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• Application of new theory to the treat-
ment of many-body interactions be-
tween charged, dielectric particles. 

• Study of six particle lattice stoichiome-
tries, AB, AB2, AB3, AB4, AB5 and AB6. 

• Calculations reveal the significance 
dielectric constant has for the stabilities 
of certain lattice types. 

• A new lattice isostructural with CFe4 is 
found to be particularly stable due to 
many-body effects.  
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Identifying the forces responsible for stabilising binary particle lattices is key to the controlled fabrication of 
many new materials. Experiments have shown that the presence of charge can be integral to the formation of 
ordered arrays; however, a complete analysis of the forces responsible has not included many of the significant 
lattice types that may form during fabrication. A theory of many-body electrostatic interactions has been applied 
to six lattice stoichiometries, AB, AB2, AB3, AB4, AB5 and AB6, to show that induced multipole interactions can 
make a very significant (>80 %) contribution to the total lattice energy of arrays of charged particles. Particle 
radii ratios which favour global minima in electrostatic energy are found to be the same or a close match to those 
observed by experiment. Although certain lattice types exhibit local energy minima, the calculations show that 
many-body rather than two-body interactions are ultimately responsible for the structures observed by experi-
ment. For a lattice isostructural with CFe4, a particle size ratio not previously observed is found to be particularly 
stable due to many-body effects.   
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1. Introduction 

There are numerous examples throughout nature of where the 
presence of charge on a particle is considered to make an important 
contribution to the process of coalescence or aggregation. For example, 
the tribocharging of sand particles have been linked to sediment trans-
port and aggregation on Titan [1], and the coagulation of charged dust 
particles has been proposed as a mechanism for the formation of pro-
toplanets [2,3]. These ideas are supported by laboratory experiments 
where, for example, Lee et al. have provided images that show step-by- 
step mechanisms where charged particles suspended in vacuum can 
coalesce via orbiting encounters [4]. Closer to home, the tribocharging 
of silicate dust and the resultant charged particle interactions has been 
proposed as a mechanism for the appearance of lightning during vol-
canic eruptions [5]. 

From the perspective of controlled assembly, it is recognised that the 
coalescence of charged particles into ordered arrays could be significant 
for the fabrication of new and novel devices [6]. The parameters 
available for fabricating binary arrays of particles are primarily relative 
size, composition (metal, semiconductor, insulator), stoichiometry and 
the nature of the interaction potential. Achieving precise control over 
the structure and morphology of any ordered two-particle array requires 
a complete understanding of the forces responsible for creating stability 
through long-range order; only then should it be possible to design new 
materials. Laboratory experiments by Whitesides and co-workers have 
shown that two-dimensional ordered arrays can be fabricated from mm- 
sized Teflon and Nylon particles that have acquired charge (negative 
and positive) from contact electrification [7,8]. Depending on particle 
composition and experimental conditions, captured images show the 
evolution of regular square, pentagonal and hexagonal arrays [7,8]. 
More recently computer simulations using many-body electrostatic 
theory have been successful in reproducing many of the observed pat-
terns, which included chain configurations adopted to minimise the 
effects of excess charge [9]. These experiments on mm-sized charged 
polymer particles have since been extended into three dimensions by 
Haeberle et al. [10], who have shown that regular, 3 -dimensional 
closed-packed and body-centered cubic lattice structures can form in a 
container if the effects of gravity are minimised. The above experiments 
and calculations have involved particles with considerable variations in 
size, composition, and charge. Composition is significant because it 
determines the polarizability of a particle, which in turn determines its 
susceptibility to the presence of an external electric field. At a macro-
scopic level, polarizability is best measured by the magnitude of the 
dielectric constant of a particle, which for those materials referenced 
above ranges from ~2 for Teflon to ~15 for metal oxides. 

