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Abstract. Despite some of the success of AI, particularly machine learning, in in-
dustrial applications such as condition monitoring, quality inspection and asset con-
trol, solutions are typically bespoke and not robust in the long term.  There is a 
considerable amount of effort in developing these solutions to deliver accurate re-
sults within a very limited scenario. In addition, the operationalisation of these mod-
els in the factory floor is a challenge. Developing and maintaining these models 
requires of data science expert knowledge and the digital skills gap in the manufac-
turing industry is a major barrier. A step towards the development of AI skills can 
be facilitated in a Learning Factory environment, provided there is a way for oper-
ators to develop an understanding of how manufacturing problems can be addressed 
with different data science tools. To address this, this paper introduces a semantic 
based framework as one of the key elements to facilitate the development of Indus-
trial AI solutions. By formalising the way data, manufacturing processes and AI 
models are described and linked before and after the creation of a solution, it is 
possible not only to automate model creation, but to enable reusability and manage-
ment. A preliminary conceptualisation on the use of this framework through a pro-
cess monitoring scenario is presented. By capturing the semantic relationships, it is 
possible to support a more automated machine learning pipeline, enable manufac-
turers to understand how solutions can be created and learn how they can then be 
reused in future similar scenarios.   
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1 Introduction 

Artificial Intelligence (AI) is expected to be one of the most disruptive digital technol-
ogies of this fourth industrial revolution (Industry 4.0) [1]. From shop floor applications 
at the asset level to smart supply chain management, over the last decade research de-
velopments have shown the potential of this technology at all levels of the value chain. 
However, most of these developments have low readiness levels. There is a lack of 
production ready AI solutions demonstrated in real industrial scenarios.  

There are multiple reasons why AI, particularly Machine Learning (ML), industrial 
solutions are unscalable in their current form. One of the main challenges is access to 
good quality data. Data is typically scattered across multiple systems such as PLM and 
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ERP systems and the shopfloor equipment itself, which may be equipped with different 
sensors, making data inconsistent across multiple equipment.  Lack of adequate data 
management is one the of main reasons for the failure of AI projects [2].  

Another factor that hinders scalability is the expertise needed to develop such solu-
tions. Most manufacturing companies do not have the inhouse expertise. Data scientists, 
which are not experts in the application domain, need to understand what the manufac-
turing challenge is, to then define what data, approach and deployment environment is 
suitable. Understanding the manufacturing problem and how it translates into a defini-
tion of the machine learning problem (i.e., classification or a regression challenge) is 
key to the success of the solution [3]. The same applies for curating the data, performing 
feature extraction and selection. Depending on the industrial application, data resolu-
tion needed may change and this affects how data preparation and feature engineering 
is performed [4]. This understanding and knowledge could be captured systematically 
to ease model development in future applications. Having an approach to capture and 
combine knowledge from both fields could support better the skills development of 
operators, as it can enable them to understand which data science tools, data and models 
are available to them for use and reuse.  
 Furthermore, there is a major limitation of machine learning approaches for dealing 
with changes in data distribution (i.e. concept drift). Two machines carrying out the 
same operation and using the same sensors can render completely different patterns, 
due to the nature of the machines themselves, requiring different trained models [5]. 
Concept drift might occur due to natural wear, requiring continuous model retraining. 
A robot may carry out different tasks as new end effectors are added. In this scenario, 
the model deployed needs to incrementally learn new patterns without forgetting pre-
vious ones.  Continuous monitoring and understanding on how and when to retrain the 
model (transfer or continual learning) is needed. Once again, key context information 
on the process and on how models are developed is key to model reusability and ro-
bustness. Given these challenges, this paper presents preliminary work on the use of 
semantic modelling to facilitate the development and reuse of ML industrial solutions. 
This will be a step towards providing manufacturing operators with the tools to learn 
and easily develop these solutions without the need of a data scientist. The rest of the 
paper is organised as follows: Section 2 presents some of the existing work on facili-
tating the development and management of industrial AI solutions. Section 3 introduces 
the proposed approach, providing details on the different semantic models and how 
they are used to facilitate machine learning model development and reuse. Section 4 
presents a scenario to demonstrate the use of the approach and finally conclusions and 
future work are presented in Section 5. 

