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Abstract 
 

Diffusion MRI is a neuroimaging modality used to evaluate brain structure at a microscopic level and 
can be exploited to map white matter fibre bundles and microstructure in the brain. One common 
issue is the presence of artefacts, such as acquisition artefacts, physiological artefacts, distortions or 
image processing-related artefacts. These may lead to problems with other downstream processes 
and can bias subsequent analyses. In this work we use normative modelling to create a semi-
automated pipeline for detecting diffusion imaging artefacts and errors by modelling 24 white matter 
imaging derived phenotypes from the UK Biobank dataset. The considered features comprised 4 
microstructural features (from models with different complexity such as fractional anisotropy and 
mean diffusivity from a diffusion tensor model and parameters from neurite orientation, dispersion 
and density models), each within six pre-selected white matter tracts of various sizes and geometrical 
complexity (corpus callosum, bilateral corticospinal tract and uncinate fasciculus and fornix). Our 
method was compared to two traditional quality control approaches: a visual quality control protocol 
performed on 500 subjects and quantitative quality control using metrics derived from image pre-
processing. The normative modelling framework proves to be comprehensive and efficient in 
detecting diffusion imaging artefacts arising from various sources (such as susceptibility induced 
distortions or motion), as well as outliers resulting from inaccurate processing (such as erroneous 
spatial registrations). This is an important contribution by virtue of this methods’ ability to identify the 
two problem sources (i) image artefacts and (ii) processing errors, which subsequently allows for a 
better understanding of our data and informs on inclusion/exclusion criteria of participants. 
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1. Introduction 
Diffusion MRI (dMRI) is a neuroimaging modality frequently used to study the configuration of white 
matter in the brain. Diffusion refers to the molecular mobility of water molecules in biological tissue 
which can be measured in terms of its anisotropy levels. Due to the organization of white matter in 
bundles of myelinated axonal fibers, anisotropy can be exploited by dMRI to map the microscopic 
details of tissue architecture (Le Bihan, 2003). Although dMRI is a great tool for investigating in vivo 
structural organization in the human brain, it is not without challenges. The resolution of a dMRI scan 
is typically lower than a regular T1-weighted anatomical scan as well as being more predisposed to 
the presence of artifacts. One of the main reasons artifacts arise is due to the increased sensitivity to 
off-resonance fields of the echo-planar imaging technique used for data acquisition. Likewise, the 
dynamic nature of collecting multiple volumes during a dMRI scan makes it susceptible to subject 
movement (Le Bihan et al., 2006). 

Several biophysical models can be applied to dMRI data to estimate tissue microstructure. Here we 
will briefly mention two of the most used models. The diffusion tensor imaging (DTI) model allows a 
full characterization of molecular mobility variation in space according to direction. Two of the most 
widely used DTI parameters are fractional anisotropy (FA) and mean diffusivity (MD) (Le Bihan et al., 
2001). Neurite orientation dispersion and density imaging (NODDI) is another popular dMRI model. 
NODDI produces neurite density and orientation dispersion estimates which constitute more specific 
markers of brain tissue microstructure than DTI (Zhang et al., 2012). 

DMRI data are affected by a slew of different artifacts (Andersson, 2021), possibly more so than any 
other MRI modality. The scans are typically acquired using echo planar imaging (EPI) which means that 
they have a very low bandwidth along the phase-encode (PE) direction, of the order of 10-30 Hz/pixel. 
That means that they are very sensitive to, even very small, off-resonance fields resulting in geometric 
distortions. The dominating sources of off-resonance fields are i) Susceptibility, where the object 
(head) itself disturbs the main magnetic field by virtue of differences in magnetic susceptibility and ii) 
Eddy currents, where a field is generated by currents in conductors within the bore, currents that are 
in turn caused by switching of the diffusion gradients. The former, caused by the object itself, is mainly 
localized near the sinuses and ear-canals, and remains as a first approximation constant across all 
dMRI volumes. In contrast, the second, caused by the diffusion gradient, affects the whole brain and 
is different for each volume. The field from either source causes geometric distortions (displacement 
of signal along the PE-direction) of several mm. 

Because of the relatively long duration of a dMRI data set (comprising tens to hundreds of volumes), 
it is also affected by subject movement. The effects of this include “gross movement,” where the brain 
appears at a different place within the FOV in different volumes. That effect can be corrected by rigid-
body registration. But, uniquely to diffusion MRI, movement can also cause full or partial loss of signal 
in individual slices (or groups of slices if Simultaneous Multi-Slice (SMS) is used). The loss of signal is 
irreversible, and correction methods are aimed at detecting it and minimizing its effect on subsequent 
analysis. 

