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I. ASL KINETIC MODELS

A. General Kinetic Model

Arterial spin labeling (ASL) is a magnetic resonance imag-
ing (MRI) technique designed for quantifying absolute cere-
bral blood flow (CBF) values. In ASL MRI, the relationship
between signal and perfusion parameter can be modeled as a
mathematical formula based on the theory of tracer kinetics.
The most common model currently used for ASL perfusion
quantification is the general kinetic model which was origi-
nally proposed by Buxton et.al. [1]. The expression of label-
control difference ∆M can be derived as equation (16):
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where C(f,∆t) = 2M0afT1appe

−∆t/T1b and 1/Tlapp =
1/T1 + f/λ. Here f is the perfusion parameter, ∆t is the
arterial transit time (ATT), T1 denotes the relaxation time
of labeled blood in voxel, λ is the partition coefficient,
M0a denotes the total arterial magnetization, T1b denotes the
relaxation coefficient of arterial blood, τ represents the label
duration and t is the inversion time.

B. Dispersion Kinetic Model

However, standard kinetic model is not perfect, a number
of factors are not incorporated into it, for example, dispersion
effects [2]. In general KM, a uniform plug flow is assumed as a
way to deliver labeled blood to imaging region, but in practice
because of the multiple confounding factors such as cardiac
pulsatility and carotid bifurcation, blood bolus that are labeled
at the same time may not arrive simultaneously. Dispersion
effects are used to describe this. To incorporate dispersion ef-
fects into the original kinetic model, a modification is needed.
The calculation of new dispersion kinetic model involves a
multiplication between the original arterial input function and
a scaling factor s(t) [2]:

=

{
0, t < ∆t
1−Q(1 + sp, s(t−∆t)),∆t ≤ t < ∆t+ τ
Q(1 + sp, s(t−∆t− τ))−Q(1 + sp, s(t−∆t)),∆t+ τ ≤ t

(17)
where Q(x, y) is the incomplete gamma integral defined as:

Q(x, y) =
1

Γ(x)

∫ ∞

y

e−ttx−1dt (18)

where s and p are two parameters controlling the shape of
dispersion. s denotes the sharpness and p denotes the time-to-
peak. The zero time-to-peak and infinite sharpness refer to no
dispersion.

II. SIMULATION EXPERIMENTS

Figure 8 shows the error in estimated noise parameter from
the simulation experiments across all methods and SNR. An
overall consistency in error in estimated noise parameter was

observed across the different inference frameworks on bi-
exponential example and ASL forward models. The median
errors in all experiments concentrated around zero or near
to 0. Similar to other parameter of interest, larger errors can
be observed at low SNR (wider inter-quartile range), except
that the estimations by using aVB as inference algorithm and
dispersion KM as the forward model exhibited a constant inter-
quartile range.

III. REAL DATA EXPERIMENTS

A. Real Data Experiment with Reduced Data Sets

Figure 9 shows the estimated perfusion and ATT using a
reduced data with only one measurement at each PLD by
using general KM (a) and dispersion KM (b) as the forward
model. Similar to figure 7, perfusion was estimated with a
clear pattern by using both VAE-like framework and the aVB
analysis, however perfusion estimations appeared to be less
smooth by using VAE-like framework. Similar to averaged
data set, VAE-like framework still exhibited a longer ATT
value in white matter, but it was less noticeable when using
aVB.

B. Parameter Uncertainty

Figure 10 show the estimated parameter uncertainty (95%
credible interval of the marginal posterior) from the real data
experiment with an averaged data set as input data. Clear
patterns of white and grey matter can be observed in each of
the plots. The magnitude of uncertainty are similar between
aVB inferred values and VAE inferred values except a smaller
perfusion uncertainty by using aVB than VAE-like framework
in both General KM and Dispersion KM.

