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Abstract. An approach to optimal actuator design based on shape and topology optimisation3
techniques is presented. For linear diffusion equations, two scenarios are considered. For the first4
one, best actuators are determined depending on a given initial condition. In the second scenario,5
optimal actuators are determined based on all initial conditions not exceeding a chosen norm. Shape6
and topological sensitivities of these cost functionals are determined. A numerical algorithm for7
optimal actuator design based on the sensitivities and a level-set method is presented. Numerical8
results support the proposed methodology.9
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1. Introduction. In engineering, an actuator is a device transforming an ex-13

ternal signal into a relevant form of energy for the system in which it is embedded.14

Actuators can be mechanical, electrical, hydraulic, or magnetic, and are fundamental15

in the control loop, as they materialise the control action within the physical system.16

Driven by the need to improve the performance of a control setting, actuator/sensor17

positioning and design is an important task in modern control engineering which18

also constitutes a challenging mathematical topic. Optimal actuator positioning and19

design departs from the standard control design problem where the actuator con-20

figuration is known a priori, and addresses a higher hierarchy problem, namely, the21

optimisation of the control to state map.22

There is no unique framework which is followed to address optimal actuator prob-23

lems. However, concepts which immediately suggest themselves - at least for linear24

dynamics - and which have been addressed in the literature, build on choosing actu-25

ator design in such a manner that stabilization or controllability are optimized by an26

appropriate choice of the controller. This can involve Riccati equations from linear-27

quadratic regulator theory, and appropriately chosen parameterizations of the set of28

admissible actuators. The present work partially relates to this stream as we optimise29

the actuator design based on the performance of the resulting control loop. Within30

this framework, we follow a distinctly different approach by casting the optimal ac-31

tuator design problem as shape and topology optimisation problems. The class of32

admissible actuators are characteristic functions of measurable sets and their shape33

is determined by techniques from shape calculus and optimal control. The class of34

cost functionals which we consider within this work are quadratic ones and account35

for the stabilization of the closed-loop dynamics. We present the concepts here for36

the linear heat equation, but the techniques can be extended to more general classes37

of functionals and stabilizable dynamical systems. We believe that the concepts of38

shape and topology optimisation constitute an important tool for solving actuator39
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positioning problems, and to our knowledge this can be the first step towards this40

direction. More concretely, our contributions in this paper are:41

i) We study an optimal actuator design problem for linear diffusion equations.42

In our setting, actuators are parametrised as indicator functions over a sub-43

domain, and are evaluated according to the resulting closed-loop performance44

for a given initial condition, or among a set of admissible initial conditions45

not exceeding a certain norm.46

ii) By borrowing a leaf from shape calculus, we derive shape and topological47

sensitivities for the optimal actuator design problem.48

iii) Based on the formulas obtained in ii), we construct a gradient-based and a49

level-set method for the numerical realisation of optimal actuators.50

iv) We present a numerical validation of the proposed computational method-51

ology. Most notably, our numerical experiments indicate that throughout52

the proposed framework we obtain non-trivial, multi-component actuators,53

which would be otherwise difficult to forecast based on tuning, heuristics, or54

experts’ knowledge.55

Let us, very briefly comment on the related literature. Many of these endeavours56

focus on control problems related to ordinary differential equations. We quote the57

surveys papers [?,?,?] and [?]. From these publications already it becomes clear that58

the notion by which optimality is measured is an important topic in its own right.59

The literature on optimal actuator positioning for distributed parameter systems is60

less rich but it also dates back for several decades already. From among the earlier61

contributions we quote [?] where the topic is investigated in a semigroup setting for62

linear systems, [?] for a class of linear infinite dimensional filtering problems, and [?]63

where the optimal actuator problem is investigated for hyperbolic problems related64

to active noise suppression. In [?] the authors optimise the decay rate in the one-65

dimensional wave equation by choosing the actuator position.66

In [?, ?] the optimal actuator location problem has been studied in the frame-67

work of semigroup setting of optimal control problems: Given a parametric set which68

characterizes the actuator location, the control configuration is evaluated by the per-69

formance of the resulting quadratic optimal control problem. In [?, ?] this idea has70

been extended to optimal actuator location using H2 and H∞ control criteria.71

In a series of interesting papers including [?,?,?] the authors investigate optimal72

sensor and actuator problems by techniques related to exact controllability. In [?]73

the optimal actuators for the one-dimensional wave equation are chosen on the basis74

of minimal energy controls steering the system to zero within a specified time. A75

similar approach is followed in [?] for linear parabolic systems, where a randomized76

cost criterion is used to determine the optimal actuator locations. This allows to77

express the optimality criterion in terms of spectral information. In [?] the problem78

of optimal shape and location of sensors is addressed on the basis of maximizing the79

constant which appears in an averaged version of the observability inequality. The80

approach exploits the fact that for specific problems the relevant quantities can be81

expressed in terms of spectral information. In particular, the existence of optimal82

shapes can also be guaranteed.83

The literature also offers numerous numerical approaches to solve the optimal84

actuator design problem. Many of them contain linear quadratic regulator problems85

in the nucleus of their techniques, see eg. [?,?,?,?]. This is not the case for [?,?,?]86

which formulate the problem as determining the most efficient control to guarantee87

null-controllability via the Hilbert Uniqueness Method.88

Finally, let us mention that the optimal actuator problem is in some sense dual89
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to optimal sensor location problems [?], which is of paramount importance.90

Structure of the paper. The paper is organised as follows.91

In Section 2, the optimal control problems, with respect to which optimal ac-92

tuators are sought later, are introduced. While the first formulation depends on a93

single initial condition for the system dynamics, in the second formulation the optimal94

actuator mitigates the worst closed-loop performance among all the possible initial95

conditions.96

In Sections 3 and 4 we derive the shape and topological sensitivities associated97

to the aforedescribed optimal actuator design problems.98

Section 5 is devoted to describing a numerical approach which constructs the99

optimal actuator based on the shape and topological derivatives computed in Sections100

3 and 4. It involves the numerical realisation of the sensitivities and iterative gradient-101

based and level-set approaches.102

Finally in Section 6 we report on computations involving numerical tests for our103

model problem in dimensions one and two.104

1.1. Notation. Let Ω ⊂ Rd, d = 1, 2, 3 be either a bounded domain with C1,1105

boundary ∂Ω or a convex domain, and let T > 0 be a fixed time. The space-time106

cylinder is denoted by ΩT := Ω × (0, T ]. Further by H1(Ω) denotes the Sobolev107

space of square integrable functions on Ω with square integrable weak derivative.108

The space H1
0 (Ω) comprises all functions in H1(Ω) that have trace zero on ∂Ω and109

