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Deep Learning-Driven Exploration of Pyrroloquinoline
Quinone Neuroprotective Activity in Alzheimer’s Disease
Xinuo Li,* Yuan Sun, Zheng Zhou, Jinran Li, Sai Liu, Long Chen, Yiting Shi, Min Wang,
Zheying Zhu,* Guangji Wang,* and Qiulun Lu*

Alzheimer’s disease (AD) is a pressing concern in neurodegenerative
research. To address the challenges in AD drug development, especially those
targeting A𝜷, this study uses deep learning and a pharmacological approach
to elucidate the potential of pyrroloquinoline quinone (PQQ) as a
neuroprotective agent for AD. Using deep learning for a comprehensive
molecular dataset, blood–brain barrier (BBB) permeability is predicted and the
anti-inflammatory and antioxidative properties of compounds are evaluated.
PQQ, identified in the Mediterranean-DASH intervention for a diet that delays
neurodegeneration, shows notable BBB permeability and low toxicity. In vivo
tests conducted on an A𝜷1−42-induced AD mouse model verify the
effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes
vital for synapse and anti-neuronal death, reduces reactive oxygen species
production, and influences the SIRT1 and CREB pathways, suggesting key
molecular mechanisms underlying its neuroprotective effects. This study can
serve as a basis for future studies on integrating deep learning with
pharmacological research and drug discovery.
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1. Introduction

Alzheimer’s disease (AD), the leading form
of dementia, is a complex neurodegenera-
tive disorder closely associated with aging.
The neuropathological signatures of AD are
characterized by the presence of extracel-
lular deposits of amyloid 𝛽 (A𝛽) and intra-
cellular aggregates of hyperphosphorylated
Tau proteins.[1] Currently, drugs targeting
A𝛽 have two main limitations: their limited
efficacy, which does not sufficiently allevi-
ate the clinical symptoms of patients with
AD, and their significant toxicity and side ef-
fects, making them unsuitable for extended
use.[2] Thus, there is an urgent need to find
a potent medication with low toxicity for
daily administration to AD patients.

Despite the focus on A𝛽-targeted ther-
apies, current drugs including donepezil
and lecanemab have not consistently shown

effectiveness in alleviating AD symptoms in clinical trials.[3]

Moreover, some of these drugs, particularly lecanemab—an
anti-A𝛽 monoclonal antibody therapeutic—raise concerns
because of their pronounced toxicities and limited perme-
ability through the blood–brain barrier (BBB).[4] Given the
long-term therapeutic needs of AD patients, the quest for
an orally administered, highly effective, and low-toxicity anti-
AD agent that targets alternative molecular pathways has led
to the discovery of novel, potent, and well-tolerated anti-AD
compounds.

Recent research indicates that neuroinflammation and ox-
idative stress play key roles in the progression of AD.[5] Neu-
roinflammation in the central nervous system, primarily driven
by microglial and astrocytic responses, increases the levels of
proinflammatory cytokines, contributing to cognitive decline.[6]

There is a correlation between elevated cerebrospinal fluid cy-
tokine levels and AD progression.[7] This inflammation also
increases reactive oxygen species (ROS) production, resulting
in enhanced oxidative stress, which is apparent in the brains
of patients with AD,[8] and affects A𝛽 accumulation and Tau
hyperphosphorylation.[9,10] Therefore, addressing neuroinflam-
mation and oxidative stress is essential in the development of
anti-AD therapeutics.

Many modern anti-AD drugs, including memantine and
donepezil, exhibit significant toxicities. Epidemiological stud-
ies underscore the protective ability of compounds, particularly
those sourced from plants and diets, against AD.[11,12] By scav-
enging ROS, modulating cytokines, and strengthening neuronal
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antioxidative defenses, these agents offer promising therapeutic
and preventive strategies for AD with minimal toxicity.[13]

In recent years, the integration of deep learning computational
models into the pharmaceutical domain has emerged as a signif-
icant advancement, which has led to the prediction of compound
properties and activities,[14] forecasting of target interactions,[15]

drug screening,[16] and innovative design of new drugs.[17] These
models offer considerable promise, especially in navigating the
complexities of biomedical data. Neural networks, which are
foundational to these models, not only expedite the processing
of high-dimensional chemical and biological data but also reveal
previously hidden patterns.[18] This facilitates ground-breaking
discoveries in drug development and related fields. By training
these models on vast databases, we can predict and create target
molecules. This is instrumental in identifying compounds that
exhibit specific therapeutically relevant properties.[19,20]

The MIND diet, which integrates the best elements from the
Mediterranean and DASH diets, is designed to reduce demen-
tia risk. It prioritizes plants, nuts, berries, fish, and olive oil,
all known for their potential cognitive benefits.[21–23] Research
increasingly suggests that specific diets and nutrients may de-
lay Alzheimer’s-related cognitive decline.[24,25] However, the com-
plex mechanisms of the brain that are affected remain unclear.
The MIND diet, centered around cognitive health, opens valuable
avenues for understanding the complex mechanisms underlying
AD pathogenesis and establishes a basis for dietary regimens de-
signed to alleviate the effects of AD.

Pyrroloquinoline quinone (PQQ), recognized as an oxidore-
ductase coenzyme in mammals, has broad therapeutic poten-
tial, from anti-inflammatory to neuroprotective effects.[26–28] Re-
cent research has highlighted the neuroprotective qualities of
PQQ, including its capacity to cross the BBB,[29] provide pro-
tection in stroke models,[30] and reduce A𝛽-induced toxicity in
SH-SY5Y cells.[31] PQQ has shown protective effects against var-
ious neuronal injuries, such as glutamate-induced damage and
6-hydroxydopamine-induced neurotoxicity.[32,33] However, the ex-
act role and molecular mechanisms of PQQ in the treatment of
AD remain elusive.

In this study, we strategically leveraged the strengths of a
deep learning pipeline with pharmacological principles to iden-
tify PQQ, a potent and low-toxicity compound sourced from food,
suitable for oral consumption. Using a comprehensive dataset of
molecular structures, our deep learning models were trained to
predict BBB permeability as well as anti-inflammatory and an-
tioxidative properties. Our research might underscore the po-
tential of deep learning in harnessing existing data to identify
promising therapeutic compounds, thereby laying foundational
methods for innovative drug discovery avenues. Moving forward,
PQQ could be considered a vitamin-like supplement for AD pa-
tients or as a prophylactic for those at risk. Additionally, our find-
ings might bridge the gap between daily dietary practices and the
therapeutic implications for AD.

2. Results

2.1. Deep Learning-Based Drug Screening for AD

To discover novel anti-inflammatory and antioxidant drugs for
AD, we developed a series of deep-learning models. Each model

is designed to predict specific attributes, such as a compound’s
ability to traverse the BBB, its anti-inflammatory potential, and
its antioxidative capacity. We leveraged an extensive dataset fea-
turing Simplified Molecular Input Line Entry System represen-
tations, tagging each molecule with binary labels spanning 10
unique attributes, such as BBB permeability, and both anti-
inflammatory and antioxidative properties (Figure S1a, Support-
ing Information). These binary labels, denoted by 0 or 1, indicate
the lack or presence of a specific characteristic, respectively. For
ranking purposes, we determined the cumulative score of each
molecule by summing its attribute values. Compounds scoring
5≥ were considered to possess a notable number of desired at-
tributes, positioning them as prime contenders for further as-
sessments.

Our computational aim was to pinpoint potential compounds
for AD treatment. Our dual-path modeling approach inte-
grates molecular descriptors from RDKit (https://www.rdkit.
org/) into our set of Multi-Layer Perceptron (MLP)[34] models,
distinctly crafted to predict BBB and anti-inflammatory prop-
erties (Figure 1a). Conversely, molecular graphs created using
DeepChem’s MolGraphConvFeaturizer[35] serve as the input for
the Graph Convolutional Networks (GCN)[36] models, optimized
for antioxidative property predictions. The receiver operating
characteristic (ROC) curves emphasize the effectiveness of our
modeling choices. Specifically, MLP models predict BBB perme-
ability and six anti-inflammatory attributes, while the GCN mod-
els can identify three antioxidative properties (Figure 1b). More-
over, in-depth performance metrics validated the competence of
our models, with confusion matrices offering insight into their
classification efficacy (Figure 1c; Figure S1b–h, Supporting Infor-
mation).