The presence of artifacts in the dMRI scans may lead to problems in downstream processing and can 
bias subsequent analyses. For this reason, the artifacts or image errors should be corrected or 
removed in case correction is not possible. It is not uncommon to use a visual assessment protocol for 
dMRI datasets (Wu et al., 2020; Lepage et al., 2018; Ho et al., 2021, Meinert et al., 2019 ). This involves 
the visual inspection of each participant’s image either in terms of their full diffusion image and/or 
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derived images such as FA and residual maps. Quality control protocols vary greatly and may include 
different degrees of rigor and complexity. In some cases, the artifacts are labeled by severity as well 
as type while other times a binary category is used (artefactual vs. non-artefactual). The labeling 
process requires a great deal of attention, expertise, and time, and it is ultimately subjective in nature 
due to the high variation in artifact appearance. 

Many automated quality control (QC) tools are part of a processing pipeline, which are often used for 
detecting and correcting artifacts in larger datasets. Most of the time these pipelines base their 
algorithm on the exclusion of artifact data prior to further processing. The removal of data can be 
made at different levels of image processing. For example, RESTORE (Chang et al., 2012) is a method 
for improving tensor estimation on a voxel-by-voxel basis in the presence of artifact data points. The 
algorithm detects artifact voxels by computing an initial tensor model using nonlinear least squares 
and evaluating the residuals. PATCH (Zwiers, 2010) is a tool for the detection and correction of motion 
artifacts at the slice or patch level. It uses regional and more global (slice-wise) information to detect 
artifacts, which improves the algorithm's robustness and sensitivity. At the volume level, DTIprep 
(Oguz et al., 2014) can detect and correct artifacts based on entropy estimation from all volumes. The 
volumes which reduce the entropy most are removed until the z-score for removal is below a set 
threshold. A common issue with this type of approach is the removal of too much data, which in turn 
may lead to a poorly estimated model or simply data loss. 

Alternatively, there are pipelines which are based on estimating a desired outcome (e.g., average 
signal of the slice). For example, FSL EDDY (Andersson et al., 2017; Andersson & Sotiropoulos, 2016) 
is a tool which retrospectively estimates various artifact types (eddy currents, susceptibility, 
movement, and slice dropout) by finding the distortion fields that achieve the best alignment of 
individual volumes to a model free prediction of what each volume should look like. Within the same 
framework, EDDY QC (Bastiani et al., 2019) is a tool for generating qualitative single subject and group 
reports, summarizing several objective QC parameters which are acquired based on the FSL EDDY 
output. 

At the subject level, YTTRIUM (Maximov et al., 2021) is a dMRI QC method which employs two QC 
metrics: 1) the skeleton-averaged (using TBSS) diffusion parameters values such as FA, MD, and others 
in conjunction with 2) an estimate of the structural similarity between each subject's diffusion 
parameter map and the cohort average of that parameter (in MNI space). Using these two metrics, k-
means is applied to estimate of the distance between each point (representing one subject) and the 
center of the cluster. A threshold of the k-means estimates separates the outliers who are affected by 
artifacts and/or errors from the non-affected subjects. 

Recently, deep learning-based methods for quality control of neuroimaging data have gained 
popularity. In the field of diffusion imaging, a few notable works emerge. The QC Automator (Samani 
et al., 2020) is a method based on convolutional neural networks for automated classification of dMRI 
volumes and uses transfer learning for the classification of axial and sagittal slices. Furthermore, 3D-
QCNet (Ahmad et al., 2023) is a more recent algorithm which improves upon the QC Automator 
principle by creating a deep learning pipeline that can detect dMRI artifacts three-dimensionally 
without requiring manually labeled data. 

In summary, there are extensive dMRI image processing pipelines designed to minimize the effect of 
artifacts and correct the images after acquisition. Nevertheless, some challenges remain. After the 
pre-processing stage (e.g., denoising, de-ringing, susceptibility and motion correction), the data is 
further processed by applying different models, spatial registration, and other steps where 
subsequent issues can also arise. Because of the many types of artifacts which can affect diffusion 
data, the detection of errors within the images is either time-consuming and subjective, in the case of 
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manually labeled scans, or may miss artifacts in the case of automated pipelines (e.g., classifiers). 
Many of these artifacts may be quite rare, which makes it difficult to obtain a sufficiently large, labeled 
dataset for training automated QC methods. Another issue with the existing pipelines arises from the 
many correction steps that are applied during the processing (registration to standard space). While 
some artifacts may be ‘corrected’, some are incompletely corrected or missed. Furthermore, 
approaches based on examining only the data may miss artifacts that occur during downstream 
processing, for example, spatial normalization errors, which can occur more often in diffusion data 
than in other modalities due to the high precision required for brain structure localization (e.g., white 
matter tracts). 

In this paper, we propose an alternative approach for evaluating and understanding the quality of 
dMRI data at the subject level using normative modeling. Normative modeling (Marquand et al., 2016) 
is an innovative method used to model biological and behavioral variation across a study population 
and can be used to make statistical inferences at an individual level. This is achieved by mapping a 
response variable (e.g., neuroimaging-derived phenotypes) to a covariate (e.g., age) in a similar way 
growth charts are used in pediatric medicine to map the height or weight of children to their age. Here 
we demonstrate that using our approach detects subjects with either poor data quality and/or with 
processing problems as extreme outliers from a normative model that captures population variation 
within each image-derived phenotype (IDP). Crucially: (i) this does not require us to label artifacts in 
advance, nor (ii) specify what the consequences of different types of artifacts are on the derived 
phenotype, and (iii) allows immediate identification of potentially problematic scans from large 
datasets without labor-intensive manual screening. For this purpose, we use the UK Biobank dataset 
(Ollier et al., 2005; UK Biobank, 2006), which is one of the largest biomedical databases and research 
resources (currently) containing over 60,000 subjects with available diffusion data as well as hundreds 
of diffusion IDPs. In a subset of 500 participants, we also visually QC and extract quantitative QC 
parameters to compare with our normative modeling approach. 