H−1(Ω) stands for the dual of H1
0 (Ω). The space

◦
C0,1(Ω,Rd) comprises all Lipschitz110

continuous functions on Ω vanishing on ∂Ω. It is a closed subspace of C0,1(Ω,Rd),111

the space of Lipschitz continuous mappings defined on Ω. Similarly we denote by112
◦
Ck(Ω,Rd) all k-times differentiable functions on Ω vanishing on ∂Ω. We use the113

notation ∂f for the Jacobian of a function f . Further Bε(x) stands for the open ball114

centered at x ∈ Rd with radius ε > 0. Its closure is denoted Bε(x) := Bε(x). By115

Y(Ω) we denote the set of all measurable subsets ω ⊂ Ω. We say that a sequence (ωn)116

in Y(Ω) converges to an element ω ∈ Y(Ω) if χωn → χω in L1(Ω) as n → ∞, where117

χω denotes the characteristic function of ω. In this case we write ωn → ω. Notice118

that χωn → χω in L1(Ω) as n → ∞ if and only if χωn → χω in Lp(Ω) as n → ∞ for119

all p ∈ [1,∞). For two sets A,B ⊂ Rd we write A b B is A is compact and A ⊂ B.120

2. Problem formulation and first properties.121

2.1. Problem formulation. Our goal is to study an optimal actuator position-122

ing and design problem for a controlled linear parabolic equation. Let U be a closed123

and convex subset of L2(Ω) with 0 ∈ U . For each ω ∈ Y(Ω) the set χωU is a convex124

subset of L2(Ω). The elements of the space Y(Ω) are referred to as actuators. The125

choices U = L2(Ω) and U = R, considered as the space of constant functions on Ω,126

will play a special role. Further, U := L2(0, T ;U) denotes the space of time-dependent127

controls, which is equipped with the topology induced by the L2(0, T ;L2(Ω))−norm.128

We denote by K a nonempty, weakly closed subset of H1
0 (Ω). It will serve as the129

set of admissible initial conditions for the stable formulation of our optimal actuator130

positioning problem.131

With these preliminaries we consider for every triplet (ω, u, f) ∈ Y(Ω)×U×H1
0 (Ω)132

the following linear parabolic equation: find y : Ω× [0, T ]→ R satisfying133

∂ty −∆y = χωu in Ω× (0, T ],(1a)134

y = 0 on ∂Ω× (0, T ],(1b)135

y(0) = f on Ω.(1c)136137
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In the following, we discuss the well-posedness of the system dynamics 1 and the asso-138

ciated linear-quadratic optimal control problem, to finally state the optimal actuator139

design problem.140

Remark 2.1. Although we restrict ourselves in this work to the Laplacian oper-141

ator −∆ in (1a) the shape and topology sensitivities results remain true with obvious142

modifications if this operator is replaced by a second order elliptic operator with C1143

coefficients.144

Well-posedness of the linear parabolic problem. It is a classical result [?, p. 356,145

Theorem 3] that system (1) admits a unique weak solution y = yu,f,ω in W (0, T ),146

where147

W (0, T ) := {y ∈ L2(0, T ;H1
0 (Ω)) : ∂ty ∈ L2(0, T ;H−1(Ω))},148

which satisfies by definition,149

(2) 〈∂ty, ϕ〉H−1,H1
0

+

∫
Ω

∇y · ∇ϕ dx =

∫
Ω

χωuϕ dx150

for all ϕ ∈ H1
0 (Ω) for a.e. t ∈ (0, T ], and y(0) = f . For the shape calculus of Section 4151

we require that f ∈ H1
0 (Ω). In this case the state variable enjoys additional regularity152

properties. In fact, in [?, p. 360, Theorem 5] it is shown that for f ∈ H1
0 (Ω) the weak153

solution yω,u,f satisfies154

(3) yu,f,ω ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), ∂ty

u,f,ω ∈ L2(0, T ;L2(Ω))155

and there is a constant c > 0, independent of ω, f and u, such that156

(4) ‖yu,f,ω‖L∞(H1) + ‖yu,f,ω‖L2(H2) + ‖∂tyu,f,ω‖L2(L2) ≤ c(‖χωu‖L2(L2) + ‖f‖H1).157

Thanks to the lemma of Aubin-Lions the space158

(5) Z(0, T ) := {y ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) : ∂ty ∈ L2(0, T ;L2(Ω))}159

is compactly embedded into L∞(0, T ;H1
0 (Ω)).160

The linear-quadratic optimal control problem. After having discussed the well-161

posedness of the linear parabolic problem, we recall a standard linear-quadratic opti-162

mal control problem associated to a given actuator ω. Let γ > 0 be given. First we163

define for every triplet (ω, f, u) ∈ Y(Ω)×H1
0 (Ω)×U the cost functional164

(6) J(ω, u, f) :=

∫ T

0

‖yu,f,ω(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt.165

By taking the infimum in (6) over all controls u ∈ U we obtain the function J1, which166

is defined for all (ω, f) ∈ Y(Ω)×H1
0 (Ω):167

(7) J1(ω, f) := inf
u∈U

J(ω, u, f).168

It is well known, see e.g. [?] that the minimisation problem on the right hand side of169

(7), constrained to the dynamics (1) admits a unique solution. As a result, the function170

J1(ω, f) is well-defined. The minimiser u of (7) depends on the initial condition f171

and the set ω, i.e., u = uω,f . In order to eliminate the dependence of the optimal172

actuator ω on the initial condition f we define a robust function J2 by taking the173

supremum in (7) over all normalized initial conditions f in K:174

(8) J2(ω) := sup
f∈K,

‖f‖
H1

0(Ω)
≤1

J1(ω, f).175

We show later on that the supremum on the right hand side of (8) is actually attained.176
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The optimal actuator design problem. We now have all the ingredients to state the177

optimal actuator design problem we shall study in the present work. In the subsequent178

sections we are concerned with the following minimisation problem179

inf
ω∈Y(Ω)
|ω|=c

J1(ω, f), for f ∈ K,
(9)180

where c ∈ (0, |Ω|) is the measure of the prescribed volume of the actuator ω. That is,181

for a given initial condition f and a given volume constraint c, we design the actuator182

ω according to the closed-loop performance of the resulting linear-quadratic control183

problem (7). Note that no further constraint concerning the actuator topology is184

considered. Building upon this problem, we shall also study the problem185

inf
ω∈Y(Ω)
|ω|=c

J2(ω),
(10)186

where the dependence of the optimal actuator on the initial condition of the dynamics187

is removed by minimising among the set of all the normalised initial condition f ∈ K.188

Finally, another problem of interest which can be studied within the present189

framework is the optimal actuator positioning problem, where the topology of the190

actuator is fixed, and only its position is optimised. Given a fixed set ω0 ⊂ Ω we191

study the optimal actuator positioning problem by solving192

inf
X∈Rd

J1((id +X)(ω0), f), for f ∈ K,(11)193

and194

inf
X∈Rd

J2((id +X)(ω0)),(12)195

where (id +X)(ω0) = {x + X : x ∈ ω0}, i.e., we restrict our optimisation procedure196

to a set of actuator translations.197

Our goal is to characterize shape and topological derivatives for J1(ω, f) (for198

fixed f) and J2(ω) in order to develop gradient type algorithms to solve (9) and (10).199

