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Abstract. The key object in the Ehrhart theory of lattice polytopes is the numerator polynomial
of the rational generating series of the Ehrhart polynomial, called h∗-polynomial. In this paper
we prove a new result on the vanishing of its coefficients. As a consequence, we get that h∗

i = 0
implies h∗

i+1 = 0 if the lattice points of the lattice polytope affinely span the ambient lattice.
This generalizes a recent result in algebraic geometry due to Blekherman, Smith, and Velasco,
and implies a polyhedral consequence of the Eisenbud–Goto conjecture. We also discuss how
this study is motivated by unimodality questions and how it relates to decomposition results on
lattice polytopes of given degree. The proof methods involve a novel combination of successive
modifications of half-open triangulations and considerations of number-theoretic step functions.

1. Introduction

1.1. Basics of Ehrhart theory. The study of Ehrhart polynomials of lattice polytopes is an
active area of research at the intersection of discrete geometry, geometry of numbers, enumerative
combinatorics, and combinatorial commutative algebra. We refer to [Bec16, Bra16, Bre15] for three
recent survey articles, as well as to the book [BR07]. In order to describe our main result, let us
recall the basic notions of Ehrhart theory. We denote by lattice point any element in Zd. A lattice
polytope P ⊆ Rd is the convex hull of finitely many lattice points, i. e., P = conv(v1, . . . ,vn) for
vi ∈ Zd. To a lattice polytope P , one associates its Ehrhart function which counts lattice points
in integral multiples of P , i. e., ehrP (k) =

∣∣kP ∩Zd∣∣. This is a polynomial function (see [Ehr62]),
called the Ehrhart polynomial of P . Its generating function is known to be a rational function (see
[Sta80]) ∑

k≥0
ehrP (k)tk = h∗P (t)

(1− t)d+1

where h∗P (t) ∈ Z≥0[t] is a polynomial of degree s ∈ {0, . . . , d}, denoted the h∗-polynomial (or δ-
polynomial) of P . Its coefficient vector (h∗0, . . . , h∗d), or (h∗0(P ), . . . , h∗d(P )) if we want to emphasize
that these are the coefficients of the h∗-polynomial of P , is the h∗-vector (or δ-vector) of P . The
number deg(P ) := s is called the degree of P . For future reference, let us give the basic properties
of the h∗-vector of a d-dimensional lattice polytope P of degree s:

h∗0 = 1,(1)
h∗1 =

∣∣P ∩Zd∣∣− d− 1,(2)
h∗d =

∣∣P ◦ ∩Zd∣∣,(3)
d+ 1− s = min

{
k ∈ Z>0 : (kP )◦ ∩Zd 6= ∅

}
,(4)

s∑
i=0

h∗i = VolZ(P ),(5)

where VolZ(P ) denotes the normalized volume of P , i. e., it equals d! times the usual Euclidean
volume of P , and P ◦ denotes the relative interior of P , i. e., the topological interior of P in its
affine span.
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1.2. Spanning lattice polytopes. Let us explain what we mean by “spanning” in the title.

Definition 1.1. A d-dimensional lattice polytope P ⊆ Rd is called spanning if any lattice point in
Zd is an affine integer combination of the lattice points in P . Equivalently, P is spanning if any
lattice point in Zd+1 is a linear integer combination of the lattice points in {1} × P .

Example 1.2. Any 1- and 2-dimensional lattice polytope is spanning. For any k ≥ 2, the
Reeve-simplex is not spanning:

conv(0, e1, e2, e1 + e2 + ke3)

where e1, e2, e3 ∈ Z3 denotes the standard basis. We remark that h∗P (t) = 1 + (k − 1)t2.

Spanning is a very mild condition for a lattice polytope (for instance, it is weaker than “very
ample”, cf. [Bru13]). In fact, any lattice polytope is associated to a spanning lattice polytope by a
change of the ambient lattice (replace Zd by the lattice affinely spanned by P ∩ Zd). Especially
in toric geometry it is natural to pass from the ambient lattice to the spanning lattice, e. g.,
for fake weighted projective spaces (see [Con02, Kas09]) or in the study of A-discriminants (see
[Est10, Ito15]).

1.3. Our main result. In this work we initiate the study of Ehrhart polynomials of spanning
lattice polytopes. The main goal of this paper is the following lower bound theorem on their
h∗-vectors. It is a direct consequence of a new, general Ehrhart-theoretic result (Theorem 4.7),
which applies to arbitrary lattice polytopes, and can be found in Section 4.2.

Theorem 1.3. The h∗-vector of a spanning polytope P satisfies h∗i ≥ 1 for all i = 0, . . . ,deg(P ).

Recall that an h∗-vector satisfying the conclusion of Theorem 1.3 is said to have no internal
zeros (see, for instance, [Sta89]). We remark that the h∗-vector of any lattice polytope with interior
lattice points has no internal zeros by Hibi’s lower bound theorem (see [Hib94]).

Example 1.4. The converse of Theorem 1.3 is not true. In dimension d ≥ 3, there are non-
spanning lattice polytopes whose h∗-vectors have no internal zeros. For instance, the lattice
polytope P := conv(0, e1, e3, 2e1 + 4e2 + e3) is not spanning and satisfies h∗P (t) = 1 + t+ 2t2.

1.4. Motivation from unimodality questions. Let us explain why one should view Theorem 1.3
as an example of a positive result in the quest for unimodality results for h∗-vectors of lattice
polytopes. We refer to the survey [Bra16] for motivation and background.

We recall that a lattice polytope P is IDP (with respect to Zd) if for k ∈ Z≥1 any lattice point
m ∈ (kP ) ∩ Zd can be written as m = m1 + · · ·+ mk for m1, . . . ,mk ∈ P ∩ Zd. IDP stands for
“integer decomposition property”, a condition also referred to as being integrally-closed. One of
the main open questions about IDP lattice polytopes (see [Sta89, OH06, SVL13]) is whether their
h∗-vectors are unimodal, i. e., their coefficients satisfy h∗0 ≤ h∗1 ≤ · · · ≤ h∗i ≥ h∗i+1 ≥ · · · ≥ h∗s for
some i ∈ {0, . . . , s}. Theorem 1.3 is a modest analogue of this conjecture. Clearly, IDP implies
spanning, and unimodality implies no internal zeros.

Example 1.5. The 5-dimensional lattice simplex with vertices
0, e1, . . . , e4,v := 5(e1 + . . .+ e4) + 8e5

is spanning with h∗-vector (1, 1, 2, 1, 2, 1), i. e., not unimodal. We have used the software polymake
(see [GJ00]) to compute the h∗-vector and the lattice points contained in the simplex which are
exactly the vertices and the point w := 2(e1 + . . .+ e4) + 3e5. As e5 = 2v− 5w, it follows that
the simplex is spanning.

