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Multivariate canonical correlation
analysis identifies additional genetic
variants for chronic kidney disease

Check for updates

Amy J. Osborne 1 , Agnieszka Bierzynska2, Elizabeth Colby2, Uwe Andag3, Philip A. Kalra4,
Olivier Radresa3, Philipp Skroblin3, Maarten W. Taal 5, Gavin I. Welsh2, Moin A. Saleem2 &
Colin Campbell1

Chronic kidney diseases (CKD) have genetic associations with kidney function. Univariate genome-
wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated
with estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), two complementary
kidney function markers. However, it is unknown whether additional SNPs for kidney function can be
identifiedbymultivariate statistical analysis. To address this, we applied canonical correlation analysis
(CCA), a multivariate method, to two individual-level CKD genotype datasets, and metaCCA to two
published GWAS summary statistics datasets. We identified SNPs previously associated with kidney
function by published univariate GWASs with high replication rates, validating themetaCCAmethod.
We then extended discovery and identified previously unreported lead SNPs for both kidney function
markers, jointly. These showed expression quantitative trait loci (eQTL) colocalisation with genes
having significant differential expression between CKD and healthy individuals. Several of these
identified lead missense SNPs were predicted to have a functional impact, including in SLC14A2. We
also identified previously unreported lead SNPs that showed significant correlation with both kidney
function markers, jointly, in the European ancestry CKDGen, National Unified Renal Translational
Research Enterprise (NURTuRE)-CKD and Salford Kidney Study (SKS) datasets. Of these, rs3094060
colocalised with FLOT1 gene expression and was significantly more common in CKD cases in both
NURTURE-CKD and SKS, than in the general population. Overall, by using multivariate analysis by
CCA, we identified additional SNPs and genes for both kidney function and CKD, that can be
prioritised for further CKD analyses.

Chronic kidney disease (CKD), a major public health burden, affects over
697 million people and causes over one million deaths per year1. CKD
etiology is complex; its occurrence is related to either a primary renal dis-
order or a complicationof amultisystemdisorderor comorbidity (secondary
CKD)2,3. Estimated glomerular filtration rate (eGFR), used to assess CKD
stage, and blood urea nitrogen (BUN or serum urea), are complementary
kidney function markers. eGFR is estimated from serum creatinine4. BUN
measures the nitrogen component of serum urea, the primary metabolite
derived from dietary protein and tissue protein turnover4,5.

Common genetic variants are thought to contribute to CKD risk via
complex genetic architecture6. Genome-wide association studies (GWAS)
have identified several common SNPs and loci associated with CKD or
kidney function7–19. In May 2019, a trans-ancestry GWAS meta-analysis of
765,348 CKDGen participants, and replication in 280,722 Million Veteran
Programparticipants, reported 264 eGFR-associated loci (256 for European
ancestry), of which 147 (134 for European ancestry) were prioritized as
likely relevant for kidney function by additional independent association
with BUN17. In August 2019, a transethnic GWAS for eGFR in 280,722
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Million Veteran Program participants, followed by replication in 765,289
CKDGen participants, confirmed 54 loci and identified 82 previously
unreported variants18. In 2021, by integrating CKDGen and UK BioBank
data (predominantly European ancestry), Stanzick et al identified 424 loci
associated with eGFR, of which 348 were classified as likely relevant for
kidney function based on additional independent association with either
BUNor eGFRcys19. Several loci associatedwith eachof eGFRandBUNwere
identified by the BioBank Japan GWAS (162,255 Japanese individuals)16.
BUN is affected by other aspects of renal disease, rather than simply fil-
tration rate, but one of its main advantages here is that it is complementary
to eGFR20. Therefore it has value in validationof SNPs found tobe associated
with eGFR. A 2021 study integrating GWAS summary statistics with
expression quantitative trait loci (eQTL) data, which links SNPs with gene
expression in specific cell types, identified over 182 likely causal kidney
function genes21.

In a typical univariate GWAS, millions of associations between indi-
vidual genetic variants and a phenotype of interest are tested using regres-
sion models22. Variants that show a statistically significant association with
the trait of interest are typically clustered (due to linkage disequilibrium
(LD)) in sets of correlated variants22. Canonical correlation analysis (CCA)
can simultaneously test for multivariate-based correlation (or co-variance)
between multiple SNPs and multiple phenotypic variables23. CCA was
originally introduced in 1926 to find combinations maximally correlated
with each other using linear combinations of variables derived from two sets
of data objects24. CCA for genotype-phenotype analysis was proposed in
200925 and subsequently extended for testing the association of multiple
SNPs with phenotypes in unrelated individuals26. CCA is symmetric in that
the two datasets have equivalent status, whereas multiple multivariate
regression, themost similar statisticalmethod toCCA, is asymmetric in that
it tests whether each of the responses can be explained by linear combina-
tions of the explanatory variables. CCA therefore allows the identification of
multiple SNPs (gene-gene interactions) and pleiotropic mechanisms
thought to be the product of complex genetic diseases27. We previously
applied CCA to a cardiovascular disease genotype dataset and confirmed
already established findings with increased power (P-value), and found
novel pleiotropic genotype-phenotype associations23.MetaCCA, developed
for identifying multivariate relationships from univariate GWAS summary
statistics, has shown agreement with CCA results and identified shared
SNPs among type 2 diabetes, obesity and coronary artery disease and stroke
risk factors, and between CKD and heart disease28–31. However, multivariate
methods such as CCA and metaCCA have not previously been applied to
multiple CKD genomic datasets to look for additional SNPs associated with
two kidney function markers, jointly.

Here, to identify additional SNPs associated with two kidney function
markers by multivariate methods, we applied CCA and metaCCA to two
types of CKD genotype-phenotype dataset. We applied metaCCA to three
publicly available GWAS summary statistics datasets with minor subsets of
CKD cases (the CKDGen study (European ancestry) and BioBank
Japan)16,17,28.WeappliedCCAto two individual-level SNPgenotypedatasets
of mostly CKD patients (NURTuRE-CKD and the Salford Kidney Study).

Results
Single nucleotide polymorphisms identified bymetaCCA
For each of the CKDGen (European ancestry; 567,460 participants) and
BioBank Japan (143,658 participants) GWAS summary statistics datasets
(for eGFR and BUN), totals of 8,346,783 and 5,837,593 SNPs were analyzed
using univariate-SNP metaCCA (Table 1, Figs. 1 and 2). Of these, totals of
26,562 (0.3%) and 5513 (0.09%) unique SNPs, respectively, showed a sig-
nificant correlation with both eGFR and BUN, jointly, using metaCCA
(Bonferroni-corrected P-value < 0.05; Fig. 2). These results reflected their
sample sizes (described above) which affected the power to detect SNPs
(Table 1). Of these, using the Functional Mapping and Annotation of
Genome-Wide Association Studies (FUMA) program, 472 (1.8%) and 208
(3.8%)were leadSNPs (of 514 and1657 independent SNPs), for totals of 253
and 99 independent genomic loci, respectively (Supplementary Datasets
1 and 2)32. Lead SNPs were defined by FUMA as independent SNPs (using
LDestimation)with the lowestP-value in the genomic region32.Of these 472
(1.8%) and 208 (3.8%) identified lead SNPs by metaCCA in the CKDGen
and BioBank Japan datasets, respectively, totals of 157 (33%) and 48 (23%)
lead SNPs were (i) not previously reported as statistically significant for
eGFR and BUN by the respective published GWASs16,17, and (ii) showed
effect sizes in opposite directions (thus compatible for kidney function)
(Datasets 1 and 2). These mapped to 117 and 40 independent genomic loci,
of which the closest gene annotations for 75 and all 40, had not previously
been reported as closestmappedgenes for the leadSNPs reportedbyWuttke
et al.17 (CKDGen) and Kanai et al.16 (BioBank Japan), respectively (Datasets
1 and 2)16,17.

