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Abstract—In this paper, a Variational Autoencoder (VAE)
based framework is introduced to solve parameter estimation
problems for non-linear forward models. In particular, we focus
on applications in the field of medical imaging where many
thousands of model-based inference analyses might be required
to populate a single parametric map. We adopt the concept from
Variational Bayes (VB) of using an approximate representation
of the posterior, and the concept from the VAE of using the
latent space representation to encode the parameters of a forward
model. Our work develops the idea of mapping between time-
series data and latent parameters using a neural network in
variational way. A loss function that differs from the classic
VAE formulation and a new sampling strategy are proposed
to enable uncertainty estimation as part of the forward model
inference. The VAE-based structure is evaluated using simulation
experiments on a simple example and two perfusion MRI forward
models. Compared with analytical VB (aVB) and Markov Chain
Monte Carlo (MCMC), our VAE-based model achieves compa-
rable accuracy, and hundredfold improvement in computational
time (100ms/image). We believe this VAE-like framework can
be generalized to imaging modularities with higher complexity
and thus benefit clinical adoption where otherwise long pro-
cessing time associated with conventional inference methods is
prohibitive.
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I. INTRODUCTION

BAYESIAN inference is a popular statistical technique
which can be used to estimate parameters of a generative

model from data. It has been used in a wide variety of
applications, from pricing decision making in the field of
business and commerce [1] to disease mapping and medical
diagnostics [2]. In particular, it has been applied to parameter
mapping problems in MRI, including segmentation of sub-
cortical structure [3], inference on functional MRI (FMRI)
time-series data [5] and optimization of the haemodynamic
response function (HRF) in FMRI [4]. Unlike frequentist
statistical approaches, Bayesian inference introduces the con-
cept of a posterior probability distribution, enabling parameter
estimation along with associated measures of confidence.
Bayesian inference involves belief updating and allows for
the specification of prior probability distributions. This is

particularly helpful in parameter mapping problems with noisy
data where prior information about the parameters is known.
For example, Bayesian inference allows the incorporation of
physiologically plausible ranges of biophysical parameters
as prior information into the perfusion parameter estimation
problem in Arterial Spin Labelling (ASL) MRI [6] where
ASL is well established as a quantitative technique to measure
perfusion. In principle, Bayes’s theory enables the computation
of a posterior distribution; however, because of the intractable
integral that typically arises, Bayesian methods often do not
provide results in closed form.

Multiple approaches have been proposed to approximate
Bayesian computation. For example, the Laplace approxi-
mation [10] [11] assumes a posterior distribution with a
Gaussian distribution centered at the maximum a posteriori
(MAP) parameter estimate and Markov Chain Monte Carlo
(MCMC) [12] [13] achieves Bayesian estimates by sampling
from a probability distribution and creating a Markov Chain.
However, the form of the true posterior may not exhibit
like a Gaussian likelihood and MCMC usually requires an
extremely high computational cost. Both of the limitations
can be problematic in high dimensional applications like
computation across many voxels in medical imaging data,
precluding deployment in clinical applications where rapid
computation is called for. To help with these scenarios, fast
computation techniques are required. Variational Bayes (VB)
[8] [9] attempts to achieve a balance between these two factors.
VB methods optimize the posterior distribution estimation by
minimizing Kullback Leibler (KL) divergence [14] between
true posterior and an approximate posterior. The original VB
implementation, analytical VB (aVB) [9] requires a tractable
integral in the KL divergence computation which restricts the
prior and posterior to be from the conjugate exponential fam-
ily. Conventional aVB methods only work for linear forward
models, but recent research papers generalized them to non-
linear models [6]. More recent variants, such as Stochastic
VB (sVB) [7] eases the limitation in the form of posterior
distribution via introduction of stochastic gradient descent to
directly perform optimization.

The optimization process in both aVB and sVB is iterative,
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resulting in an estimator that scales in computational cost
with the complexity of the forward model. Moreover, the
optimization process is ”memoryless” – every time a new
data set is received, a completely new optimization needs
to be conducted to find the optimal measurements of model
parameters. The development of neural networks provides a
possible solution to this problem by amortizing the repetitive
computational cost produced by new data sets among the
neural network training process. For example, Lahiri et al. [15]
used a regression neural network to replace the conventional
ASL magnetic resonance fingerprinting (MRF) [16] dictionary
mapping, reducing the computational time of estimating a
single-slice data to few seconds. Luciw et al. [17] trained a
convolutional neural network (CNN) [18] and a U-Net [19]
with real 3D data sets for automated perfusion estimation.
However, these applications only provided conventional pa-
rameter estimations without uncertainty measures. Moreover,
using real data as training data limits generalization to other
data sets in a way not seen for existing VB algorithms that
infer directly using the forward model.