2 Related Work 

2.1 Model development pipelines in industrial applications 

There have been some recent efforts in the research community on the development of 
frameworks to facilitate shopfloor operators in developing and managing industrial 
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models and data. From the model development point of view, there are some recent 
works on the development of ML pipelines that can speed up and guide the un-experi-
enced user on the development of such models. For example, Zhou et al. present a 
framework for the development of Industrial ML solutions through four different pre-
defined ML pipelines [6]. Using semantic models, the framework can identify the most 
appropriate pipeline to use and so it can automate the development through a predefined 
set of preprocessing steps which include statistical feature extraction, selection, and 
training two or three pre-defined models depending on the end application. One of the 
main limitations, in addition having a limited set of predefined models and architec-
tures, is that it relies on the availability of an initial well bounded data set expected to 
be a good representation of all possible future scenarios. In practice this is almost never 
the case for dynamic environments. Even when data is coming from the same machine 
carrying out the same operation (concept drift), and so it is not possible to know a priori 
the bounds of such data set. In this context, it is not practical to assume data for that 
machine is available, instead it is important to know if there is another model from 
another machine that has been trained in a similar scenario and use that as a starting 
point or employ techniques that work better with limited data sets before the model can 
then be updated with a more robust one once more data is available.  

2.2 Model lifecycle management in industrial environments 

There have been several technologies that have been proposed to support the operation-
alisation of Industrial AI. With the success of continuous software engineering practices 
(DevOps), there has been an increasing interest in the rapid deployment of machine 
learning models, referred as MLOps [7]. General architectures based on MLOps have 
been proposed for industrial contexts. Zhao for example, proposes an MLOps architec-
ture for industrial settings integrating technologies such as DVC for data and model 
versioning, AWS for data storage, MLFlow for pipeline implementation [8]. Raffin et 
al propose a cloud edge architecture for the operationalisation of machine learning mod-
els in manufacturing shopfloors [9]. The authors highlight the importance of the correct 
management of complex data as this enables successful improvement of machine learn-
ing models in the long term. Although the main architectural elements are proposed, it 
is not clear how data, models and processes can all be linked to ensure an effective 
reusability or further training of ML models. Elements such as meta data, code reposi-
tory and feature store can really help to shorten the transition of models from prototype 
to production [10].  

The Asset Administration Shell (AAS) has been recently proposed to lifecycle man-
age AI solutions. As proposed by Rauh et al, AI solutions can be described as an AI 
artifact or instance with three life cycle stages: before training to a data set, after train-
ing, and during runtime [2]. After training, the model instance is frozen. As a result, a 
simple hierarchical structure is used to capture all the relevant changes of the AI model. 
The paper, however, does not consider the monitoring of the model’s performance after 
deployment, which is key for the continuous update and re-deployment of models. 
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2.3 Model reusability 

Availability of large, good quality data sets is another of the great challenges in manu-
facturing. To deal with this, some of the techniques that are starting to get attention are 
transfer learning and generative AI. Wang and Gao explore the use of foundation mod-
els for transfer learning in machine condition monitoring. The authors stress the need 
to further understand the boundaries for effective model transferability, particularly 
when using pre-trained models with non-manufacturing-specific data [11]. Giannetti 
and Essien demonstrate the effectiveness of transfer learning for predicting operational 
parameters of can body maker machines [12]. The authors propose the F-score measure 
to select the model to use for transfer learning from a set of models from similar ma-
chines. Their main finding was that the effectiveness of the training strategy depends 
on the data, so contextual information of the process to understand the differences on 
the data is essential.  

Across all these streams of research, there is a common limitation, and that is the 
lack of context  and knowledge capture; (1) from the manufacturing process which de-
termines the data characteristics that can support better model transfer learning, (2) 
from the operator that understands the process and provides an important guidance to 
the solution design, (3) from the decisions made during the model development process, 
and finally (4) from the model itself, capturing monitoring metrics to support ML model 
re-deployment. To tackle this major challenge, this paper integrates some of the already 
available semantic models to support the complete life cycle of the ML solution in a 
more automated and effective way. By using an ontology model, multiple elements that 
are involved in the development of ML solutions can be defined and standardised; from 
Asset and Process to capture manufacturing knowledge, to Data, Algorithm, and Model, 
to capture intrinsic knowledge related to model development. The ontology can then be 
used to support the operator to draw answers (i.e. inference) to questions such as which 
data, algorithm to use, or which model to reuse when a new model needs to be devel-
oped, and supporting this way the operator to develop its AI and data science skills. 
Semantic models are a scalable option when dealing with the complexity of the manu-
facturing environment and once defined, they can be used to instantiate any manufac-
turing environment and industrial solution. 

3 Proposed Framework 

To address the challenges discussed in Section 2, we propose a semantic framework 
which becomes the backbone for the integration of knowledge across the lifecycle of 
an industrial AI solution. This allows to connect process to AI solution, which is im-
portant for the monitoring as well as reusability of the model as it will be explained 
later. The proposed framework is not relying on a predefined architecture in terms of 
edge and cloud technologies, it is in this sense independent to how it is implemented. 
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3.1 Semantic Models 

Implemented in Protégé, this framework expands on the work from Järvenpää et al. on 
the Process and Resource Models [13], Sensors and Samples from Janowicz et al. [14], 
Algorithms and Application models from Braga et al. [15], and introduces the models 
Manufacturing Application, AI Pipeline and Data processing. A general view and in-
terconnections of the eight models that comprise the framework are presented in Figure 
1. Each of the models play a key role in the life cycle of a solution: 

• Resource Model – captures all data related to an asset (e.g. robot, CNC machine). 
The asset is linked to a process that is or was carried out and to the sensors on it. 
From this, the data related to an and process can be inferred. This helps identify 
candidate ML models for transfer learning or for its data to train other models. 
This is particularly useful when data is limited. 