Overlap with previously reported lead SNPs by published GWAS
For each of the CKDGen and BioBank Japan datasets, we compared P-
values of metaCCA-identified SNPs with those previously reported by the
respective publishedGWASby using quantile-quantile plots (Figs. 3 and 4).
In the published CKDGen GWAS by Wuttke et al., SNPs were defined as
significant for kidney function if they showedanassociationwithboth eGFR
(P-value < 5.0 × 10−8) and BUN (one-sided P-value < 5.0 × 10−2), and with
eGFR and BUN effect sizes in opposite directions (total of 10,437 SNPs)17.
For the published BioBank Japan GWAS by Kanai et al.16, the eGFR and
BUN P-value cut-offs were both < 5.0 × 10−8 (total of 1241 SNPs with effect
size direction filter)16. For our metaCCA analyses in this paper, we used a
standard genome-wide Bonferroni correction (5e−8) to identify significant
multivariateP-values for both eGFR andBUN (Methods).When compared
to the published CKDGen and BioBank Japan univariate GWAS for eGFR
and BUN, multivariate eGFR and BUN metaCCA identified 9846 (94%),
and 1241 (100%) SNPs, respectively, of those previously reported SNPs and
identified additional SNPs for kidney function (Figs. 3 and 4). Of the 26,562
(0.3%) CKDGen and 5513 (0.09%) BioBank Japan dataset SNPs that
showed a significant correlationwith both eGFR and BUNusingmetaCCA,
5840 (22%) and 2471 (45%) SNPs, respectively, had not been previously
reported to show a significant association with eGFR and BUN by the
published univariate GWASs by Wuttke et al.17 and Kanai et al.16

(Figs. 3 and 4)16,17.

Table 1 | Datasets analysed in this study

Dataset Data type Reference Number of

Participants Chronic kidney dis-
ease cases

Single nucleotide poly-
morphisms

NURTuRE-CKD, NURTuRE-
controls

Individual-level genotype NURTuRE
Biobank

2519 2500 (99%) 6,419,966

Salford Kidney Study,
NURTuRE-controls

Individual-level genotype Ali et al.58 1919 1900 (99%) 6,290,407

CKDGen, European ancestry Genome-wide association study
summary statistics

Wuttke et al.17 567,460 (eGFR and BUN) 41,395 (7%) 8,346,783

BioBank Japan Genome-wide association study
summary statistics

Kanai et al.16 143,658 (eGFR); 139,818 (BUN) 8586 (5%) 5,961,600

https://doi.org/10.1038/s41540-024-00350-8 Article

npj Systems Biology and Applications |           (2024) 10:28 2



Previously reported lead SNPs that were described as likely rele-
vant for kidney function were listed in Wuttke et al.17 for the CKDGen
GWAS17 and Kanai et al.16 for the BioBank Japan GWAS16. Of the 122
previously reported lead SNPs in the CKDGen (European ancestry)
dataset by Wuttke et al., we found that 113 SNPs (93%) showed a

significant correlation with both eGFR and BUN by metaCCA, of
which 78 SNPs (64%) were defined as lead SNPs using FUMA (Sup-
plementary Dataset 3)17. The nine (7%) SNPs missed by metaCCA
appeared to be due to our use of a Bonferroni correction for the joint
eGFR and BUN analyses which was more stringent compared to the

A CKDGen
n = 567,460

nCKD= 41,395

BioBank Japan
n = 143,658
nCKD = 8,586

NURTuRE-CKD
nCKD = 2,475
ncontrol = 19

Salford Kidney Study
nCKD = 1,898
ncontrol = 19

Publicly available genome-wide association 
study (GWAS) datasets: 

~7% cases with chronic kidney disease (CKD)

Novel individual-level genotype datasets: 
99% cases with chronic kidney disease (CKD)

metaCCA: SNPs significantly correlated with 
both estimated glomerular filtration rate (eGFR)

and blood urea nitrogen (BUN)
(genome wide-adjusted P-value < 0.05)

Canonical correlation analysis 
(CCA): SNPs significantly

correlated with both eGFR and BUN
(adjusted P-value < 0.05)

48 novel lead SNPs 157 novel lead 

Lead SNPs, with eGFR and BUN effect sizes 
in opposite directions, not previously reported 

by published GWAS of same dataset

10 SNPs: no CKD 
relevant colocalization 

0 SNPs 

Replication of CKDGen results: SNPs show 
nominal CCA correlation P-value < 0.05

62 SNPs

Lead SNPs, with eGFR and BUN effect sizes in 
opposite directions, not previously reported by 

published GWAS

3 novel lead SNPs

expression quantitative trait loci (eQTL) 
colocalization analyses in CKD related tissues

expression quantitative trait loci (eQTL) 
colocalization analyses in CKD related tissues

5,513 SNPs 26,562 SNPs 

FUMA: independent and lead SNPs

514 independent 
and 472 lead SNPs 

1,657 independent 
and 208 lead SNPs

4 SNPs show eQTL 
colocalization for 6

genes

21 SNPs show eQTL 
colocalization for 21 

genes

1 SNP showed eQTL colocalization for 5
genes

Genes show significant differential expression 
in CKD compared to healthy cases (two 

published Gene Expression Omnibus datasets)

Genes show significant differential expression 
in CKD compared to healthy cases (two 

published Gene Expression Omnibus datasets)

3 genes
(GOSR2, RPH3A, 

RRAGD)

6 genes (EXOG, NFE2L2, 
SLC30A4, SPTBN1, 
TRAP1, TSPAN14)

1 gene
(FLOT1)

0 lead SNPs showed significant allele 
frequency differences between CKD and 

gnomAD general population

1 lead SNP (rs3094060) showed significant 
allele frequency differences between CKD and 

gnomAD general population

Fig. 1 | Workflow using metaCCA and canonical correlation analysis. Workflow diagram of the analysis method and results obtained for the four datasets.
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GWAS P-value cut-off of 0.05 (one-sided) used for the univariate BUN
analyses by Wuttke et al.17 (Supplementary Dataset 3). We found an
overlap of 8/8 (100%) metaCCA-identified SNPs with previously
reported lead SNPs by the published BioBank Japan GWAS (Supple-
mentary Dataset 4)16.

Overlap of additionalmetaCCA-identified SNPs between
CKDGen and BioBank Japan
Of the previously unreported 5840 CKDGen and 2471 BioBank Japan
SNPs for kidney function identified here by metaCCA, 4855 and 2091
SNPs, respectively, were available in both datasets, and of these, there
was an overlap of 394 (8% and 19%, respectively) SNPs (Fig. 5A, Sup-
plementary Dataset 5). This overlap of 394 SNPs was significant com-
pared to that expected for the number of SNPs analysed using the
hypergeometric distribution (P-value < 0.05; Table 2). Of these 394
SNPs, using FUMA, 13 (3%) were defined as lead SNPs for 13 inde-
pendent genomic loci (Supplementary Dataset 5). The canonical cor-
relation coefficients (r values) for these SNPs were relatively small, as
expected, since multiple small effect common genetic variants in
aggregate are thought to be required to show a large enough effect on
kidney function and/or CKD risk (Supplementary Fig. 1)6.