Variational Bayes and neural network representations have
been previously combined into the Variational Autoencoder
(VAE) [20]. The conventional VAE is widely accepted as
a dimension reduction and image denoising technique [21].
Bliesener et al. [22] in 2020 proposed a neural network com-
bined with a variational loss to perform parameter estimation
on time-series DCE-MRI data, their approach partly mirrors
that of a VAE but only included an encoder and did not
consider an encoder-decoder pair. In this work, we combine
encoder and decoder and propose a VAE-like neural network
structure to perform Bayesian inference for the parameter of
a non-linear forward model. Like Bliesener [22], we directly
linked the latent parameters to models parameters. Crucially,
the decoder is specified as the forward model. The VAE-
based neural network was compared with MCMC and aVB on
both a representative ’toy’ example and practical examples in
ASL perfusion MRI [23] [24], showing consistency among the
different methods and offering orders of magnitude improve-
ments in calculation for inference on new data using neural
networks. The main contributions of our work are:

• A Bayesian inference strategy based on a neural network
architecture that can be applied for parameter and uncer-
tainty estimation for any non-linear forward model from
serial data.

• Comparable accuracy in parameter inference and a
hundred-fold improvement in computational speed com-
pared to MCMC and a conventional VB approach.

• A new loss function and a novel sampling strategies
that simplify the calculation of loss and enable network
training.

In the rest of the paper, we will discuss the theory behind
our work (Section II), methods we proposed (Section III),
experiment design and results (Section IV) and finally the
achievements and limitations (Section V and VI).

II. THEORY

A. Bayesian Inference

Bayesian inference is an approach to determine the posterior
distribution for the parameters of a generative (forward) model
p(Θ|Y) using measured data. According to Bayes theorem, the
posterior distribution can be written as:

p(Θ | Y,M) =
p(Y | Θ,M)p(Θ | M)

p(Y | M)
(1)

where M, Y and Θ represent model, data and parameters
of interest respectively. P (Θ) and P (Y|θ) indicate prior
probability and data likelihood. The expected value and dis-
persion measures of p(Θ|Y) , e.g., the mean and variance,
provide information on the best estimates of θ and associated
uncertainties.

B. Bayesian Inference for Non-linear forward models

The relationship between parameters θ and data y can be
formulated by a non-linear generative model g.

y = g(θ) + ϵ (2)

where y is a series data vector of length K, g is a non-linear
generating function, θ is a vector of parameters of interest
and ϵ indicates an error term. Under the assumption that the
data is corrupted by Gaussian white noise, this term follows
a Gaussian distribution i.e. ϵ ∼ N (0, e2I) where e is the
noise parameter, the standard deviation of the error term ϵ.
The resulting data likelihood of y is a Gaussian distribution,
where the log-likelihood can be written as:

logP (y | θ) = −K log e− 1

2
e−2(y − g(θ))T(y − g(θ)) (3)

where Θ = {θ, e} is the set of all parameters of interest.

C. Variational Bayesian Inference

Bayes theorem allows the calculation of posterior distribu-
tion, however, due to the integral involved in the calculation of
p(Y | M) in equation (1), in most cases, analytical solutions
for posterior distribution cannot be derived.

Variational Bayes (VB) has been proposed to allow evalua-
tion for an analytical solutions for the posterior by introducing
an approximate posterior q(θ) [8]. The difference between q(θ)
and the true posterior distribution P (θ|y) can be quantified by
Kullback–Leibler (KL) divergence. The optimal approximate
posterior is achieved by the minimization of KL divergence
which is equivalent to the maximization of free energy F ,
also known as the Evidence Lower Bound (ELBO):

F =

∫
q(w) log

[
P (y | w)P (w)

q(w)

]
dw (4)

One common option in VB is the mean field approximation
which divides model parameters into subgroups and assumes
the independence of posterior distributions for each subgroup.
The posterior distribution for all model parameters can thus
be factorized to the multiplication of individual groups. The
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additional assumption of conjugate prior allows the approxi-
mate posterior to be written in closed form. We refer to this
approach as analytical VB. In another approach, stochastic VB,
stochastic gradient descent is applied directly to optimisation
of the free energy without any limitations in form of the
distributions. These two approaches both result in an iterative
update process for the hyper parameters of the approximate
posterior distribution q(θ), whilst these schemes eventually
converge to an optimal solution, both may still have a high
computational cost if the evaluation of the forward model is
not trivial.

D. Variational Autoencoder

The Variational Autoencoder is a deep learning architec-
ture composed of three parts: an encoder, a decoder and a
variational latent space between the two. It is often used for
signal denoising problems, where the encoder and decoder
are two neural networks used for dimension reduction and
dimension expansion respectively. Unlike the conventional
Autoencoder, the VAE latent space is not simply a vector
of parameter values, but a predifine multivariate distribution.
The variational layer imposes a constrain on latent distribution
which acts as a form of regularisation. This architecture
is trained to minimise the reconstruction error between the
recovered (i.e., encoded-decoded) signal and input signal. The
loss function is usually adopted as the KL-divergence between
true posterior of θ P = p(θ|y) and the approximate posterior
of θ , i.e., Q = q(θ|y):

KL (Q||P ) =

∫
q (z | y) log q (z | y)

p (z | y)
dz (5)

By simple calculation, minimizing KL (Q||P ) is equivalent
to :

minEq[log q(θ | y)− log p(θ)]− Eq[log p(y | θ)] (6)

The first term in equation (6) is a KL-loss between pos-
terior q(θ|y) and prior p(θ), which enforces the approximate
posterior to be similar to prior distribution. The second term is
called reconstruction loss, enforcing data consistency between
input signal and recovered signal. In a classic VAE application,
θ is simply a lower-dimensional representation in latent space
without the parameter(s) having any particular interpretation.