Here, six of the most frequently observed binary particle stoichi-
ometries [11–13] have been explored as a function of particle size ratio, 
γ, and the results used to furnish a quantitative discussion as to the 
importance of induced electrostatic interactions in determining the 
stabilities of regular structures and appropriate particle combinations. 
The calculations identify individual contributions from Coulombic and 
induced multipolar interactions and the results show that the latter can 
play a significant role in determining both structural stability and con-
figurations with global minima [14]. Previous attempts to quantify the 
stabilities of ABn lattices have mostly utilized pair potentials in the form 
of a van der Waals interaction together with either a screened Yukawa 
potential [15–19] or an unscreened point charge Coulomb potential 
[12,13]. The latter calculations incorporated the Madelung constant, 
which for a NaCl-like cubic lattice has a value of 1.7476, when charges 
of +e and − e reside on adjacent sites. The value for the Madelung 
constant varies according to lattice structure and the magnitude of 
charge, and earlier calculations [14] have shown that an arbitrary 
assignment of the constant is not necessary for each lattice type because 
its value can be accurately reproduced through a Coulomb and induced 
multipole treatment. 

The purpose of the results presented here is to show how important 

many-body electrostatic interactions between polarisable dielectric 
particles are for the stabilities of ordered arrays, both those described 
above and those that could become important in future particle assem-
blies. Many-body interactions between polarizable spheres have been 
the subject of previous theoretical work [20–24]. Barros et al. [20,21] 
have used a surface-charge model to analyse the influence inhomoge-
neous surface charge distributions have on an assembly of polarisable 
colloid particles and point charges. They show, for example, that such an 
assembly can be sensitive to the nature of the dielectric constant, and 
where a change in value can induce a switch from an NaCl-type structure 
to a chain-like geometry [21]. Qin et al. have combined a scattering 
formalism with image charge methods to analyse the behaviour of col-
lections of dielectric spheres in a NaCl-type lattice [22–24]; the calcu-
lations show the significance of multipolar interactions for the stability 
of this type of lattice. 

In the work presented here a recent development in the theory of 
many-body electrostatic interactions [14] has been used to systemati-
cally examine six separate binary, dielectric particle stoichiometries, AB, 
AB2, AB3, AB4, AB5 and AB6. The objective being to show the importance 
many-body interactions are for the stability of a range of lattice struc-
tures composed from charged particles. Altogether, nine separate lattice 
types are examined, where the significance of many-body interactions to 
structural stability is found to range from <20 % to >80 %. 

2. Theory 

A general solution based on an integral equation approach to the 
problem of calculating electrostatic interactions between large numbers 
of dielectric, spherical particles has previously been presented by 
Lindgren et al. [14] and shown to have a guaranteed error bound 
[25–27]. The solution provides an accurate, quantitative description of 
the problem, with a significant feature being that it is computationally 
very efficient, to the point where it has provided a force field for the 
simulation of charged particle dynamics [9]. In this work, static struc-
tures composed from arrays of charged particles with a range of stoi-
chiometries are examined with a view to identify the significance 
particle polarizability has on the stability of regular structures. 

The solution treats a number, M, of particles of arbitrary size, charge, 
dielectric constant, and position in three-dimensional space, embedded 
in a homogeneous medium of arbitrary dielectric constant. The system 
to be studied consists of a collection of M non-over lapping charged 
dielectric spheres, Ω1, …, ΩM, which are suspended in three-dimensional 
space. Each particle Ωi (i = 1, 2, …, M) has a radius ri, a position xi (i = 0, 
1, …, M), and a dielectric constant ki ≥ 1. The spherical particles are 
described as uniform, solid balls ({Ωi}M

i =1) with surfaces ({Γi}M
i =1) and 

where the latter defines a boundary interface, Γi = ∂Ωi between the 
interior, Ω-, and the exterior, Ω+, of the particles. All particles are sus-
pended in a homogeneous medium of dielectric constant k0, where in the 
present case k0 = 1for air or vacuum. 

Each particle carries a free charge qi, uniformly distributed over the 
surface and is represented by a surface density, σf,i = qi/(4πri

2) that is 
completely supported by the boundary Γi, such that a global function, σf 
(x) can be defined as: 

σf (x) =
{

σf ,i at all boundaries
0 otherwise 

Accordingly, the presence of free charge, σf,i, on the particles gives 
rise to an electrical potential, Φ, at each point in the system, which is 
defined as a solution to: 

− ∇.(k∇Φ) = 4πKσf (1)  

Where K is Coulomb’s constant. If Φ can be determined, then the elec-
trostatic potential energy, U, follows directly from [14] 

E.B. Lindgren et al.                                                                                                                                                                                                                             