Additional single nucleotide polymorphisms identified by
metaCCA and CCA
Next, we investigated whether any of the CKDGenmetaCCA-identified
SNPs that showed eGFR and BUN effect sizes in opposite directions
(14,045 of 26,562 SNPs) showed replicated kidney function associations
in each of the NURTuRE-CKD (n = 2494 including 19 healthy parti-
cipants) and SKS (n = 1917 including a different set of 19 healthy par-
ticipants) individual-level SNP genotype datasets by using CCA (Fig. 1).
Of these 14,045 CKDGenmetaCCA-identified SNPs, 12,711 SNPs were
available for analysis in both the NURTURE-CKD and SKS datasets
(Table 2). Of these 12,711 SNPs, 62 (0.5%) SNPs showed nominally
significant CCA correlation with both eGFR and BUN in both the
NURTuRE-CKD and SKS datasets (P-value < 0.05; Table 2, Fig. 5B).
This overlap of 62 metaCCA and CCA-identified SNPs between the
CKDGen (12,711 SNPs), NURTuRE-CKD (272,655) and SKS (268,630)
datasets was statistically significant compared to that expected by
chance for the number of SNPs analysed by using the hypergeometric
distribution (P-value < 0.05; Table 2). Of these 62 SNPs (of which
rs1398018 and rs9992101 were non-imputed), FUMA analyses showed
six lead SNPs which were all imputed SNPs (Supplementary Dataset 6).
Of these, three were previously unreported SNP associations for kidney

Fig. 2 | Manhattan plots showingmetaCCA P-value results for single nucleotide
polymorphisms in genome-wide association study datasets. Results for univariate
single nucleotide polymorphism (SNP)metaCCA applied to (a) 8,346,783 CKDGen
and (b) 5,837,593 BioBank Japan SNPs, to identify correlations with the two phe-
notypic variables estimated glomerular filtration rate (eGFR) and blood urea nitrate

(BUN) considered jointly. Each point represents one SNP with the chromosomal
number and co-ordinates on the x-axis and corresponding -log10metaCCA P-value
on the y-axis. The dashed line denotes the Bonferroni-corrected P-value cut-off
of 0.05.
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function based on a lack of any published associations for kidney
function in the GWAS Catalog or by Wuttke et al.17 (Supplementary
Dataset 6).

Colocalisation ofmetaCCA, CCA and eQTL signals
For the four sets of previously unreported lead SNPs identified for kidney
function by metaCCA and CCA (in CKDGen, in BioBank Japan, in both
CKDGen andBioBank Japan, and inCKDGen,NURTuRE-CKDand SKS),
to determinewhether the genomic signalswere colocalisedwith the primary
eQTL signals for closest mapped genes, we assessed colocalisation using the
Bayesian test “coloc” (Methods)33,34. Colocalisation was defined as a high
posterior probability that a single shared variant is responsible for both
signalswith posterior probability of colocalisation (PP4) ≥ 0.833,34. For eQTL
data, we analysed all available datasets in the European Bioinformatics
Institute (EBI) eQTL Catalogue and two NephQTL datasets for glomerular
and tubular cells35,36.

For the 157 previously unreported lead SNPs we identified using
metaCCA in the CKDGen dataset, a total of 21 (13%) SNPs showed colo-
calisation for 21 genes inCKDrelevant tissues and cell-types (kidney cortex,
glomerular or tubular cells, immune cells, liver or blood) and other tissues
(Fig. 6, Supplementary Dataset 7). Of these 21 genes, only CDK12,
LINC00243 and SLC7A9 showed colocalisation in only CKD-related tissues
or cell-types (Fig. 6).

For the 28 previously unreported lead SNPs we identified using
metaCCA in the BioBank Japan dataset, a total of four (14%) SNPs showed
colocalisation for six genes in CKD relevant tissues or cell-types (Fig. 6,
Supplementary Dataset 8).

Of the 62 SNPs we identified using both metaCCA in the CKDGen
dataset andCCAin theNURTuRE-CKDandSKSdatasets, one (33%)of the
three previously unreported lead SNPs showed colocalisation signals forfive
genes in CKD relevant tissues and cell-types (Fig. 7, Supplementary Dataset

9). Of these five genes, only two (IER3 and RPL23AP1) showed colocali-
sation in only CKD-related tissues or cell-types (Fig. 7).

For the13previouslyunreported lead (of 394) SNPswe identifiedusing
metaCCA in both the CKDGen and BioBank Japan datasets, two (15%)
SNPs showed colocalisation signals for three genes in CKD relevant tissues
and cell-types (Supplementary Dataset 10). Of these, three genes (C1orf213,
TCEA3, THBS3) showed colocalisation in only CKD-related tissues or cell-
types (Fig. 7).

Overall, for the metaCCA or CCA-identifiedpreviously unreported
lead SNPs, the fraction of these SNPs that showed colocalisation with their
closest mapped genes (loci), thus pointing to a shared underlying SNP
associated with both kidney function and gene expression, ranged from
13–33%, as described above. This was greater than the fraction of 16 out of
228 (7%) replicated loci that showed colocalisation reported by Wuttke
et al.17 for the CKDGen dataset17.

Differential gene expression from published chronic kidney dis-
ease datasets
Using the Gene Expression Omnibus to R (GEO2R) web-application,
CKD case-control differential gene expression profiles were analyzed for
two available published datasets (“expression data from uremic patients
and 20 healthy controls”, and “development of gene expression profiles
in human chronic kidney disease”)37–39. The 21, six, five and three genes
that showed colocalisation with metaCCA-identified previously unre-
ported lead SNPs in the CKDGen, the BioBank Japan, the CKDGen,
NURTuRE-CKD and SKS, and both the CKDGen and BioBank Japan
datasets, respectively, were analysed for differential gene expression
(Methods). Totals of six (EXOG, NFE2L2, SLC30A4, SPTBN1, TRAP1
and TSPAN14), three (GOSR2, RPH3A, RRAGD), one (FLOT1), and one
(THBS3) genes, respectively, showed significant log2(fold change) either
equal to or greater than 1, or equal to or less than−1, between CKD and

Fig. 3 | Comparison of CKDGen multivariate metaCCA P values with those
previously reported by published univariate analysis. Shown are 8,346,783
CKDGen single-nucleotide polymorphisms (SNPs) we analysed using metaCCA,
which were previously reported to show a significant association with (i) both
estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN) (black

points), or (ii) only eGFR and not BUN (grey points), in the published CKDGen
univariate genome-wide association study by Wuttke et al.17. The horizontal and
vertical dashed lines show the genome-wide statistical significance cut-off equivalent
to 0.05 for themetaCCAmultivariate eGFR and BUN test, and the univariate eGFR
test by Wuttke et al.17, respectively.
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healthy controls in these two published gene expression datasets
(adjusted P-value < 0.05; Supplementary Datasets 11 and 12). This fold
changemeant that the expression of the gene was increased or decreased
in CKD cases relative to healthy cases by amultiplicative factor of at least
2. The P-values were adjusted using the default Benjamini andHochberg
false discovery rate method because it provided a good balance between
discovery of statistically significant genes and limitation of false
positives39. In summary, we identified 11 previously unreported lead
SNPs for multivariate kidney function that showed eQTL colocalisation
with 11 genes which also showed differential expression between CKD
andhealthy individuals (Table 3). These 11 genes includedTRAP1which
is on the Genomics England congenital anomalies of the kidney and
urinary tract gene panel (https://panelapp.genomicsengland.co.uk/
panels/234/). These 11 genes showed significant functional enrich-
ment for several processes related to oxidative-stress induced apoptotic
signaling pathway and toxin catabolic processes (Benjamini-Hochberg
adjusted P-value < 0.05, Supplementary Dataset 13).