From the viewpoint of commutative algebra, it was already evident that IDP implies no internal
zeros. Theorem 1.3 provides a new combinatorial proof of this fact. Indeed, the Ehrhart ring
associated to an IDP polytope P (cf. [BG09, Section 4]) is standard graded and Cohen–Macaulay,
so its quotient modulo a linear system of parameters yields a standard graded Artinian algebra
whose Hilbert series equals h∗P (t), which clearly has no internal zeros. Let us remark that for
spanning lattice polytopes it is unclear whether such an algebraic proof exists, the difficulty being
that the Ehrhart ring of non-IDP lattice polytopes is not standard graded.
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Another conjecture of interest is Oda’s question whether every smooth lattice polytope is IDP
[Gub12]. Here, a lattice polytope is smooth if the primitive edge directions at each vertex form a
lattice basis. As smooth polytopes are spanning, Theorem 1.3 shows that the condition of having
no internal zeros cannot be used to distinguish between smoothness and IDP.

The methods of the proof of Theorem 1.3 combine modifications of half-open triangulations
and considerations of number-theoretical step functions. We hope that these methods will also
be fruitful to prove stronger inequalities on the coefficients of h∗-polynomials. Let us remark
that Schepers and van Langenhoven (see [SVL13]) suggested that a successive change of lattice
triangulations should be essential in achieving new unimodality results in Ehrhart theory. In this
sense, our results and methods could be seen as a first implementation of their proposed approach.

1.5. Organization of the paper. In Section 2 we explain how Theorem 1.3 implies a consequence
of the Eisenbud–Goto conjecture from commutative algebra in this polyhedral setting and give
some combinatorial consequences. Theorem 1.3 can be seen as a generalization of a recent result on
the vanishing of the second coefficient of the h∗-polynomial (see [BSV16]). This observation and
applications to decomposition results of lattice polytopes of given degree are discussed in Section
3. In Section 4 we recall the language of half-open decompositions and describe how Theorem 1.3
follows from Theorem 4.7, a general result in Ehrhart theory. Section 5 contains the proof of
Theorem 4.7.
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2. Application 1: Polyhedral Eisenbud–Goto

One of the original motivations of the present work is a connection with the famous Eisenbud–
Goto conjecture from commutative algebra, which we explain in this section. For the algebraic
concepts used in this chapter, we refer the reader to the monographs by Eisenbud [Eis95] or
Brodmann and Sharp [BS13]. Let us recall the statement of the conjecture:

Conjecture 2.1 (Eisenbud–Goto conjecture [EG84]). Let k be a field and let S = k[X1, . . . , Xn]
be a polynomial ring with the standard grading, and let I ⊆ S be a homogeneous prime ideal. Then

(6) reg(S/I) ≤ deg(S/I)− codim(S/I)

Here, reg(S/I) denotes the (Castelnuovo–Mumford) regularity of S/I, which is defined as

reg(S/I) := sup
{
i+ j : i, j ∈ N0, H

i
m(S/I)j 6= 0

}
,

where m = (X1, . . . , Xn) is the maximal homogeneous ideal of S and Hi
m(S/I)j denotes the j-th

homogeneous component of the i-th local cohomology module of S/I with support in m. Further,
the degree of S/I, denoted by deg(S/I), can be defined as (dim(S/I) − 1)! times the leading
coefficient of the Hilbert polynomial of S/I. Moreover, codim(S/I) = dimk(S/I)1 − dim(S/I) is
the codimension of S/I (inside its linear hull).

Very recently, McCullough and Peeva [MP16] found counterexamples to this conjecture. However,
we are going to show that a certain consequence of it is nevertheless true. Let P ⊆ Rd be a d-
dimensional lattice polytope, and let k be an algebraically closed field of characteristic 0. We denote
by k[P ] the toric ring generated by the lattice points in P , i. e., the subalgebra of k[Y0, . . . , Yd]
generated by the monomials

Y0 ·
∏
i

Y vii with v = (v1, . . . , vd) ∈ P ∩Zd.
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The algebraic invariants on the right-hand side of (6) have a combinatorial interpretation for
S/I = k[P ]:

deg(k[P ]) = VolΓP (P )
codim(k[P ]) = |P ∩Zd| − (d+ 1).

Here, VolΓP is the volume form normalized with respect to the affine lattice generated by the lattice
points in P . In particular, if P is spanning, then this simply equals VolZ(P ).

The regularity of k[P ] does not have a direct combinatorial interpretation. However, if P is
spanning and v = (v0, . . . , vd) is an interior lattice point of the cone C over P , then Hd+1

m (k[P ])−v0 6=
0, cf. [SS90, Theorem 5.6] or [Kat15, Proposition 4.2]. Thus, if we let r ∈ Z>0 be the minimal
value for the first coordinate of an interior lattice point in C, i. e., the minimal number such that
the multiple rP of P has an interior lattice point, then it holds that reg(k[P ]) ≥ d+ 1− r.

In conclusion, the following proposition is a consequence of Conjecture 2.1:

Proposition 2.2. Let P ⊆ Rd be a d-dimensional spanning lattice polytope. Then the following
holds:

(7) |P ∩Zd| ≤ VolZ(P ) + min
{
k ∈ Z>0 : (kP )◦ ∩Zd 6= ∅

}
or equivalently,

(8) h∗1 + deg(P ) ≤ VolZ(P ).

As the Eisenbud–Goto conjecture has been disproven in [MP16], we show that this inequality is
also a consequence of our main result Theorem 1.3. Let us remark that (8) is sharp for every value
of deg(P ), as can be seen by considering the lattice simplices conv(e1, . . . , ed,−e1 − . . .− ed).

Proof. Equations (7) and (8) are equivalent by the properties (2) and (4) of h∗-vectors. By
properties (1) and (5), we can reformulate (8) as

deg(P ) ≤ 1 +
deg(P )∑
i=2

h∗i (P ).

This equation holds as h∗i (P ) ≥ 1 for 2 ≤ i ≤ deg(P ) by Theorem 1.3. �

Example 2.3. In dimension 5 there exists a non-spanning lattice simplex with binomial h∗-
polynomial 1 + t3 (see, for instance, [HHN11, end of Section 2] or [HT09, paragraph below
Lemma 1.3]). Hence, the left side in Equation (7) equals 6, while the right side equals 2 + 3 = 5.
This shows that the spanning assumption cannot be dropped in Proposition 2.2.

Proposition 2.2 has an immediate combinatorial consequence. Let us recall that two polytopes in
Rd are affinely equivalent if they are mapped onto each other by an affine-linear automorphism of Rd.
Moreover, we say that two affinely equivalent lattice polytopes in Rd are unimodularly equivalent if
such an affine-linear automorphism maps Zd to Zd. In fixed dimension there are only finitely many
lattice polytopes of bounded volume up to unimodular equivalence (see [LZ91]). Batyrev showed
more generally that there are only finitely many lattice polytopes (of arbitrary dimension) of given
degree and of bounded volume up to unimodular equivalence and lattice pyramid constructions (see
[Bat06]). Here, P ⊆ Rd is a lattice pyramid if P is unimodularly equivalent to conv({0}, {1} × P ′)
for some lattice polytope P ′ ⊆ Rd−1. We recall that h∗-vectors of lattice polytopes are invariant
under lattice pyramid constructions (see, for instance, [BR07, Theorem 2.4]).

There exist (non-spanning) lattice polytopes of normalized volume 2 for each degree, none of
them being a lattice pyramid of the other (see [HHN11, HT09]). Such a situation cannot happen for
spanning lattice polytopes, since by Equation (8) a bound on the normalized volume also implies a
bound on the degree.