2.2. Mediterranean Dietary Pattern Reduces AD Risk

Recent studies suggest that adherence to the MIND diet may be
associated with enhanced cognitive function in older adults.[37,38]

To further validate the neuroprotective effect of MIND, we con-
ducted a meta-analysis using data reported globally from mul-
tiple races (Figure S2a, Supporting Information). The results
showed that the MIND diet may protect against AD (hazard ratio
0.85, 95% CI 0.81–0.90, I2 35.1%), indicating the potential of the
MIND dietary pattern to offer protection against AD (Figure 1d).

2.3. Identification of PQQ as an Anti-AD Agent from Dietary
Patterns

To understand how the MIND diet mitigates AD risk, our primary
objective was to identify the essential components of this dietary
pattern that contribute to reduced AD risk. We cumulated a total
of 208 compounds based on the MIND diet recommendations
(Table S3, Supporting Information). These compounds were
evaluated using our deep learning-based screening framework
(Figure 2a). Initially, we assessed BBB permeability and found
that 113 of the 208 compounds could not cross the BBB, leav-
ing 95 compounds with substantial BBB permeability. Among
these, 19 compounds displayed robust anti-inflammatory and an-
tioxidative activities (score ≥ 5) (Table S4, Supporting Informa-
tion). A subsequent search in PubChem refined our selection to
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12 low-toxicity compounds for a detailed analysis (Figure 2b). To
validate the robustness of our methodology, we used t-SNE visu-
alization. The visualizations depicted a notable overlap between
our training dataset and the 208 MIND diet-derived screening
candidates, emphasizing that our screening remained within the
model’s confidence domain (Figure 2c; Figure S3a–i, Support-
ing Information). Notably, our model identified naringenin[39,40]

and hesperetin[41,42] for their potent anti-inflammatory and an-
tioxidant capabilities. In contrast, specific compounds, namely,
CID:102 470 786, CID:102 157 736, and CID:101 746 085, lacked
such properties. This alignment with existing literature accentu-
ates the accuracy and reliability of our modeling framework.

To further determine the key compounds in the MIND diet
that curtail AD onset and progression, we categorized dietary
components based on MIND diet guidelines and showed repre-
sentative food items for each group. Using the Food Database
FooDB (https://foodb.ca/), we conducted an exhaustive ingredi-
ent analysis for each representative item, identifying 20 unique
ingredients from the six presented items (Figure S2b, Support-
ing Information). After cross-referencing these 20 unique ingre-
dients with the 12 non-toxic compounds identified through deep
learning, PQQ emerged (Figure 2e,f). This indicates that PQQ
might be a key element in the MIND dietary regimen for miti-
gating AD risk.

2.4. Reduction of Plasma PQQ Levels in AD Patients

To further establish the correlation between PQQ levels and AD
severity, we measured PQQ levels in plasma samples. Upon re-
cruiting patients with AD, we collected their plasma (Figure 3a).
Given the inherent challenges in detecting trace amounts of
PQQ in plasma, we adopted a standard measurement technique
using liquid chromatography-tandem mass spectrometry (LC-
MS/MS) (Figure 3b). Remarkably, using LC-MS/MS-based rel-
ative quantification—as indicated by the peak areas of the cor-
responding ion pairs—we found that the PQQ concentration in
the plasma of patients with AD is significantly lower than that
in healthy individuals (Figure 3c). Subsequent analysis indicated
that the concentration of PQQ was negatively correlated with cog-
nitive performance measures in patients with AD. This suggests
that there is a tendency for PQQ levels to decrease as the severity
of AD increases. This result quantitatively supports the observed
decrease in PQQ levels among patients with AD.

2.5. PQQ Alleviates Cognitive Dysfunction In Vivo

To assess the therapeutic efficacy of PQQ in ameliorating cog-
nitive dysfunction associated with AD, PQQ was administered
orally to an AD mouse model induced by A𝛽1−42 for a consecu-
tive 14-day period (Figure 4a). Short-term memory was evaluated

using a Y-maze analysis. This test revealed that PQQ restored
spontaneous alternation in A𝛽1−42-induced AD mice, suggesting
a remarkable improvement in the short-term memory deficits ob-
served in AD mice (Figure 4b). Spatial learning and memory were
further examined using the Morris water maze analysis. No sig-
nificant difference in swimming velocity was observed among
the three mouse groups, confirming the reliability of the Mor-
ris water maze results without interference from physical activity
variations (Figure 4c). During the probe trial, compared with the
sham group, AD mice typically displayed longer durations and
distances to locate the target platform. However, PQQ adminis-
tration significantly reduced these extended durations and dis-
tances in AD mice (Figure 4d,f). Additionally, PQQ-treated mice
showed a preference for the target quadrant and displayed more
direct paths to the target platform than the vehicle-treated AD
mice (Figure 4e,g). These findings indicate that PQQ effectively
improves spatial learning and memory deficits in AD mice. Taken
together, these behavioral tests emphasize the potential of PQQ
in alleviating the cognitive dysfunctions associated with AD in
mice.

2.6. Modulation of Synaptic Function by PQQ in AD Mouse
Models

To elucidate the mechanism underlying the protective effect of
PQQ on cognitive dysfunction, we conducted an unbiased RNA
sequencing (RNA-seq) on brain tissue obtained from AD mice
with and without PQQ administration (Figure S4a, Supporting
Information). Gene ontology (GO) analysis of differentially
expressed genes (DEGs) following PQQ administration in AD
mice confirmed the neuroprotective role of PQQ, as evidenced
by the increased expression of genes associated with synapse
organization, axonogenesis, and anti-neuronal death (Figure 5a).
Synaptic impairment and attrition are key characteristics of AD,
closely linked with the deterioration of cognitive function.[43,44]

Therapeutic strategies aimed at the rehabilitation of synaptic
health and stability hold significant promise for influencing
and regulating the activity of neural circuits.[45,46] Consequently,
both mRNA and protein levels of postsynaptic density protein
95 (PSD95, encoded by Dlg4) and synaptophysin (SYP) were
elevated after PQQ administration in AD mice (Figure 5b,c).
Additionally, we observed an upregulation of PSD95-positive
signaling in both the hippocampus and cortex, suggesting that
PQQ might counteract A𝛽1−42-induced synaptic disruptions
(Figure 5d; Figure S4b, Supporting Information). Long-term
potentiation plays a crucial role in modulating synaptic strength
and is essential for memory formation and other cognitive func-
tions. After high-frequency stimulation, a significant reduction
in the mean percent fEPSP slope was observed in A𝛽1−42-treated
mice. This impairment was resolved with PQQ administration,

Figure 1. Drug-screening model of deep learning for Alzheimer’s disease (AD) and protective effect of the Mediterranean dietary pattern lowers the risk
of AD. a) Dual-path modeling architecture. Descriptors X1-12, extracted via RDKit, feed our Multi-Layer Perceptron variants designed for BBB and anti-
inflammatory properties. Conversely, molecular graphs crafted using deepchem’s MolGraphConvFeaturizer act as inputs for the Graph Convolutional
Network models designed for the antioxidant properties. b) Receiver operating characteristic curves demonstrating the predictive performance of our
models. c) Confusion matrices for BBB and the anti-inflammatory property based on the test set results and the antioxidative property obtained using
5-fold cross-validation. For each channel, the matrix represents the validation results of the fold with the highest F1 score. d) Meta-analysis: A meta-
analysis is presented, showcasing the protective effect of the Mediterranean-DASH Diet Intervention for Neurodegenerative Delay (MIND diet) against
AD across diverse cohorts.
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Figure 2. Deep learning-guided identification of pyrroloquinoline quinone (PQQ) from dietary patterns as a potential therapeutic candidate for
Alzheimer’s disease (AD). a) MIND-Derived Compound Screening Workflow: A schematic of the comprehensive screening process for compounds
sourced from the Mediterranean-DASH Diet Intervention for Neurodegenerative Delay (MIND diet) using our dual-path model. b) Structures of non-
toxic compounds: Provides visual representations of the structures of the 12 non-toxic compounds that successfully passed through the model’s filtration
process. c) Two-dimensional t-SNE visualization of the original dataset compounds employed in this work for the target Kyoto Encyclopedia of Genes
and Genomes: has 0 4210, excluding any samples generated via augmentation techniques such as SMOTE and ADASYN. T-SNE plots were generated
with perplexity 30 and a maximal number of iterations 1000. The 12 highly scored non-toxic compounds ultimately selected are marked and showcased
in the plot as “top hits.” d) The food categories recommended by the MIND diet. e) Workflow for screening food components with other characters.
f) Content of PQQ in Representative Foods: Provides information on the content of PQQ in six representative foods, shedding light on its presence in
various dietary sources.
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Figure 3. Declined levels of plasma pyrroloquinoline quinone (PQQ) in Alzheimer’s disease (AD) patients. a) Schematic detailing the standard procedure
for sample collection. b) Flowchart illustrating the steps involved in liquid chromatography-tandem mass spectrometry analysis. c) Comparative PQQ
concentrations in plasma samples obtained from healthy donors versus AD patients. Each dot is an individual donor (n = 5). #p < 0.05 versus healthy
controls.

further emphasizing the capacity of PQQ to bolster synaptic
function (Figure 5e). Our results indicate that PQQ offers neu-
roprotective effects in AD, particularly in mitigating synaptic
dysfunction.