Journal of Colloid And Interface Science 663 (2024) 458–466

460

U
(
Φ, σf

)
= 2πK

∫

Γ0

σf (s)Φ(s)dx (2)  

where s denotes a point on the surface of a particle and Γ0 = Γ1∪… ∪ ΓM. 
To represent the problem in terms of integral equations, it can be 

reformulated as an interface problem where, as with the two-body 
problem [28], the potential Φ has to be determined in such a way that 
standard boundary conditions are observed; in particular: 

ΔΦ = 0 in each Ωi(i = 1,⋯M),

EΦF = 0 on  Γ0,

Ek∇ΦF = 4πKσf on  Γ0  

where EΦF and Ek∇ΦF denote the jump of Φ and k∇Φ, respectively As 
presented elsewhere [14,25], an integral equation that uniquely repre-
sents Φ for a global charge density σf can be derived, and a solution 
obtained through a discretisation based on numerical integration in the 
space of truncated spherical harmonics. The resultant set of linear 
equations can be solved iteratively. The total electrostatic energy of the 
system can be obtained from Eq. (2) and the net electrostatic force on 
each particle, Ωi, comes as the gradient of the energy with respect to 
changes in xi (i = 0,1, …, M) [14,27]. Thus, the accuracy of each 
calculation is controlled through the maximum number, N, of real 
spherical harmonics utilised in discretisation of the model. This 
parameter has been set as N = 6 in all calculations, which as conver-
gence test show [14], equates to an average error of 4 % in the multipole 
terms. 

For examples that involve large numbers of particles, the evaluation 
of multipole interactions benefits from the implementation of a fast 
multipole method (FMM) [29], which provides a significant enhance-
ment to the speed of computation, to the point where there is a linear 
scaling with respect to the number of particles and the time required for 
each computation of the force [14,26,27]. Hence, FMM reduces the 
number of calculations needed for each particle by creating a grid, 
where the charge of every particle within an individual cell in the grid is 
transformed to a single point multipole; a procedure that is repeated in a 
multi-scale manner. This means that any particle outside the neigh-
bourhood of a corresponding cell only has to interact with a single point 

multipole instead of each and every particle inside a particular grid. This 
procedure drastically reduces the number of calculations required and 
makes the computation of large lattice structures tractable. FMM is 
highly technical, and a detailed discussion goes beyond the scope of this 
paper [29]. If FMM is not used, the complexity of a general three- 
dimensional particle configuration scales as the square of the number 
of particles instead of a linear scaling. Further, FMM scales as the third 
power of the degree of spherical harmonic utilised in the underlying 
expansions; without FMM, it scales as the fourth power. 

In the examples that follow, Coulomb and charge-induced multipolar 
interactions are considered up to the sixth degree (N = 6, 64 pole), and 
where the non-additive nature of these interactions [30] is taken into 
account through the mutual polarisation of charged, dielectric particles 
(see Fig. 1). The model takes as input the number of particles, each with 
an assigned radius, dielectric constant (relative permittivity), charge 
and position in three-dimensional space. Output consists of the distri-
bution of surface charge, the electrostatic energy and the total force 
acting on each particle. The charge that is assigned, denoted here as free 
charge, is the quantity over which experimentalists generally have 
control and is treated in the model as being fixed and uniformly 
distributed over the surface of each particle. However, as the particles 
are considered to be composed of a dielectric material, they become 
polarised when in the presence of an external electric field, which in this 
context is generated by the presence of free charge on adjacent particles. 
As a consequence, polarised bound charge accumulates on the surface of 
each particle, which leads to an anisotropic distribution of total (free +
bound) surface charge. This is coupled with similar processes on all other 
particles via mutual polarisation; a mechanism which can only be 
properly described through a many-body formalism. Previous calcula-
tions have explored the effect charge inhomogeneity in the form of 
either negatively and positively charged patches or as localised point 
charges has on both the geometry and the strengths of particle–particle 
interactions [31,32]. 