2. Methods  
2.1 Dataset 
We used a subset of the UK Biobank dataset containing 23158 subjects with available dMRI data, from 
the 2020 data release. Briefly, data were acquired using a Siemens Skyra 3T and had an acquisition 
time of 7 minutes. It contains 5 x b0 scans, 50 x b1000 s/mm2 and 50 x b2000 s/mm2 with gradient 
timings δ = 21.4 ms, Δ = 45.5 ms. The resolution is 2x2x2 mm3 and the matrix size is 104x104x72. In 
this manuscript, we use image-derived phenotypes derived from the standard UKB processing 
pipelines. In brief, data were aligned in MNI space, corrected for motion, off-resonance (susceptibility 
and eddy-current induced) and slice dropout artefacts using the Eddy tool (Andersson et al., 2017; 
Andersson & Sotiropoulos, 2016). The DTIFIT tool within FSL was used to fit the DTI model to the 
b=1000 shell to calculate measures such as FA and MD. Along with the DTI model a NODDI model was 
also fit to the data, yielding additional parameters such as intra-cellular volume fraction (ICVF, an index 
of white matter neurite density) and isotropic or free water volume fraction (ISOVF). The two models 
were used to extract 675 diffusion IDPs over 75 different white matter tract regions, obtained from 
skeletonised ROIs of the JHU white matter MNI atlas. More details on data acquisition and pre-
processing can be found in the UKB documentation (Smith et al., 2016) as well as other papers which 
address the pre-processing and processing pipelines (Alfaro-Almagro et al., 2018; Miller et al., 2016 ). 

Our methodological pipeline consisted of 2 parallel streams, summarised in Figure 1. The first of these 
was following the normative modelling framework applied to the whole available UKB dataset (Figure 
1A). Therefore, in Experiment 1 we trained. The second stream involved visual QC and the extraction 
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of quantitative QC measures on a subset of 500 participants (Figure 1B). These measures were then 
compared to each other as well as to the normative models.  

 

 

Figure 1. Flowchart describing the main methods. (A) 24 diffusion IDPs provided by UK Biobank were 
used to fit normative models (norm. mod.). The estimates provided by the models were used in 
conjunction with the visual QC protocol to identify and label artefact presence in the scans. (B) A 
subsample of 500 scans were additionally visually rated and had quantitative QC metrics extracted. 
SVM – support vector machine, QC – quality control, UKB – UK biobank, Norm Mod - Normative model. 

 

2.2 Experiment 1 
2.2.1 Normative modelling 

In preparation for the modelling stage, the subjects with available dMRI were split into test and 
training sets. The test set consisted of a random sample of 5000 subjects, while the training set 
consisted of the remainder of the data (n=22658). The list of diffusion IDPs was selected on the basis 
of diffusion model (DTI and NODDI) and tract, both categories including simple and complex examples 
with different modelling difficulties. We chose to model across 4 diffusion parameters. The FA and MD 
parameters of the DTI model were selected for their relative simplicity since they represent a direct 
measurement of diffusion influenced by tissue microstructure and are the most widely used DTI 
parameters. We selected the ICVF and ISOVF parameters of the NODDI model for their relative 
complexity since they enable a more specific characterization of tissue microstructure by estimating 
neurite density and orientation dispersion. A total of 6 tracts were chosen based on their size and 
geometrical complexity and comprised: the corpus callosum, the corticospinal tract (both left and 
right), the uncinate fasciculus (both left and right) and the fornix. This yielded a list of 24 IPDs in total.  

A normative model was trained on the training set to estimate the normal range of each IDPs value 
according to age. To account for the possible non-linear effects and non-Gaussian distributions within 
the dataset, we used a warped Bayesian linear regression (BLR) model (Fraza et al., 2021), as also used 
in prior work (Fraza et al., 2021; Rutherford et al., 2022). Specifically, this involves applying a third 
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order polynomial B-spline basis expansion over age with 5 evenly spaced knots with SinhArcsinh 
warping function described in more detail in Fraza et al. (2021). Next, the test set was used to estimate 
each subjects’ deviation from the normal range of each IDP by computing the individual z-score 
(equation 1). The fit statistics of the model were computed including explained variance, skew, and 
kurtosis. The models were refitted after the exclusion of the outliers from the dataset (see next 
section) in order to assess the effect, the outliers had on the model fit. The amount of deviation for 
each subject was visualized by plotting the individual z-scores across the mean and centiles of variation 
predicted by the model. For a detailed introduction to warped BLR normative modelling please consult 
the dedicated paper by Fraza et al. (2021). All the statistical analyses were performed in Python 
version 3.8, using the PCN toolkit (GitHub, PCNtoolkit, n.d.). We then used the z-statistics derived from 
the normative model as the basis for further assessment (equation 1).  

𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−ŷ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛
2+(𝜎𝜎𝜎𝜎∗2)𝑛𝑛𝑛𝑛

                                                                                (equation 1)                                        

In equation 1, n denotes each subject while d denotes each IDP and ŷ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is the predicted mean while 
𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  denotes the true response after warping the data to the original input space such that the 
residuals are as close to Gaussian as possible (see (Fraza et al., 2021) for details). The estimated 
noise variance (i.e. reflecting variation in the data) is denoted by 𝜎𝜎𝜎𝜎𝑛𝑛𝑛𝑛2 and the variance attributable to 
modelling uncertainty for the 𝑑𝑑𝑑𝑑-th IDP is denoted by (𝜎𝜎𝜎𝜎∗2)𝑛𝑛𝑛𝑛.              

 

2.2.2 Normative modelling outliers 

We defined outliers of the normative models as participants who presented a z-score more than 7 
standard deviations from the mean in any of the IDPs model. The outlier images were visually assessed 
and labelled according to the artefact type present. For an accurate label the following scans were 
inspected: b0 scan (to assess the general quality), T1 scan (to assess the anatomical integrity), 
skeletonized FA map (to assess registration/model estimation), the FA warp from dMRI space to 
standard space (to assess the registration quality). We also computed the frequency with which one 
outlier appears across the IDPs as well as the number of artefact types present in each IDP. 

 

2.3 Experiment 2 
2.3.1 Visual QC 

In a subset of 500 randomly selected participants visual quality control was performed. This consisted 
of assigning each subject a score from 1 to 3 where 1 = no artefact, 2 = slight artefact, 3 = severe 
artefact. In order to accelerate the visual QC, 9 slices per subject were used for the visual assessment, 
3 from each view (axial, coronal, sagittal) of the B0 image with associated T1 mask (in dMRI space) 
overlaid. Two experienced raters were trained to perform the manual labelling by following a locally 
developed protocol which established the types and severity of the artefacts and how to provide a 
score accordingly. The visually captured artefacts included out of field of view scans, signal loss, brain 
extraction errors and residual susceptibility distortions. The inter-class correlation (ICC3k within the 
Pingouin library (Pingouin, n.d.) in Python 3.8) metric was then used to assess the agreement between 
the two raters. 
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2.3.2 Quantitative QC 

The quantitative quality control (QQC) measurements consisted of 21 quality descriptors for diffusion 
data including 18 parameters obtained with the Eddy QC tool (Bastiani et al., 2019), 2 parameters 
directly available from UKB and one locally derived parameter. This list includes motion parameters 
(average and relative motion, translation, rotation), number of outliers per slice (for assessing signal 
dropout), SNR and angular CNR, T1 vs DWI discrepancy and the discrepancy (i.e., registration cost) 
between the FA image in MNI space and the FMRIB FA template. A full list of the acquired 
measurements and their source is presented in Table S1 in Supplement 1.  

2.3.3 Subject classification 

The labels obtained (per subject) with the visual QC were used as ground truth for training a linear 
SVM classifier for the quantitative QC measurements (Table S1). We separated the scores in two 
classes where scores 1 and 2 were grouped together into a single class representing subjects with 
acceptable scans (two classes: 0 = acceptable, 1 = not acceptable). Before classification, the data was 
balanced by subsampling the artifact-free class to prevent biasing the performance results. The data 
balancing consisted of creating 20 random subsamples of the artefact-free data that match the 
sample-size of the artefactual data (which varies each round). The classifier was run iteratively 20 
times and the classification performance (measured by accuracy, sensitivity, and specificity) obtained 
using 5-fold cross validation was averaged across the 20 iterations to obtain the final results.  

2.3.4 Comparing normative modelling with visual and quantitative QC 

For the training of the normative model, the available UKB dataset was split into a test set consisting 
of the 500 random participants (who previously underwent visual and automated quality control) and 
a training set consisting of the remainder of the subjects. In order to assess the image quality of the 
outliers and determine the severity and the type of artefacts present we applied the same visual and 
quantitative QC protocol to the outliers identified with normative modelling. Furthermore, we also 
identified the quantitative QC outliers (threshold of 2 standard deviations from the mean) and again 
computed the number of times each outlier appeared across all quantitative QC parameters. A 
correlation matrix was computed using this information which consisted of the following 
measurements: T1 discrepancy values, FA vs DWI discrepancy, SNR, Normative Modelling (NM) outlier 
frequency, quantitative QC outlier frequency and visual QC score to compare between quality 
descriptors, visual evaluation and the involved IDP. 