2.7. Anti-Inflammatory and Antioxidant Roles of PQQ in AD
Mouse Models

PQQ exerted specific effects on the expression of genes asso-
ciated with anti-neuroinflammatory and antioxidative stress re-

sponses, indicating its potential impact on inflammation and ox-
idative stress (Figure 5a). Given that significant inflammatory re-
sponse occur within microglial cells in AD, we investigated the
microglial state using immunofluorescence staining. Notably,
PQQ treatment significantly suppressed microglial activation in
both the hippocampus and cortex (Figure 5f; Figure S4c, Sup-
porting Information). Moreover, a real-time polymerase chain re-
action (PCR) assay demonstrated decreased levels of proinflam-
matory cytokines Il1𝛽 and Tnf𝛼, as well as the interleukin one
receptor type 1 (Il1r1), a key mediator in several cytokine-driven
inflammatory pathways, following PQQ administration in AD
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Figure 4. Pyrroloquinoline quinone (PQQ) alleviates cognitive dysfunction in vivo. a) Schematic of the experimental design (n = 10). b) Evaluation of
spontaneous alternation in the Y-maze for control mice compared with Alzheimer’s disease (AD) mice after 7-day treatment with either vehicle or PQQ.
c) The average swimming speed among all groups. d) The distance to reach the platform in the probe. e) The percentage of time spent in the target
quadrant in the probe. f) The latency to locate the platform during the experiment. g) Representative path tracings in the probe trial. Data are shown as
mean ± SEM. *p < 0.05 versus control group; #p < 0.05 versus AD group.

(Figure 5g). These findings suggest a therapeutic role of PQQ
in mitigating neuroinflammatory responses.

To investigate the antioxidative function of PQQ, dihydroethid-
ium (DHE) staining was employed to detect the production of
ROS. A notable reduction in ROS production was observed
after PQQ administration (Figure 5h; Figure S4d, Supporting
Information). Furthermore, PQQ enhanced the expression of
antioxidant genes, including NAD(P)H: quinone oxidoreduc-
tase 1 (NQO1) and glutathione S-transferase (GST), a pivotal
oxidative stress mitigator, in AD mice. Additionally, PQQ
administration increased the expression of NRF2, a central
regulator of crucial antioxidative stress responses (Figure 5i,j).
Taken together, these results suggest that the antioxidative
effects of PQQ are mediated through the Nrf2 signaling
axis.

2.8. PQQ-Induced Activation of the SIRT1 Pathway

Based on our initial findings, we delved into the molecular path-
ways modulated by PQQ in AD. SIRT1 emerged as a key gene
with antioxidant properties within the AD model (Figure 6a,b).
To enhance the robustness of our model and mitigate any po-
tential model-specific bias, we expanded our analysis to include
RNA-sequencing data derived from the prefrontal cortex tissue
of patients with AD, accessible in dataset GSE33000 (Figure 6c).

Importantly, a decrease in Sirt1 mRNA expression was cor-
related with the progression and severity of AD, suggesting a
potential role for Sirt1 in the onset and development of AD
(Figure 6d). Subsequently, we assessed the protein level of SIRT1
in the mouse cortex and observed an upregulation of SIRT1
after PQQ administration, indicating that PQQ facilitates the
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Figure 5. Synaptic protective benefits, anti-inflammatory and antioxidant roles of pyrroloquinoline quinone (PQQ) in AD mouse. a) Gene Ontology
(GO) enrichment analysis of differentially expressed genes. b) Quantitative assessment of relative mRNA expression levels for Dlg4 and Synaptophysin
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activation of the SIRT1 signaling pathway (Figure 6e). Further-
more, PQQ was found to bind to SIRT1, providing additional ev-
idence for its ability to activate the SIRT1 pathway (Figure S5a,
Supporting Information).

To validate the neuroprotective effect of PQQ via the SIRT1 sig-
naling pathway, we examined the downstream target of SIRT1,
namely, the signal transducer and activator of transcription 3
(STAT3), a crucial regulator of cerebral inflammation in neuroin-
flammation. Acetylated STAT3 enhances STAT3 phosphoryla-
tion, leading to the release of inflammatory mediators and ampli-
fication of the inflammatory cascade. We observed that PQQ abol-
ished the AD-induced increase in STAT3 acetylation (Figure 6f).
These findings indicate that PQQ robustly activates the SIRT1
pathway in AD mice.

2.9. Inhibition of SIRT1 Negates the Neuroprotective Effects of
PQQ

To verify the role of SIRT1 in PQQ-induced neuroprotection, we
conducted an in vitro experiment on A𝛽1−42-injured SH-SY5Y
cells using DHE staining. While PQQ effectively countered the
ROS production induced by A𝛽 in SH-SY5Y cells, the SIRT1
inhibitor EX527 reduced the ability of PQQ to suppress ROS
(Figure S5b, Supporting Information). In vivo, EX527 was ad-
ministered to PQQ-treated AD mice (Figure 7a). Behavioral anal-
yses using the Morris water maze showed that mice treated with
both PQQ and EX527 displayed impaired navigational abilities.
This was evident from the increased time taken to locate the tar-
get platform, decreased time spent in the target quadrant, and the
longer distances traveled to reach the platform compared with
those of the group treated only with PQQ (Figure 7b–d).

Contrary to the PQQ-only group, the administration of EX527
negated the upregulation of Nrf2, Nqo1, and Gst induced by PQQ
(Figure 7e). Furthermore, DHE staining of brain sections re-
vealed that EX527 reduced the antioxidative benefits conferred by
PQQ in the A𝛽1−42-induced AD mouse model (Figure S5c,d, Sup-
porting Information). The treatment with EX527 also suppressed
the PQQ-induced activation of the SIRT1 pathway (Figure S5e,
Supporting Information). Additionally, EX527 administration
blocked the beneficial function of PQQ on synaptic modulation
and neuroinflammation (Figures S5f–h and S6a,b, Supporting
Information). Taken together, these findings highlight the cru-
cial role of the SIRT1 pathway in facilitating the neuroprotective
effects of PQQ in AD.

2.10. Deacetylation of STAT3 Impairs the Neuroprotective Role of
PQQ in AD

Considering that the transcriptional activity of STAT3 occurs
after its acetylation, we administered a STAT3 dominant negative

(STAT3DN) variant with lost deacetylation ability at K679, K685,
K707, and K709 (K679QK685QK707QK709Q) to PQQ-treated
AD mice using an adenovirus delivery system (Figure 7f).
While PQQ decreased the escape latency and distance in AD
mice, STAT3DN abolished the therapeutic efficacy of PQQ
(Figure 7g–i). Furthermore, the expression of STAT3DN at-
tenuated the antioxidative response to PQQ, manifesting as
suppressed Nrf2, Nqo1, and Gst mRNA levels and elevated ROS
accumulation in PQQ-treated AD mice (Figure 7j; Figure S7a,b,
Supporting Information). STAT3DN further interfered with
PQQ-driven synaptic improvement and reduction of neuroin-
flammatory marker levels in mice with AD (Figures S7c–e
and S8a,b, Supporting Information). These results suggest
that obstructing STAT3 acetylation inhibits the recovery of
neuroprotective effects provided by PQQ.

2.11. Modulation of the CREB Pathway by PQQ in AD

Our data revealed that PQQ has a modulatory effect on gene
expression profiles. Through further validation, we confirmed
that specific genes are regulated through SIRT1-mediated path-
ways following PQQ treatment. While some genes are influ-
enced by the SIRT1 signaling pathway upon PQQ administra-
tion, others remain unaffected by SIRT1. Recognizing that PQQ
operates through intricate signaling pathways to protect against
AD progression and identifies SIRT1 as a crucial node in this
network, we aimed to investigate if other factors contribute to
SIRT1-mediated neuroprotection after PQQ administration. To
accomplish this, we analyzed previous datasets to explore the
relationship between SIRT1 and its interacting proteins in AD
patients. Our analysis revealed associations between SIRT1 and
both CREB-binding protein (CREBBP) (r = 0.57, p < 0.001)
and cyclic adenosine monophosphate (cAMP) response element-
binding protein 1 (CREB1) (r = 0.30, p < 0.001) (Figure 8a,b).
CytoHubba’s Maximal Clique Centrality algorithm further high-
lighted CREB1 as a central component of the PQQ regulatory net-
work (Figure 8c).