Chronic kidney disease allele frequency analyses
For the 11 previously unreported metaCCA and/or CCA identified lead
SNPs that showed colocalisation with 11 differentially expressed genes in
CKD, SNP allele frequencies in CKD cases in each of the NURTuRE-CKD
and SKS datasets were computed and compared to gnomAD (general
population) allele frequencies (Supplementary Dataset 14)40. Of these 11
SNPs, only one SNP (rs3094060), which colocalised with FLOT1 gene
expression, showed a significant difference greater than 15% in allele fre-
quency (AF) between the gnomAD general population (non-Finnish Eur-
opean), and the same type of CKD cases in both the NURTuRE-CKD and
SKS datasets (Chi-square test with Yates’ correction P-value < 0.05; Sup-
plementary Dataset 14)40. This was observed for the membranous
nephropathy (MN) CKD cases only (Supplementary Dataset 14).

Previously unreported lead missense single nucleotide poly-
morphisms identified usingmetaCCA
Of the 157 and 28 previously unreported lead SNPs identified in each of
CKDGen and BioBank Japan, six and five, respectively, encoded missense
variants, of which missense variants in SLC14A2 were identified in both
datasets (Supplementary Dataset 15). Of these two missense SNPs,
p.Arg896His identified in CKDGen was predicted to be “pathogenic”,
“deleterious” and “probably damaging” by several in silico variant predic-
tion tools (also with a high CADD score) which suggested a negative effect
on protein structure and function (Supplementary Dataset 15). However,
neither of these SLC14A2missense variants showedadifferencegreater than
15% in allele frequency (AF) between the gnomAD general population
(non-Finnish European) and the same CKD cases in both the NURTuRE-
CKD and SKS datasets (Supplementary Dataset 14). SLC14A2 was not
previously reported for both eGFR and BUN by the published GWASs16,17.

Discussion
GWASs have identified several common SNPs and loci associated with
CKD or kidney function biomarkers7–19. GWASmethods typically measure
the association between each SNP and one phenotype using regression
methods22.Multiple small effect commongenetic variantsmay contribute to
kidney function and/orCKDrisk, in a polygenicmanner6. CCAcan identify
joint correlations betweenmultiple SNPs andmultiple phenotypic variables
simultaneously23. By this, CCA allows the identification of multiple SNPs
(gene-gene interactions) and pleiotropicmechanisms, which are thought to
be the product of complex genetic diseases27. Earlier studies suggest greater
power can be achieved by using CCA or metaCCA, leading to novel
findings23,28. Multivariate methods such as CCA and metaCCA have not
previously been applied to genomic datasets with either major and minor
CKD subsets to look for additional SNPs associated with two kidney
function markers, jointly.

Fig. 4 | Comparison of BioBank JapanmultivariatemetaCCA P values with those
previously reported by published univariate analysis. Shown are 5,837,593 Bio-
Bank Japan single-nucleotide polymorphisms (SNPs) we analysed using metaCCA,
which were reported to show a significant association with (i) both estimated glo-
merular filtration rate (eGFR) and blood urea nitrogen (BUN) (black points), or ii)

only eGFR and not BUN (grey points), in the published Biobank Japan univariate
genome-wide association study by Kanai et al.16. The horizontal and vertical dashed
lines show the genome-wide statistical significance cut-off equivalent to 0.05 for the
metaCCA multivariate eGFR and BUN test, and the univariate eGFR test by Kanai
et al.16, respectively.
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In this study, to identify SNPs associated with multivariate kidney
function (both eGFR and BUN), we applied CCA to two individual-level
CKD genotype datasets (NURTURE-CKD and SKS) andmetaCCA to two
GWAS summary statistics datasets, CKDGen and BioBank Japan. These
CKDGen and BioBank Japan datasets each had a minor subset of CKD
cases. For all four datasets, baseline eGFR and BUN measurements or
GWAS summary statistics were available. We identified several previously
unreported replicated SNPs that showed significant correlation with both
eGFR and BUNusing CCAandmetaCCA.We compared our findings with
published univariate-GWAS SNPs, assessed replication across datasets,
eQTL colocalisation, differential gene expression between CKD cases and
healthy individuals, allele frequency analyses, and missense variant effect
predictions.

For the two GWAS summary statistics datasets, using univariate-SNP
metaCCA, we identified many SNPs that showed a significant correlation
with both eGFR and BUN jointly. Of the 122 previously reported lead SNPs
for both eGFR and BUN in the published CKDGen GWAS (European
ancestry)17, ourmetaCCA results showed a high replication rate of 93%. For

the 7% (nine) missed SNPs, this was likely due to the stricter P-value
threshold we used formetaCCA. For the BioBank Japan dataset, we found
100% overlap between our metaCCA-identified SNPs with the eight pre-
viously reported lead SNPs by the published BioBank Japan univariate
kidney function GWAS16. Overall, this showed that metaCCA had suc-
cessfully identified previously reported SNPs associated with kidney func-
tion in the same datasets.

In the eQTL colocalisation analyses, in addition to kidney cell-types,
the immune system was also seen as a CKD relevant cell type to include
because some subsets of lymphocytes produce cytokines that can induce or
reduce renal inflammation41. Furthermore, several human leukocyte anti-
gens encoded at the major histocompatibility complex are associated with
increased or decreased risk of renal failure42, and low levels of some T-cell
subsets in peripheral blood were associated with renal outcome in CKD43.
We also included the liver as CKD-relevant because some genetic diseases
are associatedwith both kidney and liver disease, e.g. hepatorenalfibrocystic
disease44.

Across all four metaCCA/CCA analyses (the CKDGen, the BioBank
Japan, both CKDGen and BioBank Japan, and the CKDGen, NURTuRE-
CKD and SKS analyses), we identified a total of 11 genes (EXOG, FLOT1,
GOSR2, NFE2L2, RPH3A, RRAGD, SLC30A4, SPTBN1, THBS3, TRAP1,
TSPAN14) that colocalisedwith the identified 11previously unreported lead
SNPs for multivariate kidney function, in CKD-relevant tissues, and also
showed differential expression betweenCKDandhealthy individuals in two
published GEO datasets. These 11 genes showed significant functional
enrichment for the negative regulation of oxidative stress-induced intrinsic
apoptotic signaling pathway. Inflammatory cytokines associated with oxi-
dative stress promote the damage of renal tissues by inducing apoptosis,
necrosis, and fibrosis and may play an important role in the pathogenesis
and progression of CKD45,46. These 11 genes included TRAP1 (tumor
necrosis factor receptor-associated protein 1) which is on the Genomics
England congenital anomalies of the kidney and urinary tract gene panel
(https://panelapp.genomicsengland.co.uk/panels/234/).

Replicated in both the CKDGen and BioBank Japan datasets, we
identified a total of 394 previously unreported SNPs for both eGFR and
BUN (multivariate kidney function) by using metaCCA. Using the hyper-
geometric statistical test, this SNP overlap between the European and
Japanese population datasets was significantly greater than that expected by
chance for the numbers of SNPs analysed. Of these 394 SNPs, 13 were lead
SNPs for 13 independent genomic loci, of which two SNPs showed colo-
calisation signals for three genes, inCKDrelevant tissuesand cell-types only.
Of these three genes, the THBS3 gene also showed significant differential
gene expression between CKD and healthy controls in published gene
expression datasets. This suggested that SNPs affecting THBS3 expression
were associated with both kidney function and CKD. However, we did not
find any significant association of the identified THBS3 lead SNP
(rs2974937) with CKD in our two European ancestry CKD cohorts using
AF analyses, compared to the gnomAD non-Finnish European ancestry
general population. In the GWAS Catalog, THBS3 had previously been
associated with univariate kidney function by other GWAS by other SNPs,
but not both eGFR and BUN in the same study47. This could be due to the
SNP only affecting a subset of CKD patients, for example tubular

CKDGen BioBank Japan

CKDGen Salford Kidney Study

NURTuRE-CKD

4461 1697

254,29611,488

257,994

394

412

749 13,860
62

Fig. 5 | Venn diagrams showing metaCCA and canonical correlation analysis-
identified single nucleotide polymorphism dataset overlaps. The overlaps in
single nucleotide polymorphisms (SNPs) identified for both kidney function vari-
ables by (A) metaCCA for the CKDGen and BioBank Japan datasets, for SNPs not
previously reported by the published respective dataset genome-wide association
studies (Wuttke et al.17 for CKDGen and Kanai et al.16 for BioBank Japan), and (B)
metaCCA for the CKDGen dataset and canonical correlation analysis for the
NURTuRE-chronic kidney disease and Salford Kidney Study datasets.