The results presented in Sections 3 and 4 can also be utilized to derive optimality200

conditions for problems (11) and (12). In addition, we investigate numerically whether201

the proposed methodology provides results which coincide with physical intuition.202

2.2. Optimality system for J1. The unique solution ū ∈ U of the minimisation203

problem on the right hand side of (7) can be characterised by the first order necessary204

optimality condition205

(13) ∂uJ(ω, ū, f)(v − ū) ≥ 0 for all v ∈ U.206

The function ū ∈ U satisfies the variational inequality (13) if and only if there is a207

multiplier p ∈W (0, T ) such that the triplet (u, y, p) ∈ U×W (0, T )×W (0, T ) solves208 ∫
ΩT

∂tyϕ+∇y · ∇ϕ dx dt =

∫
ΩT

χωuϕ dx dt for all ϕ ∈W (0, T ),(14a)209 ∫
ΩT

∂tψp+∇ψ · ∇p dx dt = −
∫

ΩT

2yψ dx dt for all ψ ∈W (0, T ),(14b)210 ∫
Ω

(2γu− χωp̄)(v − u) dx ≥ 0 for all v ∈ U , a.e. t ∈ (0, T ),(14c)211
212

supplemented with the initial and terminal conditions y(0) = f and p(T ) = 0 a.e. in213

Ω. Two cases are of particular interest to us:214
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Remark 2.2. (a) If U = L2(Ω), then (14c) is equivalent to 2γū = χωp̄ a.e.215

on Ω× (0, T ).216

(b) If U = R, then (14c) is equivalent to 2γū =
∫
ω
p̄ dx a.e. on (0, T ).217

2.3. Well-posedness of J2. Given ω ∈ Y(Ω) and f ∈ K, we use the notation218

uf,ω to denote the unique minimiser of J(ω, ·, f) over U.219

Lemma 2.3. Let (fn) be a sequence in K that converges weakly in H1
0 (Ω) to f ∈220

K, let (ωn) be a sequence in Y(Ω) that converges to ω ∈ Y(Ω), and let (un) be a221

sequence in U that converges weakly to a function u ∈ U. Then we have222

yun,fn,ωn → yu,f,ω in L2(0, T ;H1
0 (Ω)) as n→∞,

yun,fn,ωn ⇀ yu,f,ω in L2(0, T ;H2(Ω) ∩H1
0 (Ω)) as n→∞.

(15)223

Proof. The a-priori estimate (4) and the compact embedding Z(0, T ) ⊂224

L2(0, T ;H1
0 (Ω)) show that we can extract a subsequence of (yun,fn,ωn) that converges225

weakly to an element y in L2(0, T ;H2(Ω) ∩H1
0 (Ω)) and strongly in L2(0, T ;H1

0 (Ω)).226

Using this to pass to the limit in (2) with (u, f, ω) replaced by (un, fn, ωn) implies by227

uniqueness that y = yu,f,w.228

Lemma 2.4. Let (fn) be a sequence in H1
0 (Ω) converging weakly to f ∈ H1

0 (Ω)229

and let (ωn) be a sequence in Y(Ω) that converges to ω ∈ Y(Ω). Then we have230

(16) ūfn,ωn → ūf,ω in L2(0, T ;L2(Ω)) as n→∞.231

Proof. Using estimate (4) we see that for all u ∈ U and n ≥ 0, we have232 ∫ T

0

‖yū
fn,ωn ,fn,ωn(t)‖2L2(Ω) + γ‖ūfn,ωn(t)‖2L2(Ω) dt

≤
∫ T

0

‖yu,fn,ωn(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt

≤ c(‖χωnu‖2L2(L2) + ‖fn‖2H1).

(17)233

It follows that (ūn) := (ūfn,ωn) is bounded in L2(0, T ;L2(Ω)) and hence there is an234

element ū ∈ L2(0, T ;L2(Ω)) and a subsequence (ūnk), ūnk ⇀ ū in L2(0, T ;L2(Ω))235

as k → ∞. In addition this subsequence satisfies lim infk→∞ ‖ūnk‖L2(0,T ;L2(Ω)) ≥236

‖ū‖L2(0,T ;L2(Ω)). Since U is closed we also have ū ∈ L2(0, T ;U). Together with237

Lemma 2.3 we therefore obtain from (17) by taking the lim inf on both sides,238

(18)

∫ T

0

‖yū,f,ω(t)‖2L2(Ω) + γ‖ū(t)‖2L2(Ω) dt ≤
∫ T

0

‖yu,f,ω(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt239

for all u ∈ U. This shows that ū = ūf,ω and since ūf,ω is the unique minimiser240

of J(ω, ·, y) the whole sequence (ūn) converges weakly to ūf,ω. In addition it follows241

from the strong convergence yū
fn,ωn ,fn,ω → yū

f,ω,f,ω inW (0, T ) and estimate (17) that242

the norm ‖ūfn,ωn‖L2(0,T ;L2(Ω)) converges to ‖ūf,ω‖L2(0,T ;L2(Ω)). As norm convergence243

together with weak convergence imply strong convergence, this shows that ūfn,ωn244

converges strongly to ūf,ω in L2(0, T ;L2(Ω)) as was to be shown.245

We now prove that ω 7→ J2(ω) is well-defined on Y(Ω).246

Lemma 2.5. For every ω ∈ Y(Ω) there exists f ∈ K satisfying ‖f‖H1
0 (Ω) ≤ 1 and247

(19) J2(ω) = J1(ω, f).248
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Proof. Let ω ∈ Y(Ω) be fixed. In view of 0 ∈ U and (4) and since K ⊂ H1
0 (Ω) ↪→249

H1
0 (Ω) we obtain for all f ∈ H1

0 (Ω) with ‖f‖H1
0 (Ω) ≤ 1,250

(20) J1(ω, f) = min
u∈U

J(ω, u, f) ≤
∫ T

0

‖y0,f,ω(t)‖2L2(Ω) dt ≤ c‖f‖
2
H1

0 (Ω) ≤ cr
2.251

Further we can express J2 as follows252

(21) J2(ω) = sup
f∈K

‖f‖
H1

0(Ω)
≤1

∫ T

0

‖yū
f,ω,f,ω(t)‖2L2(Ω) + γ‖ūf,ω(t)‖2L2(Ω) dt.253

Let (fn) ⊂ K, ‖fn‖H1
0 (Ω) ≤ 1 be a maximising sequence, that is,254

(22) J2(ω) = lim
n→∞

∫ T

0

‖yū
ω,fn ,fn,ω(t)‖2L2(Ω) + γ‖ūω,fn(t)‖2L2(Ω) dt.255

The sequence (fn) is bounded in K and therefore we find a subsequence (fnk) converg-256

ing weakly to an element f ∈ K. Additionally, the limit element satisfies ‖f‖H1
0 (Ω) ≤257

lim infk→∞ ‖fnk‖H1
0 (Ω) ≤ 1 and hence ‖f‖H1

0 (Ω) ≤ 1. Since (fnk) is also bounded in258

H1
0 (Ω) we may assume that (fnk) also converges weakly to f ∈ H1

0 (Ω). Thanks to259

Lemmas 2.4 and 2.3 we obtain260

J2(ω) = lim
k→∞

∫ T

0

‖yū
fnk

,ω
,fnk ,ω(t)‖2L2(Ω) + γ‖ūfnk ,ω(t)‖2L2(Ω) dt

=

∫ T

0

‖yū
f,ω,f,ω(t)‖2L2(Ω) + γ‖ūf,ω(t)‖2L2(Ω) dt.