In addition to enhancing charge-induced multipole interactions, 
there exists the possibility of a further effect due to the presence of 
polarisable particles, and that is like-charge attraction [28,33]. How-
ever, such behaviour requires particles with the same sign of charge to 
be in close proximity and will only arise if the size ratio is small and or 
the charge difference is large [33]. The complementary medium has 

Fig. 1. Calculated surface charge on polarisable particles in a NaCl lattice configuration. Isolated two-body and three-body interactions are shown together with a 
larger section of the lattice. The yellow and dark blue features correspond to regions of increased positive and negative charge, respectively, where there is enhanced 
polarisation of bound charge towards the points of contact. In the many-body example, polarisation is polydirectional causing the polarised charge to concentrate at a 
number of sites on each particle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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been given a dielectric constant appropriate for a vacuum; however, the 
consequence of including a solvent in a many-body treatment has 
recently been addressed [23,34]. The effects of suspending polarisable 
particles in an electrolyte solution has also been investigated, and where 
it is shown that for calculated forces there are significant departures 
from DLVO theory when particles are in close proximity to one another 
[35]. The theory [14] has been developed for the purposes of investi-
gating the behaviour of collections of charged particles; however, we 
note that similar developments in the theory of electrostatics have been 
presented by Lotan and Head-Gordon for the purposes of studying pro-
teins [36]. 

Convergence tests has been performed to determine the most suit-
able size of lattice for the calculations; for all ABn structures, each par-
ticle A was given a charge of q1 = +1 and each particle B a charge of q2 
= –1/n to ensure overall neutrality. For all the lattice types considered 
here, the total electrostatic energy per particle was found to have 
converged to within ≈ 0.4 % once the lattice contained 1000 particles, 
and all subsequent calculations have used that number of particles to 
give an appropriate balance between computational cost and accuracy. 
Previous calculations showed that for the example of an atomic NaCl 
lattice, where anion and cation spheres appropriate for the sizes of Na+

and Cl- were used, the lattice energy and the Madelung constant 
asymptotically approached their literature values as the number of 
charged particles increased [14]. 

3. Results and discussion 

3.1. Lattice stoichiometries 

The binary particle lattices chosen for this study cover a range of 
stoichiometries, which include AB, AB2, AB3, AB4, AB5 and AB6, all of 
which have been observed in experiments, but have not necessarily 
involved the interaction of charged particles [11–13]. For each of these 
examples, the total electrostatic energy and the individual contributions 
of Coulomb and multipolar interaction energy, have been investigated 
as a function of the particle radius ratio γ = rsmall/rlarge, where rsmall is 
the radius of the smaller particle and rlarge is the radius of the larger 
particle. A dielectric constant of 20 for both particles has been used as a 
compromise between particles that are weakly polarisable, such as hy-
drocarbons and polymers, and particles that are strongly polarisable for 
example, water droplets (ice), metal oxides and metals. For the systems 
already identified above, dielectric constants range from ki = 4 for 
nylon, through to ki ≈ 15 for ZrO2 particles. However, the consequences 
of changing the dielectric constant are also examined. Starting structures 
for the binary lattices studied were based on particulate structures 
previously observed by experiment, and these are isostructural with 
NaCl, CsCl, CuAu, AlB2, MgZn2, AuCu3, CFe4, CaCu5, CaB6 [11–13,37]. 
Crystallographic Information Files (CIF), containing the coordinates of 
each of the above materials, have been downloaded from the Materials 
Project Database [38]. These dimensions have then been scaled up to an 
appropriate size using Avogadro and taken as starting conditions of each 
lattice type [39]. In all the examples, particle A refers to the first particle 
of each lattice type, B refers to the second particle, and n refers to the 
stoichiometry. 

As an illustration of the consequences of including polarisation in-
teractions, Fig. 1 gives a visual representation of the elements of an NaCl 
lattice type with a particle size ratio of 0.41, which is optimum for the 
packing of this particular lattice. In addition to the light blue and green 
colours representing the assigned free charges, there are also regions of 
enhanced positive and negative surface charge denoting the presence of 
bound charge that has been polarised by the close proximity of oppo-
sitely charged particles. A similar image for a colloidal lattice with an 
NaCl structure has been presented by Barros et al. [21], but with 
embedded point charges; in contrast, Fig. 1 shows the consequence of an 
interaction between charged, polarisable, dielectric particles. 