Table 2 | Dataset overlap statistics for single nucleotide polymorphisms identified for multivariate kidney function

Intersections between metaCCA or canonical
correlation analysis identified single nucleotide polymorphisms

Total number of single
nucleotide
polymorphisms

Degree Observed
overlap

Expected
overlap

Fold
enrichment

P-value

CKDGen (4855) & BioBank Japan (2,091) 5,053,995 2 394 2.897 136.01 2.23E−308

CKDGen (12,718) & NURTuRE-CKD (275,787) 5,410,817 2 812 647.917 1.26 9.54E−11

CKDGen (12,955) & Salford Kidney Study (294,406) 5,845,881 2 487 652.430 0.75 1

CKDGen (12,711) &NURTuRE-CKD (272,655) &SalfordKidneyStudy
(268,630)

5,355,804 3 62 32.457 1.91 2.50E−6
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nephropathieswith certain features, thatwe did not analyse, or that the SNP
may only show a significant AF difference compared to the general popu-
lation when analysed in aggregate with multiple SNPs (polygenic complex
genetics). Another reason could be that, although the kidney function
associated SNP colocalised with and so appears to affect THBS3 expression,
the THBS3 expression changes seen in CKD could be an effect of CKD
rather than a cause. Mendelian Randomisation studies would be needed to
investigate whether THBS3 expression changes are on the causal pathway
between the SNP and CKD and could include testing a broader range of
SNPs in/associated with THBS3. In addition, further AF analyses in
individual-level genotype datasets for Japanese and East Asian populations
would be needed.

Observed in the three European ancestry datasets (CKDGen using
metaCCA with a genome-wide P-value cut-off, and NURTURE-CKD
and SKS datasets using CCA with a nominal P-value cut-off), were 62
SNPs, which showed a significant overlap compared to that expected by
chance for the number of SNPs analysed using the hypergeometric

distribution. Of these 62 SNPs, FUMA analyses showed six lead SNPs,
of which three SNPs were previously unreported kidney function
associations. Of these, one SNP showed colocalisation signals for five
genes in CKD relevant tissues and cell-types. Of these five eQTL genes,
FLOT1 showed significant differential gene expression between CKD
and healthy controls in published gene expression datasets from the
Gene Expression Omnibus. Furthermore, the lead SNP (rs3094060)
identified for FLOT1 also showed a significant difference in AF between
CKDMN cases and gnomAD, in both NURTURE-CKD and SKS. This
suggested that this SNP was associated with both kidney function and
MN CKD sub-type by affecting FLOT1 expression. FLOT1 is a scaffold
protein of lipid rafts and is involved in several biological processes
including lipid raft protein‑dependent and clathrin‑independent
endocytosis, and may also play a role in immune T-cell activation and
cell adhesion48. Using microarray gene expression network analyses,
FLOT1 was also identified as a potential target regulated by core tran-
scription factors related to the immunoreaction in nocturnal

Fig. 6 | Single nucleotide polymorphism expression quantitative trait loci colo-
calisation analyses for CKDGen and BioBank Japan metaCCA results. For the
previously unreported lead single nucleotide polymorphisms identified using
metaCCA in each of the CKDGen and BioBank Japan datasets, statistically

significant colocalisation results using published expression quantitative trait loci
datasets, from the European Bioinformatics Institute and NephQTL, are shown by
tissue type and gene.
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hemodialysis treatment in end stage renal disease patients49. These
reported potential immune system involvements of FLOT1would align
with clinical features of membranous nephropathy which is an auto-
immune type of kidney disease. In summary, using CCA andmetaCCA,
with eQTL colocalisation and differential gene analyses, we identified a
previously unreported kidney function SNP which colocalised with
FLOT1 expression and was significantly more common in MN CKD
patients compared to the general population. Overall, this suggested
that this SNP may contribute to MN manifestation by affecting FLOT1
gene expression, possibly by immune system perturbation. FLOT1 has
not previously been associated with kidney function fromGWAS in the
GWAS Catalog database thus was considered a previously unreported
gene association for kidney function, along with the colocalised
rs3094060 lead SNP.

For each of the CKDGen and BioBank Japan datasets, although not
replicated SNPs, with the addition of orthogonal datasets including eQTL
(in CKD-relevant tissues) and CKD gene expression datasets (from the

GEO), we also identified nine previously unreported lead SNPs that showed
colocalisation with nine genes. These nine genes (EXOG, NFE2L2,
SLC30A4, SPTBN1, TRAP1 and TSPAN14 in CKDGen, and GOSR2,
RPH3A, and RRAGD in BioBank Japan) showed significant differential
expression inCKDcompared tohealthy controls.RPH3A lacked anykidney
function associations in the GWAS Catalog, thus appeared to be a pre-
viously unreported SNPfinding for kidney function.RPH3A expressionwas
enhanced in several human proteinuric diseases, and was also altered in
mouse and human proteinuric disease50. Furthermore, combined genomic
and metabolomic analyses have previously associated increased urinary
albumin excretion in the general population with RPH3A
polymorphism51,52. However, none of the lead SNPs identified for these nine
genes showed AF differences greater than 15% between CKD cases (in each
of the NURTURE-CKD and SKS) and the general population gnomAD
dataset. This was despite showing eQTL colocalisation with genes in CKD-
relevant tissues which also showed significant differential gene expression
between CKD and healthy controls in published gene expression datasets.

Fig. 7 | Single nucleotide polymorphism expression quantitative trait loci colo-
calisation analyses for multiple dataset intersections. For the previously unre-
ported lead single nucleotide polymorphisms (SNPs) identified using metaCCA in
both the CKDGen and BioBank Japan datasets (13 SNPs), and in the CKDGen,

NURTuRE-CKD and SKS datasets (three SNPs), significant colocalisation results
using published expression quantitative trait loci datasets, from the European
Bioinformatics Institute and NephQTL, are shown by tissue type and gene.
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Possible reasons for these observations are the same as those described
above for the THBS3 lead SNP.

In addition, we identified a total of 11 previously unreported lead
missense SNPs, of which missense variants in SLC14A2 were seen in both
the CKDGen and BioBank Japan dataset metaCCA analyses. Of these two
SLC14A2 variants, one (p.Arg896His) was predicted as “likely pathogenic”,
“deleterious” and “probably damaging” by several in silico variant predic-
tion tools (with ahighCADDscore).This suggestedp.Arg896Hismayaffect
kidney function in both European populations by altering SLC14A2 protein
structure and/or function. SLC14A2 was not previously reported for both
eGFR and BUN by the published univariate kidney function GWASs, but
has been associated with eGFR and BUN in other studies in the GWAS
Catalog16,17. SLC14A2 is a urea transporter which plays an important role in
urine concentration; in knockout mice lacking urea transporters, urine
volumeswere increased53,54. Volume overload is a risk factor formortality in
CKD and end stage renal disease patients55,56. However, neither of these two
identified SLC14A2missense SNPs showedAFdifferences greater than 15%
between CKD cases (in each of the NURTURE-CKD and SKS) and the
general population gnomAD dataset. Again, possible reasons for this are
described above for the THBS3 lead SNP.