For the purpose of comparing the performance of the normative modelling approach against the visual 
scores we tested different z-score threshold and calculated the Precision-Recall (PR) are under the 
curve. 
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3. Results 
3.1 Experiment 1 
3.1.1 Normative modelling 
The normative modelling fit was measured in terms of explained variance (EV), skewness and kurtosis. 
Across the 24 IDPs the models had mean EV of μEV = 0.092 with standard deviation σEV = 0.089, mean 
Skew of μSkew = 0.433 with standard deviation σSkew = 0.686, mean Kurtosis of μKurtosis = 1.482 with 
standard deviation σKurtosis = 1.886. The difference in fit of the model with and without outliers was not 
significant (p = 0.33) as tested with a paired t-test of the z-scores before and after outlier exclusion.  

3.1.2 Normative modelling outliers 
The normative models were fit to the 24 diffusion IDPs and the subjects with a z-score beyond 7 
standard deviations away from the mean were considered outliers. (Figure 2) Across all IDPs there 
were a total of 85 unique outlier subjects, out of which 64 appeared in at least two IDPs. After visually 
inspecting each outlier, we devised 3 main categories of image errors (see Figure 3 for examples of 
each): 

1. Acquisition artefacts: out of the field of view (out of FOV images i.e., incomplete brain coverage), 
residual susceptibility or Eddy current artefacts, motion-induced signal dropout etc.  

2. Processing errors: this is mainly comprised of registration or brain extraction errors which can 
occur for various reasons. Importantly, these errors often arise even from good quality data, e.g., 
in the case of misregistration due to large ventricles, severe atrophy or anatomical anomalies.  

3. Incidental findings: Although this is not an artefact or error, it is important to identify anatomical 
anomalies and have the possibility to review such participants to decide whether they should be 
excluded or not from further analyses.  
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Figure 2. Normative model plots with mean and centiles for each of the 24 diffusion IDPs. Test/Training 
data is depicted with grey dots. The outliers are colour coded by artefact type, to highlight their 
position and frequency across different IDPs. Outliers sometimes cluster according to artefact type 
while also varying depending on DWI parameter and tract.  

In Figure 2, we see that the FA metric is robust, showing very few outliers. On the other hand, the ICVF 
metric across all tracts is more sensitive to image errors, showing many outliers and a high amount of 
artefact types. Generally, larger tracts such as the corpus callosum and the corticospinal tract are 
easier to model and have relatively fewer outliers than smaller tracts. The only exception is the fornix, 
which –perhaps surprisingly– has almost no outliers (except the ICVF), this is because, when looking 
at the measurement range of the fornix tract IDPs, we can point out the very large variance. This 
means that the fornix, being a small and hard to model tract is often misregistered which makes this 
phenomenon not as evident as in the others. When looking at artefact types, it is worth pointing out 
that MD and ISOVF appear to be more sensitive to processing errors. 

 

Figure 3. Example of each artefact and error type up close. On the left side 3 A, 3 B and 3 C are 
examples of image artefacts. On the right side, 3 D and 3 E presents examples of scans with processing 
errors. 3 F is an example of an incidental finding which was detected as an outlier by the normative 
model. 

Registration failures were uncovered by examining various image types. Figure 3 shows snapshots of 
examples of different artefacts or image errors detected as outliers in the normative model. Figure 
3A-C are examples of image artefacts, while Figure 3D is an example of a processing error and 
specifically a registration failure in a subject with enlarged ventricles who appears as an outlier in the 
‘Mean MD in uncinate fasciculus right’, ‘Mean MD in uncinate fasciculus left’ and ‘ISOVF in uncinate 
fasciculus right’ IDPs. This example is also illustrated in Figure 4, along with the b0 and FA images. The 
error can be seen in Figure 4C from the overlay of the skeletonized uncinate fasciculus tract from the 
JHU atlas (in DWI native space) on the T1 scan of the subject (in DWI native space). It is noticeable 
from the image that the uncinate fasciculus is positioned incorrectly. This indicates a faulty registration 
and explains why this subject has an abnormal value within the three IDPs mentioned above. Notably, 
this was not an outlier in other metrics within the same tract despite the mis-registration effecting all 
downstream images.  
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Another example of a processing error in the form of a faulty registration is shown in Figure 3 E which 
consists of the FA scan warped in MNI space of a subject who appears to be an outlier in the ‘mean 
MD in corpus callosum’ IDP. It is apparent from the image that the registration is extremely distorted 
which has a big impact on the appearance of the corpus callosum, thus explaining the abnormal value 
of this IDP in this subject. Once again it is noteworthy that this participant was not an outlier in other 
metrics or tracts despite the drastically bad distortion of the image during registration. It is also 
important to note that these two examples could not be identified as artefactual by visually inspecting 
any of the DWI scans from the visual protocol. The last example in Figure 3 F shows the T1 scan of a 
subject with an abnormal corpus callosum which has been identified as an outlier in the ‘mean MD in 
corpus callosum’. This anatomical abnormality is an incidental finding.  

  

Figure 4. Axial slice of the same subject represented by three different data types. Panel A shows the 
average b0 image. Panel B shows the FA image while Panel C shows the skeletonized uncinate 
fasciculus (right: red colour, left = blue colour) overlayed on the T1 image. Close inspection of the 
registration reveals that the uncinate fasciculus tract is incorrectly aligned with the true white matter 
tract.  