3.2. Variation in particle size 

The calculation of the interaction energies has been undertaken as a 
function of the radius ratio, γ, of particles A and B. Since the experi-
mental literature on particle lattices covers charges ranging from ~0 ±
1e to 106e [4,7,8,11–13] and particle sizes that range from nanometres 
up to micrometres [4,7,8,11–13], both particles were assigned arbitrary 
values that fell within these extremes. For a formula unit ABn the charge 
on particle A, q1, was fixed at +1000 e, while the sum of the charges on 
each particle B was − 1000 e, such that q2 = − 1000/n e, thus ensuring 
overall neutrality. Both A and B particles ranged in radius from 50 μm to 
500 μm, with the pivot point of each calculation corresponding to the 
size ratio γ = 1. 

Fig. 2 shows the total electrostatic energy as a function of γ calcu-
lated for particle combinations that identify with each of the crystallo-
graphic structures NaCl, CsCl, CuAu, AlB2, MgZn2, AuCu3, CFe4, CaCu5 
and CaB6. 

As might be expected, all three of the AB lattice types show two 
minima depending on whether either A or B is the smaller of the two 
particles; and within this group, the NaCl lattice is by far the most stable. 
Of the remaining lattices, only that with a CFe4 configuration has a 
minimum where A (C) is the smaller particle; this lattice also has a 
second, poorly defined minimum, where B (Fe) is very small. Two lattice 
types, AuCu3 and CaCu5, exhibit two minima as a function of γ, where 
those associated with AuCu3 coincide with experimental observations, 
whereas there is a discrepancy between calculation and observation for 
CaCu5 [11]. A second minimum for AuCu3 is more evident in Fig. 5 
below. These results are summerised in Table 1, together with relevant 
experimental data that have been determined from the packing of par-
ticles [11,12,37]; however, these latter results are not necessarily the 
product of interactions between charged particles. As can be seen, there 
is very good agreement between the calculated and experimental results, 
with the only notable discrepancy being CaCu5; however, the experi-
mental result does fall within the two calculated minima. 

As part of the calculations, the total energies shown in Fig. 2 have 
been broken down into individual contributions arising from Coulomb 
and many-body polarisation interactions. Whilst the former can be 
either attractive or repulsive, polarisation interactions between charged 
particles in vacuum are always attractive, and can in some instances, be 
responsible for the presence of like-charge attraction [28]. However, 
calculations have shown that changes in the dielectric constant ratio, 
kparticle/kmedium can introduce repulsive interactions [23,40]. Fig. 3 
show the calculated Coulomb energy for each of the lattice types as a 
function of γ. Here there are several interesting features; first, it is 
obvious that none of the lattices exhibit distinct minima at kinks (dis-
continuities in the derivative) in the Coulomb energy. For example, as 
the particle size ratio is reduced, the NaCl lattice shows a kink at γ =
0.42, but below that point the Coulomb energy remains constant. 
Similar behaviour is seen for all the other lattice types, apart from CFe4, 
which exhibits no discontinuities and has more or less constant Coulomb 
energy across the entire range of γ. Secondly, the CaB6 lattice is calcu-
lated to be electrostatically unstable if just the Coulomb energy is taken 
into consideration, and where at a value of γ = 0.4, which is calculated 
to be a minimum in the total energy, there is a distinct increase in the 
Coulomb energy. Two other lattice types, CFe4 and AlB2, are also close to 
being unstable in terms of just their Coulomb energy. 

The reason why lattices exhibit a constant Coulomb energy below 
certain radius ratios can be illustrated with the NaCl lattice. As seen in 
Fig. 4, when the radius ratio drops below 0.41 for this type of geometry, 
each large particle is now in contact with the next nearest large particle 
(as defined in terms of a three-dimensional structure); hence displace-
ment of their centres with any further decrease in the value of γ becomes 
constrained. Therefore, to maintain fixed lattice positions, radius ratios 
below 0.41 can only be achieved by changing the relative sizes of the 
particles. 

A uniform distribution of charge is electrostatically equivalent to 
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having the same amount of charge concentrated at a point at the centre 
of a particle. Thus, as long as each small particle remains at a fixed 
central position, the Coulomb energy, which corresponds solely to in-
teractions between free charges on the particles, remains constant in the 
NaCl lattice for γ ≤ 0.41, irrespective of the radius ratio across this 
range. In this rock-salt lattice, the radius ratio γ =

̅̅̅
2

√
− 1 ≈ 0.41421⋯ 

equates to a perfect fit of a small particle inside an octahedral hole 
defined by larger particles. Even though such an assembly can still retain 
a negative interaction energy at small radius ratios, the structure could 
potentially be destabilised as each small particle becomes free to move 
inside an octahedral hole. As is clear from Fig. 4, the argument outlined 
above for NaCl is easily extended to all other lattice types since their 
Coulomb energy is also constant for values of γ less than a global energy 
minimum. 