In the NURTURE-CKD dataset, we also identified a further 10 SNPs
that showed genome-wide significant CCA correlation with both baseline
eGFRandBUN, jointly.However none of these SNPs showed colocalisation
with genes in CKD-relevant tissues thus were not investigated further.

In summary, by applying a multivariate statistical approach, CCA, to
four independent CKDdatasets, we identified both previously reported and
unreported SNPs associatedwith kidney function, beyond those reported by
published univariate-trait GWAS methods. We identified a total of 11
previously unreported lead SNPs that showed eQTL colocalisation with 11
genes in CKD relevant tissues, that also showed significant differential
expression between CKD and healthy individuals. Of these, two genes
(FLOT1 and RPH3A) were previously unreported SNP kidney function

gene associations. Furthermore, the SNP colocalised with FLOT1 gene
expression (rs3094060) showed significant association withMNCKD cases
in both NURTURE-CKD and SKS using AF analyses. Overall, by using
multivariate analysis by CCA, we identified several previously unreported
SNPs and genes for both kidney function and CKD, that can be prioritized
for further CKD analyses.

There were some limitations to our study. Firstly, it was possible that
identified SNPs were merely correlated with the risk-modifying variants, as
with other genome-wide tag-SNP array datasets. However, by adding
orthogonal information on the SNPs such as published eQTL SNP data, as
well as the FUMA SNP independence tool, this provided additional sup-
portive evidence of likely functional SNPs for further investigation. Sec-
ondly, since serum urea is affected by dilution/concentration of plasma
(volume status), diet on a day-to-day basis and treatment, it is not as reliable
an estimator of kidney function as eGFR. However, since it is com-
plementary to eGFR20, it has value in validation of kidney function SNPs
found to be associated with eGFR. Thirdly, the NURTuRE-CKD and SKS
datasets were considerably smaller than the CKDGen and BioBank Japan
datasets, thus affecting power to detect, however power analyses showed it
was theoretically possible to detect small effect SNPs using CCA. It was not
possible to amalgamate the NURTURE-CKD and SKS datasets with the
GWAS summary statistics datasets as they were of different data-types
(individual level genotype data and GWAS summary statistics data,
respectively). Finally, all three GWAS summary statistics datasets may have
also contained SNPs with some missing genotype data beyond the GWAS
quality control checks reported in the published studies. These factors may
have lead to effect size variability between the datasets.

Methods
NURTuRE-CKD and Salford Kidney Study participants
The NURTuRE-CKD cohort has linked genotype-phenotype data, and all
participants provided written informed consent57. The study was approved

Table 3 | Previously unreported lead single nucleotide polymorphisms identified for multivariate kidney function with gene
associations

Dataset analysis Gene symbol Single nucleotide
polymorphism

Gene association
method

Published single nucleotide polymorphism univariate GWASa

associations with kidney function (PubMed identifier)

CKDGen EXOG rs9838792 eQTLd colocalisation eGFRe (31152163, 33462484)

CKDGen, NURTuRE-
CKDb and SKSc

FLOT1 rs3094060 eQTL colocalisation none

BioBank Japan GOSR2 rs3851786 eQTL colocalisation eGFR (35710981), BUNf (31152163, 29403010, 34594039,
36329257)

CKDGen NFE2L2 rs34468415 eQTL colocalisation eGFR (31152163, 30604766, 31451708, 33462484, 31015462,
35710981, 34272381, 31451708)

BioBank Japan RPH3A rs11614295 eQTL colocalisation none

BioBank Japan RRAGD rs6907843 eQTL colocalisation eGFR (31152163, 35710981, 34272381), GFRg (29403010)

BioBank Japan SLC14A2 rs1484873, p.Ile132Val missense variant
prediction

eGFR (35710981, 34272381), BUN (31152163, 29403010,
34594039, 36329257, 34272381)

CKDGen SLC14A2 rs41301139, p.Arg896His missense variant
prediction

eGFR (35710981, 34272381), BUN (31152163, 29403010,
34594039, 36329257, 34272381)

CKDGen SLC30A4 rs2453531 eQTL colocalisation eGFR (33462484)

CKDGen SPTBN1 rs168505 eQTL colocalisation eGFR (31152163, 30604766, 31152163, 35710981)

CKDGen and Bio-
Bank Japan

THBS3 rs2974937 eQTL colocalisation eGFR (33462484, 31451708), BUN (34594039, 31152163)

CKDGen TRAP1 rs1635404 eQTL colocalisation eGFR (31152163, 31451708, 35710981, 34272381)

CKDGen TSPAN14 rs7087356 eQTL colocalisation eGFR (31152163, 35710981, 34272381), BUN (34272381)
aGenome-wide association study.
bChronic kidney disease.
cSalford Kidney Study.
dExpression quantitative trait loci.
eEstimated glomerular filtration rate.
fBlood urea nitrogen.
gGlomerular filtration rate.
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by the South Central—Berkshire Research Ethics Committee, abides by the
principles of the Declaration of Helsinki and is registered at Clinical-
Trials.gov (NCT04084145)57. The Salford Kidney Study (SKS) dataset,
which has been described previously, received ethical approval from the
North West Greater Manchester South Research Ethics Committee
(REC15/NW/0818) and written informed consent was obtained from all
patients58. For the genome-wide genotyping, blood samples were collected,
stored as whole blood or centrifuged to separate plasma or serum, aliquoted
and frozen at−80 °C. Deoxyribonucleic acid was extracted from the frozen
whole blood. Of the NURTuRE cohort, 2903 CKD and 99 control partici-
pants were genotyped57. Of the Salford Kidney Study (SKS) cohort, 2409
participants were genotyped58. NURTuRE-CKD and SKS cohort partici-
pants had non-dialysis dependent CKD since they were recruited if their
eGFRwas below 60ml/min/1.73m2 (all SKS patients) or if urine albumin to
creatinine ratio was >30mg/mmol in those with eGFR above 60ml/min/
1.73m2. End-stage kidney disease and renal replacement therapy were
exclusion criteria.