III. METHODS

In this paper we adopt a VAE-based structure to train a
network that can directly perform Bayesian inference on series
data using a non-linear forward model without any repetition
of the optimization process for each new dataset. The VAE-
based method is adopted from a conventional VAE structure
[20] (Section III-A), trained with a new loss function (Section
III-B) and a novel learning strategy (Section III-C).

A. Structure of VAE-like Neural Network

Figure 1 illustrates how a VAE-like framework can be used
to train a neural network (the encoder in figure 1) to perform
Variational Bayesian inference. This formulation is generic to

problems with a series data-model combination. Similar to
a conventional VAE, the VAE-like structure contains three
parts: an encoder network, a variational layer defining the
latent distributions for parameter of interest and, taking the
place of the decoder, a forward model. Unlike the conventional
VAE, the latent variables of VAE-like structure are specifically
identified with generative model parameters and the first-and-
second order samplers implemented to generate samples from
latent layer to calculate the loss. The loss function consists
of two reconstruction loss and two distribution loss terms,
discussed in the following section. In our neural network
architecture, the input layer, the encoder and the latent layer
combined form the final inference network that can be used
to performed inference on new data, the rest of elements are
used to train the network.

B. Loss Function in Training VAE-like Neural Network

As shown in equation 6, the conventional VAE loss consists
of a reconstruction loss term which measures the consistency
between inputs and outputs and a prior-posterior loss term
which measures the similarity between prior and posterior
distributions. The loss of VAE-like framework is designed
based on the conventional VAE loss. This loss of VAE-like
framework is the sum of a Kullback Leibler (KL) loss between
prior and posterior (i), a reconstruction loss between input and
output (ii), a KL loss between input and output (iii) and a
regression loss term over parameters of interest (iv), where
the first two terms added together are the conventional loss.

The uncertainty in estimation for a serial data-model com-
bination comes from two sources: the intrinsic variability of
parameters and the noise introduced by data acquisition. The
first source of uncertainty can be captured by the first KL loss
(equation (7)(i)) which was used to guarantee the similarity
between posterior distribution q(θ | y) and prior belief. But
the second is not included in the conventional loss expression.
Thus, the second KL loss term was added for our imple-
mentation. The second KL loss (equation (7)(iii)) measured
the discrepancy between distribution of input data P (y) and
distribution of recovered data P ′(y′). The reconstruction term
(ii) and regression loss term (iv) enforce the data consistency
between input and output and the consistency between true
parameters and network inferred parameters respectively. By
adding the regression loss term (iv) and KL loss term (iii),
the consistency loss and distribution loss were symmetric
between data and parameter of interest. The mean square error
(MSE) or relative absolute error (RAE) were considered as the
regression loss term. The coefficient λ is given as a scaling
factor to regression loss term.

L = KL(q(θ | y)||p(θ))︸ ︷︷ ︸
(i) prior−posterior

− Eq[log p(y | θ)]︸ ︷︷ ︸
(ii) reconstruction

+KL(P (y)||P ′ (y′))︸ ︷︷ ︸
(iii) recovered signal

+ λReg
(
µ(θ), θtrue

)︸ ︷︷ ︸
(iv) regression

= Eq[log q(θ | y)− log p(θ)]− Eq[log p(y | θ)]
− Ep [log p(y)− log p′ (y′)] + λReg (µ(θ), θtrue)

(7)
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Fig. 1. Structure of VAE-like Framework: This figure shows the structure of our VAE-like framework. The inference network (grey shading) consists of an
input layer, an encoder and a latent distribution. The input consists of time series data and known parameters with dimension Rn×(m1+m2), where m1

and m2 denotes the number of post-label delays and number of known parameters. The output are the hyperparameters of latent distributions, normally the
mean µ and standard deviation σ of θ and noise parameter e, where µ, σ ∈ Rn×(|θ|+|e|), where |.| denotes cardinality. The rest of the elements including
samplers, forward model and estimated output are used in neural network training. The loss function consisting of a reconstruction loss, a regression loss
and two KL loss used in training process is highlighted in the bottom of the figure. The two inputs of variational encoder, the time-series data and known
parameters of model are denoted as S and C. The hyperparameters of latent distribution are denoted as µ(θ) and σ(θ) and parameter inference is denoted as
θinf .

C. First-and-Second Order Sampler

As shown in equation (7), the computation of the first three
loss terms requires integration over continuous distribution of
θ. However, because of the intractability of these integrals,
integration approximation methods are needed. A first-and-
second-order sampler was proposed to address this issue in
an efficient way. The first-order sampler was designed to
discretize the sample space of parameter θ and the noise
parameter e while the second-order sampler was used to
generate realizations of noise.