Corollary 2.4. There are only finitely many spanning lattice polytopes of given normalized volume
(and arbitrary dimension) up to unimodular equivalence and lattice pyramid constructions.



EHRHART THEORY OF SPANNING LATTICE POLYTOPES 5

Remark 2.5. While the generalization in [Nil08] of Batyrev’s result might suggest this, we remark
that it is not enough to fix h∗1 and the degree of a spanning lattice polytope in order to bound its
volume. To see this, we consider the three-dimensional lattice polytope P with vertices

0, e1, e2,−e3, e1 + e2 + ae3

with a ∈ Z≥2. Then P is spanning of (normalized) volume a+ 1 where the only lattice points in P
are its vertices, so, h∗1 = 1 and s = 2.

3. Application 2: On the vanishing of h∗-coefficients

3.1. Passing to spanning lattice polytopes. Let P ⊆ Rd be a d-dimensional lattice polytope
(with respect to Zd). Let us denote by ΓP the affine sublattice in Zd generated by P ∩Zd, i. e., the
set of all integral affine combinations of P ∩Zd. We define the spanning polytope P̃ associated to P
as the lattice polytope given by the vertices of P with respect to the lattice ΓP .

Let us say that two lattice polytopes P , P ′ are lattice-point equivalent if there is an affine-linear
automorphism of Rd mapping P to P ′ such that the lattice points in P map bijectively to the
lattice points in P ′. In particular P and P̃ are lattice-point equivalent. Clearly, unimodularly
equivalent implies lattice-point equivalent implies affinely equivalent, however, none of the converses
is generally true. As VolZ(P̃ ) ≤ VolZ(P ), Corollary 2.4 has the following Corollary 3.1 as an
immediate consequence for lattice polytopes that are not necessarily spanning. For this, we call P
a lattice-point pyramid if there is a facet of P that contains all lattice points of P except for one.
Note that lattice pyramids are lattice-point pyramids, but not vice versa.

Corollary 3.1. There are only finitely many lattice polytopes of given normalized volume (and
arbitrary dimension) up to lattice-point equivalence and lattice-point pyramid constructions.

We remark that this corollary can be also obtained from [NP15, Corollary 3.9].

3.2. Bounding the degree of the spanning lattice polytope. As h∗1 equals the number of
lattice points minus dimension minus one, we get h∗1(P̃ ) = h∗1(P ). For i ≥ 2, it holds h∗i (P̃ ) ≤ h∗i (P ).
This follows from the description of h∗i as the number of lattice points in half-open parallelepipeds,
see Equation (9) in Section 4.1. In particular, deg(P̃ ) ≤ deg(P ).

The previous considerations show that Theorem 1.3 has the following corollary.

Corollary 3.2. If P is a lattice polytope with h∗i (P ) = 0, then deg(P̃ ) ≤ i− 1.

In other words, the first zero in the h∗-vector of P bounds the degree of its spanning polytope.

Remark 3.3. For i = 1, Corollary 3.2 is even an equivalence. We give an elementary proof. Recall
that a lattice polytope is an empty lattice simplex if |P ∩ Zd| = d + 1, equivalently, h∗1(P ) = 0.
Moreover, a lattice polytope P is a unimodular simplex if its vertices form an affine lattice basis.
Equivalently, VolZ(P ) = 1, respectively, deg(P ) = 0. We observe that a spanning lattice polytope
is an empty simplex if and only if it is a unimodular simplex. In particular, h∗1(P ) = 0 is equivalent
to deg(P̃ ) = 0.

For each i ≥ 2, there exist empty lattice simplices P with h∗i = 1 (see [HHN11, HT09]). Hence,
the converse of Corollary 3.2 fails for i ≥ 2.

3.3. The vanishing criterion by Blekherman, Smith, and Velasco. While Corollary 3.2
describes a necessary condition on the vanishing of h∗i , it is a natural question how to strengthen it
to get an equivalence also for i ≥ 2. Recently such a criterion was proven for i = 2 (see [BSV16]).
In order to describe this result, let us denote a lattice polytope P ⊆ Rd as i-IDP if any lattice
point m ∈ (iP ) ∩Zd can be written as m = m1 + . . .+ mi for m1, . . . ,mi ∈ P ∩Zd.

Proposition 3.4 ([BSV16, Proposition 6.6]). A lattice polytope P satisfies h∗2(P ) = 0 if and only
if deg(P̃ ) ≤ 1 and P is 2-IDP.

This is a reformulation of [BSV16, Proposition 6.6] in our notation. The hard non-combinatorial
part of their proof that relies on results from real and complex algebraic geometry is the statement
h∗2(P ) = 0 implies deg(P̃ ) ≤ 1. This follows now from Corollary 3.2 for i = 2. The authors of
[BSV16] communicated to us another purely combinatorial proof that relies on the classification of
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lattice polytopes of degree one (see [BN07]). We remark that such a classification is not known for
lattice polytopes of higher degree.

The sufficient condition on the vanishing of h∗2(P ) in Proposition 3.4 easily generalizes.

Proposition 3.5. If deg(P̃ ) ≤ i− 1 and P is i-IDP, then h∗i (P ) = 0.

Proof. We show the contraposition, so assume h∗i (P ) > 0. Then there exists a lattice point of height
i in some half-open parallelepiped of a given half-open triangulation of P , we refer to Section 4.1
for more details. As P is i-IDP, the lattice point is also contained in the sublattice ΓP , hence,
h∗i (P̃ ) > 0, and thus deg(P̃ ) > i− 1. �

Remark 3.6. For i ≥ 3 it is not true that h∗i (P ) = 0 implies that P is i-IDP. There exists a spanning
(even very ample) lattice polytope P ′ ⊆ R3 with h∗-vector h∗(P ′) = (1, 4, 5, 0) such that a lattice
point in 2P ′ is not a sum of two lattice points in P ′ (see [Bru13, AGH+16]). This lattice polytope can
be constructed as the Minkowski sum of the Reeve-simplex R4 := conv(0, e1, e2, e1 +e2 +4e3) ⊆ R3

and the edge conv(0, e3) ⊆ R3 (see [Oga13]). Therefore, the lattice pyramid P ⊆ R4 over P ′
is a 4-dimensional spanning lattice polytope of degree 2 that is not 3-IDP, as the lattice point
2e0 + e1 + e2 + 3e3 ∈ 3P ∩Z4 cannot be written as the sum of three lattice points in P .

3.4. Generalizing results on the degree of lattice polytopes. In [BN07, Nil08, HNP09] it
was investigated how lattice polytopes of small degree can be decomposed into lower-dimensional
lattice polytopes. This question is partly motivated by applications in algebraic geometry [DdP09,
DN10, DHNP13, Ito15]. Corollary 3.2 allows to generalize these results up to a change of lattice.
For this, let us recall that P ⊆ Rd is called a Cayley polytope of lattice polytopes P1, . . . , Pk ⊆ Rm if
k ≥ 2 and P is unimodularly equivalent to conv(P1 × e1, . . . , Pk × ek) ⊆ Rm ×Rk where e1, . . . , ek
denotes the standard basis of Zk. In particular, note that the lattice points of a Cayley polytope
lie on two parallel affine hyperplanes of lattice distance one.

