of
particular relevance here, telomere shortening, which was demonstrated by Allsopp
and Harley (1995).

The main roles of telomeres are to protect the chromosomes against the loss of
genetic material and to prevent fragments of chromosomes from rejoining (Cooper
and Hausman 2009). Kirkwood (2011) has given compelling evidence that telomeres
play an important role in ageing,with telomere length being a key factor in determining
a cell’s replicative potential. When a cell divides, its chromosomes are duplicated via a
process called DNA replication. During replication, one of the daughter chromosomes
is shortened at the 5’ end due to the unidirectional synthesis of the new DNA chain
(Olovnikov 1973). Figure 1 illustrates the effect of this process, where m, n describe
the lengths of telomeres at each end of the chromosome. This process continues until
the telomere length falls below a critical level and then the cell becomes senescent.
We use the terms ‘telomere loss’ and ‘telomere-shortening’ interchangeably, to refer
to the reduced length of telomeres in daughter cells when compared to the parent cell.

In healthy human cells, telomeres are typically 3 to 15 kilobasepairs (kbp) in length.
They shorten at rates of 50–200 basepairs per replication, and undergo 30–60 popula-
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Fig. 1 Illustration of the chromosome replication process: on the left, the two strands of parent DNA are
shown, with telomeres of lengths m, m, n and n − y; the two offspring chromosomes are shown to the
right of the arrow. In each case the strand inherited from the parent is shown with a thick line, and the
thin lines show the newly synthesised strand, with the arrow indicating the direction of synthesis. Daughter
chromosome 2 is seen to be identical to the parent; having inherited the longer strand from the parent, and
synthesised the shorter strand. However, daughter chromosome 1 inherits the shorter strand of parent DNA,
and synthesises an even shorter complementary strand, resulting in telomeres of lengths m, m − y, n − y
and n − y
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tiondoublings before becoming senescent (Harley et al. 1990).When the chromosomes
become too short, that is, their length falls below a threshold value, telomeres lose
their protective function, triggeringDNAdamagewhich can lead to end-to-end fusions,
chromosome breakage, rejoins and senescence. Evidence that telomere shortening is
directly related to cell senescence can be traced back to experiments by Allsopp and
Harley (1995) in which the telomeres of senescent human fibroblasts were found to
be shorter than those of replicating cells and the proportion of replicating cells was
proportional to the mean telomere length. Under certain conditions, the amount of
telomere loss per replication is large, and cells become senescent more rapidly. For
example, Wyllie et al. (2000) have shown that excessive telomere shortening associ-
ated withWerner’s syndrome causes patients to experience accelerated aging. In other
cases, where the enzyme telomerase is active, as in cancer cells, telomere length can
be maintained or even extended, enabling the cells to become immortal (Greider and
Blackburn 1985). von Zglinicki et al. (2000) suggest that there are multiple mecha-
nisms which contribute to telomere shortening, including oxidative stress. By dosing
cells with hydrogen peroxide, they showed that oxidative stress accelerated telomere
loss and led to shorter replicative lifespans. The effect of perceived life stress and
stress due to being a long-term care-giver on telomere length has been analysed by
Epel et al. (2004), who showed that increased stress correlates with reduced telomere
length. We conclude that normal ageing can be characterised by telomere shortening
and that certain environmental and genetic factorsmay accelerate telomere shortening.

1.1 Simulations andmathematical models of telomere loss

Werner et al. (2015) have fitted tissue-level models to data from subjects from birth to
age 85 years. In their models of cellular differentiation and telomere shortening, cells
are assumed to lose a fixed length of telomere per replication; and stem cells, divide
either asymmetrically (giving rise to another stemcell and a cellwith shorter telomeres)
or symmetrically (where both daughter cells have shorter telomeres. Fitting theirmodel
to experimental data, they obtain good agreement with the observed decreasing rate
of telomere loss over time.

Telomeres are thought to adopt the G-quadruplex structure at the 3’-end, which
affects the end replication of DNA. This alters the susceptibility to the alternative
lengthening of telomere (ALT) mechanism (Tan et al. 2015). Recent theoretical work
of Bodova et al. (2012), Kollar et al. (2014) and Hirt et al. (2014) have focused on
understanding the detailed dynamics associated with these structures and processes.

Various models of telomere shortening in a population of independently replicating
chromosomes have been proposed previously: Levy et al. (1992) developed a determin-
istic model for telomere shortening of individual chromosomes. Their model shows
good agreement with experimental data, predicting that the average telomere length
decreases linearly over time. In separate work, Arino et al. (1995) assumed constant
telomere loss per replication and viewed cell proliferation as a branching process. A
convincing fit of their model to independent experimental data is provided. Olofsson
and Kimmel (1999) extended Arino’s model to account for cell death, assuming a
fixed probability of cell death for senescent cells.
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While manymechanisms are known to cause telomere shortening, the rate of short-
ening remains unclear. Many mathematical models assume a constant rate of telomere
loss, for example, Levy et al. (1992). In their model, however, Buijs et al. (2004)
assumed that telomere loss depends linearly on telomere length: a constant loss is
attributed to the end-replication problem and an additional term is attributed to a
shortening factor which they estimate from experimental data. Portugal et al. (2008)
took a different approach, developing a stochasticmodel in which telomere shortening
occurs at a constant rate but the probability of cell division depends linearly on the
telomere length. The resulting stochastic model is well-described at the population
level by a Gompertzian growth law.

1.2 Outline

This paper is structured as follows: in Sect. 1.1 we summarise previous theoretical
work on telomere shortening. In Sect. 1.3 we outline our modelling approach. This is
based on deriving equations for the distribution of telomere lengths in a population
of chromosomes or cells which are repeatedly undergoing replication, causing their
telomeres to shorten over time. In Sects. 2, 3, 4 and 5 we investigate four such models:
in the first two, we consider populations of chromosomes that replicate independently
of each other. In Sects. 4 and 5, the earlier models are scaled up to the cell level:
we consider populations of cells, where each cell comprises N = 46 chromosomes.
This model extension enables us to investigate how the lengths of subpopulations of
telomeres evolve in cell populations. In all the models we develop, cells are assumed
to exist in either a replicative or a senescent state. Once senescent, a cell remains
senescent forever; we do not model cell death. Finally, in Sect. 6 we summarise the
results and draw conclusions.

In each of Sects. 2, 3, 4 and 5, we start with a discrete model which describes how
the numbers of cells with a particular telomere length changes from one generation,
g, to the next. Since we are interested in the evolution over many generations, where
all numbers will be large and, in general, the amount of telomere lost per replication
is significantly smaller than the telomere length, it is appropriate to replace all these
quantities with continuous variables. By considering the evolution of slowly-varying
solutions of the discrete equation, we derive continuum models, namely partial differ-
ential equations (pdes) which have the same dynamics. The advantage of this approach
is that, in general, the resulting pdes are more amenable to theoretical analysis than
discrete systems. We use asymptotic techniques to construct and analyse solutions of
the resulting pdes.

Our approach unifies and extends existing models: in particular, our approach
includes, deterministic approaches where telomere loss is constant (Levy et al. 1992),
dependent on telomere length (Buijs et al. 2004), as well as stochastic models, in
which there is a probability of cell-replication which depends on telomere length, as
considered by Portugal et al. (2008). Our aim is to explain the way in which telomere
shortening occurs leads to senescence, for example, to predict how the fraction of
a population which is senescent changes over time, and to determine whether it is
possible to deduce from such data the mechanisms that regulate telomere shortening.
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We present results which show the approximate solutions of the pdes are in good
agreement with numerical simulations from the earlier paper by Qi et al. (2014).

1.3 Preliminary concepts of model development

Our main aim in this paper is to analyse mathematical models which describe the
distribution of telomere lengths and their evolution overmany generations. Ourmodels
are based on the earlier work of Levy et al. (1992), Buijs et al. (2004), and Portugal
et al. (2008).

Initially we view the generation number as a discrete variable which we denote by
g. We denote the telomere length of a chromosome by a single variable, n measured
as a number of base pairs. Typically, telomeres are initially long (∼6000 bps) and lose
only a small number of base pairs during each replication event (∼50 bps). Denoting
by K (g)

n a chromosome at generation g with telomere length n, and the number of
basepairs lost upon replication by y(n), the process of replication can be described by

K (g)
n → K (g+1)

n + K (g+1)
n−y(n) . (1.1)

In Eq. (1.1), we assume that replication of a chromosome with telomere length
n at generation g, produces two ‘daughter’ chromosomes at generation g + 1, one
with telomere length n and one with length n − y(n). If the length of the daughter
chromosome n− y(n) falls below a prescribed, critical value, then replication will not
happen. The value of nc will be specified later.

In our analysis, we follow Buijs et al. (2004) and assume that

y(n) = y0 + ny1, (1.2)

with y0, y1 nonnegative constants, so that the number of base pairs lost is positive and
may depend on telomere length. The case of Levy et al. (1992), where telomere loss
is constant, is recovered by setting y1 = 0. In general we take y1 > 0 so that longer
telomeres shorten at a faster rate than shorter ones; however, the analysis presented
below is valid for the case where longer telomeres have a lower rate of loss (y1 < 0)
provided no lengthening of telomeres occurs (y(n) ≥ 0, that is, n < −y0/y1 =
y0/|y1|).

We term the deterministic model given by (1.1) as Case A and analyse it in Sect. 2
below. In Sect. 3 we generalise it to a stochastic model, termed Case B, by assuming
that replication is a stochastic event which occurs with probability Pdiv(n) so that the
telomere replication rate depends on its length, n; that is, (1.1) occurs with probability
Pdiv(n), and otherwise, we simply have K (g)

n → K (g+1)
n . We define the division

probability as
Pdiv(n) = an + b, (1.3)

where a, b are constants, chosen such that 0 ≤ Pdiv ≤ 1 for telomere lengths, n, in
the range of interest. Hence for Case B, the replication rule (1.1) is replaced by
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Table 1 Summary of the functional forms used to model cell division (Pdiv(n)) and telomere shortening
(y(n)) where n ≥ 0 represents the telomere length of a particular chromosome and y0, y1, a, b and α are
non-negative constants

Model Replication rule Shortening rule References

Case A Pdiv = 1 y(n) = y0 + y1n Buijs et al. (2004)

Levy et al. (1992) (y1 = 0)

Case B Pdiv(n) = an + b y(n) = y0 + y1n Qi et al. (2014)

Portugal et al. (2008) (y1 = 0)

K (g)
n →

{
K (g+1)
n + K (g+1)

n−y(n) with probability Pdiv(n),

K (g+1)
n otherwise.

(1.4)

The deterministic Case A can be viewed as a special case of Case B, for which
Pdiv(n) = 1.