The calculation of the reconstruction term and the KL loss
between prior and posterior in loss function (7)(i) and (7)(ii)
only required the first-order sampling. Equation (7)(i) can be
approximated by:

Eq[log q(θ | y)− log p(θ)]

=

∫
q(z)[log q(z | y)− log p(z)]dz

≈
∑

Θ∗∈Φ,Θ∗=(θ∗,e∗)

q∗(θ∗)[log q(θ∗|y)− log p(θ∗)]

(8)

By assuming the data likelihood to be a Gaussian distribu-
tion, equation (7)(ii) can be approximated by:

Eq[log p(y | θ)]

= − 1

2σ2
Eq

[
∥y − g(θ)∥22

]
= − 1

2σ2

∫
q(z) ∥y − g(z)∥22 dz

≈ − 1

2σ2

∑
Θ∗∈Φ,Θ∗=(θ∗,e∗)

q∗(θ∗) ∥y − g(θ∗)∥22

(9)

where Φ is the collection of samples in the discretized
sample space of (θ, e) and the generation of it was called
the first-order sampling. In this work, we segmented the
sample space with mean of posterior µ(Θ) as the center
and standard deviation of posterior as our resolution, i.e. for
Θ = (Θ1,Θ2, · · · ,Θm), Φ = {(Θ∗

1,Θ
∗
2, · · · ,Θ∗

m) : Θ∗
k ∈

µ(Θk)±n1σ(Θk), 1 ≤ k ≤ m}, where n1 is a set of numbers
determining the sample size. In the case of Gaussian posterior
distribution, n1 = {−3,−2,−1, 0, 1, 2, 3} covers 99% of the
whole distribution with resolution as 1σ and sample size 7.
The probability q(θ) was normalized to q∗(θ) to guarantee∑

θ∗∈Θ q∗(θ∗) = 1.
In our study, the ground truth distributions of input signal y

and recovered signal y′ were both Gaussian distributions, KL
loss between signal distributions shown in equation (7)(ii) can
be simplified as:
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KL [P (y)||P ′ (y′)]

=
1

2
log

(
2πσ′2

)
+

σ2 + (µ− µ′)
2

2σ′2
− 1

2

(
1 + log 2πσ2

)
= log

σ′

σ
+

σ2 + (µ− µ′)
2

2σ′2
(10)

where µ, σ denote the mean and standard deviation of
the distribution P for input signal y and µ′, σ′ denote
those of the distribution P ′ for recovered signal y′. During
training process by using simulation data, the distribution of
input signal is known, thus the only task is to evaluate µ′

and σ′, which requires the second sampling to generate the
realizations of noise. From the first sampling, the sample
space of noise parameter e has already been segmented, i.e.
e∗ ∈ {exp(µ(log(e))±n1σ(log(e)))}. However, this step only
discretizes the sample space of e but the realizations of error
ϵ requires another sampling from the noise distribution which
is Guassian according to the assumption ϵ ∼ N(0, e). Thus µ′

and σ′ can be written as:

µ′ = EP ′ [y′]

= EP ′ [g(θ) + ϵ]

=

∫
[g(θ) + ϵ]q(θ)N(ϵ)dθdϵ

≈
∑
θ∗∈Φ

∑
ϵ∗∈E

[g(θ∗) + ϵ∗]q∗(θ∗)N∗(ϵ∗)

(11)

σ′2 = EP ′ [y′
2
]− µ2

2

= EP ′ [g(θ) + ϵ]2 − µ2
2

≈
∑
θ∗∈Φ

∑
ϵ∗∈E

[g(θ∗) + ϵ∗]2q∗(θ∗)N∗(ϵ∗)− µ2
2

(12)

Here N is the probability density function of ϵ and E =
{ϵ∗ : ϵ∗ = ±n2e, e = exp(µ(e) ± n1σ(e))} is the collection
of error realizations after the second sampling. Since the error
term is assumed to be a Gaussian distribution, n2 is also
specified as {−3,−2,−1, 0, 1, 2, 3} covering 99% of the entire
distribution. To simplify the calculation, the independence of
θ and ϵ is assumed. Similar to q∗, N∗ is normalized after
discretization.

IV. EXPERIMENTS AND RESULTS

A. Forward Models for Model Evaluation

The framework was firstly evaluated using simulated data
from a simple bi-exponential model:

y = Ae−at +Be−bt (13)

where A, B were amplitude parameters and a, b were two
rates. This provided a representative ’toy’ model [6] to verify
the feasiblity of the algorithm.

Subsequently the framework was tested using simulated data
from two ASL models, the ASL General kinetic model and
ASL gamma dispersion model, to test its performance on
medical imaging models. These models reflect different levels

of model complexity and are fairly representative of existing
non-linear model fitting scenarios in quantitative MRI. The
ASL model expressions can be summarised as:

y = M0fg(ATT, t1, t1b, τ) (14)

y = M0fgdisp(ATT, t1, t1b, τ, s, p) (15)

The ASL general kinetic model was described by Buxton
[26] based on tracer kinetics to describe the relationship
between time-series ASL data y and physiological and ac-
quisition parameters, including perfusion f and arterial transit
time (ATT), relaxation time of tissue t1, relaxation time of
blood t1b and label duration τ . For this work, the expression of
general KM can be written as the product of M0, f and a non-
linear generating function g, the complete expression of ASL
kinetic models can be found in supplementary materials. M0 is
the arterial magnetization which requires a separate calibration
step to estimate in ASL experiments.