Corollary 3.7. Let P be a d-dimensional lattice polytope with h∗i+1 = 0. If d > i2+19i−4
2 =: d′,

then P̃ is a Cayley polytope of lattice polytopes in dimension at most d′. In this case, every lattice
point in P lies on one of two parallel hyperplanes.

Proof. By, Corollary 3.2, deg(P̃ ) ≤ i. Now, we apply [HNP09, Theorem 1.2] to P̃ . �

Remark 3.8. Let us briefly discuss the relation of the results of this section to the study of point
configurations of small combinatorial degree, i. e., the maximal degree of the h-vector of lattice
triangulations of P . We refer to [NP15] for terminology and background. Let us observe that
the h-vector of a lattice triangulation T of P has no internal zeros. This can be deduced from
the fact that the h-vector is an M -sequence (see [BH93]); an alternative, direct proof can also
be given using Lemma 5.4. Now, it follows from the Betke–McMullen formula (see [BM85]) that
h∗i+1(P ) = 0 implies hi+1(T ) = 0. Hence, the combinatorial degree of P is bounded by i if h∗i = 0.
This shows that Corollary 3.7 sharpens in this case the conclusion in [NP15, Theorem A] which
only guaranteed a so-called “weak Cayley” condition.

4. Ehrhart Theory and Half-open Triangulations

4.1. Half-open triangulations. In this subsection let P ⊆ Rd be a d-dimensional lattice polytope.
The polynomial h∗P can be computed by means of the cone C over P , i. e., C = cone({1} × P ) ⊆
Rd+1, equipped with a triangulation which we now outline. For details and references on Ehrhart
Theory, we refer to [BR07]. Our approach is in the spirit of [KV08] (see also [HNP12]).

In this paper, by a triangulation T of C, we mean a regular triangulation of C such that the
primitive ray generators of every face of the triangulation are contained in the affine hyperplane
{1} ×Rd. The set of faces of dimension k we denote by T (k).

A point ξ ∈ Rd+1 is called generic with respect to a triangulation T of C, if it is not contained
in any of the linear subspaces generated by the faces in T (d).

We define
ΥC := {T triangulation of C},
ΞC := {ξ ∈ C generic with respect to any T ∈ ΥC}.
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The set of primitive generators in Zd+1 of the extremal rays of a polyhedral cone σ ⊆ Rd+1, we
denote by σ(1).

Definition 4.1. A half-open triangulation of C consists of a choice (T , ξ) ∈ ΥC × ΞC . For
every maximal cell σ ∈ T (d+1) the corresponding half-open cell σ[ξ) is given as follows: Write
ξ =

∑
v∈σ(1) λvv for λv ∈ R \ {0} and set Iξ(σ) :=

{
v ∈ σ(1) : λv < 0

}
. Then

σ[ξ) =

 ∑
v∈σ(1)

µvv : µv ∈ R≥0, µv > 0 for all v ∈ Iξ(σ)

.

The proofs of the following results in Section 4.1 are standard and can be done as in [HNP12].

Proposition 4.2. Let (T , ξ) ∈ ΥC × ΞC be a half-open triangulation of C. The half-open cells
σ[ξ) for σ ∈ T (d+1) yield a partition of C, i. e., we have a disjoint union

C =
⋃

σ∈T (d+1)

σ[ξ).

Definition 4.3. Let (T , ξ) ∈ ΥC×ΞC be a half-open triangulation of C. The half-open fundamental
parallelepiped Πσ[ξ) of a half-open cell σ[ξ) for σ ∈ T (d+1) is given by

Πσ[ξ) =

 ∑
v∈σ(1)

λvv : λv ∈ [0, 1[ for v 6∈ Iξ(σ), λv ∈]0, 1] for v ∈ Iξ(σ)

.

Remark 4.4. Let (T , ξ) ∈ ΥC × ΞC be a half-open triangulation of C and take σ ∈ T (d+1). If
ξ ∈ σ◦, then note that Πσ[ξ) is the usual half-open parallelepiped, i. e.,

Π[ξ) =

 ∑
v∈σ(1)

λvv : λv ∈ [0, 1[

.

Proposition 4.5. Let (T , ξ) ∈ ΥC × ΞC be a half-open triangulation and fix a half-open cell σ[ξ)
for σ ∈ T (d+1). The translates of Π[ξ) by vectors in M :=

∑
w∈σ(1) Z≥0w yield a partition of the

half-open cell σ[ξ), i. e., we have a disjoint union

σ[ξ) =
⋃

v∈M
v + Π[ξ).

Definition 4.6. We define a map

h∗ :
(
C ∩Zd+1)×ΥC × ΞC → Z≥0,

as follows: For given v ∈
(
C ∩Zd+1), T ∈ ΥC and ξ ∈ ΞC , there is exactly one σ ∈ T (d+1) such

that v is contained in the half-open cell σ[ξ). There is a unique {v}
T ,ξ
∈ Πσ[ξ) ∩ Zd+1 such

that v− {v}
T ,ξ
∈
∑

w∈σ(1) Z≥0w. Then h∗T ,ξ(v) is, by definition, equal to the first coordinate of
{v}

T ,ξ
.

σ1[ξ) C σ2[ξ)
ξ

v

{v}
T ,ξ

Figure 1. Illustration of Definition 4.6 for P = [−2, 2] (here, h∗T ,ξ(v) = 1).
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For fixed T ∈ ΥC and ξ ∈ ΞC , the h∗-polynomial of P is given by

(9) h∗P (t) =
s∑

k=0
h∗kt

k =
∑

σ∈T (d+1)

∑
v∈Πσ[ξ)∩Zd+1

th
∗
T ,ξ(v).

From this equality it is evident that the coefficients h∗k are non-negative integers. In particular, we
observe that

(10) {k = 0, . . . , s : h∗k 6= 0} =
{
h∗T ,ξ(v) : v ∈ C ∩Zd+1}.

4.2. A general Ehrhart-theoretic result and the proof of Theorem 1.3. Theorem 1.3 is
an immediate consequence of the following main result of this paper.

Theorem 4.7. Let P ⊆ Rd be a d-dimensional lattice polytope and let C ⊆ Rd+1 be the cone
over it. Let ΓP be the sublattice of Zd+1 spanned by the lattice points in {1} × P . Then for every
v ∈ Zd+1 and all tuples (T0, ξ0) ∈ ΥC × ΞC , there exist nonnegative integers av ≤ bv (independent
of the choice (T0, ξ0)) such that

[av, bv] ∩Z = h∗T0,ξ0
(C ∩ (v + ΓP )).

The proof of Theorem 4.7 will be developed in Section 5. Let us show here how to use Theorem 4.7
to prove Theorem 1.3.