In the following sections, we describe and analyse the models summarised in
Table 1. In Sect. 2 we start with Case A, which describes a population of chromosomes
replicating independently.

2 Case A: deterministic models of telomere shortening in individual
chromosomes

2.1 Formulation of discrete model

In this section we use the replication rule (1.1) to derive a discrete dynamical system
which predicts how the distribution of telomere lengths evolves over the generations.
More precisely, we propose a discrete model which relates the number of telomeres
of length n (n ≥ 0) at generation (g + 1) to the number of telomeres lengths n and ñ
(where ñ− y(̃n) = n at generation g. In general, the amount of telomere lost depends
only on the current telomere length. We generate a continuum limit from the discrete
system by assuming that the distribution varies slowly with respect to both generation
number g and telomere length n. Finally, we construct solutions of the continuum
model and discuss the properties of the solutions.

We start by assuming that replication occurs with probability Pdiv = 1 and that the
number of basepairs lost during replication depends on telomere length via (1.2). The
replication rule (1.1) can then be written as

K (g)
n → K (g+1)

n + K (g+1)
n−(y0+y1n) ,

(
n > nc := y0

1 − y1

)
. (2.1)

Thus chromosomes of length n at generation (g + 1) arise from parent telomeres
with the same length, n, or a slightly longer telomere, of length (n+ y0)/(1− y1) > n.
We remark that if n < nc, then (2.1) would produce a daughter chromosome with a
negative telomere length. Since negative telomere lengths are not physically realistic,
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Table 2 Summary of definitions of parameters and variables together with approximate ranges

Parameter
or variable

Range of values Relative
magnitude

Brief description

Q (3000, 15000) � 1 Maximum telomere length

L (0, 1
30 ) � 1 Typical fraction of telomere lost per generation

y0 (0, 200) LQ Length-independent rate of loss of telomere

y1 (0, 1
30 ) L Coefficient for length-dependent telomere loss

a (0, 1/Q) 1/Q Coefficient for length-dependence in Pdiv
b (−1, 1) O(1) Length-independent component of Pdiv
n (0, Q) O(Q) Telomere length

g (0, 1/L) O(1/L) Generation number

x (log y0, log(y0 + y1Q)) O(1) Rescaled measure of telomere length

τ (0, 2) O(1) Rescaled measure of time

we do not allow such events to occur. In particular, if 0 ≤ n ≤ nc then we assume
that replication does not occur, and in place of (2.1) we have K (g)

n → K (g+1)
n so that

the existing chromosome remains in the population, but does not undergo replication.
Such chromosomes are termed ‘senescent’. Identical results could be obtained by
allowing (2.1) to occur for all n, but only consider n ≥ 0, when analysing the solution
for K (g)

n . The parameters and their ranges are summarised in Table 2.
We now introduce K̃ (g)

n to denote the number of chromosomes with telomere length
n at generation g, that is, K̃ (g)

n represents the concentration of telomere K (g)
n . Hence

we model the process (2.1) via the equation

K̃ (g+1)
n = K̃ (g)

n + K̃ (g)
n+y0
1−y1

, (n ≥ 0). (2.2)

Typically, we assume that initially (g = 0), there is just one chromosome with a
telomere length of Q basepairs, so that

K̃ (0)
n = δn,Q, (2.3)

where δn,Q is the Kronecker delta function (δn,Q = 1 if n = Q, and δn,Q = 0
otherwise). The early generations (g = O(1)) constitute a transient timescale during
which the distribution evolves from the initial condition (2.3) to a smooth distribution.
The effect of replication rule (2.1) on the distribution of telomere lengths is localised,
causing the distribution to spread out (1-sided) and the mean telomere length to fall. In
the next section, from (2.2) we develop a second order pde approximation, which will
need two boundary conditions to be applied at small and large n. Thus it is helpful to
note that the initial conditions (2.3) and evolution Eq. (2.2) discussed above together
imply that K (g)

n = 0 for n < 0 and K (g)
n = 0 for n > Q.
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2.2 Derivation of continuummodel

In normal human cells, telomeres range in length from 3 to 15k basepairs and the
average length of telomere lost during chromosome replication is 50–200 basepairs
(Harley et al. 1990), which ismuch less than the initial telomere length. Thuswe define
Q to be the maximum telomere length, and introduce the small parameter L � 1 to
represent the typical fraction of telomere lost per generation (per chromosome).

Since the relative length of telomere lost per generation isO(10−2), we treat telom-
ere length (n) as a continuous variable. For the special case y1 = 0, telomere loss
y(n) = y0 occurs at a constant rate (2.1), and we define

x = n/Q, and L = y0/Q � 1, (2.4)

so that x = O(1) and the governing evolution Eq. (2.2) can be rewritten as

K̃ (g+1)
n = K̃ (g)

n + K̃ (g)
n+y0 . (2.5)

We introduce the cumulative distribution function G(g)
n defined by K̃ (g)

n = G(g)
n −

G(g)
n−1, which is equivalent to G(g)

n = ∑n
q=0 K̃

(g)
q . From (2.5), we have

G(g+1)
n = G(g)

n + G(g)
n+y0 , (2.6)

with initial data (at generation g = 0) of G(0)
n = H(n − Q), where H(·) is the

Heaviside function (H(x) = 1 if x > 0 and H(x) = 0 if x < 0).
To account for the expected exponential growth in the population, we write

G(g)
n = 2gF(x, τ ), (2.7)

where F(x, τ ) is a cumulative distribution function satisfying the initial and boundary
conditions F(x, 0) = H(x − 1), F(0, τ ) = 0 and F(x, τ ) → 1 as x → +∞. The
boundary conditions correspond to zero-flux conditions which ensure that telomeres
of length greater than Q and less than zero cannot be formed. Using (2.7) together
with (2.4), Eq. (2.6) can be rewritten as

2F(x, τ + L) = F(x, τ ) + F(x + L, τ ). (2.8)

Since the term in (2.8) at τ + L has a coefficient of two, and the terms at τ have
a combined coefficient of two, it is natural to expand about τ + 1

2 L . And since the
term at x + L only has a weighting of one, whereas the terms at x together have
coefficients summing to three, the ‘centre of mass’ of the template (2.8) occurs at
x + 1

4 L . Thus the natural point about which to perform a Taylor series expansion of
(2.8) is (x + 1

4 L, τ + 1
2 L), and performing this expansion yields the pde

Fτ = 1

2
Fx + 1

8
LFxx . (2.9)
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By expanding about (x + 1
4 L, τ + 1

2 L), the coefficients of the terms involving Fττ

and Fxτ vanish and we obtain the pde. We aim to solve (2.9) subject to the boundary
conditions (2.18).

An alternative derivation of (2.9) is available via asymptotic analysis: we note that
the leading order approximation of (2.8) for L � 1 is Fτ = 1

2 Fx , which has a travelling
wave solution of the form F(x, τ ) = F̂(z, T ) where z = x + 1

2τ and T is a new,
longer, timescale. To include the next order correction terms, we introduce

z = x + 1

2
τ, T = Lτ, F̂(z, T ) = F(x, τ ), (2.10)

so that (2.8) can be rewritten as

2F̂

(
z + 1

2
L, T + L2

)
= F̂(z, T ) + F̂(z + L, T ). (2.11)

A Taylor expansion of this equation about (z, T ) gives the pde F̂T = 1
8 F̂zz , which,

when converted back from (z, T ) to (x, τ ), leads to (2.9).
Another method for deriving the continuum limit of (2.8) relies on considering

the behaviour of solutions which are slowly-varying in both x and τ . Since (2.8) and
equations of the form Fτ = cFx +φLFxx are both linear, each possess solutions of the
form F(x, τ ) = e−γ τ−βx , where the relationships between β and γ are respectively

2e−Lγ = 1 + e−Lβ, and γ = cβ − φLβ2. (2.12)

Rearranging the former, and expanding for L � 1, we obtain

γ = −1

L
log

(
1 + e−βL

2

)
∼ 1

2
β − 1

8
β2L. (2.13)

Equating this with the second expression in (2.12), we obtain c = 1
2 , φ = 1

8 and thus
Fτ = 1

2 Fx + 1
8 LFxx as the appropriate approximation of (2.8).

2.3 The general continuummodel

To describe the evolution of the distribution in the general case y1 	= 0, we introduce
a new, continuous variable for telomere length, x(n), and a new timescale, τ , defined,
respectively, by

x = x(n) = log(y0 + y1n), τ = Lg, L := − log(1 − y1) ∼ y1. (2.14)

The motivation for the introduction of x(n) as a measure of telomere length is that
under (2.1) a telomere of length x(n) gives rise to offspring of lengths x(n) and x̃(n),
where
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x̃(n) = x(n − y0 − y1n) = log(y0 + y1n − y0y1 − y21n)

= log((1 − y1)(y0 + y1n)) = log(y0 + y1n) + log(1 − y1) = x(n) − L.

(2.15)

Thus we obtain a model in which the telomere loss is no longer dependent on the
telomere length, x . Defining K̂ (g)(x) = K̃ (g)

n , in place of (2.2), we have

K̂ (g+1)(x) = K̂ (g)(x) + K̂ (g)(x + L). (2.16)

If we introduce the cumulative distribution G(g)(x) defined by K̂ (g)(x) = dG(g)/dx ,
which is equivalent to G(g)(x) = ∫ x

q=0 K̂
(g)(q) dq, then we obtain

G(g+1)(x) = G(g)(x) + (1 − y1)G
(g)

(
x + y0
1 − y1

)
, (2.17)

in which we have assumed that bothG(g)(x) and K̂ (g)(x) change slowly with telomere
length, x . As with (2.6)–(2.7), we aim to solve (2.16) by writing K̂ (g)(x) = 2gF(x, τ )

where τ = Lg.
The appropriate initial and boundary conditions for F are

F(x, 0) = H(x − log(y0 + y1Q)), F(log y0, τ ) = 0,

and F(x, τ ) → 1 as x → ∞. (2.18)

The advantage of reformulating the problem in this way is evident in the theory fol-
lowing (2.8) now being applicable.