(23)261

Remark 2.6. In view of Lemma 2.5 we write from now on J2(ω) =262

max f∈K,
‖f‖

H1
0(Ω)
≤1

J1(ω, f).263

Remark 2.7. While the focus of the present work lies on the sensitivity analysis264

for J1 and J2, let us still comment briefly on existence for problems (9) and (10). One265

approach can be based on the finite dimensional parametrization of shapes using for266

instance non-uniform rational b-splines (NURBS) as in e.g. [?]. Another approach267

can be to restrict ourselves to shapes that can be represented by graphs, see [?, Ch. 2].268

Alternatively a convexification technique can be used. For this purpose one defines269

P =

{
a ∈ L2(Ω) :

∫
Ω

a(x)dx = c, a(x) ∈ [0, 1] a.e. in Ω

}
,270

and replaces (1a) by271

(1’a) ∂ty −∆y = au in Ω× (0, T ].272

To be concrete, let us set U = L2(Ω) and consider273

(24) min
a∈P
J̃ 2(a) := min

a∈P
max
f∈K

‖f‖
H1

0(Ω)
≤1

J̃ 1(a, f)274
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where275

(25) J̃ 1(a, f) = min
u∈U

∫ T

0

‖yu,f,a(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω)dt,276

and yu,f,a is the solution to (1’a),(1b), (1c). It is possible to argue that the min/max277

operations appearing in J1 and J2 are well defined. Moreover we have the following278

result, for which the proof is given in the Appendix.279

Lemma 2.8. Problem (24) admits a solution.280

3. Shape derivative. In this section we prove the directional differentiability281

of J2 at arbitrary measurable sets. We employ the averaged adjoint approach [?]282

which is tailored to the derivation of directional derivatives of PDE constrained shape283

functions. Moreover this approach allows us later on to also compute the topological284

derivative of J1 and J2 without performing asymptotic analysis which can otherwise285

be quite involved [?].286

Of course, there are notable alternative approaches, most prominent the material287

derivative approach, to prove directional differentiability of shape functions, see e.g.288

[?,?]. For an overview of available methods the reader may consult [?].289

3.1. Preliminaries. Given a vector field X ∈
◦
C0,1(Ω,Rd), we denote by TXt290

the perturbation of the identity TXt (x) := x + tX(x) which is bi-Lipschitz for all291

t ∈ [0, τX ], where τX := 1/(2‖X‖C0,1). We omit the index X and write Tt instead292

of TXt whenever no confusion is possible. A mapping J : Y(Ω) → R is called shape293

function.294

Definition 3.1. The directional derivative of J at ω ∈ Y(Ω) in direction X ∈295
◦
C0,1(Ω,Rd) is defined by296

(26) DJ(ω)(X) := lim
t↘0

J(Tt(ω))− J(ω)

t
.297

We say that J is298

(i) directionally differentiable at ω (in
◦
C0,1(Ω,Rd)), if DJ(ω)(X) exists for all299

X ∈ C0,1(Ω,Rd),300

(ii) differentiable at ω (in
◦
C0,1(Ω,Rd)), if DJ(ω)(X) exists for all301

X ∈
◦
C0,1(Ω,Rd) and X 7→ DJ(ω)(X) is linear and continuous.302

The following properties will frequently be used.303

Lemma 3.2. Let Ω ⊆ Rd be open and bounded and pick a vector field X ∈304
◦
C0,1(Ω,Rd). (Note that Tt(Ω) = Ω for all t.)305

(i) We have as t→ 0+,306

∂Tt − I
t

→ ∂X and
∂T−1

t − I
t

→ −∂X strongly in L∞(Ω,Rd×d)307

det(∂Tt)− 1

t
→div(X) strongly in L∞(Ω).308

309

(ii) For all ϕ ∈ L2(Ω), we have as t→ 0+,310

ϕ ◦ Tt →ϕ strongly in L2(Ω).(27)311312
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(iii) Let (ϕn) be a sequence in H1(Ω) that converges weakly to ϕ ∈ H1(Ω). Let313

(tn) a null-sequence. Then we have as n→∞,314

ϕn ◦ Ttn − ϕn
tn

⇀∇ϕ ·X weakly in L2(Ω).(28)315
316

Proof. Item (i) is obvious. The convergence result (27) is proved in [?, Lem. 2.1,317

p.527] and (28) can be proved in a similar fashion.318

Item (iii) is less obvious and we give a proof. For every ε > 0 and ψ ∈ H1(Ω),319

there is N > 0, such that |(ϕn − ϕ,ψ)H1 | ≤ ε for all n ≥ Nε. By density we find for320

every n and every null-sequence (εn), εn > 0 an element ϕ̃n ∈ C1(Ω), such that321

(29) ‖ϕ̃n − ϕn‖H1 ≤ εn.322

It is clear that ϕ̃n ⇀ ϕ weakly in H1(Ω) as n→∞. We now write323

ϕn ◦ Ttn − ϕn
tn

−∇ϕn ·X =
(ϕn − ϕ̃n) ◦ Ttn − (ϕn − ϕ̃n)

tn
−∇(ϕn − ϕ̃n) ·X

+
ϕ̃n ◦ Ttn − ϕ̃n

tn
−∇ϕ̃n ·X.