Proof of Theorem 1.3. As in the statement of Theorem 4.7, let ΓP be the sublattice spanned by
the lattice points in {1} × P . Since P is spanning, we obtain ΓP = Zd+1. The statement follows
from Equation (10) by applying Theorem 4.7 with v := 0. �

Remark 4.8. One can also interpret Theorem 4.7 as follows. We use the notation from that
theorem. Assume that h∗b = h∗B = 0 for two integers b < B such that h∗k 6= 0 for all k =
b + 1, . . . , B − 1. Fix (T , ξ) ∈ ΥC × ΞC and take a vector v ∈ C ∩ Zd+1 with b < h∗T ,ξ(v) < B.
Let v1, . . . ,va,v′1, . . . ,v′A ∈ ({1} × P ) ∩Zd+1 such that v′ := v +

∑a
i=1 vi −

∑A
j=1 v′j ∈ C. Then

b < h∗T ,ξ(v′) < B, i. e., the lattice points in C that can be reached from v by adding or subtracting
lattice points from {1} × P contribute only to the h∗-coefficients with index in the interval ]b, B[.

5. Proof of Theorem 4.7

5.1. Overview. We give an overview of the proof of Theorem 4.7. We use the notation from that
theorem with Γ := ΓP . We start with the following observation.

Lemma 5.1. For all pairs (T0, ξ0), (T , ξ) ∈ ΥC × ΞC , it holds that

h∗T0,ξ0
(C ∩ (v + Γ)) = h∗T ,ξ(C ∩ (v + Γ)).

Proof. We note that
∞∑
k=0
|({k} × (kP )) ∩ (v + Γ)|tk =

∑
σ∈T (d+1)

∑
w∈Πσ[ξ)∩(v+Γ) t

ht(w)

(1− t)d+1 =:
h∗P,v+Γ(t)
(1− t)d+1

where ht : Rd+1 → R; w = (w0, . . . , wd) 7→ w0 is the projection onto the first coordinate. In
particular, for v = 0 and Γ = Zd+1 this yields the usual equality

∑∞
k=0
∣∣kP ∩Zd∣∣tk = h∗P (t)/(1−

t)d+1. We obtain

h∗P,v+Γ(t) =
s∑

k=0
h∗k,v+Γt

k =
∑

σ∈T (d+1)

∑
w∈Πσ [ξ)∩(v+Γ)

th
∗
T ,ξ(w).

Analogous to Equation (10), it follows that

h∗T ,ξ(C ∩ (v + Γ)) =
{
k ∈ N : h∗k,v+Γ 6= 0

}
,

so, in particular, this set is independent of the choice of (T0, ξ0) ∈ ΥC × ΞC . �

The following two propositions will be used in our proof of Theorem 4.7. We will prove them
below in Section 5.2 and Section 5.3, respectively.
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Proposition 5.2 (Changing the generic vector). Let T ∈ ΥC and x ∈ C ∩Zd+1. Then there exists
a, b ∈ Z≥0 with a ≤ b such that {

h∗T ,ξ(x) : ξ ∈ ΞC
}

= [a, b] ∩Z.

Proposition 5.3 (Changing the triangulation). Let x ∈ C ∩ (v + Γ), ξ ∈ ΞC and T , T ′ ∈ ΥC be
two triangulations. Then there exist (S1, ξ1,y1), . . . , (SR, ξR,yR) ∈ ΥC × ΞC × (C ∩ (v + Γ)) such
that {

h∗Si,ξi(yi) : i = 1, . . . , R
}
∪
{
h∗T ,ξ(x), h∗T ′,ξ(x)

}
= [a, b] ∩Z,

for two integers a, b ∈ Z≥0 with a ≤ b.

Proof of Theorem 4.7. Let av := min
{
h∗T ,ξ(C ∩ (v + Γ))

}
and bv := max

{
h∗T ,ξ(C ∩ (v + Γ))

}
.

Note that we may replace v by any element in v + Γ without changing the statement. In
particular, we may assume that v ∈ C and that h∗T ,ξ(v) = av. Moreover, there exists an
element w ∈ C ∩ (v + Γ) with h∗T ,ξ(w) = bv. We can write w = v +

∑r
i=1 vi −

∑s
i=1 v′i with

v1, . . . ,vr,v′1, . . . ,v′s,∈ ({1} × P ) ∩Zd+1.
Let xk := v +

∑k
i=1 vi for 0 ≤ k ≤ r. We are going to show that for each k = 1, . . . , r, there are

(S1, ξ1,w1), . . . , (Sq, ξq,wq) ∈ ΥC × ΞC × (C ∩ (v + Γ)) such that the corresponding h∗Sj ,ξj (wj) fill
the gap between h∗T ,ξ(xk−1) and h∗T ,ξ(xk). Thus, we can fill the gap between v and v +

∑r
i=1 vi.

By symmetry, we then can also fill the gap between w and w +
∑s
i=1 v′i = v +

∑r
i=1 vi, so the

claim follows.
By Proposition 5.2 and Proposition 5.3, it is in fact sufficient to show that there exists a

triangulation T ′ ∈ ΥC and a generic vector ξ′ ∈ ΞC such that the gap between h∗T ′,ξ′(xk−1) and
h∗T ′,ξ′(xk) can be filled.

For this, let T ′ ∈ ΥC be a pulling triangulation (see, for instance, [DLRS10, Section 4.3.2])
which uses vk as its last vertex. Then vk is an extremal ray generator of every full-dimensional
cone in T ′, cf. [DLRS10, Lemma 4.3.6 (2)]. Choose σ ∈ (T ′)(d+1) such that xk−1 ∈ σ and choose
ξ′ ∈ σ◦ ∩ ΞC . Then xk−1 ∈ σ[ξ′) and it holds that

h∗T ′,ξ′(xk) = h∗T ′,ξ′(xk−1 + vk) = h∗T ′,ξ′(xk−1).
Thus, the claim follows. The precise way in which we apply Proposition 5.2 and Proposition 5.3 is
also indicated in Figure 2, where an arrow “↔” means that the gap between the two endpoints can
be filled. �

h∗T ,ξ′(xk−1) h∗T ′,ξ′(xk−1) h∗T ′,ξ′(xk) h∗T ,ξ′(xk)

h∗T ,ξ(xk−1) h∗T ,ξ(xk).

Prop. 5.3 Prop. 5.3

Prop. 5.2 Prop. 5.2

Figure 2. How to fill the gap between h∗T ,ξ(xk−1) and h∗T ,ξ(xk) in the proof of Theorem 4.7.

5.2. Changing the generic vector. In this subsection, we are going to prove Proposition 5.2.
The next lemma is used in that proof.

Lemma 5.4. Let T ∈ ΥC and σ ∈ T . Then the set

ΛT ,σ :=
{
Iξ(σ′) : σ′ ∈ T (d+1), ξ ∈ ΞC , σ◦ ⊆ σ′[ξ)

}
is an abstract simplicial complex, i. e., closed under taking subsets.

Proof. We show that if S ∈ ΛT ,σ and v ∈ S, then (S \ {v}) ∈ ΛT ,σ as well. Hence every subset of
S, which can be achieved by repeatedly removing vectors from S, is contained in ΛT ,σ.

Take S ∈ ΛT ,σ, choose σ′ ∈ T (d+1), ξ ∈ ΞC such that σ◦ ⊆ σ′[ξ) and S = Iξ(σ′), and let v ∈ S.
For t ≥ 0 let ξt := ξ + tv. Clearly ξt ∈ C for all t ≥ 0. Also, as ξ0 = ξ is generic it follows that ξt is
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generic for all but finitely many values of t. For a sufficiently large choice of t the coefficient of v in
the linear combination ξt =

∑
w∈(σ′)(1) µw,tw is positive and hence Iξt(σ′) = S \ {v} (see Figure 3).