2.4 Solution of the continuummodel

The solution of the pde (2.9) with boundary conditions (2.18) is a moving Gaussian
of the form

F(x, τ ) = 1

2

[
1 + erf

(
2x − 2 log(y0) + τ√

2Lτ

)]
. (2.19)

This cumulative distribution corresponds to the Gaussian density f = Fx given by

f (x, τ ) =
√

2

πLτ
exp

(
− 2

Lτ
(x − x0 + 1

2
τ)2

)
. (2.20)
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Fig. 2 Numerical results obtained from (2.22) showing how, for Case A, the distribution of telomere

lengths changes with generation number, g. The scaled distribution of telomere lengths 2−gK (g)
n broadens

and shortens in subsequent generations. Parameter values: Q = 5950, y1 = 1/60, y0 = 50. Key: profiles
are plotted at generations g = 10 (narrow solid line), 40 (narrow dashed line), 70 (thick solid line),100
(thick dotted line)

Recalling from (2.14) and (2.7) that, to leading order,

K̃ (g)
n = K̂ (g)(x) = dG(g)

dx
= 2g f (x, τ )

dx

dn
, (2.21)

we obtain the telomere length distribution in terms of the original variables (n, g) as

K̃ (g)
n ≈ 2g+1 y1

L(y0 + y1n)
√
2πg

exp

(
−2

g

[
1

L
log

(
y0 + y1n

y0 + y1Q

)
+ g

2

]2)
. (2.22)

In Fig. 2 we use (2.22) to plot 2−g K̃ (g)
n against n for fixed values of g in the case

y1 = 1/60, y0 = 50, Q = 5950. As expected, the distribution is bell-shaped and
widens over time. A more detailed analysis of this figure reveals that the leftward
movement slows at later times, and that the distribution is skewed to the right, that is,
it is not symmetric when reflected in the mode, and the decay as n → ∞ is slower
than the decay as n → 0.

Having obtained solutions to the differential Eq. (2.9) which approximate solutions
of the discrete model (2.2), we use (2.21) to transform back to the physically mean-
ingful (n, g)-coordinate systems to interpret and comment on the results. We note
that K̃ (g)

n /
∑

n′ K̃
(g)
n′ is a probability distribution function, with (y0 + y1n) having a

log-normal distribution, that is, log(y0 + y1n) ∼ N (μ̃, σ 2) with

μ̃(g) = log(y0 + y1Q) − 1

2
gL, σ (g) = 1

2
L
√
g. (2.23)
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In terms of the telomere length, n, the mode, median, mean and standard deviation of
the distribution are

nmode = eμ̃−σ 2 − y0
y1

=
(
Q + y0

y1

)
e−Lg/2−L2g/4 − y0

y1
, (2.24)

nmed = eμ̃ − y0
y1

=
(
Q + y0

y1

)
e−Lg/2 − y0

y1
, (2.25)

nmean = eμ̃+σ 2/2

y1
=

(
Q + y0

y1

)
e−Lg/2+L2g/8 − y0

y1
, (2.26)

nsd = eμ̃+σ 2/2
√
eσ 2 − 1

y1
=

(
Q + y0

y1

)
e−Lg/2+L2g/8

√
egL2/4 − 1

∼ 1

2
L
√
g

(
Q + y0

y1

)
e−Lg/2. (2.27)

Under the assumption that g = O(L−1), we have nmed = nmean = nmode to leading
order. Including first order correction terms in L � 1 we have

nmode = nmed − 1

4
L2g(nmed + y0/y1), nmean = nmed + 1

8
L2g(nmed + y0/y1).

(2.28)

The final expression (2.27), which is also obtained using this assumption, shows that
the standard deviation increases with generation number for 0 < g < 1/L and
decreases for g > 1/L .

We denote by K (g)
tot the total number of chromosomes at generation g, byμn(g), the

mean telomere length of a chromosome at generation g, and by φdiv(g), the fraction
of dividing chromosomes. These quantities are defined by

K (g)
tot =

Q∑
n=0

K̃ (g)
n , μn(g) = 1

K (g)
tot

Q∑
n=0

nK̃ (g)
n , φdiv(g) = 1

K (g)
tot

Q∑
n=nc

K̃ (g)
n .

(2.29)

Guided by (2.1), in order for cell division to occur, we require n > nc (2.1), so that
all daughter chromosomes have telomeres above the threshold length. Chromosomes
with telomeres of length 0 < n < nc exist but cannot replicate; we term these cells
‘senescent’ and note that the fraction of such senescent chromosomes is φsen(g) =
1 − φdiv(g). These cells contribute to K (g)

tot and μn(g) but not to φdiv(g).
To illustrate features of the distribution of telomere lengths, in Fig. 3 we plot the

mean telomere length μn(g) and the fraction of dividing chromosomes φdiv(g) over
many generations. From the left panel of Fig. 3 we note that, in general, the loss of
telomere is in general not linear over time.

Before considering Case B for which both telomere loss and the probability of
replication are telomere-length dependent, we pause to consider the case for which
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Fig. 3 Left: plot of the mean telomere length over 120 generations. The thicker solid line corresponds to
the case Q = 5950, y0 = 50, y1 = 1/60 illustrated in Fig. 2, the narrower solid line to the case y0 = 100,
y1 = 0. In both cases, dotted lines show two standard deviations above and below the mean. Right: the
proportion of dividing chromosomes φdiv (solid lines) decrease over time as the telomeres shorten, and
φsen (dashed). For the case y1 = 0, y0 = 100, we observe the formation of senescent chromosomes around
generation 100

the number of base pairs lost per replication is constant, that is, y1 = 0 in (2.22). It is
straightforward to show that in place of (2.22) we have

K̃ (g)
n = 2g+1

y0
√
2πg

exp

(
− 2

y20g

(
Q − n − 1

2
y0g

)2
)

. (2.30)

Thus the distribution of telomere lengths is Gaussian, with a mean μn(t) = (Q −
1
2 y0t) which decreases linearly with time, and a standard deviation σn(t) = 1

2 y0
√
t ;

these results support those presented by Levy et al. (1992), who assumed that the
distribution was binomial, and obtained a linear dependence of the mean with time.
The proportion of senescent cells is given by

φsen(g) =

y0∑
n=0

K̃ (g)
n

Q∑
n=0

K̃ (g)
n

≈
erf

(
2Q − y0g

y0
√
2g

)
− erf

(
2Q − y0g − 2y0

y0
√
2g

)

1 + erf

(
2Q − y0g

y0
√
2g

) . (2.31)

In the more general case, where y1 > 0, the fraction of senescent cells is given by
φsen(g) = ∑nc

n=0 K
(g)
n /

∑Q
n=0 K

(g)
n where nc = y0/(1− y1), by restricting replication

to chromosomes with n > nc we prevent the formation of physically unrealistic
daughter chromosomes with nonpositive telomere lengths.

3 Case B: probabilistic chromosomal model of division

3.1 Problem formulation

We now generalise the analysis of the previous section to situations in which the
probability of replication is telomere length-dependent. In more detail, we return to
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the formulation of models of cell division in which generation number g is discrete,
telomeres are measured in terms of the number of base pairs, n and the number of
chromosomes at generation g with telomere length n is denotes by K (g)

n .
We suppose that a chromosome whose telomeres have length n, divides with

probability Pdiv(n) = an + b where the constants a and b, are chosen so that
0 ≤ Pdiv(n) ≤ 1. Since 0 ≤ n ≤ Q, the relevant restrictions on a, b are
0 ≤ b ≤ 1 and −b/Q ≤ a ≤ (1 − b)/Q. In addition, we assume Pdiv(n) = 0
when n < nc = y0/(1 − y1).

With Pdiv(n) = an + b and y(n) = y0 + y1n, the reaction equation for a single
chromosome can be written as

K (g)
n →

{
K (g+1)
n + K (g+1)

n−(y0+y1n) with probability Pdiv(n) = an + b ,

K (g+1)
n otherwise.

(3.1)

where 0 ≤ n ≤ Q since the parent chromosome remains in the population regardless of
whether replication occurs. Taken together, these replication rules lead to the following
equation for the distribution of telomere lengths on generation (g + 1)

K̃ (g+1)
n = K̃ (g)

n +
(
b + a(n + y0)

1 − y1

)
K̃ (g)

n+y0
1−y1

, (3.2)

which we again solve in g > 0, for lengths 0 ≤ n ≤ Q, subject to the initial data
K 0
n = δn,Q .
At the start of replication, n ≈ Q and the fraction of telomere lost per division event

is y0/Q + y1. By contrast, when n is small, replication ends and the fraction of the
original telomere length lost per replication is y0/Q. As before, we introduce a small
parameter L � 1 and assume y0/Q = O(L) and y1 = O(L), so that telomere loss is
always small. Under these assumptions, we can perform a Taylor series expansion of
the governing Eq. (3.2) in terms of the small parameter, L . As in Case A (see (2.4)),
we introduce the scalings

x = n

Q
, (0 ≤ x ≤ 1), τ = Lg, L � 1, x, τ = O(1), (3.3)

y0 = QL ỹ0, y1 = L ỹ1, ỹ0, ỹ1, a, b = O(1). (3.4)

Following Eq. (2.7), we write

K̃ (g)
n = ξ(τ ) f (x, τ ), (3.5)

where we assume that the distribution is normalised, via
∫ 1
0 f (x, τ ) dx = 1.We define

the mean of the distribution f (x, τ ) by

μ̂(τ ) =
∫ 1

0
x f (x, τ ) dx . (3.6)
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From (3.2), the governing equation is thus

ξ(τ + L)

ξ(τ )
f (x, τ + L) = f (x, τ ) +

(
b + aQ(x + L ỹ0)

1 − L ỹ1

)
f

(
x + L ỹ0
1 − L ỹ1

, τ

)
.