To investigate the interaction between the CREB pathway
and the neuroprotective effects of PQQ, we conducted a se-
ries of molecular assays. Immunofluorescence assays demon-
strated enhanced CREB activation in the hippocampus and cor-
tex following PQQ treatment (Figure 8d; Figure S7a, Support-
ing Information). Western blotting confirmed a significant in-
crease in CREB phosphorylation and activation in the pres-
ence of PQQ (Figure 8e). Importantly, we found that the SIRT1
inhibitor EX527 attenuated the PQQ-induced CREB activation
(Figure 8f,g; Figure S7b, Supporting Information).

Altered CREB-mediated transcriptional activity has been ob-
served in AD and may contribute to the cognitive impair-
ments associated with the disease. To investigate the downstream

(n = 6). c) Representative immunoblot images and subsequent statistical analysis of PSD95 and synaptophysin protein levels (n = 5). d) Fluorescence
microscopy images and associated statistical analysis showcasing PSD95 expression in the hippocampus (scale bar = 200 μm, n = 6). e) Normalized
fEPSP slope, benchmarked against the average fEPSP slope over a 10-min pre-high-frequency stimulation baseline (n = 6). f) Representative fluorescence
micrographs and statistical analysis of iBA1 in the hippocampus (scale bar = 1000 μm, n = 6). g) Relative mRNA levels of Il1𝛽, Tnf, and Il1r1. (n = 6).
h) Representative fluorescence micrographs and statistical analysis of DHE staining in the hippocampus (scale bar = 200 μm, n = 6). i) Representative
bands and statistical analysis of NRF2, NQO1, and GST1 protein levels (n = 3). j) Relative mRNA levels of Nrf2, Nqo1, and Gst1 (n = 6). Data are shown
as mean ± SEM. *p < 0.05 versus control group; #p < 0.05 versus AD group.
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Figure 6. PQQ’s Activation of the SIRT1 Pathway in AD. a) Gene Ontology (GO) enrichment analysis with a focus on functional categorization and
specific genes associated with the identified GO terms. b) Relative mRNA levels of genes associated with antioxidative stress. (n = 4). c) Flowchart for
AD patients’ RNA-seq data analysis of prefrontal cortex (GSE33000). d) Correlation analysis highlighting the association between reduced Sirt1 mRNA
levels and the age of AD patients. e) Representative bands and statistical analysis of SIRT1 protein levels (n = 6). f) Representative bands and statistical
analysis of AC-STAT3 and STAT3 protein levels (n = 6). Data are shown as mean ± SEM. *p < 0.05 versus control group; #p < 0.05 versus AD group.

effects of CREB1 in AD post-PQQ administration, we performed
a real-time PCR assay based on RNA-seq results, confirming
the upregulation of cannabinoid receptor 1 (Cnr1) and CX3C
chemokine receptor 1 (Cx3cr1) expression by PQQ (Figure 9a,b).
Using the transcriptional factor prediction software JASPER, we
analyzed the Cnr1 promoter and identified two CREB1 bind-

ing sites at −1536 and −776 bp (Figure 9c). Luciferase assays
demonstrated increased luciferase activity in both pGL-Cnr1-
1400 and pGL-Cnr1-1800 compared with pGL-Cnr1-600, which
lacks the sequence at −1536 bp (Figure 9d). Removing this site
(−1536 bp) reduced luciferase activity relative to pGL-Cnr1-1400
and pGL-Cnr1-1800, indicating that CREB1 can bind to the Cnr1
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Figure 7. Impact of SIRT1 Inhibition and STAT3 Deacetylation on Neuroprotective Efficacy of pyrroloquinoline quinone (PQQ). a) Schematic of the
experimental design (n = 10). b) Latency duration to locate the platform during the trial. c) Representative path tracings in the probe. d) The percentage
of time spent in the target quadrant in the probe. e) Relative mRNA levels of NRF2, NQO1, GST1 (n = 6). f) Scheme of experimental design (n = 10).
g) The latency to locate the platform during the experiment. h) Representative path tracings in the probe. i) The distance to reach the platform during
the probe. j) Relative mRNA levels of Nrf2, Nqo1, Gst1 (n = 6). Data are shown as mean ± SEM. *p < 0.05 versus control group; #p < 0.05 versus AD
group; &p < 0.05 versus PQQ-treated group.
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Figure 8. PQQ’s regulatory influence on the CREB signaling pathway in AD. a) Analysis showcasing the correlation between SIRT1 and its associated
proteins in AD patients. b) Depiction of the correlation between CREBBP, CREB1, and SIRT1. c) Key genes pinpointed from the protein-protein interaction
network utilizing the Maximal Clique Centrality algorithm in CytoHubba. d) Representative fluorescence micrographs and statistical analysis of pCREB
in the hippocampus (scale bar = 200 μm, n = 6). e) Representative bands of pCREB and CREB and statistical analysis of pCREB/CREB expression levels
(n = 4). f) Representative fluorescence micrographs and statistical analysis of pCREB in the hippocampus (scale bar = 200 μm, n = 6). g) Representative
bands of pCREB and statistical analysis of pCREB (n = 6). Data are shown as mean ± SEM. *p < 0.05 versus control group; #p < 0.05 versus AD group.
&p < 0.05 versus the PQQ-treated group.

promoter at −1536 bp (Figure 9d). This site exhibits conservation
across species, underscoring its importance for Cnr1 functional-
ity (Figure 9e). In HEK293 cells, CREB1 overexpression increased
the binding between CREB1 and the Cnr1 promoter (Figure 9f).
Chromatin immunoprecipitation (ChIP) assays were performed
to assess if PQQ enhances CREB1 binding affinity to the Cnr1
promoter (Figure 9g).

Additionally, JASPER predicted two CREB1 sites on the Cx3cr1
promoter (Figure 9h). Luciferase assays confirmed the proximity
of CREB1 to the Cx3cr1 promoter at −1200 bp, another highly
conserved site across species (Figure 9i,j). CREB1 overexpression

enhanced CREB1 binding to the Cx3cr1 promoter, and this pro-
cess was further enhanced by PQQ (Figure 9k,l). These findings
elucidate that PQQ administration not only increases the expres-
sion of these genes but also augments their regulation via the
CREB signaling pathway.

3. Discussion

Exploring effective anti-AD drugs is both laborious and costly.
These challenges are exacerbated by the prolonged duration
and intricacy of AD drug discovery. In this study, we employed
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Figure 9. CREB promotes pyrroloquinoline quinone (PQQ)-induced upregulation of Cnr1 and Cx3cr1 expression. a) mRNA levels of Cnr1 and Cx3cr1,
normalized to internal controls. b) Relative mRNA levels of Cnr1and Cx3cr1 (n = 6). c) Schematic of potential CREB-binding sites on the Cnr1 promoter
and the corresponding reporter constructs for luciferase assays. d) Luciferase activity corresponding to various lengths of the Cnr1 promoter (n =
6). e) Conservation analysis of the Cnr1 promoter region at −776 bp across five mammalian species. f,g) ChIP-qPCR analysis demonstrating CREB’s
association with the Cnr1 promoter in HEK293 cells and brain tissues, respectively (n = 6). h) Schematic of putative CREB-binding sites on the Cx3cr1
promoter and associated reporter constructs for luciferase assays. i) The luciferase activities of luciferase reporter plasmids containing different lengths
of the Cx3cr1 promoter (n = 6). j) The Cx3cr1 promoter located at −1200 bp upstream of the transcription start site, is conserved among five mammalian
species. k,l) ChIP-qPCR analysis demonstrating CREB’s association with the Cx3cr1 promoter in HEK293 cells and brain tissues, respectively (n = 6).
Data are shown as mean ± SEM. *p < 0.05 versus control group; #p < 0.05 versus AD group.
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deep learning to expedite the screening process. This method
boosts efficiency, narrows the screening range, and mitigates the
conventionally labor-intensive nature of anti-AD drug research.
Through the fusion of deep learning and meta-analysis, we iden-
tified PQQ from food sources as a potent, low-toxicity compound
appropriate for daily intake. We delved into the molecular mecha-
nism of PQQ as a promising therapeutic contender. Importantly,
our data revealed that AD patients had markedly reduced periph-
eral blood PQQ levels compared with healthy individuals, align-
ing with our deep learning and meta-analysis insights. Addition-
ally, a decline in PQQ levels corresponded with the progression of
cognitive impairment, intimating the potential protective ability
of PQQ in cognitive health.