Moreover, note that σ◦ ⊆ σ′[ξ) if and only if Iξ(σ′) ⊆ σ(1). As Iξt(σ′) ⊆ Iξ(σ′), it follows that
σ◦ ⊆ σ′[ξt) and thus S \ {v} ∈ ΛT ,σ. �

C

σ′

{1} × P

ξ
ξt

v

Figure 3. The point ξt for large t > 0.

Proof of Proposition 5.2. There exists a unique cone σ ∈ T such that x ∈ σ◦. This cone does not
need to be full-dimensional. We can represent x as a linear combination x =

∑
v∈σ(1) λvv for

positive real numbers λv > 0. For a given ξ ∈ ΞC , there exists a unique full-dimensional cone
σ′ ∈ T (d+1), such that σ◦ ⊆ σ′[ξ), and hence

(11) h∗T ,ξ(x) =
∑

v∈σ(1)

{λv} +
∣∣∣Iξ(σ′) ∩ {v ∈ σ(1) : λv ∈ Z

}∣∣∣,
where {λv} denotes the fractional part of λv, i. e., λv − bλvc. By Lemma 5.4, ΛT ,σ,x :={
S ∩

{
v ∈ σ(1) : λv ∈ Z

}
: S ∈ ΛT ,σ

}
is an abstract simplicial complex (a subcomplex of ΛT ,σ). It

follows from Eq. (11) that{
h∗T ,ξ(x) : ξ ∈ ΞC

}
⊆
∑

v∈σ(1)

{λv} + {|S′| : S′ ∈ ΛT ,σ,x}.

The other inclusion “⊇” follows by the fact that every S′ ∈ ΛT ,σ,x has a presentation S′ = Iξ(σ′)
for ξ ∈ ΞC and σ′ ∈ T (d+1) with σ◦ ⊆ σ′[ξ) (see Lemma 5.4). Hence{

h∗T ,ξ(x) : ξ ∈ ΞC
}

= [a, a+ b] ∩Z,

with a =
∑

v∈σ(1) {λv} and b = dim ΛT ,σ,x + 1 where the dimension of an abstract simplicial
complex is the largest dimension of any of its faces S which in turn is dimS = |S| − 1. �

Example 5.5. If we let T ∈ ΥC also vary in Proposition 5.2, then the analogous statement is false
in general.

Denote the standard basis of R6 by e1, . . . , e6 and consider the lattice polytope

P := conv(5e1 − 4(e2 + e3 + e4)− 3(e5 + e6), e2, . . . , e6,0, 5e1 − e2 − . . .− e6),

whose only lattice points are its vertices (such polytopes are called empty). We denote the vertices
of {1} × P ⊆ R7 by vi for i = 1, . . . , 8 where the order is taken to be the one as they appear in the
definition above. Let C ⊆ R7 be the cone over P . As P is a circuit (see Remark 5.10), ΥC consists
of two triangulations T+, T− where

T+ = {cone(v1, . . . ,vi−1,vi+1, . . . ,v8) : i = 1, . . . , 6},
T− = {cone(v1, . . . ,vi−1,vi+1, . . . ,v8) : i = 7, 8}.

We take the lattice point x := 4e0 + e1 in C which has representations

x = 1
5v1 + 4

5 (v2 + v3 + v4) + 3
5 (v5 + v6) + 1

5v7 = 1
5 (v2 + . . .+ v6 + v8) + 14

5 v7.

For every ξ ∈ ΞC , we obtain h∗T−,ξ(x) = 4 while h∗T+,ξ
(x) = 2, and thus h∗ΥC ,ΞC (x) = {2, 4} is

missing the number 3. On the other hand if we fix T ∈ ΥC , then
∣∣h∗T ,ΞC (x)

∣∣ = 1 and hence does
not has a gap.
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5.3. Changing the triangulation. The proof of Proposition 5.3 relies on flips in triangulations
and the fact that any two regular triangulations can be connected by a sequence of flips. We recall
some notions and results and refer to [DLRS10] (see also [GKZ08, Chapter 7, Section 2]) for details
and references.

Definition 5.6. A (homogeneous) vector set in Rd+1 is a finite subset A ⊆ Rd+1, such that the
first component of each v ∈ A is 1. The number |A| − dim(span(A)) is called its corank. We will
never consider inhomogeneous vector sets, hence we will omit the specifier “homogeneous”.

In this paper under a polyhedral subdivision S of A we will understand a subset S of the power
set of A such that

(1) {cone(B) : B ∈ S} forms a polyhedral subdivision of the cone generated by A, i. e., CA :=
cone(A), and

(2) for every B,B′ ∈ S
B ∩ (cone(B) ∩ cone(B′)) = B′ ∩ (cone(B) ∩ cone(B′)).

A cell B ∈ S is called simplicial if it consists of linearly independent vectors. A triangulation T of
A is a polyhedral subdivision such that all its cells are simplicial.

Remark 5.7. The vector sets which we will deal with in this paper come from lattice points on
height 1 contained in the cone over lattice polytopes. In particular, subtleties in connection with
“double points” won’t appear.

Given a simplicial cell B of a polyhedral subdivision S of a vector set A, the set B necessarily
consists of the primitive generators of the extremal rays of cone(B). In particular, B and cone(B)
uniquely determine each other. Hence there is a natural correspondence between triangulations of
cone CA as defined in Section 4.1 and triangulations of the vector set A. However, for an arbitrary
cell B in a polyhedral subdivision S of A, it is necessary to remember B, as cone(B) does not
determine B in general. One might want to think of B as the “markings” of cone(B).

A refinement S ′ of a polyhedral subdivision S is a polyhedral subdivision where for each B′ ∈ S ′
there exists B ∈ S such that B′ ⊆ B.

An almost-triangulation of a vector set A is a pair (B,S) of a subset B ⊆ A and a polyhedral
subdivision S of simultaneously both A and B such that it is not a triangulation but all its proper
refinements (with respect to B) are one.

Proposition 5.8 (see [DLRS10, Corollary 2.4.6]). Every almost-triangulation has exactly two
proper refinements, which are both triangulations.

Two triangulations T1, T2 of the same vector set A are connected by a flip if there is an
almost-triangulation (B,S) of A such that T1 and T2 are the only two triangulations refining (B,S).

Example 5.9. Consider the vector set A := {v1, . . . ,v10} ⊆ R3 whose projection to R2 by
forgetting the first coordinate is given in Figure 4. To simplify notation we will abbreviate
the subset {vi1 , . . . ,vik} ⊆ {v1, . . . ,v10} by “i1 . . . ik”. The two triangulations T1 := {123, 134,

1 3

2

5

4

6
7

8
9

10

A := T1

S

T2

Figure 4. The flip of Example 5.9.

12, 23, 13, 14, 34, 1, 2, 3, 4, ∅} and T2 := {125, 235, 345, 145, 12, 15, 25, 35, 23, 45, 34, 14, 1, 2, 3, 4, 5, ∅}
are connected by a flip supported on the almost-triangulation (B,S) where B := {1, . . . , 5} and
S = {1235, 1345, 153, 12, 23, 14, 34, 1, 2, 3, 4, ∅}.