(3.7)

We expand the delay in the argument of f in (3.7), to obtain

ξ(τ + L)

ξ(τ )
f (x, τ + L) = f (x, τ ) +

(
b + aQ(x + L ỹ0)

1 − L ỹ1

)
f (x + LΔ1 + L2Δ2, τ ),

Δ1 = (ỹ0 + ỹ1x), Δ2 = ỹ1(ỹ0 + ỹ1x). (3.8)

Performing a Taylor expansion of the last term, f (x + LΔ1 + L2Δ2), toO(L2) gives

f + LΔ1 fx + L2Δ2 fx + 1

2
L2Δ2

1 fxx . (3.9)

We now Taylor expand the small differences in the τ -argument of f (·, ·), also to
O(L2), to obtain the pde

ξ(τ + L)

ξ(τ )

(
f + L fτ + 1

2
L2 fττ

)
= 1

2
L2D(x) fxx + Lv(x) fx + Γ (x) f , (3.10)

where

D(x) = (b + aQx)(ỹ0 + ỹ1x)
2, (3.11)

v(x) = (b + aQx)(ỹ0 + ỹ1x) + L(ỹ0 + ỹ1x)(bỹ1 + aQỹ0 + 2aQỹ1x), (3.12)

Γ (x) = (1 + b + aQx) + aQL(ỹ0 + ỹ1x) + aQL2 ỹ1(ỹ0 + ỹ1x). (3.13)

Due to the x-dependence in the coefficients on the rhs of (3.7), it is not possible
to simultaneously remove the terms involving both fττ and fxτ by expanding around
(x + δL, τ + σ L) for some δ, σ . However, our choice of δ = 0 = σ means that no
fxτ terms are generated.
To find an expression for ξ(τ +L)/ξ(τ ), we integrate (3.10) with respect to x , using

(3.6) and
∫

f dx = 1. We assume the boundary conditions f (x) → 0 as x → ±∞,
so that

∫
v(x) fxdx = − ∫

v′(x) f dx and
∫
D(x) fxxdx = ∫

D′′(x) f dx ; whereupon
we find

ξ(τ + L) = ξ(τ ) [ 1 + b + aQμ̂ − L ỹ1(b + aQμ̂)] , (3.14)

This equation can be solved for ξ(τ ), once μ̂(τ ) has been determined; this in turn
requires some knowledge of f (x, τ ). In practice, we use (3.14) to eliminate ξ(τ ) from
(3.10), which yields

θ fτ + 1

2
θL fττ = 1

2
LD fxx + v fx + Υ f + L−1aQ(x − μ̂) f , (3.15)
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where D, v are given by (3.11)–(3.12) and

θ = 1 + b + aQμ̂ − L ỹ1(aQμ̂ + b) ≡ ξ(τ + L)/ξ(τ ), (3.16)

Υ = (bỹ1 + aQỹ0 + aQỹ1x + aQỹ1μ̂) + aQỹ1L(ỹ0 + ỹ1x). (3.17)

Although our main focus is on the range 0 < x < 1, Eq. (3.15) is well-defined on
the whole of R. For simplicity we work with the boundary conditions

f (x, τ ) → 0, as x → ±∞, (3.18)

since f (x, 0) = 0 for x > 1 and Eq. (3.15) advects to the left (smaller x). Since f = 0
for x < 0, we expect f → 0 as x → −∞. Whilst the advection term in Eq. (3.15)
will eventually cause f (x, τ ) to become significant in x < 0, we neglect these since
they correspond to the offspring of senescent telomeres and are only formed after the
population has become senescent. Hence, we also have fx , fxx → 0 as x → ±∞.

In order to specify the initial condition for (3.15), we recall that K (0)
n = δQ,n , which

implies that the cumulative distribution for K (0)
n is

∑q
n=−∞ K (0)

n = H(q − Q). Thus
the cumulative distribution corresponding to f (x, 0), namely ξ(0)

∫ x
−∞ f (x, 0) dx ,

should be given by H(x − 1) and

f (x, 0) = δ(x − 1). (3.19)

Since (3.15) is second order in τ , we formally require two initial conditions. How-
ever, this equation is overdamped, and we are mainly concerned with the solutions at
later times, which we obtain by solving the first-order problems obtained by truncating
the asymptotic expansions in L � 1. Therefore we specify only (3.19).

In the next subsection, we consider the leading order equation, and derive an exact
expression for the mean telomere loss over many generations. By performing a more
detailed asymptotic calculation in Sect. 3.3, we derive analytic expressions for the
shape of the distribution at early times.

3.2 Analysis of the leading order PDE

To O(L), Eq. (3.15) reduces to the first-order wave equation

(b + aQμ̂ + 1) fτ = (b + aQx)(ỹ0 + ỹ1x) fx + L−1aQ(x − μ̂) f

+ (bỹ1 + aQỹ0 + aQỹ1μ̂ + aQỹ1x) f , (3.20)

which we solve using the method of characteristics. Since f (x, 0) = δ(x − 1),

f (x, τ ) = A(τ ) δ (A(τ ) [x − μ̂(τ )]) , (3.21)

and μ̂(τ ) is determined by the characteristic that passes through x = 1 at τ = 0:

dμ̂

dτ
= − (b + aQμ̂)(ỹ0 + ỹ1μ̂)

(1 + b + aQμ̂)
, μ̂(0) = 1. (3.22)
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which can be solved implicitly, for the general case, by

τ(μ̂) = 1

ỹ1
log

(
ỹ0 + ỹ1
ỹ0 + ỹ1μ̂

)
+ 1

aQỹ0 − bỹ1
log

(
(b + aQ)(ỹ0 + ỹ1μ)

(b + aQμ̂)(ỹ0 + ỹ1)

)
. (3.23)

Expression (3.23) is valid if ỹ1 	= 0 and aQỹ0 	= bỹ1. In the special case ỹ1 = 0, the
solution of (3.22) is

τ(μ̂) = 1 − μ̂

ỹ0
+ 1

aQỹ0
log

(
b + aQ

b + aQμ̂

)
, (3.24)

and when aQỹ0 = bỹ1, we have

τ(μ̂) = 1

ỹ1
log

(
b + aQ

b + aQμ̂

)
+ aQ(1 − μ̂)

ỹ1(b + aQ)(b + aQμ̂)
, (3.25)

neither of which can be recast into explicit expressions for μ̂(τ ) with elementary
functions.

An approximation of the time to senescence is given by τsen = τ(0) which, from
(3.23), yields

τsen = 1

ỹ1
log

(
1 + ỹ1

ỹ0

)
+ 1

aQỹ0 − bỹ1
log

(
1 + aQ/b

1 + ỹ1/ỹ0

)
; (3.26)

the corresponding expressions for the time of onset of senescence in the special cases
y1 = 0 and aQỹ0 = bỹ1 are

τsen = 1

ỹ0
+ 1

aQỹ0
log

(
1 + aQ

b

)
, τsen = 1

ỹ1
log

(
1 + aQ

b

)
+ aQ

bỹ1(b + aQ)
,

(3.27)

respectively.
The amplitude, A(τ ), in (3.21) solves

d(log A)

dτ
= bỹ1 + aQỹ0 + 2aQỹ1μ̂

1 + b + aQμ̂
. (3.28)

Dividing the corresponding sides of (3.28) by (3.22) and integrating with respect to μ̂

supplies

A(τ ) = A(τ (μ̂)) = (b + aQ)(ỹ0 + ỹ1)

(b + aQμ̂)(ỹ0 + ỹ1μ̂)
. (3.29)

Using (3.29) to substitute with A(τ ) in (3.21), we deduce

f (x, τ ) = (b + aQ)(ỹ0 + ỹ1)

(b + aQμ̂(τ ))(ỹ0 + ỹ1μ̂(τ ))
δ

(
(b + aQ)(ỹ0 + ỹ1)[x − μ̂(τ )]
(b + aQμ̂(τ ))(ỹ0 + ỹ1μ̂(τ ))

)
,

(3.30)
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where μ̂(τ ) is given implicitly by (3.27) if y1 = 0 or aQỹ0 = bỹ1 and Eq. (3.23)
otherwise.

Returning to (3.14), now with expressions determining the mean μ̂(τ ), we evaluate
the population size, ξ(τ ), by summing the leading order terms over 0 ≤ g = τ ′/L ≤
G − 1 = τ/L − 1

log(ξ(τ ′ + L)) − log(ξ(τ ′)) = log(1 + b + aQμ̂(τ ′)), (3.31)

to obtain

log ξ(τ ) ∼ 1

L

∫ τ

τ ′=0
log(1 + b + aQμ̂(τ ′)) dτ ′

=
∫ 1

μ=μ̂(τ )

(1 + b + aQμ) log(1 + b + aQμ)

(b + aQμ)(ỹ0 + ỹ1μ)
dμ. (3.32)

In the special case ỹ1 = 0, we have

log(ξ(τ )) = 1

aQy0

[
(1 + b + aQ) log(1 + b + aQ)

−(1 + b + aQμ̂) log(1 + b + aQμ̂)

− aQ(1 − μ̂) + Li2(−b − aQμ̂) − Li2(−b − aQ)] , (3.33)

where Li2(·) is a dilogarithm (Olver et al. 2010; Abramowitz and Stegun 1972)
(Li2(z) = − ∫ z

0 t−1 log(1 − t)dt = ∑∞
n=1 z

n/n2).
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Fig. 4 Plots of the mean telomere length Qμ(τ) and population size ξ(τ ) as defined by Eqs. (3.23) and
(3.32) respectively against generation number g = τ/L for various choices of a, b, y0, y1. In both panels:
the thick solid line corresponds to y0 = 50, y1 = 1/60, a = 0.8/Q, b = 0.2; the thick dashed line
corresponds to y0 = 100, y1 = 0, a = 0.8/Q, b = 0.2; the narrow solid line corresponds to y0 = 50,
y1 = 1/60, a = 1/Q, b = 0; and narrow dashed lines correspond to y0 = 50, y1 = 1/60, a = 0, b = 1
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In Fig. 4, we show how, for Case B, the mean μ̂(τ ) and the total number of chro-
mosomes ξ(τ ), as defined by Eqs. (3.23) and (3.32), change over time when L � 1.
We note that when b = 1, a = 0 we have Pdiv = 1 and so recover Case A; when the
telomere loss is constant, with y0 = 100 bp per generation (narrow dashed line) we
observe exponential growth of the population, and an approximately linear reduction
in average telomere length, confirming the earlier analysis. The thick dashed line,
where telomere loss is constant, and Pdiv = 0.2+ 0.8(n/Q) also gives approximately
linear loss in average telomere length, but now with a rate of population increase
which slows at later generations. The two cases for which both telomere loss and
replication probability are telomere-length dependent yield population growth curves
which slow at later times. Additionally, the rate at which the average telomere length
shortens decreases with generation number, and also show average telomere lengths
decreasing with time in a nonlinear fashion.

From the first-order pde (3.20), we have found approximations to the average
telomere length, μ(τ) and the number of chromosomes, ξ(τ ), for the general case
where both the probability of replication and amount of telomere lost depend on
telomere length (with L � 1). In order more accurately to describe the distribution
in the next subsection we retain second-order derivatives in our pde approximation to
the underlying discrete model.