The deep learning technique used in this research augments
the role of artificial intelligence (AI) in pharmacological studies,
especially in the field of anti-AD drug discovery. The model was
meticulously trained on an extensive dataset of molecular struc-
tures, equipping it to accurately predict the BBB permeability,
as well as the anti-inflammatory and antioxidative attributes of
various compounds. This precision reduces the need for experi-
mental validation of unsuitable compounds, ensuring a focused
approach to pinpointing compounds with robust therapeutic po-
tential and enhancing resource efficiency throughout the drug
discovery journey.

A standout feature of our method is the development of a holis-
tic platform that seamlessly combines anti-inflammatory, antiox-
idant, and BBB permeability characteristics into a single model
for neuropharmacological drug screening, with an emphasis on
AD. Built on a solid foundation of molecular structures and un-
derpinned by a sophisticated grasp of neuropharmacology, this
platform was devised to discern compounds manifesting a trio
of attributes vital for effective neurological drug function. The
model’s ability to assess these three key characteristics show-
cases an innovative approach to AI-aided drug discovery, offer-
ing a comprehensive, targeted, and resource-efficient strategy for
uncovering potential AD treatments. This integration enhances
the accuracy of recognizing compounds with a strong therapeutic
potential. This research paves the way for a fresh perspective on
deep learning’s application in neuropharmacological exploration,
specifically in AD drug discovery.

Considering that AD is a multifactorial disease, PQQ may in-
fluence several facets of AD progression. The intertwined roles of
neuroinflammation and oxidative stress in the etiology of AD are
well-established. Our data spotlight PQQ’s capability to counter-
act both processes. The significant decrease in proinflammatory
cytokines and subdued microglial activation after PQQ admin-
istration point to promising avenues for AD management. The
oxidative response is also suppressed in AD patients treated with
PQQ. PQQ mitigates ROS accumulation and boosts the expres-
sion of antioxidant genes. Due to PQQ’s multifaceted neuropro-
tective effects, it emerges as a potential therapeutic strategy for
AD patients and those at elevated risk for AD.

The signaling pathways tied to PQQ-mediated neuroprotec-
tion are intricate. The principal targets of PQQ in AD are SIRT1
and CREB1, central players in PQQ-related pathways. SIRT1 acti-
vation influences downstream targets, manages oxidative stress,
delivers neuroprotective and anti-neuroinflammatory outcomes,
and thus stands out as a vital modulator of AD pathogenesis.[47]

A key downstream target of SIRT1 is STAT3, which under-

goes deacetylation via SIRT1-mediated modulation. PQQ in-
duced SIRT1 activity and deacetylated STAT3. CREB1, another
central gene for PQQ in AD, is noteworthy. The cyclic adeno-
sine monophosphate (cAMP) response element-binding protein
(CREB) is an essential transcription factor involved in numer-
ous cellular activities, including synaptic plasticity, neuroprotec-
tion, and memory consolidation.[48] Post-mortem analyses of AD-
affected brains have showcased reduced CREB phosphorylation,
highlighting the disrupted functional landscape of the disease
environment.[49] PQQ amplifies the transcriptional activity of
CREB1 in AD, raising the expression of the anti-inflammatory
genes Cnr1 and Cx3cr1.

In conclusion, this study marks a significant amalgamation
of deep learning and pharmacological research, accentuating the
therapeutic promise of PQQ as an agent against AD. Through the
integration of interdisciplinary fields, the drug discovery process
is accelerated, increasing precision in targeting disease mecha-
nisms and improving resource efficiency. Our findings advocate
for the consideration of PQQ-centric interventions, which may
include dietary modifications to incorporate PQQ-rich foods as a
proactive approach to AD management. The neuroprotective ef-
ficacy of PQQ, as revealed in Figure 10, intimates that a diet aug-
mented with PQQ sources—such as apples, natto, bread, corn,
kiwi fruits, and oranges—might confer tangible benefits in de-
laying or alleviating the clinical manifestation of AD. Therefore,
the incorporation of these nutritive elements into the diets of
individuals at heightened risk of AD could be a viable strategy
to delay disease progression. Prospective nutritional guidelines
should recommend PQQ intake to enhance cognitive health. The
insights from this research provide firm groundwork for further
research into the medicinal benefits of PQQ and outline a cohe-
sive strategy for merging deep learning with pharmacology in the
advancement of drug research and development.

4. Experimental Section
Deep Learning Methodology for Compound Analysis—Data Collec-

tion: The compound library of the BBB was derived from a pre-
vious study.[50] The anti-inflammatory-related pathways (WP:3844,
GO:0000165, GO:0 004896, KEGG: hsa04064, KEGG: hsa04210, KEGG:
hsa04630) and antioxidant related pathways (GO:00 98869, GO:00 72593,
GO:0 006281) were searched in the Kyoto Encyclopedia of Genes and
Genomes (KEGG), GO, WikiPathways databases. Then, STRING was
used to perform protein–protein interaction analysis on the genes in
each pathway, and Cytoscape was used to calculate the key genes of
each pathway. BioAssays for the key genes were subsequently searched
on PUBCHEM, which is a database containing activity test results for
specific genes (activity test results of compounds are usually labeled
active, inactive, inconclusive, etc.). Active compounds were labeled as
1, which was expected to exert anti-inflammatory or antioxidative effects
by affecting a specific pathway; inactive were marked as 0, which did
not produce anti-inflammatory or antioxidant effects from these specific
pathways; and inconclusive compounds were not included in the data
set due to unknown activity. Finally, a total of 11 542 compounds were
collected, with nine attributes.

Deep Learning Methodology for Compound Analysis—Model Selection Ra-
tionale: The selection of modeling methodologies was influenced by pre-
liminary experiments. While the MLP variant model, implemented us-
ing Fastai’s tabular learner,[51] was initially applied across all proper-
ties, its performance varied. The model notably excelled for the BBB and
anti-inflammatory properties but was less effective for the antioxidative
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Figure 10. PQQ: A potential therapeutic candidate with efficacy and minimal toxicity for Alzheimer’s disease management. Illustration highlighting the
benefits of pyrroloquinoline quinone-enriched diets in Alzheimer’s disease management.

properties. On the other hand, the GCN model, implemented using
deepchem’s GCNModel, did not yield optimal results for BBB and anti-
inflammatory properties. The initial foray into multi-task learning did not
result in enhanced performance. Instead of leveraging shared features
across properties, this approach led to diminished results. Hence, individ-
ual models were designed for each property. For optimizing model config-
urations, Optuna,[52] an automated hyperparameter tuning tool, resulting
in 10 distinct models, each optimized for specific properties (Table S1,
Supporting Information), was employed.

Deep Learning Methodology for Compound Analysis—Dataset Processing
and Feature Extraction:

(a) For the MLP variant: Initially, the dataset consisted of 11 542 com-
pounds. However, due to RDKit’s limitations in processing salts, 18
compounds were excluded, leaving 11 524 compounds. Using RD-
Kit, 12 molecular descriptors, based on empirical rationale, were ex-
tracted:

“ExactMolWt”: Represents the exact molecular weight of the com-
pound.

“MolLogP”: LogP value, indicating the lipophilicity of the compound.
Lipophilicity often relates to a drug’s ability to cross the BBB.

“TPSA”: Total polar surface area, which can provide insights into a
molecule’s membrane permeability.

“NumHDonors”: The number of hydrogen bond donors in the
molecule.

“NumHAcceptors”: The number of hydrogen bond acceptors in the
molecule.

“NumRotatableBonds”: Gives an idea of the molecule’s flexibility.
“FractionCSP3”: Describes the molecule’s sp3 character, which can be

a measure of its three-dimensionality.
“NumAromaticRings”: The number of aromatic rings present in the

molecule.
“MaxPartialCharge”: The maximum partial charge present in the

molecule.
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“MinPartialCharge”: The minimum partial charge present in the
molecule.

“NumNitrogen”: The number of nitrogen atoms in the molecule.
“NumOxygen”: The number of oxygen atoms in the molecule.

(a) For the GCN Model: The original dataset consisting of 11 542 com-
pounds, including those containing salts, was processed. Feature
extraction was performed using deepchem’s MolGraphConvFeatur-
izer. This process involved the encoding of atomic properties (such
as atom type, charge, and hybridization) and bond characteristics
(such as bond type and conjugation status). Each atom and bond
and represented by vectors of length 30 and 11, respectively. For a
comprehensive description of the feature extraction process, read-
ers are referred to [https://deepchem.readthedocs.io/en/stable/api_
reference/featurizers.html#molgraphconvfeaturizer].