(30)324

Let x ∈ Ω. Applying the fundamental theorem of calculus to s 7→ ϕ̃n(Ts(x)) on [0, 1]325

gives326

(31)
ϕ̃n(Ttn(x))− ϕ̃n(x)

tn
=

∫ 1

0

∇ϕ̃n(x+ tnsX(x)) ·X(x) ds.327

We now show that the function qn(x) :=
∫ 1

0
∇ϕ̃n(x+tnsX(x))·X(x) converges weakly328

to ∇ϕ ·X in L2(Ω). For this purpose we consider for ψ ∈ L2(Ω),329

(32)

∫
Ω

qnψ dx =

∫
Ω

∫ 1

0

∇ϕ̃n(x+ tnsX(x)) ·X(x)ψ(x) ds dx.330

Interchanging the order of integration and invoking a change of variables (recall331

Tt(Ω) = Ω), we get332

(33)

∫
Ω

qnψ dx =

∫ 1

0

∫
Ω

det(∂T−1
stn)∇ϕ̃n ·

(
(Xψ) ◦ T−1

stn

)
dx︸ ︷︷ ︸

:=η(tn,s)

ds.333

Owing to item (ii) and noting that X ◦ T−1
t → X in L∞(Ω) as t → 0, we also have334

for s ∈ [0, 1] fixed,335

(34) det(∂T−1
stn)(Xψ) ◦ T−1

stn → Xψ in L2(Ω,R2) as n→∞.336

As a result using the weak convergence of (ϕ̃n) in H1(Ω), we get for s ∈ [0, 1],337

(35) η(tn, s)→
∫

Ω

∇ϕ ·Xψ dx as n→∞.338

It is also readily checked using Hölder’s inequality that |η(tn, s)| ≤ c‖∇ϕ̃n‖L2
‖ψ‖L2

339

for a constant c > 0 independent of s ∈ [0, 1]. As a result we may apply Lebegue’s340

dominated convergence theorem to obtain341

(36)

∫
Ω

qnψ dx =

∫ 1

0

η(tn, s) ds→
∫ 1

0

η(0, s) ds =

∫
Ω

∇ϕ ·Xψ dx as n→∞.342
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This proves that qn converges weakly to ∇ϕ ·X.343

Finally testing (30) with ψ, integrating over Ω and estimating gives344 ∣∣∣∣(ϕn ◦ Ttn − ϕntn
−∇ϕn ·X,ψ

)
L2

∣∣∣∣
≤ c‖ψ‖L2

(εn/tn + εn) +

∣∣∣∣( ϕ̃n ◦ Ttn − ϕ̃ntn
−∇ϕ̃n ·X,ψ

)
L2

∣∣∣∣(37)345

with a constant c > 0 only depending on X. Now we choose Ñε ≥ 1 so large that346

(38)

∣∣∣∣( ϕ̃n ◦ Ttn − ϕ̃ntn
−∇ϕ ·X,ψ

)
L2

∣∣∣∣ ≤ ε for all n ≥ Ñε.347

Then348 ∣∣∣∣( ϕ̃n ◦ Ttn − ϕ̃ntn
−∇ϕ̃n ·X,ψ

)
L2

∣∣∣∣
≤ ε+ |(∇(ϕ̃n − ϕn) ·X,ψ)L2 |+ |(∇(ϕn − ϕ) ·X,ψ)L2 |
≤ ε+ εn + ε for all n ≥ max{Nε, Ñε}.

(39)349

Choosing εn := min{t2n, ε} and combining the previous estimate with (37) shows the350

right hand side of (39) can be bounded by 3ε. Since ε > 0 was arbitrary we see that351

(28) holds.352

3.2. First main result: the directional derivative of J2. Given ω ∈ Y(Ω)353

and r > 0, we define the set of maximisers of J1(ω, ·) by354

(40) X2(ω) := {f̄ ∈ K : sup
f∈K,

‖f‖
H1

0(Ω)
≤1

J1(ω, f) = J1(ω, f̄)}.355

The set X2(ω) is nonempty as shown in Lemma 2.5. Before stating our first main356

result we make the following assumption.357

Assumption 3.3. For every X ∈
◦
C0,1(Ω,Rd) and t ∈ [0, τX ] we have358

(41) u ∈ U ⇐⇒ u ◦ Tt ∈ U .359

Remark 3.4. Assumption 3.3 is satisfied for U equal to L2(Ω) or R.360

Under the Assumption 3.3 we have the following theorem, where we set ȳf,ω :=361

yū
ω,f ,f,ω and p̄f,ω := pū

ω,f ,f,ω for ω ∈ Y(Ω) and f ∈ K. Furthermore we define for362

A ∈ Rd×d, B ∈ Rd×d, a, b, c ∈ Rd363

A : B =

d∑
i,j=1

aijbij , (a⊗ b)c := (b · c)a,364

where aij , bij are the entries of the matrices A,B, respectively.365

Theorem 3.5. (a) The directional derivative of J2(·) at ω in direction X ∈366
◦
C0,1(Ω,Rd) is given by367

(42) DJ2(ω)(X) = max
f∈X2(ω)

∫
ΩT

S1(ȳf,ω, p̄f,ω, ūf,ω) : ∂X + S0(f) ·X dx dt,368
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where the functions S1(f) := S1(ȳf,ω, p̄f,ω, ūf,ω) and S0(f) are given by369

S1(f) =I(|ȳf,ω|2 + γ|ūf,ω|2 − ȳf,ω∂tp̄f,ω +∇ȳf,ω · ∇p̄f,ω − χωūf,ωp̄f,ω)

−∇ȳf,ω ⊗∇p̄f,ω −∇p̄f,ω ⊗∇ȳf,ω,

S0(f) =− 1

T
∇f p̄f,ω

(43)

370

and the adjoint p̄f,ω satisfies371

∂tp̄
f,ω −∆p̄f,ω = −2ȳf,ω in Ω× (0, T ],(44)372

p̄f,ω = 0 on ∂Ω× (0, T ],(45)373

p̄f,ω(T ) = 0 in Ω.(46)374375

(b) The directional derivative of J1(·, f) at ω in direction X ∈
◦
C0,1(Ω,Rd) is376

given by377

(47) DJ1(ω, f)(X) =

∫
ΩT

S1(f) : ∂X + S0(f) ·X dx dt,378

where S0(f) and S1(f) are defined by (43).379

Proof of item (b). We notice that for r > 0 we have380

(48) max
f∈K,

‖f‖
H1

0(Ω)
≤r

J1(ω, f) = r2 max
f∈ 1

rK,
‖f‖

H1
0(Ω)
≤1

J1(ω, f).381

Therefore we may assume that f̄ ∈ K with ‖f̄‖H1
0 (Ω) ≤ 1. Setting K := {f̄}, we have382

for all ω ∈ Y(Ω),383

(49) J2(ω) = max
f∈K,

‖f‖
H1

0(Ω)
≤1

J1(ω, f) = J1(ω, f̄)384

and hence the result follows from item (a) since X2(ω) = {f̄} is a singleton. The proof385

of part (a) will be given in the following subsections.386

We pause here to comment on the regularity requirements imposed on f . As can be387

seen from the volume expression (42) we can extend DJ1(ω, f) to initial conditions f388

in L2(Ω). In fact, the only term that requires weakly differentiable initial conditions389

is the one involving S0 and it can be rewritten as follows for a.e. t ∈ [0, T ],390 ∫
Ω

S0(t) ·X dx = − 1

T

∫
Ω

∇f ·Xp̄f,ω(t) dx

=
1

T

∫
Ω

div(X)fp̄f,ω(t) + f∇p̄f,ω(t) ·X dx,

(50)391

where we used that p̄f,ω(t) = 0 on ∂Ω. This shows that the shape derivative DJ1(ω, f)392

can be extended to initial conditions f ∈ L2(Ω). However, it is not possible to obtain393

the shape derivative for f ∈ L2(Ω) in general. This will become clear in the proof of394