3.2 Experiment 2 
3.2.1 Visual QC and quantitative QC 
Visual QC was performed on a sample of 500 subjects by two raters who gave scores according to the 
artefact severity from 1 to 3. The raters had an ICC3k score (Pingouin, n.d.) of 0.71 which indicates a 
moderate reliability and underscores the difficulty in obtaining reliable estimates from manual 
labelling. In Figure 5.A, SNR values are colour coded in the normative model centile plot of one of the 
IDPs (mean MD in uncinate fasciculus left). There appears to be little to no correlation between the 
quantitative QC outliers and the normative modelling outliers but Figure 5A is provided as an example. 
The visual QC scores were used in several analyses to assess the correlation between visual and 
quantitative QC measures. In Figure 5B, the visual QC scores of rater 1 were colour coded in the 
normative model centile plot of one of the IDPs (mean MD in uncinate fasciculus left). There also 
appears to be little correlation between the unacceptable scans (score = 3) and the normative 
modelling outliers (data points further away from the mean). Figure 5C also shows a plot of the 
pairwise relationships between several quantitative QC parameters (T1 discrepancy, SNR and CNR 
b=1000) and the visual QC scores which are colour coded in the scatterplots. The distributions of the 
scores overlap consistently and the scatterplots do not show any clear clustering of the data points by 
score. This suggests that the correlation between the visual and automated QC is weak.  
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3.2.2 Subject classification 
Figure 5 D shows the performance scores of the SVM classifier which was used to distinguish between 
acceptable (score 1 and 2) and unacceptable scans (score 3). The accuracy scores are no higher than 
0.6 in both rates which corroborates that the link between visual and automated QC is not significant. 

3.2.3 Comparing normative modelling with visual and quantitative QC 
The comparison between PR curves for each z-score threshold is as well as the SVM is visualized in 
Figure 5E which confirms that, given the imbalanced nature of the dataset, the normative modelling 
approach has batter success at identifying the subjects with diffusion image errors. 

Using the 85 outlier subjects from the larger dataset, a correlation matrix was computed with select 
measurements obtained from both the visual QC and quantitative QC parameters as well as 
parameters such as frequency with which a subject appears as outlier in the 24 IDP normative models. 
This can be seen in Figure 6.  In this case there is a strong positive correlation between the visual QC 
scores and the T1 discrepancy parameter as well as the outlier frequency in both the normative model 
and the quantitative QC. This suggests that, in the case of extreme outliers, the correlation between 
QC measures is much stronger.  
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Figure 5. A) SNR values of the 500 subjects colour coded into the normative model centile plot of the 
‘mean MD in uncinate fasciculus left’ IDP. B) Visual QC scores of the 500 subjects colour coded into 
the normative model centile plot of the ‘mean MD in uncinate fasciculus left’ IDP. C) Pairplot between 
three quantitative QC parameters and the visual QC scores showing the pairwise relationship between 
visual and automated QC modalities. D. SVM classification performance scores for both raters. E. 
Precision-Recall curves for six different z-score thresholds and the SVM classficiation. 

 

 

Figure 6. Correlation matrix between quantitative QC (QQC) metrics (T1 discrepancy, FA discrepancy, 
SNR and QQC outlier frequency), normative modelling (NM) outlier frequency and Visual QC (VQC) 
score. This correlation was computed using the 85 outliers detected by the normative model and 
shows the relationship between the three QC methods in case of images heavily affected by artefacts 
and processing errors. 

 

4. Discussion 
 

In this paper we propose a new approach for dMRI quality control. By training normative models for 
24 diffusion IDPs and analysing the outliers, we were able to identify severe artefact and processing 
errors which were not detected by other QC methods such as visual QC or quantitative QC metrics like 
those obtained with EDDY QC. Therefore, the time and effort invested in assessing the quality of a 
large dMRI dataset was significantly reduced. We were able to detect processing errors that may occur 
even in the absence of artefacts and that may go undetected in conventional QC workflows. At the 
same time, we showed the wide discrepancy between QC approaches and demonstrated that visual 
QC is subjective and prone to failure since artefacts can be subtle or at times impossible to detect 
visually.  
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Another important finding from this work was that we show that artefact or image error detection is 
dependent on both the type of derived measure and the tract from which it is derived (i.e., regional 
specificity).  

The normative modelling approach to quality control has the advantage of being able to detect 
processing errors and can be applied easily to any IDP of interest. This is an important achievement 
due to the high impact these errors can have on the results of an analysis but also as some of the 
detected errors may be resolvable with re-processing. Conversely, the scans which contain severe 
image artefacts can often not be corrected and must be discarded. As discussed in the introduction 
there are several toolboxes dedicated to correcting image artefacts such as susceptibility, motion and 
eddy induced distortions. However, these algorithms, although robust, can leave behind residual 
image artefacts which in some cases may render the entire subjects’ scan unusable. Unlike these 
image artefacts, the processing errors may be resolvable by adjusting the pipelines used and 
potentially allowing the data to still be used.  