Deep Learning Methodology for Compound Analysis—Addressing Data Im-
balance: For the MLP model, given the initial dataset of 11 542 com-
pounds, inherent data imbalances (Table S2, Supporting Information)
prompted the introduction of the FocalLoss, with its parameters optimized
via Optuna. Despite leveraging stratified train-validation-test splits, per-
formance improvements were sought, which led to the incorporation of
oversampling techniques including SMOTE[53] and ADASYN,[54] guided
by Optuna. This approach notably enhanced model performance.

For the GCN model, challenges with conventional oversampling tech-
niques arose from various aspects. Techniques such as SMOTE were
found unsuitable for generating valid molecular graphs. Additionally, sim-
ple repetitions of minority class samples risked overfitting. Given these
challenges, the majority class was randomly downsampled. As a result, the
dataset for the antioxidative property GO:00 98869 comprised 2118 com-
pounds, for GO:0 006281 it was 2682 compounds, and for GO:00 72593,
the dataset had 2296 compounds.

Deep Learning Methodology for Compound Analysis—Model Training and
Evaluation: Both models were meticulously evaluated using five metrics:
accuracy, precision, recall, F1 score, and ROC-AUC. Special emphasis was
placed on the F1 score due to the highly imbalanced nature of the data, as
detailed in Table S2 (Supporting Information).

(a) For the MLP Model: Given the inherent imbalances in the dataset,
oversampling techniques, such as SMOTE and ADASYN, were ap-
plied. After achieving a balanced dataset, data were partitioned by re-
serving 20% for testing. From the remaining 80%, another 20% was
set aside for validation, with the rest dedicated to training.

(b) For the GCN Model, the Training Process Was Threefold: Due to the data
imbalances, the majority class was randomly downsampled. With the
balanced dataset, a fivefold cross-validation approach was adopted to
determine the optimal hyperparameters and model configuration, en-
suring robust performance across the different folds. After identifying
the best model parameters through cross-validation, the model was
trained on the entire training dataset to maximize its potential perfor-
mance. This fully trained model was subsequently used for predicting
the outcomes of the target attributes.

Deep Learning Methodology for Compound Analysis—t-SNE Visualization
of Compound Features:

(a) Feature Extraction: MLP Model: For the compounds processed by the
MLP model, 12 molecular descriptors were extracted using the RD-
Kit library. These descriptors served as the high-dimensional features
that were subsequently used for t-SNE visualization.

(b) GCN Model: For the compounds processed by the GCN model,
molecular graph features were obtained using the MolGraphConvFea-
turizer from deepchem. After feature extraction, a mean pooling strat-
egy was employed to aggregate node features, creating a fixed-size
vector for each compound.

(c) t-SNE Parameters and Visualization: The t-SNE plots were generated
using a perplexity of 30 and a maximum number of iterations set to
1000.

To distinguish specific sets of compounds in visualization, those ulti-
mately selected based on their scores and non-toxicity were marked as
“top hits” in the plots.

Antibodies, Reagents, and Adenoviruses: The antibodies used are listed
in Table S5 (Supporting Information). Recombinant human A𝛽1–42 peptide
was procured from Beyotime Biotechnology (China). Recombinant aden-
oviruses, encompassing STAT3 wild-type and K679QK685QK707QK709Q
mutants, were meticulously constructed and packaged by Genechem Co.,
Ltd. (Shanghai, China).

Systematic Review and Meta-Analysis: This systematic review and
meta-analysis adhered to the guidelines stipulated in the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses statement.[55]

A comprehensive protocol was designed a priori and subsequently reg-
istered with PROSPERO under the registration number PROSPERO
CRD42023430260. The commencement of this endeavor involved a sys-
tematic exploration of multiple databases, including PubMed, Embase,
Wiley, and Web of Science, conducted on May 20, 2023. Additionally, an
exhaustive examination of the references cited within the included articles
was conducted.

The inclusion criteria focused on cohort studies that assessed the asso-
ciations between adherence to the MIND diet and the incident of dementia
or AD. Subsequently, pertinent data elements were meticulously extracted,
including the identity of the primary author, year of publication, cohort des-
ignation, geographical location, sample size, baseline age range, methods
employed for dietary assessment, approaches utilized for dementia ascer-
tainment, as well as risk estimates and their respective 95% confidence
intervals, derived from multivariable-adjusted models, alongside the in-
corporated covariates. Study quality was evaluated through the rigorous
application of the Newcastle-Ottawa scale.

To ensure the highest standards of reliability and accuracy, two inde-
pendent reviewers, namely, S.L. and L.C., conducted the initial literature
screening, data extraction, and risk of bias assessment. Instances of dis-
agreement or discordance were judiciously resolved through consultation
with the third author, J.L.

For the synthesis of findings, common-effect models were employed
to amalgamate risk estimates comparing the highest versus the lowest
levels of MIND diet adherence. The statistical heterogeneity across studies
was quantified using the I2 statistic, with data analysis facilitated through
the utilization of the R package “meta” from the R Project for Statistical
Computing. In accordance with the guidelines delineated in the Cochrane
Handbook, an I2 statistic of ≤40% was indicative of minor heterogeneity,
while values within the range of 30–60% denoted moderate heterogeneity.
Substantial heterogeneity was represented by I2 values of 50–90%, and
I2 values of >75% signified considerable heterogeneity. Furthermore, the
presence of publication bias was assessed using the Egger test.[56]

Quantification of PQQ in Human Serum: All participants provided
written informed consent, and the study protocol, including recruitment
strategies and ethical considerations, was approved by the Institutional
Review Board (IRB) of Affiliated Brain Hospital of Nanjing Medical Uni-
versity with the number 2020-KY043-01. The specific information of all pa-
tients is summarized in Table S6 (Supporting Information).

Serum samples (100 μL) underwent a meticulous sample preparation
procedure, commencing with the addition of 100 μL of 50% methanol
and 200 μL of acetonitrile. The resultant mixture was subjected to vigor-
ous vortexing for a duration of 5 min and subsequently underwent cen-
trifugation at 20 000 g for 10 min. The supernatant, meticulously han-
dled, was then transferred into a vial. A precise 2 μL aliquot of this su-
pernatant was introduced into the state-of-the-art ultra-performance liquid
chromatography-electrospray ionization-tandem mass spectrometry sys-
tem for further analyses.

Chromatographic separation was performed using the highly sophis-
ticated Acquity UPLC-I-Class System, manufactured by Waters (Milford,
MA, USA). This system was equipped with a reversed-phase column (BEH
C18, dimensions: 2.1 mm × 50 mm, particle size: 1.7 μm; sourced from
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Waters) and maintained at a constant temperature of 35 °C throughout the
analytical process. The flow rate was meticulously set at 0.3 mL min−1. The
mobile phase included a binary solvent system, comprising 5 mm ammo-
nium formate in water (referred to as A) and acetonitrile (referred to as
B). The gradient elution scheme employed for the separation was as fol-
lows: 0–0.5 min, 25% B; 0.5–2.5 min, a linear increase from 25% to 95%
B; 2.5–3.5 min, 95% B; 3.5–3.6 min, a linear decrease from 95% to 25% B;
3.6–6 min, 25% B.

The analytical component of this study involved the utilization of the
Xevo TQ-S micro-Triple-Quadrupole Tandem Mass Spectrometer, also
manufactured by Waters. An electrospray ionization source, operating in
the negative ionization mode, was employed for mass spectrometric anal-
ysis. Quantification of PQQ was achieved using the multiple reaction mon-
itoring mode, with specific transitions of m/z 329.16 to 241.14 being moni-
tored. Ionization parameters were meticulously adjusted, with a cone volt-
age set at 20 V and a collision energy maintained at 12 eV. Additional in-
strumental settings included a capillary voltage of 2500 V, a source tem-
perature of 120 °C, a desolvation temperature of 400 °C, a desolvation gas
(nitrogen) flow rate of 600 L h−1, and a cone gas (nitrogen) flow rate of
25 L h−1.

The wealth of data generated was subjected to comprehensive process-
ing and analysis utilizing Masslynx software, specifically version 4.2, devel-
oped by Waters (Manchester, UK). This software played an integral role in
facilitating data interpretation and subsequent elucidation of results.