Theorem 3.5.395

The next corollary shows that under certain smoothness assumptions on ω we396

can write the integrals (42) and (47) as integrals over ∂ω.397
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Corollary 3.6. Let f ∈ K and X ∈
◦
C0,1(Ω,Rd) be given. Assume that ω b Ω398

and Ω are C2 domains. Moreover, suppose that either U = L2(Ω) or U = R.399

(a) Given f ∈ X2(ω) define Ŝ1(f) :=
∫ T

0
S1(f)(s) ds and400

Ŝ0(f) :=
∫ T

0
S0(f)(s) ds. Then we have401

Ŝ1(f)|ω ∈W 1
1 (ω,Rd×d), Ŝ1(f)|Ω\ω ∈W 1

1 (Ω \ ω,Rd×d), Ŝ0(f)|ω ∈ L2(ω,Rd),

(51)
402

and403

(52) − div(Ŝ1(f)) + Ŝ0(f) = 0 a.e. in ω ∪ (Ω \ ω).404

Moreover (42) can be written as405

DJ2(ω)(X) = max
f∈X2(ω)

∫
∂ω

[Ŝ1(f)ν] ·X ds

= max
f∈X2(ω)

−
∫
∂ω

∫ T

0

ūω,f p̄ω,f (X · ν) dt ds

(53)406

for X ∈
◦
C1(Ω,Rd), with ν the outer normal to ω. Here [Ŝ1(f)ν] :=407

Ŝ1(f)|ων − Ŝ1(f)|Ω\ων denotes the jump of Ŝ1(f)ν across ∂ω.408

(b) We have that (47) can be written as409

(54) DJ1(ω, f)(X) = −
∫
∂ω

∫ T

0

ūω,f p̄ω,f (X · ν) dt ds410

for X ∈
◦
C1(Ω,Rd).411

Before we prove this corollary we need the following auxiliary result.412

Lemma 3.7. Suppose that Ω is of class C2. For all f ∈ H1
0 (Ω) and ω ∈ Y(Ω),413

we have414

(55)

∫ T

0

ȳf,ω(t)∂tp̄
f,ω(t) dt ∈W 1

1 (Ω), and

∫ T

0

∇p̄f,ω(t)·∇ȳf,ω(t) dt ∈W 1
1 (Ω).415

Proof. From the general regularity results [?, Satz 27.5, pp. 403 and Satz 27.3]416

we have that p̄f,ω ∈ L2(0, T ;H3(Ω)) and ∂tp̄
f,ω ∈ L2(0, T ;H1(Ω)), and ȳf,ω ∈417

L2(0, T ;H2(Ω)) and ∂tȳ
f,ω ∈ L2(0, T ;L2(Ω)).418

Observe that for almost all t ∈ [0, T ] we have ∂tp̄
f,ω(t) ∈ H1(Ω) and ȳf,ω(t) ∈419

H2(Ω). So since H1(Ω) ⊂ L6(Ω) and H2(Ω) ⊂ C(Ω), where we use that Ω ⊂ Rd,420

d ≤ 3 we also have ȳf,ω(t)∂tp̄
f,ω(t) ∈ L6(Ω) and a.e. t ∈ (0, T )421

(56) ‖ȳf,ω(t)∂tp̄
f,ω(t)‖L1(Ω) ≤ C‖ȳf,ω(t)‖H2(Ω)‖∂tp̄f,ω(t)‖H1(Ω)422

for an constant C > 0. Moreover by the product rule we have423

(57) ∂xj (ȳ
f,ω(t)∂tp̄

f,ω(t)) = ∂xj (ȳ
f,ω(t))︸ ︷︷ ︸

∈H1(Ω)

∂tp̄
f,ω(t)︸ ︷︷ ︸

∈H1(Ω)

+ ȳf,ω(t)︸ ︷︷ ︸
∈H1(Ω)

(∂xj∂tp̄
f,ω(t))︸ ︷︷ ︸

∈L2(Ω)

,424

so that ∂xj (ȳ
f,ω(t)∂tp̄

f,ω(t)) ∈ L1(Ω) and425

(58) ‖∂xj (ȳf,ω(t)∂tp̄
f,ω(t))‖L1(Ω) ≤ C‖ȳf,ω(t)‖H1(Ω)‖∂tp̄f,ω(t)‖H1(Ω)426
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for some constant C > 0. So (56) and (58) imply that t 7→ ‖ȳf,ω(t)∂tp̄
f,ω(t)‖W 1

1 (Ω)427

belongs to L1(0, T ). This shows the left inclusion in (55). As for the right hand side428

inclusion in (55) notice that for almost all t ∈ [0, T ] we have p̄f,ω(t) ∈ H3(Ω). There-429

fore ∇p̄f,ω(t) ∈ H2(Ω) and ∇ȳf,ω(t) ∈ H1(Ω) and thus ∇ȳf,ω(t) · ∇p̄f,ω(t) ∈ L6(Ω).430

Similarly we check that ∂xj (∇ȳf,ω(t) · ∇p̄f,ω(t)) ∈ L1(Ω) and thus t 7→ ‖∇ȳf,ω(t) ·431

∇p̄f,ω(t)‖W 1
1 (Ω) ∈ L1(0, T ), which gives the right hand side inclusion in (55).432

Proof of Corollary 3.6. We assume that Theorem 3.5 holds. As a consequence of433

Lemma 3.7 we obtain (51). Then for all X ∈ C1
c (Ω,Rd) satisfying X|∂ω = 0 we have434

Tt(ω) = (id +tX)(ω) = ω for all t ∈ [0, τX ]. Hence DJ2(ω)(X) = 0 for such vector435

fields which gives436

(59) 0 = DJ2(ω)(X) ≥
∫
Ω

Ŝ1(f) : ∂X + Ŝ0(f) ·X dx437

for all X ∈ C1
c (Ω,Rd) satisfying X|∂ω = 0 and for all f ∈ X2(ω). Since for fixed f438

the expression in (59) is linear in X this proves439

(60)

∫
Ω

Ŝ1(f) : ∂X + Ŝ0(f) ·X dx = 0440

for all X ∈ C1
c (Ω,Rd) satisfying X|∂ω = 0 and for all f ∈ X2(ω). Hence testing of441

(60) with vector fields X ∈ C1
c (ω,Rd) and X ∈ C1

c (Ω \ ω,Rd), partial integration442

and (51) yield the continuity equation (52). As a result, by partial integration (see443

e.g. [?]), we get for all X ∈ C1
c (Ω,Rd),444

DJ2(ω)(X) = max
f∈X2(ω)

∫
Ω

Ŝ1(f) : ∂X + Ŝ0(f) ·X dx

= max
f∈X2(ω)