Based on the general KM, the gamma dispersion KM
incorporates then effects of dispersion into the model, where
dispersion describes the variation in arrival time of blood
through the vasculature due to fluid flow effects. Two more
parameters, the sharpness s and time-to-peak p, within the
model control the change in shape due to dispersion.

B. Training of VAE-like Framework

Neural networks were separately trained for each of the
three different forward models. The details of parameters to
estimate, known parameters and Residual Neural Network
(ResNet) structure [27] in each case are summarized in table
1. For each model, two hundred thousand datasets were
generated as training data. For the bi-exponential model,
all known parameters and parameters of interest were ran-
domly sampled from 0 to 3. For ASL models, the following
ranges were considered: f ∈ [0, 3] ml/g/min, ATT ∈ [0, 3]
s, t1 ∈ [0.8, 1.8] s, t1b ∈ [0.9, 2.4] s, τ ∈ [0.1, 3] s,
log(s) ∈ [1, 3], log(p) ∈ [−3,−1] and M0 was fixed to
be 1500. All physiologically plausible values of parameters
are covered in these ranges [25]. Gaussian white noise with
signal noise ratio (SNR) in the range [1,1000] were randomly
added to 75% of the data. During neural network training
with ASL models, ASL signals were scaled by 100 and 200
for general KM and dispersion KM as data normalization.
Independent Gaussian distributions were used as likelihood
distribution and the posterior assumption for all parameters
of interest during training process except the error term e.
As the standard deviation of a Gaussian likelihood, the e,
cannot be negative, the posterior for ϵ was considered as the
Log-Normal distribution. A uniform distribution was used as
the prior distribution for all of parameters. We employed a
ResNet [27] with 100 neurons in each layer as the encoder
whose weights were trained using Adam optimizer with initial
learning rate = 0.001, β1 = 0.9 , β2 = 0.9. The value of λ was
fixed to be 10 during training process.
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Forward Models Parameter to estimate Known Parameter ResNet Structure

Bi-exponential Model θ = (a,B) (A, b) 20 Layers

General KM θ = (M0f,ATT ) (t1, t1b, τ) 40 Layers

Dispersion KM θ = (M0f,ATT, s, p) (t1, t1b, τ) 40 Layers

TABLE I
The details of three forward models are shown here, where parameters of interests represent the parameters to estimate and known parameters indicate the

models parameters known before inference.

C. Simulation Experiments

One thousand simulation data were generated from the bi-
exponential and ASL General kinetic model and ASL gamma
dispersion model respectively with amplitude B and rate a
varying between 0 and 2 for bi-exponential example, perfusion
and ATT varying between 0 and 200 ml/100g/min and between
0 and 2 seconds for ASL models. M0 in ASL examples
was treated as a known parameter with fixed value. Gaussian
noise was added to generate data with SNR of infinity, 10,
5 and 2.5. MCMC and aVB were also used to estimate
parameters from the simulation data, to compare the average
computational time, the estimated values and the associated
uncertainty to that of VAE-based method. The accuracy of
inference framework was evaluated by calculating the error
between ground truth and estimated values. The computational
time was calculated as the average of 10 experiments. Each
aVB optimization went through 100 iterations for all forward
models while MCMC used 2000, 3000, 5000 burn-in epochs
for bi-exponential model, ASL general KM and dispersion
KM respectively and generated 500 samples for calculation
in each case. The number of burn-in epochs was determined
by performing MCMC multiple times with burn-in epochs
ranging from 500 to 5000, at intervals of 500 epochs and using
the smallest burn-in epochs that yielded the smallest error. All
experiments were performed by using MacBook Pro with a
2.7 GHz Intel Core i5 processor.

Figure 2 shows the parameter estimation error from the
simulation experiments across all methods and SNR. An
overall consistency in estimated values was observed across
the different inference frameworks on bi-exponential example
and ASL forward models. Across all experiments, median
error was zero or near to zero and large errors were associated
with lower SNR (wider inter-quartile range). The VAE-like
framework and MCMC performed well on perfusion and ATT
estimation using both general KM and dispersion KM, but
aVB exhibited a slightly larger error for the dispersion model
inference. A greater error in perfusion and ATT was observed
at large SNR levels when using the VAE-like structure as the
inference framework than MCMC and aVB.

Figure 3 shows the estimated parameter uncertainty (95%
credible interval of the marginal posterior) from the simulation
experiments. As expected, for all methods parameter uncer-
tainty increased with increased noise on the data. There was a
tendency for the VAE to estimate a larger CI for amplitude
parameters than MCMC but similar/smaller when it was a
time/rate parameter. MCMC converged to a negligible CI when
there was no noise, but for ASL forward models, the VAE-like
networks did not.