3.3 Early time asymptotic analysis of second-order pde

Our analysis of the (leading order) first-order pde (3.20) supplies expressions for the
number of chromosomes, ξ(τ ), and the mean telomere length, μ̂(τ ) given by (3.22)–
(3.23). Since the distribution is given as a Dirac δ-function, these expressions do not
provide information about the variance of the distribution. In order to determine how
the distribution evolves over time, we introduce new variables (z, T ) which are chosen
to retain the second-order spatial derivative from (3.15). Thus we define

x = μ̂(τ ) + L2/3z, τ = L1/3T , (3.34)

so that the typical deviation of telomere lengths from the mean, x = μ̂ is of magni-
tude O(L2/3) and z = O(1). With T = O(1), this description corresponds to early
times, τ = O(L1/3). We write f (x, τ ) = L−2/3 f̃ (z, T ) so that the initial condition
f (x, 0) = δ(x − 1) and global constraint

∫
f (x, τ ) dx = 1 imply

f̃ (z, 0) = δ(z),
∫

f̃ (z, T ) dz = 1. (3.35)

In terms of the new variables, the pde (3.15)–(3.17) becomes

θ
∂ f̃

∂T
= (D − θμ′2)

2

∂2 f̃

∂z2
+

(
v + θμ̂′(τ )

L1/3

)
∂ f̃

∂z
+ aQz f̃ , (3.36)
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where primes denote derivatives with respect to the argument, and the leading order
(in L � 1) expressions for the parameters are

μ̂′(τ ) = − (b + aQμ̂)(ỹ0 + ỹ1μ̂)

(1 + b + aQμ̂)
,

θ = 1 + b + aQμ̂,

D = (b + aQμ̂)(ỹ0 + ỹ1μ̂)2,

v = (b+aQμ̂)(ỹ0+ ỹ1μ̂)+L2/3(λ(T )+z)(aQỹ0+bỹ1+2aQỹ1μ̂).

(3.37)

To satisfy Eq. (3.36) at leading order, we note that v + θμ̂′ = O(L1/3), from
(3.22) and the definitions of θ, v above. However, there will be some correction term,
which, for the simplicity of later calculations, we write as v + θμ̂′ = L1/3λ′′(T ). The
function λ(T ) will be determined via the normalisation condition

∫
f̃ dz = 1. Under

these assumptions, Eq. (3.36) reduces to

θ
∂ f̃

∂T
= 1

2
D̃

∂2 f̃

∂z2
+ λ′′(T )

∂ f̃

∂z
+ aQz f̃ , (3.38)

where D̃ = D − θμ′2. Since T = O(1) corresponds to an initial short timescale, in
which τ = O(L1/3), the mean telomere length is given by μ̂(τ ) = 1. In this case, the
coefficients in (3.38) take the constant values θ = 1+b+aQ, D = (b+aQ)(ỹ0+ ỹ1)2

and D̃ = (b + aQ)(ỹ0 + ỹ1)2/(1 + b + aQ).
Taking the Fourier transform of (3.38) with f̂ (k, T ) = ∫

eikz f̃ (z, T ) dz, we obtain

θ
∂ f̂

∂T
+ aQi

∂ f̂

∂k
=

[
−1

2
D̃k2 − ikλ′′(T )

]
f̂ , (3.39)

where the initial data and global constraint (3.35) imply f̂ (k, 0) = 1, and f̂ (0, T ) = 1.
The general solution of (3.39) is

f̂ (k, T ) = Ĉ(aQT + iθk)

× exp

(
D̃a2Q2T 3

6θ3
+ i D̃aQT 2k

2θ2
− D̃T k2

2θ
− ikλ′(T )

θ
− aQλ(T )

θ2

)
,

(3.40)

where Ĉ(·) is an arbitrary function and, without loss of generality, we assume λ(0) =
0 = λ′(0).

The initial condition and global constraint (3.35) imply Ĉ(q) ≡ 1 and
λ(T ) = D̃aQT 3/6θ so that the solution of the Fourier Transform Eq. (3.39)
is given by f̂ (k, T ) = exp(−D̃T k2/2θ). Inverting the transform via f̃ (z, T ) =
(2π)−1

∫
e−ikz f̂ (k, T )dk leads to

f̃ (z, t) =
√

θ√
2π D̃T

exp

(
− θ z2

2D̃T

)
. (3.41)
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Fig. 5 Illustration of the
numerical solution of (3.15) in
the case L = 0.01, Q = 5950,
a = 0.8/Q, b = 0.2, y0 = 50,
y1 = 1/60, plotted at τ = 0 (cut
off), 0.005, 0.01, 0.02, 0.05, 0.1,
0.2, 0.4, 0.6, 0.8, 1.0

0 0.2 0.4 0.6 0.8 1
x

0

5

10

15

f(x
,

)
This distribution is a Gaussian pulse which converges to a Dirac δ-function as

T → 0+, and which spreads with the standard z ∼ √
T scaling as T → ∞.

Recalling (3.37), we obtain

f (x, τ ) = (1 + b + aQ)

(ỹ0 + ỹ1)
√
2πLτ(b + aQ)

exp

(
− (1 + b + aQ)2 (x − μ̂(τ ))2

2Lτ(b + aQ)(ỹ0 + ỹ1)2

)
,

(3.42)

which is valid for τ = O(L1/3) and x − μ̂(τ ) = O(L2/3), where μ̂(τ ) ∼ 1 − τ(b +
aQ)(y0 + y1)/(1 + b + aQ). Over the longer timescale (τ = O(1)), the distribution
becomes skewed as shown in the numerical solution presented in Fig. 5, which is due
to the effect of the x-dependence of the coefficients (3.11)–(3.17), in (3.15).

3.4 Summary

In Sects. 2 and 3we derived twomodels for the evolution of telomere lengths over time
in a population of replicating chromosomes.We used asymptoticmethods to determine
the shape of the distribution in various cases. For Case A, all chromosomes replicate,
with probability one on each generation, provided their telomeres are sufficiently long.
and the distribution has a Gaussian or a log-normal shape. For Case B, the probability
of chromosome replication depends on telomere length. We obtain an expression for
the evolution of the mean for all times, and show that at early times, the distribution
is Gaussian; however, the scaling for the dependent variables (3.34) is nonstandard.

The analyses for Cases A and B describe a population of chromosomes with each
replicating independently. In practice, this description is overly simplistic: cells con-
taining multiple (N = 46) chromosomes replicate and the checkpoints on replication
occur at the cell level. Hence in the next sectionwe incorporate this level of complexity
and consider a population of cells, each of which contains N chromosomes.

4 Case A: deterministic cell-level model of normal ageing

In this section,we upscale themodel fromSect. 2,which describes populations of chro-
mosomes replicating independently, to investigate cell populations, in which each cell
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contains N -chromosomes. Our model describes the distribution of telomere lengths of
the chromosomes within each cell. In this section we consider the fully deterministic
Case A, and in Sect. 5 we consider the more general probabilistic model, Case B, from
Sect. 3.

We will assume that a cell can only replicate if all of its N = 46 chromosomes have
telomeres which exceed the threshold length; if the length of any telomere falls below
the threshold, the cell becomes senescent and it will not replicate further, although it
will remain a viable member of the cell population. During cell division, each chro-
mosome replicates, producing two daughter chromosomes, which are allocated to the
two daughter cells randomly and independently of the other replicating chromosomes.
In contrast to the models presented in Sects. 2 and 3, it is now highly likely that the
total telomere length of each daughter cell will be less than that of their parent. We
consider the same rules for chromosome replication as in (1.1); we use m, to denote
the total telomere length in the cell and Y (m), to denote the total amount of telomere
lost during each replication event.

4.1 Development of discrete cell-scale model

As in (2.2), when a cell divides, each chromosome produces one daughter chromosome
with the same telomere length as the parent and a second with shorter telomere length.
When specifying replication rules, we number chromosomes in a cell using r , with
1 ≤ r ≤ N . Following (1.1), we write

K (r ,g)
nr → K (r ,g+1)

nr + K (r ,g+1)
nr−y(nr )

, (4.1)

where nr denotes the telomere length of the r th chromosome (1 ≤ r ≤ N ) in a
given cell, g represents the generation number, and y, the amount of telomere lost
from one daughter chromosome upon replication. By analogy with (1.2) we define
y(nr ) = y0 + Ny1nr , where y0, y1 are constants; this form is chosen to simplify later
calculations. Combining N chromosomes into one cell, and describing the state of
each cell solely by its total telomere length, m, and generation number, g, we define

C (g)
m =

N⋃
r=1

K (r ,g)
nr , where m =

N∑
r=1

nr , (0 ≤ m ≤ NQ). (4.2)

with the aim of summing (4.1) over N chromosomes, to form a replication rule for
cell C (g)

m .
We now simplify the telomere loss rule. A model that includes information on the

telomere length of each chromosome in a cell would not be analytically tractable.
Since we propose to only retain information on the total telomere length of the cell,
we assume telomere loss Y (m) depends only on the total telomere length in the cell,
m. Thus, for each chromosome (r ), we write

Y (m) = y0 + my1, (4.3)
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which replaces the term y(nr ) in (4.1). To confirm this expression is consistent with
the individual loss term y(nr ) = y0 + Ny1nr , we calculate the maximum total loss
of telomere, which is given by NY (m), and

NY (m) =
∑
r

y(nr ) =
∑
r

[y0 + Ny1nr ] = Ny0 + Ny1
∑
r

nr = N (y0 + y1m).

(4.4)
If we assume that shortening of the r th chromosome can be inherited by either

daughter cell, then there are 2N different ways of allocating the longer and shorter
daughter chromosomes to the two daughter cells. If we assume that each arrangement
is equally likely, then we have

C (g)
m → C (g+1)

m− jY (m) + C (g+1)
m−(N− j)Y (m), (0 ≤ j ≤ N ) with probability

1

2N

(
N
j

)
.

(4.5)

by combining (4.1) with (4.2). The number of shortened chromosomes a daughter cell
inherits determines the amount by which its telomere length is reduced, this can vary
between zero and NY (m) bps. Cells with telomere length m can be the offspring of
cells with telomere length (m + j y0)/(1 − j y1) for any 0 ≤ j ≤ N . Summing (4.5)
over all possibilities, weighted according to the corresponding probabilities, gives a
discrete evolution equation for C (g)

m , the number of cells at generation g with total
telomere length m,

C (g+1)
m = 1

2N

N∑
j=0

(
N
j

) [
C (g)

m+ j y0
1− j y1

+ C (g)
m+(N− j)y0
1−(N− j)y1

]
= 2

2N

N∑
j=0

(
N
j

)
C (g)

m+ j y0
1− j y1

. (4.6)

The simplification is due to the summand being invariant under the transformation
j �→ N − j . Typically, we solve this model subject to the initial conditions C (0)

m =
δm,NQ , which corresponds to a single cell with total telomere length m = NQ at
generation zero.

4.2 Deterministic continuum cell-level model

We start by reformulating (4.6) in terms of the cumulative distribution function G(g)
m

which satisfies C (g)
m = G(g)

m − G(g)
m−1, which is equivalent to G(g)

m = ∑m
q=0 C

(g)
q .

Hence

G(g+1)
m = 2

2N

N∑
j=0

(
N
j

)
G(g)

m+ j y0
1− j y1

. (4.7)

If we permit telomeres of negative lengths to form (i.e. m < 0), then the number of
telomeres doubles every generation and the boundary conditions for the cumulative
distribution function are
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G(g)
m → 0 as m → −∞,

G(g)
m → 2g as m → ∞, (4.8)

since, at the start of the simulations we have one cell with total telomere given by
m = m0 = NQ. To determine the shape of the distribution, we rescale to remove the
exponential growth by writing G(g)

m = 2gF(x, τ ), where x = x(m) and τ = Lg are
new independent variables.