• Manufacturing Process Model – defines common processes that are needed to 
deliver a product, and which are linked to the capabilities of assets. A process is 
characterised by its parameters as well as by metrics that are used to monitor such 
process, which provide context when selecting models. 

• Manufacturing Application Model – this captures the specific industrial ML solu-
tions and how they are linked to the process. For example, a vision inspection 
solution may support/control the quality of a 3D printing process, or a condition 
monitoring solution may be related to a machining process. Capturing the indus-
trial solution is essential for querying the ontology for similar ML models.  

• Application Model – defines a solution or industrial problem from an ML perspec-
tive as either a classification or prediction problem. These classes help to link ML 
applications to industrial solutions as well as to the ML techniques that can be 
used to solve such application, supporting the design of ML pipelines.  

• Algorithm Model – captures AI/ML approaches and their parameters. The same 
approach might be linked to multiple Manufacturing Applications the same way 
that a Manufacturing Application may be solved by different algorithms.  

Fig. 1. Semantic Model Framework for the life cycle management of Industrial AI Solutions 
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• Data Processing Model – defines different processing steps involved in a ML 
pipeline. Linking data types to techniques enable the automation of the pipeline.  

• Sensor Data Model- captures characteristics of measuring devices on assets and 
enables semantic annotation. 

• AI Pipeline Model – brings together all the elements that are used for the devel-
opment of an industrial solution and to track its performance, supporting future 
model development by using complete/partial pipelines of existing models.  

3.2 Building an initial Knowledge Graph and matching models to applications 

To use the semantic models proposed, an initial knowledge graph is constructed. In-
stances for each asset on the shopfloor as well as sensors can be created, and data sets 
can be semantically annotated. To generate instances of ML pipelines, assuming no 
model has been created, the proposed starting point is to take advantage of the plethora 
of research literature to build template pipeline instances. There is no general model 
that works for every industrial problem, so research literature can be a good way to 
build pipeline templates that can then be fine-tuned through AutoML tools.  

Once instances are created, the semantic model can be queried to infer which exist-
ing solutions can be reused if they exist, or which pipelines can be used to create a 
model.  To facilitate the matching of existing solutions/data, inference through 
SPARQL queries and semantic distance are implemented to find similar cases. Depend-
ing on the results, if a model exists, then this can be used for transfer learning. If there 
is no such model but a similar one (e.g. from a different industrial application, or dif-
ferent asset type) exists, then the ontology can be used to identify the model’s pipeline. 
If no case is found, then an existing ML pipeline template can be used.  

3.3 Semantic framework as a tool for Learning Factories 

There are some emerging works on the use of Learning Factories to support the ac-
ceptance and scaling of AI solutions in the shopfloor [16]. However, these are focused 
on the acceptance and learning of existing solutions. The semantic framework can com-
plement existing learning environments, as a tool that trainees can use to understand 
how different AI techniques can be used for different problems, what works best, and 
understand why they work well.  This ultimately not only empowers the employee with 
data science skills, but also build trust and confidence on the technology they are using. 

4 A machine tool monitoring use case scenario 

Using Bosch’s process monitoring use case [5], instances for asset, process, sensors, 
data and models were created (some instances shown in Fig. 2). Three machines per-
form 15 operations with different tools and cutting parameters with a tri-axial accel-
erometer mounted on the spindle that samples at 2KHz. Data is collected from 2018 to 
2021 in periods of 6 months and labelled “OK” and “NO OK” after product quality 
inspection. An ML model for process monitoring of Machine01 is developed and 
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captured through the semantic model. Using the semantic relationships, the ontology 
can be queried to develop models for Machine02 in the following ways: 
(a) Searching for an existing model of OP00 for process Monitoring – assuming an 

existing model for Machine02 exists, a sparql query is used to look for an instance 
that is linked to a solution type processMonitoring and to a process of type step-
Drilling with speed=250 and feed=100. If a model exists but not for the given 
process parameters, it can be further trained to expand the model’s capabilities. 

(b) Searching a model from a similar machine for OP00 – the ontology is queried to 
find assets of type cncMachine that have a model for stepDrilling and the needed 
parameters. The ontology matches it with the instance from Machine01 OP01. 