Figure 11 show the estimated parameter uncertainty (95%
credible interval of the marginal posterior) from the real
data experiment with 8 reduced data sets as input data. The
uncertainty of estimated perfusion by aVB was similar to VAE-
like framework using both general KM and dispersion KM,
while a larger uncertainty of ATT estimated by aVB using
dispersion KM can be observed.

C. Noise Parameter

Figure 12 and 13 demonstrate the estimation of noise
parameter from real data experiments using the average data
set and reduced data sets respectively. In both cases, the noise
parameter estimated by aVB is in similar magnitude with the
one inferred by VAE-like framework, while aVB exhibited a
better contrast between different types of tissues and VAE-like
framework shows more constant estimations.

IV. FREE ENERGY

Posterior probability distribution is often hard to be com-
puted analytically because of intractable integrals. In this case,
a simpler distribution q(w) is often considered to approximate
true posterior distribution P (w|y). Free energy F is used
to measure the difference between true and approximated
posterior:
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Fig. 8. Error in estimated noise parameter in simulation experiment:Three figures are noise parameter estimated by using bi-exponential model (Left), ASL
General KM (Middle) and Dispersion KM (Right) as the forward model. In each experiment, aVB, MCMC and VAE-like framework were used as the inference
algorithm.

Fig. 9. Real Data Experiment with Reduced Data Sets: (a), (b), (c) and (d) are perfusion and ATT estimated with the General KM as the forward model;
(e), (f), (g) and (h) are perfusion and ATT estimated with the General KM as the forward model; (a), (c), (e), (g) are inferred by using the aVB algorithm
implemented in BASIL tool box; (b), (f), (d), (h) are inferred by using our VAE-like framework; Each figure contains the results from 8 single repeat. The
brain mask used for ATT values was generated from perfusion greater than 5 ml/100g/min.
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Fig. 10. Error in estimated noise parameter in simulation experiment:Three figures are noise parameter estimated by using bi-exponential model (Left),
ASL General KM (Middle) and Dispersion KM (Right) as the forward model. In each experiment, aVB, MCMC and VAE-like framework were used as the
inference algorithm.

Fig. 11. Error in estimated noise parameter in simulation experiment:Three figures are noise parameter estimated by using bi-exponential model (Left),
ASL General KM (Middle) and Dispersion KM (Right) as the forward model. In each experiment, aVB, MCMC and VAE-like framework were used as the
inference algorithm.
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Fig. 12. Estimated Noise Parameter with Averaged Real Data Set: (a) by using general KM as the forward model; (b) by using dispersion KM as the forward
model

Fig. 13. Estimated Noise Parameter with Reduced Real Data Sets: (a)and (b) by using general KM as the forward model; (c) and (d) by using dispersion
KM as the forward model; (a) and (c) are results estimated from aVB; (b) and (d) are results estimated from VAE-like framework;
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F =

∫
q(w) log

[
P (y | w)P (w)

q(w)

]
dw (1)

By Jensen’s inequality [3]:

F =
∫
q(w) log

[
P (y|w)P (w)

q(w)

]
dw

≤ log
∫
q(w)

[
P (y|w)P (w)

q(w)

]
dw

= log
∫
P (y | w)P (w)dw

= logP (y)

(2)

where F = logP (y) when q(w) = P (w|y). Then finding
the best estimate of true posterior is equivalent to the maxi-
mization of free energy F .

Moreover:

F =
∫
q(w) log

[
P (y|w)P (w)

q(w)

]
dw

=
∫
q(w) log

[
P (y|w)P (w|y)P (w)

q(w)P (w|y)

]
dw

=
∫
q(w) log

[
P (w|y)
q(w) · P (y|w)P (w)

P (w|y)

]
dw

=
∫
q(w) logP (y)dw −

∫
q(w) log

[
q(w)

P (w|y)

]
dw

= logP (y)−KL[q(w) | P (w | y)]

(3)

Thus the maximization of free energy is equivalent to the
minimization of KL divergence. To achieve the best approx-
imation of posterior, we can either maximize free energy or
minimize the KL divergence.
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