Vector sets of corank 1 will play an important role in the proof, so let us recall some facts. We
refer to [DLRS10, Section 2.4] for details.
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Remark 5.10. A corank 1 vector set A ⊆ Rd+1 possesses a unique linear dependence relation,
say 0 =

∑
v∈A λvv, which partitions A into three subsets A−, A0 and A+:

A+ := {v ∈ A : λv > 0}, A0 := {v ∈ A : λv = 0}, A− := {v ∈ A : λv < 0}.

The following are the only two triangulations of A, both are regular.

T+ := {cone(B) : A+ 6⊆ B ⊆ A} and T− := {cone(B) : A− 6⊆ B ⊆ A}.

By [DLRS10, Theorem 4.4.1], the two triangulations T+ and T− form the prototype of a flip. A
lattice polytope P ⊆ Rd such that its homogenized vertices form a vector set A of corank 1 with
A0 = ∅ is called a circuit.

Proposition 5.3 will follow from the following further reduction to the case of corank 1.

Lemma 5.11. Let A ⊆ Zd+1 be a vector set of corank 1, v ∈ Zd+1, ξ ∈ ΞCA , ΓA be the sublattice
of Zd+1 generated by A and x ∈ CA ∩ (v + ΓA). Then there exist (S1, ξ1,y1), . . . , (SR, ξR,yR) ∈
{T+, T−} × ΞCA × (CA ∩ (v + ΓA)) such that{

h∗Si,ξi(yi) : i = 1, . . . , R
}
∪
{
h∗T+,ξ(x), h∗T−,ξ(x)

}
= [a, b] ∩Z,

for two nonnegative integers a ≤ b.

We will prove Lemma 5.11 in Section 5.4. The following technical lemma will be needed to make
a generic point “more” generic.

Lemma 5.12. Let C ⊆ Rd+1 be a full-dimensional cone, σ ⊆ C a simplicial full-dimensional
subcone and H1, . . . ,HR ⊆ Rd+1 a family of (linear) hyperplanes. For every ξ ∈ C, there exists
ξ′ ∈ C◦ \

(⋃R
j=1Hj

)
with Iξ(σ) = Iξ′(σ) (see Definition 4.1).

Proof. As σ is full-dimensional and simplicial, there exists a unique representation ξ =
∑

v∈σ(1) λvv.
Further, there exists x ∈ σ◦ \

(⋃R
j=1Hj

)
, which has a representation x =

∑
v∈σ(1) µvv with µv > 0

for all v ∈ σ(1).
For 0 ≤ t ≤ 1 let ξ(t) := (1− t)ξ + tx. Clearly ξ(t) ∈ C◦ for all 0 < t ≤ 1. As ξ(1) /∈

⋃R
j=1Hj ,

the points ξ(t) avoid the hyperplanes Hi for all but finitely many values of t. If we choose t close
to 0, then µv > 0 for every v ∈ σ(1) implies that the nonzero coefficients of ξ(t) in the basis σ(1)

have the same signs as the λv, and the zero coefficients become positive. Hence for such a choice of
t, ξ′ := ξ(t) satisfies the claim. �

Proof of Proposition 5.3. As both T and T ′ are regular triangulations of the same vector set
A0 := ({1} × P ) ∩ Zd+1, they are connected by a sequence of flips (see, for instance, [DLRS10,
Theorem 5.3.7]), i. e., there is a finite sequence of triangulations of the vector set A0 such that every
two consecutive triangulations differ in a flip. It is sufficient to prove our claim for every pair of
consecutive triangulations in this sequence, and hence we assume from now on that T and T ′ differ
only by a flip.

Let (B,S) be the almost-triangulation such that T and T ′ are the two proper refinements of it.
According to [DLRS10, Lemma 2.4.5], each cell A ∈ S(d+1) has corank at most 1. Take A ∈ S(d+1)

such that x ∈ σ := cone(A) and fix ξ′ ∈ ΞC ∩ σ◦.
If A has corank 0, then A ∈ T ∩ T ′, and thus h∗T ,ξ′(x) = h∗T ′,ξ′(x). The statement follows by

Proposition 5.2.
If A has corank 1, then (up to swapping T+ and T−) we may assume T+ ⊆ T and T− ⊆ T ′ where

T± denote the two triangulations of A (see Remark 5.10). We obtain

h∗T ,ξ′(x) = h∗T+,ξ′(x) and h∗T ′,ξ′(x) = h∗T−,ξ′(x).

By Lemma 5.11, there exist (S1, ξ1,y1), . . . , (SR, ξR,yR) ∈ {T+, T−}×ΞCA × (CA ∩ (v + ΓA)) such
that the h∗Si,ξi(yi) fill the gap between h∗T+,ξ′

(x) and h∗T−,ξ′(x). By Lemma 5.12, we may assume
ξi ∈ ΞC without changing the value of h∗Si,ξi(yi). Moreover CA∩(v + ΓA) ⊆ C∩(v + Γ). If Si = T+
for some i = 1, . . . , R, then h∗Si,ξi(yi) = h∗T ,ξi(yi) (and analogously for Si = T−). In particular, we
can fill the gap between h∗T ,ξ′(x) and h∗T ′,ξ′(x). The statement follows by Proposition 5.2. �
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5.4. The corank 1 case. In this section we will prove Lemma 5.11. In its proof we will consider
certain functions which we want to discuss separately here. We denote by {x} the fractional part
of a real number x, i. e., x − bxc where bxc is the largest integer less than or equal to x. For
two finite families of positive integers (λi)i∈I and (µj)j∈J with gcd(λi, µj : i ∈ I, j ∈ J) = 1 and∑
i∈I λi =

∑
j∈J µj and a further family (xk)k∈I∪J of rational numbers, we define

f : R→ Q; t 7→
∑
i∈I
{xi − λit} +

∑
j∈J
{xj + µjt} ,

which is a periodic bounded step function with period 1. Such functions have already appeared in
number theory and algebraic geometry (see, for instance, [Vas99, Bor08, BB09, Bob09]).

The function f is piecewise constant and the interesting t-values are the ones where f(t) is
different from its left-handed or right-handed limit. We call those t potential jump discontinuities
and observe that this is the case if and only if xi − λit ∈ Z for some i ∈ I or xj + µjt ∈ Z for some
j ∈ J . We define for a potential jump discontinuity t

l(t) := |{j ∈ J : xj + µjt ∈ Z}| and r(t) := |{i ∈ I : xi − λit ∈ Z}|.

In the following limt→t0− f(t) (resp. limt→t0+ f(t)) will denote the left-handed (resp. right-handed)
limit of a function f : R→ R.

Lemma 5.13. For a potential jump discontinuity t0 ∈ R the relationship between f(t0) and its
left- resp. right-handed limit is given as follows:

lim
t→t0−

f(t) = f(t0) + l(t0), and lim
t→t0+

f(t) = f(t0) + r(t0).

lim
t→t0−

f(t)

lim
t→t0+

f(t)

l(t0)

r(t0)

f(t0)

Figure 5. Relationship between f(t0) and its left- resp. right-handed limit at a
jump discontinuity t0.