(∫
∂ω

[Ŝ1(f)ν] ·X ds+

∫
ω

(−div(Ŝ1(f) + Ŝ0(f))︸ ︷︷ ︸
=0

·X dx

+

∫
Ω\ω

(−div(Ŝ1(f) + Ŝ0(f))︸ ︷︷ ︸
=0

·X dx

)
,

(61)445

which proves the first equality in (53). Now using Lemma 3.7 we see that T(f) :=446

Ŝ1(f) +
∫ T

0
χωū

f,ω(t)p̄f,ω(t) dt belongs to W 1
1 (Ω,Rd×d) and hence [T(f)ν] = 0 on447

∂ω. It follows that [Ŝ1(f)ν] = −
∫ T

0
χωū

f,ω(t)p̄f,ω(t) dt which finishes the proof of448

(a). Part (b) is a direct consequence of part (a).449

The following observation is important for our gradient algorithm that we intro-450

duce later on.451

Corollary 3.8. Let the hypotheses of Theorem 3.5 be satisfied. Assume that if452

v ∈ U then −v ∈ U . Then we have453

(62) DJ1(ω,−f)(X) = DJ1(ω, f)(X)454

for all X ∈
◦
C0,1(Ω,Rd) and f ∈ H1

0 (Ω).455

Proof. Let f ∈ H1
0 (Ω) be given. From the optimality system (14) and the as-456

sumption that v ∈ U implies −v ∈ U , we infer that u−f,ω = −uf,ω, ȳ−f,ω = −ȳf,ω457

and p̄−f,ω = −p̄f,ω. Therefore S1(−f) = S1(f) and S0(−f) = S0(f) and the result458

follows from (47).459
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Remark 3.9. The cost function J1 can be used to define another cost function460

that accommodates local changes in a fixed initial condition f0 ∈ H1
0 (Ω). This may be461

interesting for applications where the selection of a single initial condition is insuffi-462

cient. In fact, setting K := H1
0 (Ω) let us consider463

(63) J3(ω) := sup
‖f−f0‖H1≤δ

J1(ω, f), δ > 0.464

It is readily checked that (63) is equivalent to465

(64) J3(ω) = sup
‖f‖H1≤δ

inf
u∈U

∫ 1

0

‖yu,f+f0,ω(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt, δ > 0.466

In view of yu,f+f0,ω = yu,f,ω +y0,f0,ω this means that problem infω∈Y(Ω)
|ω|=c

J3(ω) differs467

from (10) only by the appearance of y0,f0,ω in the running cost.468

With these changes the shape derivative of Theorem 3.5 still has the form (42),469

however, we have to replace S0 by − 1
T∇(f + y0,f0,ω) p̄f,ω.470

In case of the topological derivative nothing has to be changed except for the state471

equation. This will follow immediately from the prove that is given later on.472

The following sections are devoted to the proof of Theorem 3.5(a) .473

3.3. Sensitivity analysis of the state equation. In this paragraph we study474

the sensitivity of the solution y of (1) with respect to (ω, f, u).475

Perturbed state equation. Let X ∈
◦
C0,1(Ω,Rd) be a vector field and define Tτ :=476

id +τX. Given u ∈ U , f ∈ H1
0 (Ω) and ω ∈ Y(Ω), we consider (1) with ωτ := Tτ (ω),477

∂ty
u,f,ωτ −∆yu,f,ωτ = χωτu in Ω× (0, T ],(65)478

yu,f,ωτ = 0 on ∂Ω× (0, T ],(66)479

yu,f,ωτ (0) = f in Ω.(67)480481

We define the new variable482

(68) yu,f,τ := (yu◦T
−1,f,ωτ ) ◦ Tτ .483

Then since χωτ = χω ◦ T−1
τ and ξ(τ)∆f ◦ Tτ = div(A(τ)∇(f ◦ Tτ )), it follows from484

(65)-(67) that485

∂ty
u,f,τ − 1

ξ(τ)
div(A(τ)∇yu,f,τ ) = χωu in Ω× (0, T ],(69)486

yu,f,τ = 0 on ∂Ω× (0, T ],(70)487

yu,f,τ (0) = f ◦ Tτ in Ω,(71)488489

where490

A(τ) := det(∂Tτ )∂T−1
τ ∂T−>τ , ξ(τ) := |det(∂Tτ )|.491

Equations (69)-(71) have to be understood in the variational sense, i.e., yu,f,τ ∈492

W (0, T ) satisfying yu,f,τ (0) = f ◦ Tτ and493 ∫
ΩT

ξ(τ)∂ty
u,f,τϕ+A(τ)∇yu,f,τ · ∇ϕ dx dt =

∫
ΩT

ξ(τ)χωuϕ dx dt(72)494

495
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for all ϕ ∈W (0, T ). Since X ∈
◦
C0,1(Ω,Rd), we have for fixed τ ,

A(τ, ·), ∂τA(τ, ·) ∈ L∞(Ω,Rd×d), ξ(τ, ·), ∂τξ(τ, ·) ∈ L∞(Ω).

Moreover, there are constants c1, c2 > 0, such that496

(73) A(τ, x)ζ · ζ ≥ c1|ζ|2 for all ζ ∈ Rd, for a.e x ∈ Ω, for all τ ∈ [0, τX ]497

and498

(74) ξ(τ, x) ≥ c2 for a.e x ∈ Ω, for all τ ∈ [0, τX ].499

Apriori estimates and continuity.500

Lemma 3.10. There is a constant c > 0, such that for all (u, f, ω) ∈ U×H1
0 (Ω)×501

Y(Ω), and τ ∈ [0, τX ], we have502

(75)
‖yu,f,ωτ ‖L∞(H1) + ‖yu,f,ωτ ‖L2(H2) + ‖∂tyu,f,ωτ ‖L2(L2)

≤ c(‖χωτu‖L2(L2) + ‖f‖H1),
503

and504

(76) ‖yu,f,τ‖L∞(H1) + ‖∂tyu,f,τ‖L2(L2) ≤ c(‖χωu‖L2(L2) + ‖f‖H1).505

Proof. Estimate (75) is a direct consequence of (4). Let us prove (76). Recalling506

yu,f,τ = yu◦T
−1
τ ,f,ωτ ◦ Tτ , a change of variables shows,507 ∫

ΩT

|yu,f,τ |2 + |∇yu,f,τ |2 dx dt

=

∫
ΩT

ξ−1(τ)|yu◦T
−1
τ ,f,ωτ |2 +A−1(τ)∇yu◦T

−1
τ ,f,ωτ · ∇yu◦T

−1
τ ,f,ωτ dx dt

≤ c
∫

ΩT

|yu◦T
−1
τ ,f,ωτ |2 + |∇yu◦T

−1
τ ,f,ωτ |2 dx dt

(75)

≤ c(‖χωτu ◦ T−1
τ ‖L2(L2) + ‖f‖H1)