Mice and Drug Intervention: All male C57/BL6 mice (8 weeks old,
weight 18–22 g) were obtained from the Changzhou Cavens Laboratory An-
imal Company. Animal culture and procedures were approved by the Phar-
maceutical Laboratory Animal Center of China Pharmaceutical Univer-
sity with the number 2023-08-005. To induce the formation of oligomeric
A𝛽1–42, the A𝛽1–42 peptide was dissolved in sterile phosphate-buffered
saline (PBS) at a concentration of 2 mg mL−1 and incubated at 37 °C for
24 h. Subsequently, the AD mouse model was established by the intrac-
erebral injection of 5 μL of the oligomerized A𝛽1–42 peptide into the lat-
eral ventricle on the first day of the experiment. The injection point with a
brain stereo-positioning instrument:−1.0± 0.06 mm posterior to bregma,
1.8 ± 0.1 mm lateral to the sagittal suture, and 2.4 mm in depth.

For the control group, an equivalent volume of sterile saline was ad-
ministered in a similar manner. Following the A𝛽1–42 injection, a 24 h
interval was observed, after which mice received intragastric adminis-
tration of 20 mg kg−1 of PQQ for a duration spanning from day 2 to
day 14 of the experiment. The selection of PQQ administration timing
and dosage was informed by a meticulous review of the literature.[57,58]

Control and model group mice were exclusively subjected to intragas-
tric gavage with normal saline. To further validate the potential protec-
tive mechanism mediated through the SIRT1 pathway, some mice were
treated with PQQ (20 mg kg−1, intragastric) in combination with EX527
(2 mg kg−1, intragastric). To elucidate the role of STAT3 deacetylation,
another subset of mice received lateral ventricle injections of recom-
binant adenoviruses carrying either wild-type STAT3 or mutants bear-
ing K679QK685QK707QK709Q substitutions. Following adenovirus in-
duction, these mice were subjected to A𝛽1–42 injections and received sub-
sequent administration of 20 mg kg−1 PQQ.

Cell Culture and Treatment: The SH-SY5Y cell line, sourced from
Shanghai Zhongqiaoxinzhou Company in Shanghai, China, and the
HEK293 cell line, obtained from Guangzhou Jennio Biotech in Guangzhou,
China, were cultured in Dulbecco’s modified Eagle medium (obtained
from Invitrogen). The culture medium was supplemented with 10%
fetal bovine serum and 1% penicillin (100 units mL−1)/streptomycin
(100 mg mL−1). Cell cultures were maintained in a controlled environment
with a humidity level of 5% CO2 and a temperature of 37 °C.

Behavioral Analysis: The Y-maze served as the primary tool for assess-
ing spatial working memory in rodents. This maze structure was con-
structed as a symmetrical Y-shaped apparatus, featuring three identical
arms evenly spaced at 120° apart. Crafted from black plexiglass, the maze
provided a controlled environment for experimentation. During evalua-
tion, mice were gently placed into one of the arms and given a 10-min win-
dow to freely explore the entire maze. Detailed records were maintained of
the sequence and frequency with which the mice entered each arm. In the

context of this assessment, normal mice typically exhibited a high degree
of spontaneous alternating behavior, characterized by successive visits to
different open arms (e.g., A–B–C–A–B). The number of correct alternating
responses was tallied, and the spontaneous alternating rate was subse-
quently computed.

The Morris water maze was another integral tool employed for
evaluating the spatial learning and memory capabilities of mice. This
comprehensive maze system consisted of a large pool housing an
underwater platform. The pool had a radius of 60 cm and a height of
45 cm and was divided into four quadrants in a randomized fashion. The
submerged platform, positioned just 1 cm beneath the water surface, was
situated at the center of one of the quadrants. To render the water opaque,
titanium dioxide was added, and the water temperature was meticulously
maintained at ≈25 °C. Behavioral experiments were initiated 7 days
after the commencement of drug administration, encompassing a 5-day
training phase and spatial learning and memory assessments on the sixth
day. During the daily training trials, mice were placed in the pool, facing
the pool wall, and were tasked with locating the submerged platform
positioned 1 cm above the water’s surface. If a mouse successfully
reached the platform within a 90 s time frame, it was permitted to rest on
the platform for 10 s. Conversely, if a mouse failed to locate the platform
within the designated time, it was manually guided to the platform and al-
lowed to rest there for 10 s to facilitate memory of the platform’s location.
On the sixth day of the experiment, the platform was submerged 1 cm
beneath the water’s surface, and a spatial exploration trial was conducted.
During all phases of testing, various parameters, including latency, path
length, swimming velocity, residence time in the target quadrant, and
the trajectory traversed, were meticulously recorded by a computerized
system.

Western Blot: On day 14, mice were humanely euthanized under deep
anesthesia, and to ensure complete perfusion, cold PBS was pumped
through the left ventricle at a controlled flow rate of 10 mL min−1 for a du-
ration of 60 s. Following cardiac perfusion, the brains were meticulously
extracted, and total cellular proteins were extracted from the cerebral cor-
tex tissues. This was done by lysing the tissues with RIPA buffer (procured
from Beyotime) supplemented with phenylmethylsulfonyl fluoride. After-
ward, the lysates underwent centrifugation at 12 000 rpm min−1 at 4 °C
for 30 min to collect the supernatant. The quantification of protein content
was performed using a BCA kit (also obtained from Beyotime).

The isolated proteins were subjected to electrophoresis on SDS-PAGE
(sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and subse-
quently transferred onto polyvinylidene difluoride fluoride (PVDF) mem-
branes, sourced from Millipore. Following the transfer, the membranes
were subjected to blocking with 5% skim milk, prepared in Tris-buffered
saline containing 0.1% Tween20 (TBST), for a duration of 1 h at room tem-
perature. Subsequently, the membranes were incubated overnight at 4 °C
with primary antibodies, suitably diluted in a blocking solution.

After thorough washing with TBST for five cycles, the membranes
were then subjected to incubation with secondary antibodies (either HRP-
conjugated anti-rabbit IgG or HRP-conjugated anti-mouse IgG) for 1 h at
room temperature. Detection of protein expression was accomplished us-
ing an enhanced chemiluminescence kit (Tanon) and visualized using a
Gel Imaging System (Bio-Rad, ChemiDoc MP, USA). The resulting den-
sitometry values were normalized to the intensity levels of glyceraldehyde
3-phosphate dehydrogenase (GAPDH), and quantification was performed
using ImageJ.

RNA Isolation and RNA Sequencing: Total RNA was meticulously ex-
tracted from mouse brain tissues employing the RNA isolater total RNA
extraction reagent, a product sourced from Vazyme (Catalog No. R401-01).
Subsequently, these RNA samples were forwarded to Frasergen Genomic
Medicine (Wuhan, China) for RNA sequencing (RNA-seq). For optimizing
sequencing results, an equivalent quantity of RNA extracted from three
separate animal groups was pooled and used as the input material for
RNA-seq analysis.

The raw RNA-seq reads were subjected to mapping onto the mouse
genome via HISAT2 (version 2.2.1). Following this mapping step, quan-
tification was conducted using FeatureCounts, and the resulting quantifi-
cation dataset was subjected to further evaluation using R (version 4.2.2).
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Subsequently, the DESeq2 package was employed to discern DEGs. Genes
were deemed differentially expressed if they exhibited an adjusted p-value
(p adj) of <0.05, coupled with an absolute value of log2FoldChange ex-
ceeding 0.58.

For a deeper understanding of the functional implications of these
DEGs, KEGG pathway enrichment analysis and GO enrichment analysis
were carried out using the clusterProfiler R package. In parallel, an addi-
tional dataset containing RNA-seq data from AD (Alzheimer’s disease) pa-
tients, derived from the GSE33000 dataset, was analyzed. The analysis of
this dataset was conducted using the R package Limma (version 3.56.2).

Brain Tissue Slices and Immunofluorescence Staining: The brains of the
mice were subjected to a perfusion process as follows: they were first per-
fused with frozen PBS (pH 7.4) transcardially, followed by perfusion with a
solution of 4% paraformaldehyde dissolved in PBS for tissue fixation. After
this cardiac perfusion, the brains were carefully removed, placed in a solu-
tion of 4% paraformaldehyde, and stored in a light-protected environment
at 4 °C until further use. The brain tissue was allowed to undergo fixation
for a minimum of 24 h before being transferred to a 30% sucrose solution
for dehydration, a process that spanned 48 h. Once the tissue had sunk
to the bottom of the solution, the brains were sectioned into 30-μm-thick
coronal sections using a freezing microtome (Leica, CM1950). Sections of
the brain that included an intact hippocampus were preserved in a freez-
ing solution consisting of PBS, ethylene glycol, and glycerin in a ratio of
5:3:2 and stored at −20 °C.