The dimensionless small parameter, L , is defined by the small initial relative rate
of loss of telomere, that is

N (y0 + y1NQ)

NQ
=: L � 1. (4.9)

We introduce rescaled parameters

y0 = LQỹ0, y1 = L ỹ1
N

, ỹ0, ỹ1, N = O(1), (4.10)

Following (2.14), we replace the discrete variable m (with 0 ≤ m ≤ NQ) by the
continuous variable x , where

x = log(QN ỹ0 + mỹ1), log(QN ỹ0) ≤ x ≤ xmax := log(NQ(ỹ0 + ỹ1)). (4.11)

It has already been noted that cells with telomere length m̃ = (m + j y0)/(1 − j y1)
give rise to daughters of length m; correspondingly, daughter cells with parameter x
arise from parents with parameter x̃ given by

x̃ = x − log

(
1 − j ỹ1L

N

)
∼ x + j ỹ1L

N
+ j2y21 L

2

N 2 . (4.12)

where we have used log(1 − h) ∼ −h − 1
2h

2 for h � 1. Combining the asymptotic
scalings (4.10) with the change of variable (4.11), the expansion (4.12), τ = Lg and
G(g)

m = 2gF(x, τ ), Eq. (4.7) implies

F

(
x − ỹ1L

4
, τ + L

2

)

=
N∑
j=0

2−N
(
N
j

)
F

(
x − ỹ1L

4
+ j ỹ1L

N
+ j2 ỹ21 L

2

N 2 , τ − L

2

)
. (4.13)

The discrete differences in this model can, with good accuracy, be replaced by
derivatives; using Taylor’s series, based on L � 1 and j ỹ1L/N � 1. Here we have
introduced the shifts x �→ x − 1

4 ỹ1L (δ = O(1)) and τ �→ τ − 1
2 L so that when we

perform the Taylor series expansion in L � 1, the coefficients of Fττ or Fxτ vanish.
Thus we obtain
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Fτ = vFx + DFxx , v = 1

2
ỹ1 + 1

4
L ỹ21

(
1 + 1

N

)
, D = L ỹ21/N . (4.14)

We solve (4.14) subject to the initial conditions F(x, 0) = H(x−xmax), where H(·)
is the Heaviside function, and the boundary conditions F(x, τ ) → 0 as x → −∞
and F(x, τ ) → 1 as x → +∞ which together imply

F(x, τ ) = 1

2

[
1 + erf

(
x + vτ − xmax

2
√
Dτ

)]
. (4.15)

Equation (4.15) corresponds to the cumulative distribution function for a Gaussian
distribution which has density

f (x, τ ) = ∂F

∂x
= 1

2
√

πDτ
exp

(
− (x + vτ − xmax)

2

4Dτ

)
. (4.16)

Rewriting (4.16) in terms of telomere length,m, and generation number, g, we deduce
that the distribution of telomere lengths is given by a log-normal distribution. In more
detail, we have C (g)

m = 2g(∂F/∂x)(dx/dm), so that

C (g)
m = 2g+1

(y0 + y1m)
√
2πNg

exp

(
− 2

Ny21g

[
log

(
y0 + y1m

y0 + NQy1

)
+ 1

2
Ny1g

]2)
.

(4.17)

In the special case y1 = 0, we define x = m/NQ so that 0 ≤ x ≤ 1, and in place
of (4.12), we have x̃ = x + j y0/NQ = x + j ỹ0L/N . When y1 = 0, Eqs. (4.14) and
(4.17) are replaced by

∂F

∂τ
= ỹ0

2

∂F

∂x
+ L ỹ20

8N

(
1 + 1

N

)
∂2F

∂x2
, (4.18)

and

C (g)
m = 2g+1

y0
√
2πNg

exp

(
− 2

Ngy20

[
m − NQ + 1

2
y0Ng

]2)
, (4.19)

which gives a standard Gaussian distribution, with a mean that reduces linearly over
time, and a standard deviation which increases with

√
g.

The solutions (4.19) and (4.17) are similar to the chromosome-level results (2.22),
which are plotted in Fig. 3. Before illustrating the behaviour of the cell-level model,
we explore the distribution of telomere lengths within each cell so as to determine
when senescence occurs.
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4.3 Determination of time to senescence

A cell will not divide if the telomere length of any of its chromosomes falls below the
critical length, here taken to be zero. To determine when a cell reaches senescence,
we must determine the length of its shortest telomere. We now develop a method for
approximating the length of the shortest telomere in a cell so that ourmodel can predict
the time of the onset of senescence.

In each cell there is a subpopulation of N telomeres, whose lengths at generation g
we define by {S(g)

j }Nj=1. Since daughter telomeres are randomly allocated to daughter

cells, the length of each telomere S(g)
j is effectively given by a random number R/N

where R is drawn from the distribution C (g)
m /

∑
m C (g)

m . If we randomly pick a sample
of N such variables, label them {r1, . . . , rN } and then order them so that xi = r j
for some permutation such that x1 < x2 < x3 . . . < xN , then x1 = min j {r j }. The
minimum of the sample x1 is distributed according to the first order statistic.

Given the probability density function f (r) and the cumulative distribution function
(cdf) F(r) for the variables r j , the probability density function f1 and cumulative
distribution function F1 of the first-order statistic x1 = min j {r j } (Hogg and Craig
1970) are

f1(x1) = N (1 − F(x1))
N−1 f (x1) , F1(x1) = 1 − (1 − F(x1))

N . (4.20)

To illustrate, we consider aGaussian distributionwhere the pdf and cdf of a N (μ, σ )

are given by

f (r) = 1

σ
√
2π

exp

(
− (r − μ)2

2σ 2

)
, F(r) = 1

2

(
1 + erf

(
r − μ

σ
√
2

))
. (4.21)

In the left panel of Fig. 6, the narrow line represents the pdf f (r) for the case of zero
mean and unit standard deviation, N (0, 1). The thicker line represents the distribution
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f
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Fig. 6 Left: probability distribution function (pdf) for the Gaussian, N(0,1), (narrow line, given by (4.21),
defined for all x), and that of the lowest order statistic of N = 46 chromosomes (thicker line), given by
(4.20). Right: similar plots for the log-normal distribution where log X ∼ N (μ, σ ) with μ = 0 ( f =
exp(−(log x −μ)2/2σ 2)/xσ

√
2π , which is only defined for x > 0). The pdf (thin line) for the case σ = 1

has a maximum near x = 0.4 and the pdf of the first order statistic (4.20) has a maximum near x = 0.1;
the case σ = 0.25 has a pdf with maximum just below x = 1 and the first order statistic has a maximum
around x = 0.5
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of the first order statistic, f1(x1) given by (4.21), that is, x1 = min j {r j } and {r j }Nj=1
are N = 46 sample random variables sampled from the distribution f (r) (4.20). The
distribution of the first order statistic f1(x1) is noticeably shifted to the left when
compared to f (r). It also skewed and has a smaller variance.

The mean of the first order statistic can be calculated as E[ f(1)(x1)] = −2.216.
Whilst the standard deviation of the normalised Gaussian is unity, that of the first order
statistic with N = 46 is 0.469—significantly smaller than that for the population as a
whole. Themode of the pdf of the first order statistic, f1(x1), is given by the maximum
of f1(x1), which occurs when f ′

1(x1) = 0, that is

x1
2

(
1 − erf

(
x1√
2

))
= − (N − 1)√

2π
e−x21/2 . (4.22)

SolvingEq. (4.22) numerically in the case N = 46 yields x1 = −2.084. Themedian
of the distribution f(1)(x1) is given by F(1)(x1) = 1

2 , which implies erfc(x1/
√
2) =

21−1/N ; solving this equation numerically, gives the value x1 = −2.171 when N =
46. Thus, the median and mode are similar, but not identical, to the mean value. To
summarise, for a Gaussian distribution of telomere lengths, the length of the shortest
of N = 46 telomeres is just over two standard deviations below the mean.

The right-hand panel of Fig. 6 illustrates two cases of a log-normal distribution,
where log X ∼ N (0, 1) and log X ∼ N (0, 1

4 ). Given log X ∼ N (μ, σ ), we have

E[X ] = eμ+σ 2/2 and V[X ] = E[X2] − E[X ]2 = e2μ+σ 2
(eσ 2 − 1). The smaller

value of σ gives rise to a distribution with a smaller mean, that is more skewed, and
correspondingly, a smaller first order statistic.

We now return to the full solution for telomere length distributions (4.17) and (4.19).
Figures 7 and 8 show that when y1 = 0, the telomere length decreases over time at
a uniform rate; when y1 > 0 the shortening rate reduces in the later generations. We
note also that when y1 = 0, the distribution spreads considerably, whilst when y1 > 0,

0 5000

tel length, m/N
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1
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f

10 -4
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0 5000

tel length, m/N
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0.5
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pd
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Fig. 7 Left, thick lines show the pdf of telomere lengthsC(g)
m /

∑
m C(g)

m from (4.19), plotted against average
telomere lengthm/N , at generations g = 5, 20, 40, 60, 80,100, 120, for the case y0 = 100, y1 = 0. Narrow
lines illustrate the pdf of the first order statistic (4.21) of N = 46 chromosomes. Right, similar but for

y0 = 50, y1 = 1/60 with C(g)
m given by (4.17). To allow comparison with Figs. 2 and 3, the horizontal

axis has been scaled to show the average telomere length, that is, the total telomere length divided by the
number of chromosomes (N = 46)
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Fig. 8 Left: plots of mean telomere length against generation number for the case y0 = 100, y1 = 0 in
dash-dotted line, with the dotted lines showing mean ± 2 s.d. The case y0 = 50, y1 = 1/60 is shown with
a solid line, with mean ±2 s.d. shown by dashed lines. To allow comparison with Figs. 2 and 3, the vertical
axis has been scaled to show the average telomere length, that is, the total telomere length divided by the
number of chromosomes (N = 46). Right: the proportion of dividing (φdiv) and senescent (φsen = 1−φdiv)
chromosomes/cells plotted against generation number, g. The dashed line corresponds to the chromosome
level model with y0 = 50, y1 = 1/60; the dotted line corresponds to the chromosome level model with
y0 = 100, y1 = 0; the solid line corresponds to the cell level model with y0 = 50, y1 = 1/60; the
dash-dotted line corresponds to the cell level model with y0 = 100, y1 = 0

the increase in variance almost ceases at later times. This is particularly noticeable in
the behaviour of the first order statistic shown by the narrower lines in Fig. 7.