(c) Look for a similar machine for OP10 – as Machine02 has no model for OP10, 
inference is used to retrieve similar assets. As M01 has no model for OP10 either, 
other MaterialRemoval processes from M01 that may be running with the same 
parameters can be queried. The ontology matches this with OP02. Although the 
process uses a different tool, parameters match, which is useful as it is known that 
frequency is a feature relevant to the problem and is correlated to the speed [5].  

(d) No model from similar machine/process – in this case, a template pipeline can be 
retrieved and model development can be supported by AutoML techniques. 

5 Conclusions and Future Work 

In this paper a framework for unifying industrial a machine learning context infor-
mation to support ML solution development and reuse is presented. By semantically 
capturing context, it is not only possible to manage the lifecycle of solutions but also 
find similar solutions that are useful for transfer learning. In a way the ontology acts as 
a meta-learning approach that is enhanced as more models are developed. This is par-
ticularly useful when not enough data is available for a given machine, taking advantage 
of pretrained models in a very similar context. By capturing this knowledge and semi-

Fig. 2. Some instances from Bosch Process Monitoring use case 
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automating model development, it is possible to support the non-experts on how to 
develop such solutions. Future steps will involve fully implementing the pipelines so 
not only query to the ontology can be automated but the execution of the ML pipeline 
for building and retraining models effectively. 

References 

1. Maier, J., Made Smarter Review, https://www.gov.uk/government/publications/made-
smarter-review (2017), last accessed 23/Oct/2023. 

2. Rauh, L., Gärtner, S., Brandt, D., Oberle, M., Stock, D., and Bauernhansl, T. (2022).  To-
wards AI Lifecycle Management in Manufacturing Using the Asset Administration Shell 
(AAS), Procedia CIRP, 107. 

3. Huyen, C. (2022). Designing Machine Learning Systems: An iterative process for produc-
tion-ready applications. O-Reilly. 

4. Ompusunggu, A.P., Carcel, C. R. (2023). Low-cost vibration sensor with low frequency 
resonance for condition monitoring of low speed bearings: a feasibility study. In Low-Cost 
Digital Solutions for Industrial Automation (LoDiSA 2023) 2023, 158-164. IET. 

5.  Tnani, M., Feil, M., and Diepold. K. (2022). Smart data collection system for brownfield 
CNC milling machines: A new benchmark dataset for data-driven machine monitoring, Pro-
cedia CIRP, vol. 107, 131-136. 

6. Zhou, B., Zhou, D., Chen, J., Svetashova, Y., Cheng, G., and Kharlamov, E. (2022). Scaling 
Usability of ML Analytics with Knowledge Graphs: Exemplified with A Bosch Welding 
Case. In Proceedings of the 10th International Joint Conference on Knowledge Graphs 
(IJCKG '21). Association for Computing Machinery, New York, NY, USA, 54–63. 

7. Mäkinen, S., Skogström, H., Laaksonen. E., and Mikkonen, T. (2021). Who needs mlops: 
What data scientists seek to accomplish and how can MLOps help? In 2021 IEEE/ACM 1st 
Workshop on AI Engineering-Software Engineering for AI (WAIN’21). IEEE, 109–112. 

8. Zhao, Y. (2021). MLOPs Scaling ML in an Industrial Setting. Master Thesis 
9. Raffin, T., Reichenstein, T., Werner, J., Kühl, A., and Franke, J. (2022). A reference archi-

tecture for the operationalization of machine learning models in manufacturing, Procedia 
CIRP, 115, 130-135. 

10. John, M. M., Olsson, H. H., and Bosch, J. (2021). Towards MLOps: A Framework and Ma-
turity Model 47th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), Palermo, Italy, 1-8. 

11. Wang, P. and Gao, R. X. (2020). Transfer learning for enhanced machine fault diagnosis in 
manufacturing, CIRP Annals, Volume 69(1), 413-416. 

12. Giannetti, C., and Essien, A. (2022). Towards scalable and reusable predictive models for 
cyber twins in manufacturing systems. J Intell Manuf 33, 441–455. 

13. Järvenpää, E., Siltala, N., Hylli, O. and Lanz, M. (2019). The development of an ontology 
for describing the capabilities of manufacturing resources. J Intell Manuf 30, 959–978. 

14. Janowicz, K., Haller, A., J.D. Cox, S., Le Phuoc, D., Lefrançois, M. (2019). SOSA: A light-
weight ontology for sensors, observations, samples, and actuator. Journal of Web Semantics 
56, 1-10. 

15. Braga, J., Dias, J., and Regateiro, F. (2020). A machine learning ontology. Frenxiv Pap., 
preprint. 

16. Rueckert, P., Papenberg, B., Sievers, T.S. and Tracht, K. (2021). On-site learning factories 
for implementing artificial intelligence systems in production. In Proceedings of the Con-
ference on Learning Factories (CLF). 