We performed visual and automated QC for a sample of 500 UK Biobank subjects to assess the 
compatibility of the methods. Specifically, we wanted to see if the same outliers occur for all methods 
and evaluate the amount of overlap. We show that there is very little (visual) overlap between the 
outliers of the three methods (visual, quantitative, and normative modelling). For the SVM classifier 
we considered the binary classification scheme to be simpler and more useful than the initial three 
class system used in the visual assessment since we were opting for a accept vs reject scheme. Another 
reason is that subdividing the dataset in three classes would have exaggerated the imbalance in the 
labels. The performance of the SVM classifier for both raters also suggests a weak link between the 
manual labels and quantitative parameters and underscores the difficulty in performing manual QC 
for diffusion data, even for experienced raters. However, the normative modelling approach achieves 
a better performance as illustrated by the PR area under the curve comparison.  

The correlation matrix in Figure 6, which was computed on the 85 outliers, tells us that in extreme 
cases, the three modalities have a close relationship and can explain each other’s variance. We would 
like to suggest that these results do not necessarily mean that the three methods are incompatible in 
the case of less severe artefacts or image errors but that that are complementary. A complete and 
detailed quality assessment of diffusion MRI scans (if necessary) would make use of all these methods 
which are designed to detect different artefact types. It would be fair to say, however, that the 
normative modelling approach to QC is a comprehensive method which can identify a broad range of 
artefacts, processing errors and incidental findings and can be adapted easily to various needs 
depending on the scope and aims of the study. The code used to prepare the data and train the models 
is available online (GitHub, Diffusion, n.d.) in order to make this method accessible to the public. 

A strength of the normative modelling approach is that it does not need any manually labelled data. 
Many QC methods which are based on classification require accurate ground truth data which must 
be acquired through a visual QC protocol. We have shown in this study that inter-rater reliability is not 
perfect, which although seems to be a limitation, only reflects the reality of manual labelling – it is 
imperfect and subjective. Therefore, carrying out a visual QC protocol is undesirable and makes the 
classification method unlikely to be preferred. Classification based methods also have the shortcoming 
of being unable to identify artefacts which are not present in the training set. This is not the case for 
the normative modelling method, which is able to detect unseen errors. Furthermore, our approach 
does not suffer from the shortcomings of unbalanced datasets which present a problem in any method 
which uses artefact vs artefact-free classes. The nature of the dMRI dataset (and most datasets in the 
medical imaging field) is that most of the scans will be artefact-free, creating a very large imbalance 
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between classes which must be carefully handled to overcome bias in classification performance 
scores. In this paper we have seen the low frequency with which outliers were observed in the UKB 
sample, which poses a major problem for manual QC approaches (particularly for large samples) and 
will only get worse as image processing techniques for diffusion data improve because the artefactual 
scans will be fewer and more difficult to recognize. The normative modelling approach can assess the 
level of abnormality at the individual level rendering categorical class labels unnecessary. This is a 
powerful point since class division puts limitations on interindividual variability and suppresses the 
dimensionality of the data. 

In addressing the processing error highlighted in Figure 4, it's noteworthy that, for this study, we used 
the extensively processed UK Biobank dataset. The processing pipeline employs classic segmentation 
methods like TBSS and the JHU atlas as mentioned in the Methods section. This approach widens the 
applicability of our QC method as these segmentation techniques are still widely used in diffusion data 
analysis. Nevertheless, we acknowledge the potential for more modern methods such as TRACULA 
(Yendiki et al., 2011),  TractSeg (Wasserthal et al., 2018), AFQ (Yeatman et al., 2012), Xtract 
(Warrington et al., 2020), and WMQL (Wassermann et al., 2016)to mitigate the observed processing 
errors. These methods often employ more sophisticated registration and segmentation techniques, 
improving the accuracy and reliability in tractography segmentation. We will duly explore the 
integration of these modern approaches in future research. 

The sample size for normative models to be an important issue to address. However,  we consider it 
to be out of scope for the current study because it is dependent on many factors (e.g. the type of 
distribution used to model the data, the nonlinear basis expansion used and its paremeterisation in 
addition to the slope and non-linearity of the phenotype being modeled etc.). For this reason, we refer 
to a prior paper that has extensively evaluated this issue by Bozek et al, 2023 (Bozek et al., 2023). The 
study focuses on assessing fitting methods for normative modeling in large neuroimaging studies, 
examining the impact of sample size on linear and non-linear models. The study underscores the 
significance of large sample sizes for accurate normative modeling in neuroimaging. 

In a study by Ritchie-Halford (Richie-Halford et al., 2022), a higher discrimination accuracy for the QC 
labels is observed, contrasting with our findings. However, due to significant variations in data quality 
between the samples utilized in both studies we find it difficult to draw a meaningful comparison. The 
data in our study, sourced from the UK Biobank, stems from high-quality multi-shell sequences 
consistently matched across identical scanners. Conversely, the Richie-Halford et al. (2022) paper 
draws from the Healthy Brain Network data, which aggregates data across various sequences, 
scanners, and protocols. Supporting this observation, our manual QC process identified relatively few 
scans as problematic overall. Thus, our focus remains on the robustness and quality of the data utilized 
in our investigation. 