The fraction of dividing and senescent cells over time is shown in Fig. 8, where
the curves which decrease from unity as g increases correspond to φdiv(g), namely
the dividing fraction and those that increase from zero show the senescent proportion,
φsen(g). The chromosome-level definition of senescence is given by Eq. (2.31) and the
text immediately following it; for the cell-level description, we define the pdf of total
telomere length by f (m, g) = C (g)

m /
∑NQ

m=0 C
(g)
m , with the cumulative distribution

function being given by F(m, g) = ∑m
j=0 f ( j, g). We next compute the pdf of

the first order statistic, as f1(m, g) = N f (m, g)(1 − F(m, g))N−1 using (4.20),
then the fraction of senescent cells is given by φsen(g) = ∑mc

m=0 f1(m, g) where
mc = Ny0/(1 − y1). We denote φdiv(g) = 1 − φsen(g). From Fig. 8 we note that the
cell-level definition of senescence gives a much more abrupt transition from dividing
population to senescence, and that this occurs at a slightly earlier time than predicted
by the chromosome-level models.

5 Case B: model with length-dependent division probability

5.1 Development of continuum cell-level model

In this section we upscale the probabilistic model from Sect. 3 to a cell-level descrip-
tion. We suppose that the amount of telomere lost per replication and the probability
of replication depend on telomere length. The probability replication is Pdiv = am+b
where a, b are constants chosen to ensure that 0 ≤ Pdiv ≤ 1. The amount of telomere
lost per chromosome is y0 + my1, so the discrete cell replication rule can be written
as
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C (g)
m −→ (1 − am − b)C (g+1)

m

+
N∑
j=0

2−N
(
N

j

)
(am + b)

[
C (g+1)
m− j(y0+my1)

+ C (g+1)
m−(N− j)(y0+my1)

]
, (5.1)

Since, after summing over j , the two terms in square brackets generate identical
contributions, for simplicity we take double the first term.

In order to determinewhich parental cells in generation gwith total telomere lengths
m′ yield a daughter cell in generation (g+1)with total telomere lengthm, we replacing
m in (5.1) by m + Y j ; Eq. (5.1) can then be simplified to

C (g)
m+Y j

−→ (1 − am − b − aY j )C
(g+1)
m+Y j

+
N∑
j=0

21−N
(
N

j

)
(am + b + aY j )C

(g+1)
m+Y j− j y0− j y1(m+Y j )

. (5.2)

We now choose those Y j which result in the subscriptm+Y j − j y0− j y1(m+Y j ) =
m, which implies

Y j = j(y0 + y1m)

1 − j y1

= LQ j(ỹ0 + ỹ1m/NQ)

1 − ỹ1L j/N
∼ LQ j

(
ỹ0 + ỹ1m

NQ

) (
1 + L j ỹ1

N

)
. (5.3)

Here, following (3.4) and (4.10), we make use of the scalings

L � 1, y0 = LQỹ0, y1 = L ỹ1/N , ỹ0, ỹ1, N = O(1). (5.4)

From (5.2) with Y j given by (5.3) the evolution equation for the number of cells,

C (g)
m , of telomere length m at generation g as

C (g+1)
m = (1 − am − b)C (g)

m +
N∑
j=0

21−N
(
N
j

)
P̃divC

(g)
m+LQ j(ỹ0+ỹ1m/NQ)(1+L j ỹ1/N ).

P̃div = b + am + aLQ j

(
ỹ0 + ỹ1m

NQ

) (
1 + L j ỹ1

N

)
. (5.5)

We now introduce new variables, x and τ defined by

m = NQx, τ = Lg, C (g)
m = ξ(τ ) f (x, τ ), (5.6)

so that 0 ≤ x ≤ 1 and τ = O(1) is the timescale over which cells transit from their
initial state to senescence. The assumed form for the state variable C (g)

m separates
the behaviour into two components: ξ(τ ) which accounts for the total size of the
population and is expected to exhibit rapid growth; and f (x, τ ), which describes the
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shape of the telomere length distribution. By inserting the ansatz (5.6) into (5.5), we
obtain the discrete difference equation

θ f (x, τ + L) = (1 − b − aNQx) f (x, τ ) +
N∑
j=0

21−N
(
N
j

)

×
[
b + aNQx + aL j(ỹ0 + ỹ1x)

N

(
1 + j L ỹ1

N

)]

× f

(
x + L j(ỹ0 + ỹ1x)

N

(
1 + L ỹ1 j

N

)
, τ

)
, (5.7)

where θ = ξ(τ + L)/ξ(τ ).
To separate the determination of ξ(τ ) and f (x, τ ), we impose a normalisation

condition on f and define the mean of the distribution by∫
f (x, τ ) dx = 1, μ̂(τ ) :=

∫
x f (x, τ ) dx . (5.8)

Then we have that∫
fxdx = 0,

∫
x fxdx = −1,

∫
x2 fxdx = −2μ̂,∫

fxxdx = 0,
∫

x fxxdx = 0,
∫

x2 fxxdx = 2,
∫

x3 fxxdx = 6μ̂. (5.9)

Integrating (5.7) with respect to x and using (5.8)–(5.9), we obtain

θ(τ ) = ξ(τ + L)

ξ(τ )
= (1 + b + aNQμ̂) − L ỹ1(b + aNQμ̂). (5.10)

We now expand (5.7) using Taylor series with L � 1, and substituting in (5.10),
we obtain

[1 + (b + aNQμ̂)(1 − L ỹ1)]

(
fτ + 1

2
L fττ

)

= DL fxx + v fx + aNQ(x − μ̂) f

L
+ Υ̃ f , (5.11)

where

Υ̃ = bỹ1 + aNQ(ỹ0 + ỹ1x + ỹ1μ̂) + 1

2
Laỹ1Q(N + 1)(ỹ0 + ỹ1x), (5.12)

v = (b + aNQx)(ỹ0 + ỹ1x)

+1

2
L(ỹ0 + ỹ1x)

(
1 + 1

N

)
[bỹ1 + aQN ỹ0 + 2aQN ỹ1x], (5.13)

D = 1

4
(b + aNQx)(ỹ0 + ỹ1x)

2
(
1 + 1

N

)
. (5.14)
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As with the model considered in Sect. 3, this pde cannot be solved explicitly, so we
first consider the first order approximating pde and then the early time asymptotics.

5.2 Analysis of probabilistic cell model

Ignoring the O(L) terms in (5.11), we obtain a first order pde

(1 + b + aNQμ̂) fτ − v fx = aNQ(x − μ̂) f

L
+ Υ̃ f , (5.15)

which can be solved by the method of characteristics to obtain the following approx-
imate equation for the mean

dμ̂

dτ
= − (b + aNQμ̂)(ỹ0 + ỹ1μ̂)

1 + b + aNQμ̂
. (5.16)

Imposing μ̂(0) = 1, this ode has the implicit solution

τ(μ̂) = 1

bỹ1 − aNQỹ0

×
[
ỹ1 log

(
b + aNQμ̂

b + aNQ

)
+ (ỹ1 + bỹ1 − aNQỹ0) log

(
ỹ0 + ỹ1
ỹ0 + ỹ1μ̂

)]
. (5.17)

If y1 = 0, then

τ(μ̂) = 1 − μ̂

ỹ0
+ 1

ỹ0aNQ
log

(
b + aNQ

b + aNQμ̂

)
, (5.18)

and if aNQỹ0 = bỹ1, then

τ(μ̂) = 1

ỹ1
log

(
b + aNQμ̂

b + aNQ

)
− aNQ(1 − μ̂)

(b + aNQ)(b + aNQμ̂)
. (5.19)

Following Sect. 3.3, we obtain an approximate expression for the shape of the
distribution at early times by introducing the rescalings

τ = L1/3T , x = μ(τ) + L2/3z, f (x, τ ) = L−1/3 f̃ (z, T ), (5.20)

with μ̂ = 1. Then (5.11) supplies

(1 + b + aNQ) f̃T = D̃ f̃zz + f̃z
L1/3

[
v + (1 + b + aNQ)

dμ

dτ

]
+ aNQz f̃ , (5.21)

where the effective diffusivity D̃ is given by

D̃ = D − 1

2
(1 + b + aNQ)μ′2. (5.22)
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We aim to solve (5.21) subject to the conditions

∫
f̃ dz = 1,

∫
z f̃ dz = 0, f̃ (z, 0) = δ(z), f̃ → 0 as z → ±∞. (5.23)

As with Eqs. (3.36), (3.38), we note that the leading order terms in (5.21), namely
those in the square brackets cancel, leaving

(1 + b + aNQ) f̃T = D̃ f̃zz + λ′′(T ) f̃z + aNQz f̃ , (5.24)

where λ′′(T ) represents the (as yet unknown) first correction term from the term in
square brackets. If one includes a term of the form λ2(T )z f̃z , then the constraints
(5.23) imply that λ2 = 0, so we omit such a term from the following analysis. Taking
Fourier transforms ( f̂ (k, T ) = ∫

eikx f̃ (z, T ) dz), we obtain

(1 + b + aNQ) f̂T + iaN Q f̂k = −(D̃k2 + ikλ′′(T )) f̂ ,

f̂ (k, 0) = 1, f̂ (0, T ) = 1, (5.25)

which has the solution

f̂ (k, T ) = exp

(
− D̃T k2

1 + b + aNQ

)
, (5.26)

where, without loss of generality, we impose λ(0) = 0 = λ′(0) giving λ(T ) =
aNQD̃T 3/3(1 + b + aNQ), hence

f̃ (z, T ) =
√

π(1 + b + aNQ)

D̃T
exp

(
− z2(1 + b + aNQ)

4D̃T

)
, (5.27)

and

f (x, τ ) = π(1 + b + aNQ)

L1/6
√
D̃τ

exp

(
− (x − μ)2(1 + b + aNQ)

4L D̃τ

)
. (5.28)

We note how the generalisation to multiple chromosomes per cell changes the rates
at which the distribution of telomere lengths shortens and spreads out. To compare
these effects, we introduce two quantities: a loss rate, which gives the rate at which
the mean of the telomere length distribution reduces over time, and a ‘diffusivity’,
corresponding to the rate at which the distribution widens in terms of the telomere
length variable; note that this is not a literal spreading out in physical space. Firstly,
we note that the advection terms are very similar for multiple and single chromosomes
(N = 1): defining the loss rate in (3.15)–(3.12) by v/θ and similarly in (5.11) and
(5.13)–(5.14), we have

vchromo = (b + aQx)(ỹ0 + ỹ1x)