Proof. As
∑
i∈I λi =

∑
j∈J µj , we can rewrite f as follows

f : R→ Q; t 7→
∑
i∈I∪J

xi −
∑
i∈I
bxi + λitc −

∑
j∈J
bxj − µjtc.

The statement follows by the following properties of the floor-function. Let x, t0 ∈ R and λ, µ ∈ Z>0
with x+ λt0, x− µt0 ∈ Z. Then

bx+ λt0c = lim
t→t0−

bx+ λtc+ 1, bx+ λt0c = lim
t→t0+

bx+ λtc,

bx− µt0c = lim
t→t0−

bx− µtc, bx− µt0c = lim
t→t0+

bx− µtc+ 1.

�

Proof of Lemma 5.11. The coefficients in the linear dependence relation
∑

v∈A+
λvv =

∑
v∈A− µvv

can be chosen to be positive integers with gcd
(
µv− , λv+ : v− ∈ A−,v+ ∈ A+

)
= 1. Let σ′ ∈ T− be

the unique cone such that x ∈ σ′[ξ) and denote by v′ ∈ A− the unique element of A− \ (σ′)(1). We
can represent x as a linear combination x =

∑
v∈A\{v′} xvv for nonnegative rational numbers xv.

Moreover we set xv′ := 0.
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Take v′′ ∈ A+ such that xv′′
λv′′

= min
{
xv
λv

: v ∈ A+

}
, so that xv − xv′′

λv′′
λv ≥ 0 for all v ∈ A+. Let

σ′′ ∈ T+ be the unique cone such that v′′ does not generate a ray of σ′′. We use the dependence
relation to change the representation of x to

x =
∑

v∈A+

(xv − tλv)v +
∑

v∈A0

xvv +
∑

v∈A−

(xv + tµv)v.

We let t ∈
[
0, xv′′

λv′′

]
, so that the coefficients in all representations of x are nonnegative. Further we

consider the following periodic bounded step function with period 1:

f : R→ Z; t 7→
∑

v∈A+

{xv − tλv} +
∑

v∈A0

{xv} +
∑

v∈A−

{xv + tµv} .

Observe that f takes integer values, as
∑

v∈A xv ∈ Z. Then f(0) = h∗T−,ξ′(x) and f
(
xv′′
λv′′

)
=

h∗T+,ξ′′
(x) for ξ′ ∈ ΞCA ∩ (σ′)◦ and ξ′′ ∈ ΞCA ∩ (σ′′)◦. The gap between h∗T−,ξ(x) and h∗T−,ξ′(x)

(resp. the gap between h∗T+,ξ
(x) and h∗T+,ξ′′

(x)) can be filled by using Proposition 5.2, so it remains
to show that the gap between h∗T−,ξ′(x) and h∗T+,ξ′′

(x) can be also filled.
Let D be the set of potential jump discontinuities of f which lie in the interval

[
0, xv′′

λv′′

]
. Let

t1 < t2 be two successive potential jump discontinuities. Then, if f(t1) < f(t2) it also holds that
f(t1) + r(t1) ≥ f(t2), see Figure 6. Similarly, if f(t1) > f(t2), then f(t1) ≤ f(t2) + l(t2). To finish
our proof it is therefore sufficient to prove the following two claims:

For each t ∈ D \
{
xv′′
λv′′

}
with r(t) > 0, we claim that

[f(t), f(t) + r(t)− 1] ∩Z ⊆
{
h∗
T+,ξ̃

(y) : ξ̃ ∈ ΞCA ,y ∈ CA ∩ (v + ΓA)
}

,

and similarly for t ∈ D \ {0} with l(t) > 0, we claim that

[f(t), f(t) + l(t)− 1] ∩Z ⊆
{
h∗
T−,ξ̃

(y) : ξ̃ ∈ ΞCA ,y ∈ CA ∩ (v + ΓA)
}

.

We only show the first claim, as the proof of the second one is analogous. For this, fix t ∈ D\
{
xv′′
λv′′

}
with r(t) > 0. Choose v0 ∈ A+ with xv0 − tλv0 ∈ Z and let σ0 := cone(A \ {v0}) ∈ T+ be the
unique cone such that v0 does not generate a ray of σ0. Let y := x−(xv0− tλv0)v0 +

∑
v∈A+\{v0} v.

For ξ0 ∈ σ◦0 ∩ ΞCA it follows from Eq. (11) that h∗T+,ξ0
(y) = f(t). On the other hand, it holds

that v0 = 1/λv0

(∑
v∈A− µvv−

∑
v∈A+\{v0} λvv

)
and thus Iv0(σ0) = A+ \ {v0}. By Lemma 5.12,

we can find an element ξ1 ∈ ΞCA with Iξ1(σ0) = Iv0(σ0). Using Eq. (11) again, it follows that
h∗T+,ξ1

(y) = f(t) + r(t)− 1. Finally, the gap between f(t) and f(t) + r(t)− 1 can be filled by using
Proposition 5.2.

lim
t→t1+

f(t) lim
t→t2−

f(t)

f(t1)

f(t2)

h∗T+,ξk
(yk)

r(t1)

l(t2)

lim
t→t1+

f(t) lim
t→t2−

f(t)

f(t1)

f(t2)
h∗T−,ξk

(yk)

r(t1)

l(t2)

Figure 6. The possible cases for two successive potential jump discontinuities.

�

Example 5.14 (Continuation of Example 5.5). The lattice polytope in Example 5.5 is an empty
circuit with unique dependence relation

v1 + 3(v2 + v3 + v4) + 2(v5 + v6) = 13v7 + v8.
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Let A := {v1, . . . ,v8} be the associated vector set of homogenized lattice points in {1} × P . We
have A+ := {v1, . . . ,v6} and A− := {v7,v8}. In the proof of Lemma 5.11, the coefficients of
this dependence relation were denoted by (λv)v∈A+

and (µv)v∈A− respectively. There we also
introduced v′′ ∈ A+ such that xv − xv′′

λv′′
λv ≥ 0 for all v ∈ A+. In this example we have v′′ = v1.

The periodic bounded step function (with period 1) associated to x is given as follows (see Figure 7)
f : R→ Z; t 7→

{ 1
5 − t

}
+ 3
{ 4

5 − 3t
}

+ 2
{ 3

5 − 2t
}

+
{ 1

5 + 13t
}

+ { t} .

Let us consider, e. g., the possible jump discontinuity t0 = 3
5 = 0.6. From Figure 7 we can read off

f(t0) = 2 while limt→t0− f(t) = 3 and limt→t0+ f(t) = 5 which implies that l(t0) = 1 and r(t0) = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

Figure 7. The periodic bounded step function of Example 5.14. The dots indicate
the value of f at the potential jump discontinuities.

Finally, we have f(0) = h∗T−,ΞC (x) = 4 while f
( 1

5
)

= h∗T+,ΞC (x) = 2, and thus there is a gap at
3. We can fill it by looking at the potential jump discontinuity 4

65 : f
( 4

65
)

= h∗T−,ξ(x− v7) = 3 for
ξ ∈ ΞC ∩ σ◦ where σ ∈ T− is the unique cone such that v7 does not generate a ray of it.
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