The YTTRIUM method (Maximov et al., 2021) is similar to the normative approach because it uses a 
measure of distance from the mean to establish an outlying behavior of diffusion QC measurements 
at the subject level. Although, this method is comprehensive and straight forward, the normative 
modelling method has the added advantage of customizing the region of interest by virtue of the IDPs 
which are selected for training the model as well as the choosing the relevant diffusion parameter 
depending on the study. The normative modelling in the present paper has an emphasis on age which 
was used as a covariate for training. By selecting age as our covariate, we exposed the increased outlier 
frequency proportional to age as well as the normal trajectory of each IDP as a function of age (within 
the used age range i.e., 45-85). However, the normative models can also include other covariates 
depending on the scope of the study (e.g., sex, site, ventricle size, fluid intelligence etc.). Therefore, 
the normative modelling approach to QC of diffusion data can be extremely versatile and informative. 
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In the case of tract segmentation and identification, the JHU region atlas was used, containing 50 
labeled white matter tracts. The tracts extracted for the purpose of visually assessing the normative 
modelling outliers were inspected and approved by experts in this field (NF, SS). However, within the 
framework of the QC protocol other atlases can be used as well. It remains at the discretion of the 
user to ensure the validity of the segmentation. Furthermore, this quality control approach can also 
be used for other neuroimaging techniques since it is not limited only to diffusion MRI.  
 
There is no gold standard when it comes to dMRI QC, and the best method will depend on the analysis 
to be conducted. For example, detecting group differences via a univariate group analysis probably 
has a lower sensitivity to artefacts than a biomarker detection task using a classifier. The perfect QC 
depends on the goal of the study and the type of the data as well as on the size of the dataset and the 
time available for QC.  

In our investigation, we opted for a robust threshold of 7 standard deviations to explore the idea, 
specifically targeting noticeable issues to evaluate the effectiveness of normative modeling for quality 
control. The adaptability of the threshold allows for customization based on the required stringency 
for individual studies or datasets. PR curves for various thresholds are presented in Figure 5E. Notably, 
this experiment exclusively utilized data from experiment 2, employing the 500-subject sample with 
visual quality control labels as the ground truth. We anticipate that in a larger and more diverse 
sample, such as the complete UKB dataset, the area under the curve would exhibit an increase. 

Some shortcomings of our method regard the limited number of chosen IDPs. The QC of the dataset 
could have been more detailed and accurate if more IDPs were used in the analysis and if the outlier 
threshold was lower, allowing us to catch the less severe artefacts. However, for the purposes of 
showing the efficacy of the method, we limited ourselves to a representative number of IDPs and a 
high threshold to detect the most obvious outliers. Nonetheless, this method is not guaranteed to 
catch all artefacts. If an artefact can be sufficiently corrected that it lies in the bulk of the normative 
distribution, then it will not be detected as an outlier unless the threshold for deviation from the 
normal is lowered. This phenomenon is exemplified in Figure S1 of Supplement 2, where a scan from 
a subject with a visual score of 3 (by both raters) is visualized in FSL to reveal a substantial artefact 
caused by signal loss. In the centile plots belonging to the normative models, it is visible that the 
subject is, indeed, an outlier in two of the IDP, only if the threshold had been slightly lower. Therefore, 
the threshold is relevant to the detection of the artefactual subject as much as targeted tract and 
dMRI measurement (e.g., FA, MD, etc.). The risk of lowering the threshold too much constitutes the 
inclusion of relevant biological effects in the outlier pool. This is because the periphery of the 
normative modelling consists of a mix of relevant biological effects and artefacts and separating these 
two can be very difficult. Hence, we prefer to keep only healthy people in the reference cohort in this 
work, but we acknowledge that this should be an important consideration for future studies and such 
demographic differences could also be included in the normative model (e.g. as random or fixed 
effects) 

In conclusion, this paper introduces a new method for dMRI quality control. The normative modelling 
approach to QC is a semi-automated pipeline which is able to detect subjects who present image 
artifacts as well as other processing errors. The analysis is performed at an individual level, overcoming 
the shortcomings of class division as well as having the ability to detect new, unseen artefacts while 
not requiring any manually labelled data. Moreover, in this study we showed, with the help of our 
method, that there are three main categories of image errors: image artifacts which can be detected 
visually but are irreversible and processing errors which usually go undetected but can potentially be 
fixed. The normative modelling approach can be used together with other QC methods such as a visual 
QC protocol or quantitative QC parameters and can also be customized for detection severity (by 
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changing the outlier threshold) based on the scope of the study. Finally, we showed that although QC 
methods are not consistent between each other nor with the normative modelling method, they do 
align for severe cases and can be complementary enhancing the efficacy of the overall quality 
assessment. Normative modelling is therefore a promising tool for semi-automated QC of diffusion 
data.F 
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