Figure 4, 5 and 6 show the estimated 2D joint density
at one specific parameter pair across different SNR using
all three inference algorithms. For bi-exponential model, we
set a = 1 and B = 1 as the representative parameter
pair. For ASL KMs, typical perfusion and ATT values of
healthy individuals, i.e. perfusion = 0.6 ml/g/min and ATT
= 1.5s were used as the example. The joint density was
calculated for aVB and VAE-like structure as multivariate
Gaussian distribution and independent Gaussian distribution
respectively, for MCMC the empirical density was computed
by using the density of points that fell into each grid among
10,000 repetitive samples. The density plots from different
methods shared similar location in parameter space, indicating
a consistent range of parameter estimations. Different from
MCMC where posterior distributions in principle converge to
the true posterior, aVB and VAE-like model only approximates
the posterior giving rise to a difference in the shape of the
distribution in figure 4, 5 and 6 to that of MCMC.

Table 2 compares the computational time when using dif-
ferent inference algorithms and forward models, indicating
a hundredfold to thousandfold improvement by using VAE-
based method.

VAE-like aVB MCMC
Bi-exponential 0.0195s 3.47s 4.43s

ASL General KM 0.0223s 4.39s 11.1s
ASL Dispersion KM 0.0224s 41.0s 81.9s

TABLE II
Computational time in Simulation Experiment: the computational time for

each experiment was measured 10 times and took an average

VAE-like aVB
ASL General KM 2.709s 7.850s

ASL Dispersion KM 2.338s 242.506s

TABLE III
Computational time in Real-data Experiment: the computational time for

each experiment was measured 10 times and took an average

D. Real Data Experiments

To test the practical application of VAE-based method
on ASL data, an in-vivo pCASL dataset with 6 post label
delays (PLDS) (0.25, 0.5, 0.75, 1.0, 1.25, 1.5) and resolution
64x64x24 taken from the example in the Oxford Neuroimag-
ing primer [28] was considered, which was taken from the
website https://users.fmrib.ox.ac.uk/∼chappell/asl primer/ex3/
index.htm and used with permission. The original dataset
contains 96 volumes and a separate calibration image, where

 https://users.fmrib.ox.ac.uk/~chappell/asl_primer/ex3/index.htm
 https://users.fmrib.ox.ac.uk/~chappell/asl_primer/ex3/index.htm


7

Fig. 2. Error of estimations across all three inference algorithms (MCMC, aVB and VAE-like framework): (a) and (b) error in amplitude B and rate
a using bi-exponential model as the forward model;(c) and (d) error in perfusion and ATT using general KM as the forward model;(e) and (f) error in
perfusion and ATT using dispersion KM as the forward model; The code for both simulation and real-data experiments in this work is available on GitHub
https://github.com/Yechuan-z/VAE-like-framework.git.

each PLD was repeated 8 times. Before our experiment, pre-
processing steps including motion correction and distortion
correction were performed by using BASIL toolbox command
oxford asl [29]. The total magnetization M0 was also com-
puted by this tool from the calibration image. An average
of the ASL signal over 8 repeats and a reduced dataset
containing 8 sets with a single repeat for each PLD were
considered as the representative data at a high or low SNR
levels. Perfusion and ATT values were measured by aVB and
VAE-based methods by using general KM or dispersion KM
as the forward model. As the brain image processing tools for
ASL were already successfully implemented in the software
FSL, the aVB analysis used in real data experiments was
performed by BASIL toolbox command basil [29].

Figure 7 shows the estimated perfusion and ATT from the
the averaged data when using general KM figure 7 (a) and
dispersion KM figure 7 (b) as the forward model. In both cases,
the perfusion parameter was successfully estimated by both
aVB and VAE-like framework. A clear perfusion separation
between white matter and grey matter can be observed which
was consistent with the physiology of the brain. The VAE-

like framework provided a longer ATT value in white matter,
which was not as apparent from the ATT estimated using aVB.

Figure 9 in supplementary materials shows the estimated
perfusion and ATT using a reduced data with only one
measurement at each PLD by using general KM (a) and
dispersion KM (b) as the forward model. Similar to figure
7, perfusion was estimated with a clear pattern by using both
VAE-like framework and the aVB analysis, however perfusion
estimations appeared to be less smooth by using VAE-like
framework. Similar to averaged data set, VAE-like framework
still exhibited a longer ATT value in white matter, but it was
less noticeable when using aVB.

Table 3 shows the computational time when using aVB in
BASIL tool box and using VAE-like framework to process the
ASL pCASL dataset. The computational time for VAE-like
framework stabilized at 2-3s for different choice of forward
model, but aVB exhibited a 30-fold increase when using
dispersion KM as forward model compared to that seen using
the general KM.

https://github.com/Yechuan-z/VAE-like-framework.git
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Fig. 3. 95% CI across all three inference algorithms (MCMC, aVB and VAE-like framework): (a) and (b) amplitude B and rate a using bi-exponential model
as the forward model;(c) and (d) perfusion and ATT using general KM as the forward model;(e) and (f) perfusion and ATT using dispersion KM as the
forward model;