Subsequently, the brain sections underwent a series of preparatory
steps. They were washed with pre-cooled PBS at room temperature for
5 min, repeating this process thrice. To prevent non-specific binding, the
sections were then blocked with a solution of 3% bovine serum albumin
(BSA) prepared in PBS for a duration of 1 h at room temperature. Fol-
lowing the blocking step, primary antibodies, suitably diluted in BSA, were
applied to the sections and allowed to incubate overnight at 4 °C. After the
primary antibody incubation, the sections were washed with PBS at room
temperature for 5 min, repeating this process three times.

Subsequent to the primary antibody incubation and washing steps, sec-
ondary antibodies labeled with Alexa Fluor Plus 488 and 594 were em-
ployed and allowed to incubate with the sections for 1 h at room tempera-
ture. Following this incubation, 4′,6-diamidino-2-phenylindole (DAPI) was
added to each section and allowed to incubate for 20 min at room tem-
perature in darkness. The fluorescent images were then observed and cap-
tured using a confocal laser scanning microscope, specifically the LSM800
model from Zeiss, Germany. Image processing and analysis were per-
formed utilizing the ZEN imaging software. Fluorescence signals were
quantified using ImageJ v1.8.0.

Determination of ROS in Brain Tissues: The brain slice samples were
subjected to a specific staining procedure as follows: Dihydroethidium
(DHE), obtained from Beyotime in China, was utilized for staining. The
brain slices were incubated with DHE at a temperature of 37 °C for a du-
ration of 30 min. Subsequently, the slices were thoroughly washed three
times with PBS, with each washing step lasting for 5 min. To facilitate
nuclear staining, the samples were further subjected to co-staining with
DAPI, also sourced from Beyotime in China.

The resulting stained samples were subjected to fluorescence inten-
sity analysis using a confocal laser scanning microscope, specifically the
Carl Zeiss LSM800 model. This analysis allowed for the visualization and
quantification of the fluorescence signals in brain slices, providing valu-
able insights into the experimental observations.

Real-Time PCR: Total RNA was meticulously extracted from mice brain
tissues utilizing the RNA isolater Total RNA Extraction Reagent, a product
sourced from Vazyme (Catalog No. R401-01). Subsequently, this isolated
RNA was reverse-transcribed into complementary DNA (cDNA) using the
HiScript III RT SuperMix for qPCR (+gDNA wiper), a kit also obtained
from Vazyme (Catalog No. R323). This process was conducted in strict
accordance with the manufacturer’s instructions.

Real-time PCR was conducted employing the Taq Pro Universal SYBR
qPCR Master Mix, procured from Vazyme (Catalog No. Q712). The PCR
protocol consisted of an initial denaturation step at 95 °C for 30 s, followed
by 40 amplification cycles, each cycle consisting of denaturation at 95 °C
for 5 s, annealing at 60 °C for 30 s, and extension at 72 °C for 30 s. These

PCR reactions were performed using the CFX96 Real-Time PCR Detection
system, a product of Bio-Rad with version 2.2 of the software.

To determine relative expression changes, the 2−ΔΔCt method was em-
ployed, wherein the quantity of the target gene expression was normal-
ized to the expression of an endogenous control gene, GAPDH in this
case. Specific primer sequences utilized for qPCR analysis are provided in
Table S7 (Supporting Information).

Long-Term Potentiation (LTP) Recording: The procedure for brain tis-
sue preparation and electrophysiological recordings was as in previous
studies.[59,60] In detail, mice were anesthetized, and perfusion was carried
out with a sucrose-based solution through the left ventricle of the heart
until the limbs turned white. The brain was swiftly removed and placed
in a chilled sucrose-based cutting solution. The brain was then sliced into
350-μm-thick sections using a Leica VT1000S vibratome. These sections
were carefully prepared to include the ventral hippocampus. The prepared
slices, now containing the ventral hippocampus, were transferred to an
incubation chamber, and submerged in oxygenated ACSF (artificial cere-
brospinal fluid) with the following composition: 126 mm NaCl, 3 mm KCl,
1.25 mm NaH2PO4, 2 mm MgSO4, 24 mm NaHCO3, 2 mm CaCl2, and
10 mm glucose. After an adequate equilibration period, the slices were
transferred to an interface-type recording chamber, where they were con-
tinuously perfused with ACSF maintained at a temperature of 32 °C.

Field potentials were recorded using a glass pipette filled with ACSF,
and the resistance of the pipette was within the range of 2–3 MΩ. Field
excitatory postsynaptic potentials (fEPSPs) were evoked by orthodromic
stimulation of the Schaffer collateral/commissural fibers, using twisted
50-μm nickel/chromium wires. Pulses of 0.1 ms duration were delivered
at intervals of 20 s. Stimulus intensity was varied to establish a stimulus
intensity–response relationship. Once a stable baseline was achieved, LTP
was induced by delivering a single high-frequency stimulation train con-
sisting of 100 pulses at 100 Hz for 1 s at standard intensity. Changes in the
slopes of fEPSPs were continuously recorded and analyzed as a function
of time, allowing for the assessment of LTP induction and maintenance.

Determination of ROS in SH-SY5Y Cells: SH-SY5Y cells were seeded
into 24-well plates and incubated overnight until reached ≈70% conflu-
ence. Cells in the control group were cultured in DMEM for 36 h, and
in the model group were cultured with DMEM for 12 h and treated with
10 μm A𝛽1-42 for 24 h. In PQQ and EX527 treatment group, cells were pre-
treated with 5 μm PQQ or 5 μm PQQ with 2 μm EX527 for 12 h, and then
treated with 10 μm A𝛽1-42 for 24 h. After modeling and drug intervention,
the cells were incubated with 10 μm dihydroethidium (Beyotime) solution
for 30 min at 37 °C, followed by rinsed with PBS thrice and further con-
strained with DAPI (Beyotime, China). Cells were visualized under a con-
focal scanning microscope (Zeiss LSM 800) and processed using the ZEN
imaging software.

Luciferase Activity Assay: The pGL3 luciferase reporter vector was
used for constructing luciferase vectors. To identify the CREB-binding
site along the promoters of human Cnr1 and Cx3cr1 promoter, a series
of Cnr1 promoter and Cx3cr1 promoters were synthesized and then in-
serted into the pGL3 vector, generating a series of luciferase plasmids
containing Cnr1 promoter (pGL-Cnr1-600, pGL-Cnr1-1400, and pGL-Cnr1-
1800) and Cx3cr1 promoter (pGL-Cx3cr1-1000, pGL-Cx3cr1-1500, and
pGL-Cx3cr1-2000), respectively. Moreover, the deletion of CREB-binding
sites generated plasmids of the Cnr1 promoter (pGL-Cnr1-1400Δ and
pGL-Cnr1-1800Δ) and Cx3cr1 promoter (pGL-Cx3cr1-1500Δ and pGL-
Cx3cr1-2000Δ), respectively.

All plasmids were confirmed by sequencing. HEK293 cells were trans-
fected with the plasmids and transfection efficiency was adjusted accord-
ing to the manufacturer’s protocol. A Renilla luciferase vector was trans-
fected as an internal control. Luciferase activities were measured using the
Dual-Luciferase Reporter Assay System (Promega).

Chromatin Immunoprecipitation (ChIP) Assay: Chromatin immuno-
precipitation assays were performed using a kit according to the manu-
facturer’s instructions (EZ-ChIP, Millipore). After experiments, chromatin
protein was cross-linked to DNA by the addition of 1% formaldehyde.
The cells were lysed in SDS sonication buffer after centrifugation, and the
lysate was sonicated to break up the DNA into 100–500 bp fragments.
IgG and CREB groups were added with 0.1 μL IgG and 10 μL antibody
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against CREB according to the manufacturer’s protocol, respectively. All
DNA samples were purified using the FastPure Cell/Tissue DNA Isolation
Mini Kit (DC102, Vazyme) before qPCR analysis. The determination of the
ChIP signal is calculated using this formula: % input = 1% × 2 ˆ (CTinput
– CTsample). The relative DNA content was normalized to the input DNA
content for each sample.

Statistical Analysis: All data are expressed as mean ± standard error of
the mean using GraphPad Prism 8. Two-group comparisons were analyzed
using Student’s t-test. For comparisons of more than two groups, one-way
ANOVA was employed. Statistical significance is indicated by p < 0.05.
Statistical analysis was carried out using GraphPad Prism 8 Software.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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