Fig. 5 shows the multipolar contributions to the stability of each 
lattice type and as noted above, these interactions are always attractive 
in vacuum, and therefore, make a negative contribution to the total 

Fig. 2. Total electrostatic energy as a function of the radius ratio, γ, for all the lattice types under consideration. In the left-hand panel, particle A is reduced in size 
from 50 μm to 500 μm in diameter. In the right-hand panel, particle B is reduced in size over the same range. 

Table 1 
Values of the particle radius ratio (γ) calculated from minimum electrostatic 
energy configurations. These results are compared with available experimental 
data that have not necessarily been recorded for charged particles. The most 
stable ratio is shown in bold.  

Lattice type γ (B/A) (Min. elect. energy) 
Calculated 

γ (Optimum packing) 
Experimental 

NaCl 0.42 0.41 [12] 
CsCl 0.73 0.73 [11] 
CuAu 0.91 1.0 [11] 
AlB2 0.58 0.58 [11,12] 
MgZn2 0.81 0.81 [11,12] 
AuCu3 0.41 1.0 1.0 [11], 0.42 [11] 
CFe4 0.42 #  

CaCu5 0.46, 0.75 0.65, 0.75 [11] 
CaB6 0.40 0.41 [37]  

# Calculated for the ratio γ (A/B) corresponding to r(C)/r(Fe). 

Fig. 3. As for Fig. 2, but a plot of the Coulomb energy as a function of γ.  
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electrostatic energy. What is clear from the results is that each lattice 
type shows one or more distinct energy minima in polarisation energy, 
and these coincide with the stable configurations identified in Fig. 2 and 
Table 1. Note that the total energy is given by the sum of the Coulomb 
and polarisation energies. Therefore, it would appear from comparisons 
between Figs. 2, 3 and 5, that for each of the γ values identified in 
Table 1 for a given lattice type, preferential stability is due entirely to 
multipolar interactions. Even for the NaCl lattice, true energy minima 
are only realised through the presence of multipolar contributions in the 
total electrostatic energy, and for the CaB6 lattice type, multipolar in-
teractions make the difference between stability and instability; this 
effect being over and above any entropic contribution to stability [37]. 

Two lattice types, AuCu3 and CaCu5 are calculated to exhibit both a 
local and a global energy minimum and similar observations have been 
made in experimental studies [11]; however, the calculated values for γ 
identified for global stable structures do not coincide with those seen by 
experiment [11]. The existence of two energy minima in lattices that are 
isostructural with CaCu5, can be understood with the aid of Fig. 6. Ac-
cording to Fig. 2, a gradual increase in the size of the smaller particle (B) 
leads, in terms of the total energy, to a gradual increase in stability as 
gaps in the lattice become progressively filled, until the global energy 
minimum at γ = 0.46 is reached. As Fig. 6 shows, this value for γ cor-
responds to a structure where the surface of each particle touches an 
oppositely charged neighbour. As the size of the smaller particle in-
creases beyond γ = 0.46, the energy initial increases very slightly before 
dropping to a new minimum at γ = 0.73. This latter configuration is 

determined by a maximum in the contribution from multipolar in-
teractions to the total energy, as seen in Fig. 5. Whilst such a contribu-
tion, at approximately 50 % of the total energy, is significant, it is not 
large enough to shift the global minimum away from γ = 0.46. However, 
additional calculations show that a new global minimum at γ = 0.73 
would appear if, instead of the complete many-body treatment presented 
here, the multipole contributions were computed as the sum of pair-wise 
interactions; this approach would lead to an over-estimation of the 
polarisation energy and promote a switch between minima. As γ in-
creases beyond 0.73, the CaCu5 lattice become less stable as gaps appear 
between particles and the multipolar contributions decrease in magni-
tude. As these results stand, any gain in attractive polarisation energy on 
the part of one particular geometry for CaCu5, is conteracted by a 
decline in Coulomb energy. However, the very small difference in total 
energy (Fig. 2) between structures and the comparatively flat potential 
means that small changes in dielectric constant could easily lead to a 
switch in global stability. For AuCu3 the circumstances surrounding the 
two stable structures are slightly different, in that the structure at γ =
0.41 is the more stable both in terms of Coulomb and many-body in-
teractions. However, as Fig. 7 shows, stability of the γ = 1.0 structure, as 
favoured by experiment, relies on a higher percentage contribution from 
many-body interactions than when γ = 0.41; again therefore, a small 
change in dielectric constant could switch relative stabilities. 