V. DISCUSSION

In this paper, a VAE-like framework was proposed to
solve the parameter estimation problem for non-linear forward
models, with a particular application in the field of medi-
cal imaging. Conventionally VAEs are used as a dimension
compression technique, by adjusting the VAE structure and
loss function it was adapted for parameter estimation via
Bayesian inference. The framework was evaluated using a
bi-exponential model and two ASL-MRI forward models on
both synthetic data and real data. These methods represent
relatively simple but typical forward models for data mod-
elling with varying complexity, whilst still being amenable to
computationally demanding Bayesian inference methods such
as MCMC. MCMC and aVB were applied to compare with
the VAE-like framework in simulation experiments, showing
comparable results among different methods for parameter and
uncertainty estimation. The number of MCMC burn-in epochs
was determined by trial-and-error process as suggested in the
previous section. Although this approach may not be the most
efficient strategy to adopt, it should be sufficient to provide
a reasonable comparison. Overall, the results from VAE-like

frameworks were similar to ’gold standard’ MCMC inference
except a larger error for the VAE-like frameworks with ASL
models at a low noise level. The observations of larger error
at small noise levels might be explained by the fact that neural
networks were trained with data simulated from all noise
levels, whereas the estimation at a small noise level reflects
the sum of all possible uncertainty of input signals covering all
noise levels. This performance a low noise may be acceptable
in practical applications such as ASL MRI which has an SNR
within the lower range of those tested here.

The estimated 95% CI for each parameter of interest exhib-
ited the expected increasing trend with noise but the magnitude
varied among different inference methods. For ASL models,
a greater CI on perfusion was observed when using the VAE-
like framework than when using MCMC while that of ATT
was similar between the two methods. The possible reason
is that perfusion is a scaling factor of ASL signals, affecting
the magnitude of the signal value, but ATT is an exponential
term and also the boundary point of the piecewise ASL kinetic
function, affecting the signal value more from the position of
the peak rather than signal magnitude. Thus the model may be
more likely to attribute the noise of the signal to the scaling
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Fig. 4. 2D Plot of joint posterior for bi-exponential model with ground truth a = 1 and B = 1. Posterior distributions were generated by using VAE-like
framework (first row), aVB (second row) and MCMC (third row). When performing MCMC for the bi-exponential model, 2000 burn-in epochs were considered.

factor perfusion than the boundary point ATT.
To test the similarity of posterior distribution among dif-

ferent inference algorithms including MCMC, aVB and VAE-
like framework, the 2D density plots at some representative
parameter values were given. In each case, aVB and the VAE-
like framework were similar in both shape and location of the
estimated approximate posterior. Although MCMC exhibited
similar distribution location, the shapes of posterior were
different from both aVB and the VAE-like framework. MCMC
in principle can converge to the true posterior distribution,
however, aVB and VAE-like framework follow the variational
Bayesian approach of using an approximate posterior, which is
restricted to a particular form, resulting in a natural deviation
from the true distribution if the assumption of posterior is
unable to exactly replicate the true form. From visual inspec-
tion, the shape of posterior estimated from aVB was more
similar to that of MCMC than VAE-like framework. This may
be explained by the fact that aVB assumed a multivariate
Gaussian distribution with covariance terms but the current
VAE-like framework assumed independent Gaussian posterior
for each parameter. The additional covariance term allows
more freedom in the choice of shape and is something that
could in principle be added to a future implementation of the
VAE-like framework.

We also tested the performance of VAE-like framework
comparing to aVB on sample pCASL data, examining the
performance when applied to higher SNR (average over mul-

tiple measurements) and subset of the full data. The results
suggested VAE-like framework performed as well as aVB
in perfusion inference when using general KM or dispersion
KM as the forward model. The VAE-like frameworks also
provided greater contrast between white and grey matter on
ATT than aVB for both ASL models, which is consistent with
the expected difference in ATT between these two tissue types.

In terms of calculation speed, the VAE-like framework was
substantially faster for parameter inference. In contrast with
aVB and MCMC, the VAE-like framework reduced computa-
tion cost by at least a hundred-fold in simulation experiments,
enabling the computation of thousands of data by using ASL
models within couple of seconds. While both MCMC and
aVB required multiple of iterations to complete the parameter
estimation process, the neural network amortized the repeated
evaluations of forward model into the network training pro-
cess. The improvement in computational time by using VAE-
like framework in real data experiments was less substantial
than simulation experiments. This may be explained by the
overhead of loading and handling the imaging data which are
included in the overall computation time. The computational
cost for VAE-like framework was more stable among forward
models of different complexity, but for aVB and MCMC a
steep increase in computational time can be observed along
with the model complexity. This has implications for the
use of Bayesian inference in clinical applications of medical
imaging, since the VAE-like approach might allow near real-
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Fig. 5. 2D Plot of joint posterior for the ASL general KM with ground truth perfusion = 0.6 ml/g/min and ATT = 1.5s.Posterior distributions were generated
by using VAE-like framework (first row), aVB (second row) and MCMC (third row). When performing MCMC for the ASL general KM, 3000 burn-in epochs
were considered.

time production of parameter maps.