Single nucleotide polymorphism genotype data processing
For each of the NURTuRE (including 99 controls) and SKS datasets,
SNPs were genotyped using the Illumina Global Screening array v2.0
with additional multi-disease content and 2k custom sequences. After
excluding duplicated probes using BCFTools version 1.9 (using htslib
1.9), totals of 671,485 and 672,412 variants remained, respectively59.
The following steps were carried out using Plink version 260. Variants
were excluded if the minor allele frequency (MAF) < 0.01 (162,483 and
170,554 variants excluded, respectively), missing SNP genotype call
rate ≥1.5% (19,149 and 23,889 SNPs excluded, respectively), Hardy-
Weinberg assumptions violated with P-value < 0.001% (116 and 71
SNPs excluded, respectively) and if they were located onmitochondrial
or sex chromosomes (21,133 and 19,426 SNPs excluded, respectively).
From the SKS dataset only, a total of 135 overlapping samples with
NURTURE-CKDwere excluded. Further samples were excluded if they
were known first or second-degree relatives of another participant (13
and 0 excluded), showed gender mismatches (11 and 33 excluded),
showed >10% low call rate SNPs (12 and 32 samples excluded,
respectively), or showed any cryptic relations using KING cut-off of
0.177 (four and 51 samples excluded, respectively). To avoid potential
confounding of results due to different genetic ancestries in the dataset,
and to match with the genetic ancestries of the CKDGen dataset, non-
European ancestry samples were excluded by using principal compo-
nent analysis (PCA). This was computed using the The 1000 Genomes
Project (1000GP), human genome build 38 (hg38) reference dataset
and the plinkQC package in R, by adapting the published R script called
“Processing 1000 Genomes reference data for ancestry estimation” on
the plinkQC website (https://meyer-lab-cshl.github.io/plinkQC/
articles/AncestryCheck.html) for hg38 use61,62. After combining the
sample and reference datasets and running PCA, the plinkQC “eva-
luate_check_ancestry” function was used to select individuals of Eur-
opean descent61. This function uses principal components 1 and 2 to
find the center of the known European ancestry reference samples. It
then labels study samples as non-European if their Euclidean distance
from the center falls outside the radius specified by the maximum
Euclidean distance of the reference samples multiplied by a scaling
factor. A scaling factor of 2 was chosen as it was the minimum value
that produced a radius that included all the 1000GP European ancestry
reference samples (Supplementary Figure 2). We identified a small
number of 10 NURTuRE-CKD samples that self-declared as White
British but were outside of the European ancestry reference radius
using PCA (Supplementary Fig. 2). To avoid any potential confound-
ing, these 10 were excluded as non-European based on the reference
population. Overall, using this strategy, 350 NURTuRE-CKD, 19
NURTuRE-controls and 108 SKS non-European ancestry samples
were excluded (Supplementary Fig. 3). Our adapted script is
available here:

https://github.com/AmyJaneOsborne/CCA_scripts/PCA_ancestry_
hg38_genotype_datasets.sh61. No batch effects were seen using PCA. Since
CCA cannot handle any missing data, SNPs with any missing data were
excluded. Remaining for analysis were 2505 of 2903NURTuRE-CKD, 80 of
99NURTuRE-controls and 2078 of 2409 SKS samples. For the NURTuRE-
CKD (plus 80 NURTuRE-controls) dataset, 468,604 variants remained
before SNP imputation. For the SKS dataset plus NURTuRE-controls
dataset, 458,472 variants remained before SNP imputation. All calculations
were performed in a 64-bit Linux conda environment.

Kidney function data
For each participant, the first eGFR and serum urea measurements
taken on the same date, either on exactly or on the closest after the
cohort recruitment date were used. Of the 2505 European ancestry
NURTuRE-CKD, 2078 SKS and 80 NURTURE-control samples, totals
of 2475, 1898, and 38, respectively, had available eGFR and serum urea
data on the same date. eGFR was calculated using the CKD-
Epidemiology Collaboration (CKD-EPI) equation (without ethnicity
adjustment). For NURTuRE-CKD, the ranges of the eGFR and serum
urea values were 3.3–139 ml/min/1.73 m2 and 1.7–63.7 mmol/L,
respectively. For NURTuRE-controls, the ranges of the eGFR and urea
values were 53–95 ml/min/1.73 m2 and 3.5–8 mmol/L, respectively. For
SKS, the ranges of the eGFR and urea values were 6–88 ml/min/1.73 m2

and 3–47.7 mmol/L, respectively. Urea was converted to BUN by
dividing by a factor63. BUN measurements were standardized using the
common log transformation and Z-score, and eGFR measurements
were standardized using the rank-based inverse normal transformation,
as described previously. In the CCA input data matrix, the CKD cases
(n = 2475 and n = 1898, respectively) and controls (a different set of
n = 19 for each dataset) were each encoded as binary indicator variables,
1 and 0, respectively. Kidney function variables were not adjusted for
CKD status since they were correlated with CKD status and controlling
for CKD status may have introduced collider bias.

Single nucleotide polymorphism imputation
For the NURTuRE and SKS datasets, ungenotyped SNPs were imputed
using Beagle version 5.4 with The 1000 Genomes Project hg38 genotype
dataset as the reference dataset64,65. The 1000Genomes Project hg38Variant
Call Format files were downloaded from the 1000 Genomes Project website
(https://www.internationalgenome.org/data-portal/data-collection/
grch3864. Imputation is based on the fact that physically close markers are
likely inherited together in a cluster and therefore result in the non-random
association of alleles (linkage disequilibrium). Imputation in Beagle is per-
formed by using a Hidden Markov Model to identify the most likely path
through the haplotype cluster based on the non-missing genotypes
present66. The Beagle R2 accuracy score approximates the squared correla-
tion between the best estimate genotype (i.e. the allele dosage with the
highest posterior probability) and the true genotype66. This is estimated
from the posterior genotype probabilities when the true genotypes are not
observed66. Unix scripting was used to run Beagle and Plink commands.
After imputation, therewere 6,419,966NURTuRE-CKDand6,290,407 SKS
variants for analysis (including the NURTuRE-controls in each dataset).

Genome-wide association study summary statistics on kidney
function
European ancestry CKDGen eGFR and BUN GWAS summary statistics
were downloaded from the CKDGenConsortiumwebsite on 28/05/202017.
For eGFR and BUN, there were 567,460 samples including 41,395 CKD
cases (7%), as described on their website (https://ckdgen.imbi.uni-freiburg.
de/#Wuttke2019data)17.

Published BioBank JapanGWAS summary statistics (6,108,953 SNPs)
for eGFR (bbj-a-60) and BUN (bbj-a-11) for 143,658 and 139,818 indivi-
duals, respectively, were downloaded from the Medical Research Council
Integrative Epidemiology Unit OpenGWAS project website (https://gwas.
mrcieu.ac.uk/datasets/bbj-a-60/) on 20/04/202116,67. The East Asian
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ancestry dataset contained approximately 8586 CKD cases (5%). The eGFR
range was 17.2–132.9ml/min/1.73m216,68.

For each of the three GWAS summary statistics datasets, only SNPs in
chromosomes 1–22were selected since these were the only ones available in
the CKDGen dataset. SNPs with both eGFR and BUN statistics available
were selected based on matching chromosome, position, reference and
effect alleles. For the CKDGen and BioBank Japan datasets, any SNPs with
AF < 0.01 were excluded from the metaCCA analyses. For each dataset,
8,346,783 and 5,837,593 SNPs remained for analysis, respectively.

Statistical analysis using canonical correlation analysis
CCA was used to compute canonical correlations between each SNP with
both eGFR and BUN by using the “cancor” function in R v3.6.0, based on
CCA scripts published by Seoane et al, Ferreira et al, andTang et al.23,25,26. To
analyze the NURTuRE and SKS datasets, we used our scripts available from
Github (https://github.com/AmyJaneOsborne/CCA_scripts). In the CCA
matrix, the same 26 controls were used for each of the NURTuRE and SKS
dataset analyses. The controls were encoded as ‘0’ and the cases as ‘1’, as an
additional binary indicator variable.