(1 + b + aQμ)
, and vcell = (b + aQNx)(ỹ0 + ỹ1x)

(1 + b + aQNμ)
,

(5.29)
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which can be made identical under the mapping a �→ aN . Next, we compare the rate
at which the distribution spreads in the cell model with that in the chromosomemodel.
We find this by applying the transformation (5.20) and then examine the coefficient
of fzz in he In the cell model, the diffusivity is given by

Dcell = D − 1
2 (1 + b + aQN )μ′2

1 + b + aQN
, (5.30)

with D, μ′ given by (5.14), (5.16) respectively, differs from the corresponding quantity
in the chromosome model, where Dchromo = (D − θμ′2)/2θ with D, θ, μ′ given by
(3.16), (3.11), (3.22). Evaluating these expressions at x = μ̂, we have

Dchromo = (b + aQμ̂)(ỹ0 + ỹ1μ̂)2

2(1 + b + aQμ̂)2
,

Dcell = (b + aNQμ̂)(ỹ0 + ỹ1μ̂)2

2(1 + b + aQN μ̂)2

[
N + 1

2N
− (N − 1)(b + aNQμ̂)

2N

]
. (5.31)

In the case N = 1, the expression forDcell reduces toDchromo. Even after applying
the mapping a �→ aN , we see that for N > 1, Dcell < Dchromo, due to the mixing
of longer and shorter offspring chromosomes into the daughter cell caused by (5.1),
in which the dominant terms occur for j ≈ N/2. The effect of having multiple
chromosomes in each cell, and randomly allocating daughter chromosomes to each
daughter cell is to reduce the relative spread of telomere lengths, which leads to a
more abrupt transition from replication to senescence.

In Fig. 9, we use (5.31) to plot both Dchromo and Dcell against generation number
g. The chromosomal case shows little dependence on parameters, and reduces from
about 0.8 to approximately 0.2. The diffusivity in the cellular case is much smaller
(Dcell < 0.1) and, for most of the parameter values illustrated in Fig. 9,Dcell increases
over the early generations and decreases at later times. The initial increase is due
to the term in square brackets in (5.31), which is approximately 1

2 (1 − Pdiv). Given
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Fig. 9 Left: plots ofDchromo (5.31) against generation number, g, for the case of y0 = 50, y1 = 1/60; the
cases (a, b) = (0, 1), (0.2/Q, 0.8), (0.5/Q, 0.5), (0.8/Q, 0.2), (1/Q, 0.0) are illustrated respectively by
solid line, dashed line, dotted line, dashed line, dash-dotted line. Right: similar for, Dcell
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Fig. 10 Left: graph of mean telomere length against generation number; right, approximate standard devia-
tion of telomere lengths plotted against generation number; for the same parameter values as used in Fig. 9

Dchromo andDcell, we can create a proxy for the standard deviation of the distribution,
σ , by noting that (d/dτ)(σ 2) = D, hence σ = √ ∫ τ

0 D dτ . This expression yields
the curves plotted in Fig. 10. On the left, against generation number we plot the
average telomere length of a chromosome in base pairs, Qμ. On the right, we plot
the approximate standard deviation

∫ √D dτ , to illustrate the significant difference
between the cellular and chromosomal models, and smaller differences caused by
changing the parameters a, b.

6 Discussion

In this paper, we have considered the dynamics of telomere loss in a population of
independent chromosomes and a population of cells, each containing a population
of chromosomes. Our aim has been to understand the kinetics of telomere loss and
onset of senescence, which are hallmarks of aging. During each replication event
some telomere is lost from one daughter chromosome, and senescence occurs when
the telomere length becomes too short for replication to occur. Since telomere length
plays an important role in cell division, we have considered a variety of models, which
focus on both the amount of telomere lost, and the rate (probability) of cell division
depending on telomere length.

We have developed fully discrete models, and approximated them by deriving con-
tinuum level pde descriptions. This procedure relies on only small fraction of total
telomere length being lost in each generation, so that an asymptotic reduction yields
governing equations both at the level of individual chromosomes, and at the cell-level,
where each cell contains a subpopulation of N chromosomes. As an example, we
consider human cells, where N = 46. We have analysed these models to determine
the evolution of the telomere length distribution over many replication cycles (gen-
erations). In all cases we observe a shortening of telomeres, until senescence occurs.
In cell models senescence occurs when the shortest telomere can no longer undergo
replication.
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In summary, we have outlined simpler models, which describe a population of
individual chromosomes, and more complicated, cell-level, models in which each cell
is assumed to contain a subpopulation of N = 46 chromosomes, and upon replication
each chromosome divides, giving one offspring to each daughter cell. In both cases,
we have considered deterministic models as Case A, where replication occurs each
generation, provided senescence has not yet been triggered; and, Case B, a stochastic
model in which replication occurs with a probability that may depend on telomere
length. In each of these four subcases, there is then the possibility that telomere loss
is fixed, or dependent on telomere length. We summarise our results in increasing
complexity:

– In Case A, when telomere loss is constant, the mean telomere length decreases
linearly with generation number, until senescence is reached. This occurs in both
the chromosome-level and the cell-level models. In both cases, the distribution
of telomere lengths is Gaussian (normal) and with a standard deviation which
increases with the square root of the generation number.

– In Case A and where the telomere loss is dependent on telomere length, the mean
telomere length still reduces, albeit in an exponential rather than a linear fashion
being given by (2.24)–(2.26). The distribution has the form of a shifted log-normal
(2.22). The two forms of Case A are compared in Fig. 3 for the chromosome level
model.

– Various parameter values of the stochastic replicationmodel, CaseB, are illustrated
in Fig. 4. In all cases the reduction in telomere length is not constant, and not given
by a simple exponential, rather by the more complicated implicit formula (3.23).
In this case considering the simpler case of a size-independent telomere loss rate
(y1 = 0) does not simplify the governing Eq. (3.20). The population size grows
subexponentially in this case. The distribution for CaseB appears almostGaussian,
however, Fig. 5 shows that it is slightly skewed. In this case the pde describing
the shape of the length distribution (3.20) of telomeres does not admit explicit
analytical solution. However, an approximation enables us to determine the mean
telomere length. Through further use of asymptotic techniques, we show that at
very early times, the distribution is Gaussian, however, at later times, it becomes
skewed.

– The main distinction between the results of the chromosome-level model and the
cell-level model is that the latter gives a sharper transition between the whole
population being in a replicative state and senescence, as illustrated in Fig. 8.

In all cases, we observe that the distribution of telomere lengths evolves in a manner
consistent with correspondingMonte Carlo simulations presented previously (Qi et al.
2014), where fits to the experimental data of Zhang et al. (2000) are illustrated. By
varying the telomere loss or replication probability parameters, mean telomere length
reduction can be tuned to fit a variety of experimental data.

Chromosome-level models similar to our Cases A and B have been considered by
other authors. When Levy et al. (1992) studied a special case of Case A, for which
telomere loss is constant (independent of telomere length). By assuming that the
number of deletions occurring increased with the number of generations following a
binomial distribution, they found the mean number of deletions to increase linearly
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over time, and obtained a sharp transition from replicative to the senescent state. The
model of Buijs et al. (2004) is broadly similar to the more general form of Case A
that we use. They fitted the model to an experimental distribution of telomere lengths,
verifying the length-dependent loss.Our analysis extends thiswork by showing that the
shape of the distribution is log-normal. Portugal et al. (2008) considered the probability
of a cell’s replication being linearly dependent on telomere length—as in our Case B—
but with constant amount of telomere lost per replication. Our work extends this to the
case of length-dependent loss, and we have also considered the fraction of senescent
chromosomes.

As far as we are aware, no existing models consider the distribution of telom-
ere lengths within individual cells. We have extended all these models to consider
a population of cells, each of which contains a subpopulation of N = 46 chromo-
somes. In these cell-level models, the longer and shorter daughter chromosomes from
replication are randomly allocated to the daughter cells. Whilst some cells inherit
predominantly longer chromosomes, and a few shorter chromosomes, the majority
of cells inherit approximately equal numbers of longer and shorter daughter chromo-
somes. The overall effect of this is to reduce the variance of total telomere length in the
cell-level model (compared to the individual chromosome description, which can be
thought of as a cell-level model with N = 1). Analysis of cell-level continuummodels
gives some results similar to the individual chromosome model. The mean of the dis-
tribution is in good agreement with the Monte Carlo simulations of cell-level models
presented previously (Qi et al. 2014). However, the transition between replicative and
senescent states is sharper in the cell-level model than in the chromosome model, as
noted by Qi et al. (2014). This feature is caused by the length of the shortest telomere
in a cell having a smaller variance than the telomere length of overall population, as
shown in Fig. 6. Since a cell becomes senescent when its shortest telomere cannot
replicate, the total telomere length of senescent cells will increase with the number
of chromosomes per cell. In the analysis of the cell-level model we have used the
theory of order statistics to determine the expected time at which the shortest telom-
ere reaches the threshold of zero length and hence determined the time at which the
onset of senescence occurs. We expect the cell-level results presented here to be the
same as if we simulated a population of individual chromosomes and then randomly
allocated the telomeres into groups of N = 46. This is because we have assumed a
random allocation of long and short daughter telomeres into each cell, as given by
(4.7). However, in the case of stem cells, for example, the allocation of long and short
telomeres is not random, and so (4.7) would not be valid, and should be replaced with
an alternative, which would result in different outcomes.

In future work, we plan to generalise these results to include the effect of telomerase
- an enzyme which lengthens telomeres and so allows cells to continue replicating (Qi
2011; Qi et al. 2019); the possibility of varying activity levels of telomerase was dis-
cussed by Epel et al. (2004). It may also be possible to generalise the models proposed
here to include other mechanisms which influence telomere length, such as the Alter-
native Lengthening of Telomeres (ALT), telomerase activity, telomere recombination,
and Werner’s syndrome—a disease in which accelerated aging is caused by the cor-
rupted replication of chromosomes. This is caused by the failure to resolve stalled forks
in the DNA replication process. Muraki et al. (2012) discuss the repair mechanism for
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double-stranded breaks, and other problems that can occur at themicroscopic level, for
example, the role of deficiencies of the Shelterin proteins, and the interplay between
stochastic telomere loss mechanisms and chromosome instability. Oxidative stress is
known to accelerate aging at the cellular level, and many other environmental factors
have been shown to correlate with telomere length. Starkweather et al. (2013) dis-
cuss the effects of various psychosocial factors on telomere length, including chronic
psychological stress, sleep quality, socioeconomic status, educational attainment and
genetic components. The mathematical modelling of how these macroscopic factors
influence telomere loss at the microscale remains an open problem.
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