The proposed architecture of a VAE-like framework for
parameter estimation is novel compared to other approaches to
employ NNs within the context of medical image parameter
mapping. Unlike previous literature which employed multi-
layer perceptron [15] or CNN [17] to infer parameter of
interest, the VAE-like structure adopted in this work allows for
a complete (albeit approximate) Bayesian inference. There are
some literature performing parameter inference by combining
variational Bayes and neural network, for example, Bliesener
et al. [22] in 2020 proposed a solution for DCE-MRI parameter
inference, where the use of a variational loss enabled the
calculation of parameter uncertainty, but they did not incor-
porate the forward model as the decoder and did not consider
their work as an encoder-decoder pair. In our architecture, we
constructed a complete VAE structure, where the encoder part
is directly involved in parameter inference, and the decoder
was used only in loss calculation during training. A novel
loss calculation was established in the VAE-like framework
through the incorporation of KL loss between distributions of
signal and the incorporation of first-and-second order sampling
strategy, while Bliesener’s work only adopted the conventional
loss.

Some previous literature have applied deep learning tech-
niques to process image data, for example Luciw et al.
[17] trained a CNN and a U-Net with real 3D data sets

for automated perfusion estimation. But in our work neural
networks were trained with simulation data, which avoids the
possible bias from real data associated with different types of
scanners, choices of imaging protocols and subject groups,
and guarantees the generalizability to other data sets. The
current neural network only takes vector data as an input, in
principle this could be extended to image data in the future
following the adoption of CNN in these other works whilst
still retaining the ability to perform (approximate) Bayesian
inference according to a defined forward model. A potential
advantage of of adopting an image input would be having the
ability to incorporate spatial information into the inference
framework, mirroring the benefits seen when using a spatial
prior in the aVB algorithm [30].

There are some potential limitations to the VAE-like frame-
work. The most significant limitation is the specification of
number of samples and the parameters of those samples. In
designing this framework for ASL models, the choice of PLDs
is fixed at beginning. However, in practice, the choice of PLDs
can be flexible, for example, the use of optimal PLDs for
estimating perfusion and ATT together in ASL-MRI [31]. For
different acquisition protocols, a new VAE-like network needs
to be established and trained before performing inference. This
is not necessarily a limitation in practice as the computational
complexity of training process depends on the application
and the neural network training only needs to be done once
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Fig. 6. 2D Plot of Joint Posterior for ASL dispersion KM with ground truth perfusion = 0.6 ml/g/min and ATT = 1.5s.Posterior distributions were generated
by using VAE-like framework (first row), aVB (second row) and MCMC (third row). When performing MCMC for the ASL dispersion KM, 5000 burn-in
epochs were considered.

Fig. 7. Real Data Experiment with the Averaged Data Set: (a) Perfusion and ATT estimated by aVB and VAE-like structure by using the general KM as
forward model; (b)Perfusion and ATT estimated by aVB and VAE-like structure by using the dispersion KM as forward model; The brain mask used for ATT
values was generated from perfusion greater than 5 ml/100g/min.

according to the acquisition protocol and then can be reused
for any data acquired with that protocol. One possible follow-
up research direction would be including multiple choices of
PLDs into one neural network.

The second limitation is a result of ’the curse of dimen-
sionality’. There is a tendency of our VAE-like approach
to become computationally expensive in generating samples
during loss calculation in the training process as the number

of parameters increases. Although the first-and-second order
sampling strategy ensures the even distribution of samples, the
number of samples required grows exponentially with number
of latent parameters. For set n1, n2 and parameters θ, the
number of samples to collect is |n1||θ|∗|n2|, where |·| denotes
the cardinality. The only solution for this problem is to reduce
either the range or the resolution of the sample collection, i.e.
reducing |n1| or |n2|, but at a cost of accuracy. Again, this
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limitation only applies to the training of the inference network
which would occur prior to deployment on new data when
there is both potential for time and computational resources
to be available.

The other obstacle in using such a framework is a potential
lack of flexibility in the choosing the form of data likelihood,
prior and posterior distribution. If the initial guess on prior or
posterior changes, a new sampling strategy needs to be derived
and a new neural network needs to be trained. More generally
VB methods also face this problem, for example a change
in prior distributional form would necessitate rederiving the
update equations for aVB (if indeed it is possible to derive
update equations at all).

VI. CONCLUSION

In this work, a fast VAE-based framework trained with a
new loss function and a novel sampling strategy was proposed
to solve parameter estimation problem in the context of
nonlinear forward models with application to medical imaging.
ASL kinetic models were used to test for the feasibility
of this framework for parametric mapping. A hundredfold
improvement was achieved in the computational efficiency
compared with conventional inference frameworks without
substantial loss of accuracy. The performance by using VAE-
like framework on ASL data was as accurate as conventional
methods in perfusion estimation and even outperformed in
ATT estimation.

VII. DATA AVAILABILITY

In this work, an in-vivo pCASL dataset with 6 post label
delays (PLDS) (0.25, 0.5, 0.75, 1.0, 1.25, 1.5) and resolution
64x64x24 was considered in real data experiments and used
with permission. This dataset is openly available in Oxford
Neuroimaging primer at website https://users.fmrib.ox.ac.uk/
∼chappell/asl primer/ex3/index.htm.
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