In CCA, linear combinations of two sets of variables, or views of the
same object, X and Y, with the highest correlations are found. This corre-
sponds to finding vectors a ∈ RG and b ∈ RP that maximize:

r1 ¼
Xa1
� �T ðYb1Þ
jjXa1jj jjYb1jj

¼ aT1
P

XYb1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT1

P
XXa1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT1

P
YYb1

q ð1Þ

This value r1 is called (the first) canonical correlation between X andY,
and the corresponding vectors a1 and b1 are called (the first) canonical
weights. To identify the variables that provide a large contribution to the
observed canonical correlation, themagnitudes of the canonical weights are
used. These are foundbyfirstly computing thematrixK from the covariance
matrices:

K ¼
X�1=2

XX

X
XY

X�1=2

YY
: ð2Þ

Then, a SingularValueDecomposition (SVD) is applied, todecompose
the matrix into eigenvectors and eigenvalues. The canonical correlation
values can then be computed directly from the matrix K, and the canonical
weights are determinedbasedon the eigenvectors. To test the significance of
each canonical correlation r, which equals the maximum correlation
between the variant and the phenotypes, the test statistic was computed
based on Wilks’ Lambda, as described previously23. For both CCA and
metaCCA, for each test, the N parameter was set to the total number of
samples analysed. Results were visualized using Manhattan plots. For uni-
variate-SNP analyses, to account for multiple testing, the P-values were
adjusted for multiple comparisons using a Bonferroni correction based on
the number of SNPs analyzed. A cut-off of adjusted P-value < 0.05 was used
to determine significance. For NURTuRE-CKD and SKS, our approximate
power analysis based on univariate analysis suggested it was possible to
identify a significant SNPwith an effect size (canonical correlation r) of 0.12
or 0.14, respectively, with 80%power (Table 4). The sample size required to
identify CCA correlation r of 0.1 with 90% power with two variables has
been reported as approximately 1000 samples in Helmer et al.69

Statistical analysis usingmetaCCA
For each of the two GWAS summary statistics datasets, the metaCcaGp
functionprovidedby themetaCCApackage inRv3.6.0wasused to compute
the canonical correlation between each SNP and both eGFR and BUN28,70.
Our scripts for analyzing the two GWAS summary statistics datasets using
metaCCA are available from Github (https://github.com/
AmyJaneOsborne/CCA_scripts)28. Before running metaCCA, SNPs were
removed if they had a standard error of 0 for the eGFR or BUN beta
coefficients, had reference and alternative alleles not containing ‘A’, ‘C’, ‘G’,
or ‘T’, or if theywere SNPs thatwereduplicates.Amathematical explanation
ofmetaCCA is provided by Cichonska et al.28 After runningmetaCCA, any
SNPs that showed a significantmetaCCA P-value were assessed for kidney
function relevance based on the published eGFR and BUN GWAS sum-
mary statistics. SNPs were excluded if the eGFR and BUN effect sizes (with
respect to the same effect allele) were in the same direction, because they
were unlikely to be relevant for kidney function as previously described17.

Single nucleotide polymorphism annotation
SNPs were annotated and prioritized by using the Functional Mapping and
Annotation of Genome-Wide Association Studies (FUMA) program32.
FUMA “SNP2GENE”was used to find lead (most signficant, independent)
SNPs for each locus genomic region, using default r2 thresholds of 0.6 to
define independent significant SNPs and 0.1 to define lead SNPs32. The
HUGO Gene Nomenclature Committee (HGNC) online multi-symbol
checker was used to verify gene symbols71. g:Profiler g:GOSt and stringDB
were used for functional enrichment analyses72,73. The effects of any mis-
sense SNPs were predicted by using four in silico variant prediction tools
including FATHMM-XF, Combined Annotation Dependent Depletion
(CADD), Sorting Intolerant FromTolerant (SIFT) and PolyPhen-2 (run by
using the ensembl Variant Effect Predictor online tool)74–77. To test for
significant overlapbetweendataset results, thehypergeometric test provided
by the package “hypeR” (v1.5.4) via Bioconductor in R (v4.0.2) was used78.

Colocalisation of CCA and eQTL signals
We applied Bayesian colocalisation analyses by using the R package ‘coloc’
(cran.r-project.org/web/packages/coloc)33,34. We applied the COLOC
function,which usesApproximateBayes Factor computations, to lead SNPs
identified inCKDGenandBioBank JapanbymetaCCA, and inNURTURE-
CKDbyCCA, and tooverlapping leadSNPs identifiedacross 2 or 3datasets.
Weused default priors that a randomvariant in the region is associatedwith
either kidney function metaCCA/CCA or eQTL individually (prior
probabilities = 1 × 10−4), and set the prior probability that the random
variant is causal to both kidney functionmetaCCA/CCA and eQTL (prior
probability = 1 × 10−6). As recommended by the authors of the method, we
defined the variants as colocalised when the posterior probability of a
colocalised signal (PP4)was>0.8.Weused all eQTLdata available in theEBI
eQTL Catalogue database which included Gtex v8 (https://www.ebi.ac.uk/
eqtl/Data_access/). These were downloaded for analysis by adapting an R
script available from the EBI public eQTL Catalogue resources (https://
github.com/kauralasoo/eQTL-Catalogue-resources/blob/master/tutorials/
tabix_use_case.html)35. We followed the coloc example in this script thus
included the lead SNP plus surrounding SNPs within 200 kB as input. The
single-SNPmatrixEQTL results for NephQTL glomerular and tubular cells
were downloaded from the NephQTL2 browser (https://hugeampkpn.org/
research.html?pageid=nephqtl2_about_118)79.

Table 4 | Power analysis for two individual level genotype datasets

Dataset analysis Participants (n) Power Significance level (Bonferroni-
corrected)

r

NURTuRE-chronic kidney disease (CKD) and NURTuRE-controls, univariate-single nucleo-
tide polymorphism

2494 including 19
controls

80% 5E−8 0.12

Salford Kidney Study (SKS) and NURTuRE-controls, univariate-single nucleotide
polymorphism

1917 including 19
controls

80% 5E−8 0.14
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Allele frequency analyses
For any shortlisted SNPs that showed a difference of at least 10% in allele
frequency between the gnomAD general population and each of the same
CKD groups in NURTURE-CKD and SKS, a Chi-square test with Yates’
correction was used to test for significant association of the SNP with CKD
cases40. This was analyzed using the online GraphPad QuickCalcs tool
(https://www.graphpad.com/quickcalcs/contingency1/).

Differential gene expression analyses
Using the Gene Expression Omnibus GEO2R application, the differential
gene expression betweenCKDcases and healthy controls was computed for
the “GSE66494: development of gene expression profiles in human chronic
kidney disease” and “GSE37171: expression data from uremic patients and
20 healthy controls (normals)” datasets37,38. Uremia is the build-up of toxins
in bloodwhich occurs when the kidneys stop working and is a sign of CKD.
The R scripts generated to reproduce the results are available from Github:
https://github.com/AmyJaneOsborne/CCA_scripts. Genes were con-
sidered to show significant differential expression between the CKD cases
and controls where the log2(fold change)≥1 or log2(fold change)≤−1 and
adjusted P-value based on default Benjamini & Hochberg false discovery
rate method < 0.0539.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets analysed during the current study are available in theCKDGen
Consortium repository (http://ckdgen.imbi.uni-freiburg.de/)7, The 1000
Genomes Project Phase 1 genotype repository (http://www.cog-genomics.
org/plink/1.9/resources#1kg)60 and the EBI GWAS Catalog (https://www.
ebi.ac.uk/gwas/studies/). Genotype-phenotype data access for NURTuRE-
CKD is available by application to the Kidney Research UK NURTuRE
Biobank resource (https://nurturebiobank.org/information-for-
researchers/). Genotype-phenotype data access for the SKS is available by
application to the Salford Kidney Study (https://www.hra.nhs.uk/planning-
and-improving-research/application-summaries/research-summaries/
salford-kidney-study/).

Code availability
To analyze the NURTuRE-CKD dataset we used our scripts available from
Github: https://github.com/AmyJaneOsborne/CCA_scripts, based on
scripts used for our previous study23 using Canonical Correlation Analysis
and also downloadable from Github: https://github.com/jseoane/gaCCA.
Our scripts for analysing the three GWAS summary statistics datasets (see
Methods) are available fromGithub: https://github.com/AmyJaneOsborne/
CCA_scripts, and were based onmetaCCA28.
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