Fig. 7 shows the percentage contribution multipolar interactions 
make to the total energy, where it can be seen that for all but three lattice 
types, these contributions amount to over 50 % of the total energy and 

Fig. 4. Examples of the NaCl lattice type for different values of γ, the radius ratio.  

Fig. 5. As for Fig. 4, but a plot of the polarisation energy as a function of γ, the radius ratio.  
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rising to ~95 % in the case of a CFe4 lattice. 
In many lattice structures of the type discussed above, the particles 

often consist of a solid core covered in surface ligands that form a 
capping layer [13,41]. Each particle then has an effective radius formed 
from the sum of two components, namely the core radius (r) and the 
length of the ligand (l) which together charaticterise a softness param-
eter, given by s = l/r. Typically, s = 0.01 for micron-sized particles, 
increasing to ~1 for nanoparticles [42]. Although ligands can contribute 
towards interactions between particles, more importantly, they me-
chanically prevent any direct contact between cores. Calculations with s 
= 0.5 show that, whilst the relative ordering of the strengths of the 
various interactions remains the same, the total electrostatic interaction 
energy can decrease by up to 50 %. However, for those lattice types that 

show a strong dependence on many-body interactions, for example Fe4C 
and AlB2, the percentage contribution of the latter to the total energy 
remains high. 

3.3. Variation in dielectric constant 

Thus far, all calculations have been undertaken with the particles 
having a dielectric constant of 20, which is taken to represent a mid 
point between polymer and metallic particles. In order to access the 
importance of the value assigned to ki, further calculation have been 
undertaken where ki has been given the values 2, 5, and 10. These results 
are summarised in Table 2 where, for each lattice type at the calculated 
global minimum, the percentage contribution from multipolar 

Fig. 6. Examples of the CaCu5 lattice type for different values of γ, the radius ratio.  

Fig. 7. As for Fig. 4, but showing the percentage contribtion from multipolar energy to the total electrostatic energy.  
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interactions is given for each value of the dielectric constant. The results 
for ki = 20 are also given for comparison. As seen from the table, the 
largest differences occur when the dielectric constants are small and the 
reason for this can be seen from expanded expressions for the force 
between particles [28], where the dielectric constant frequently appears 
in the form of a ratio: (ki − 1)/(ki + 2), which varies from 0.25 when ki 
= 2 to 0.57 at ki = 5 and 0.86 when ki = 20. However, it is also clear from 
Table 2 and Fig. 5 that for certain lattice types, for example, AB2 and AB4 
the dielectric constant, irrespective of its value, has a strong influence on 
the magnitude of the electrostatic interaction. For other lattice types, for 
example those of NaCl and MgZn2, many-body contributions are only 
ever going to be small at any value assigned to ki. For an NaCl-type 
lattice consisting of colloidal particles and embedded point charges, 
Barros et al. [21] have shown that a change in dielectric constant can 
lead to a structural change; such behaviour has not been explored in 
these calculations. 

4. Conclusion 

A new development in the theory of charge-induced, many-body 
electrostatic interactions has made it possible to investigate the extent to 
which such forces may be responsible for the fabrication and structural 
stability of seven frequently observed binary, particulate lattice struc-
tures. The calculations show that, for lattices arrays known to involve 
charged particles, between 15 % and 90 % of the lattice energy could be 
derived from effects due to many-body electrostatic polarisation. The 
non-additive influence of polarisation, as opposed to pair-wise in-
teractions, is also shown to be necessary in order to distinguish true from 
local energy minima. For a lattice isostructural with CFe4, a particle size 
ratio not previously observed is found to be particularly stable due to 
many-body effects. 
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