≤ C(‖χωu‖L2(L2)) + ‖f‖H1),

(77)508

and we further have509

‖χωτu ◦ T−1
τ ‖2L2(L2) = ‖

√
ξχωu‖2L2(L2) ≤ c‖χωu‖

2
L2(L2).(78)510

Combining (77) and (78) we obtain ‖yu,f,τ‖L2(H1) ≤ c(‖χωu‖L2(L2) + ‖f‖H1). In a511

similar fashion we can show (76).512

Remark 3.11. An estimate for the second derivatives of yu,f,τ of the form513

(79) ‖yu,f,τ‖L2(H2) ≤ c(‖u‖L2(L2) + ‖f‖H1)514

may be achieved by invoking a change of variables in the term ‖yu,fτ ‖L2(H2) in (75).515

This, however, requires the vector field X to be more regular, e.g.,
◦
C2(Ω,Rd), and is516

not needed below.517

After proving apriori estimates we are ready to derive continuity results for the518

mapping (u, f, τ) 7→ yu,f,τ .519
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Lemma 3.12. For every (ω1, u1, f1), (ω2, u2, f2) ∈ Y(Ω)×U×H1
0 (Ω), we denote520

by y1 and y2 the corresponding solution of (65)-(67). Then there is a constant c > 0,521

independent of (ω1, u1, f1), (ω2, u2, f2), such that522

‖y1 − y2‖L∞(H1) + ‖y1 − y2‖L2(H2) + ‖∂ty1 − ∂ty2‖L2(L2)

≤ c(‖χω1
u1 − χω2

u2‖L2(L2) + ‖f1 − f2‖H1).
(80)523

Proof. The difference ỹ := y1 − y1 satisfies in a variational sense524

∂tỹ −∆ỹ = u1χω1 − u2χω2 in Ω× (0, T ],(81)525

ỹ = 0 on ∂Ω× (0, T ],(82)526

ỹ(0) = f1 − f2 on Ω.(83)527528

Hence estimate (80) follows from (4).529

As an immediate consequence of Lemma 3.12 we obtain the following result.530

Lemma 3.13. Let ω ∈ Y(Ω) be given. For all τn ∈ (0, τX ], un, u ∈ U and fn, f ∈531

H1(Ω0) satisfying532

(84) un ⇀ u in L2(0, T ;L2(Ω)), fn ⇀ f in H1
0 (Ω), τn → 0, as n→∞,533

we have534

yun,fn,τn
∗
⇀yu,f,ω in L∞(0, T ;H1

0 (Ω)) as n→∞,
yun,fn,τn ⇀yu,f,ω in H1(0, T ;L2(Ω)) as n→∞.

(85)535

Proof. Thanks to the apriori estimates of Lemma 3.10 there exists y ∈536

L∞(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) and a subsequence (yunk ,fnk ,τnk ) converging537

weakly-star in L∞(0, T ;H1
0 (Ω)) and weakly in H1(0, T ;L2(Ω)) to y. Since H1(Ω)538

embeds compactly into L2(Ω) we may assume, extracting another subsequence, that539

fnk → f in L2(Ω) as k →∞. By definition yk := yunk ,fnk ,τnk satisfies for k ≥ 0,540 ∫
ΩT

ξ(τnk)∂tykϕ+A(τnk)∇yk · ∇ϕ dx dt =

∫
ΩT

ξ(τnk)χωunkϕ dx dt,(86)541

542

for all ϕ ∈ W (0, T ), and yk(0) = fnk ◦ Tτnk on Ω. Using the weak convergence of543

unk , yk stated before and the strong convergence obtained using Lemma 3.2,544

(87) ξ(τn)→ 1 in L∞(Ω), A(τn)→ I in L∞(Ω,Rd×d),545

we may pass to the limit in (86) to obtain,546 ∫
ΩT

∂tyϕ+∇y · ∇ϕ dx dt =

∫
ΩT

χωuϕ dx dt for all ϕ ∈W (0, T ).(88)547

548

Using Lemma 3.2 we see fnk ◦ Tτnk → f in L2(Ω) as k →∞, and therefore y(0) = f .549

Since the previous equation with y(0) = f admits a unique solution we conclude that550

y = yu,f,ω. As a consequence of the uniqueness of the limit, the whole sequence551

yun,fn,τn converges to yu,f,ω. This finishes the proof.552
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3.4. Sensitivity of minimisers and maximisers. Let us denote for (τ, f) ∈553

[0, τX ]×K the minimiser of u 7→ J(ωτ , u ◦ T−1
τ , f), by ūfn,τn .554

Lemma 3.14. For every null-sequence (τn) in [0, τX ] and every sequence (fn) in555

K converging weakly (in H1
0 (Ω)) to f ∈ K, we have556

(89) ūfn,τn → ūf,ω in L2(0, T ;L2(Ω)) as n→∞.557

Proof. We set ωn := ωτn . By definition we have ūfn,τn = ūfn,ωτn ◦ Tτn . From558

Lemma 2.4 we know that ūfn,ωτn converges to ūfn,ω in L2(0, T ;L2(Ω)). Therefore559

according to Lemma 3.2 also ūfn,ωτn ◦Tτn converges in L2(0, T ;L2(Ω)) to ūfn,ω. This560

finishes the proof.561

Lemma 3.15. For every null-sequence (τn) in [0, τX ] and every sequence (fn),562

fn ∈ X2(ωτn), there is a subsequence (fnk) and f ∈ X2(ω), such that fnk ⇀ f in563

H1
0 (Ω) as k →∞.564

Proof. We proceed similarly as in the proof of Lemma 3.14. Let τ ∈ [0, τX ] and565

v ∈ U be given. We obtain for all f ∈ K,566

(90) J(ωτ , u
f,τ ◦ T−1

τ , f) = inf
u∈U

J(ωτ , u ◦ T−1
τ , f) ≤ J(ωτ , v ◦ T−1

τ , f).567

Let (f̄n) be an arbitrary sequence with f̄n ∈ X2(ωτn). Since ‖f̄n‖H1
0 (Ω) ≤ 1 for all568

n ≥ 0, there is a subsequence (f̄nk) and a function f̄ ∈ K, such that f̄nk ⇀ f̄ in H1
0 (Ω)569

as k → ∞ and ‖f̄‖H1
0 (Ω) ≤ 1. Thanks to Lemma 3.14 the sequence (ūk) defined by570

ūk := ūf̄nk ,τnk converges to ūf̄,ω in L2(0, T ;L2(Ω)). Moreover, Lemma 3.13 also shows571

that yūk,f̄nk ,τnk → yū
f̄,ω,f̄,ω in L2(0, T ;L2(Ω)). By definition for all k ≥ 0 and f ∈ K,572 ∫

ΩT

|yū
f,τnk ,f,τnk (t)|2 + γ|ūf,τnk (t)|2 dx dt

≤ sup
f∈K

‖f‖
H1

0(Ω)
≤1

∫
ΩT

|yū
f,τnk ,f,τnk (t)|2 + γ|ūf,τnk (t)|2 dx dt

=

∫
ΩT

|yūk,f̄nk ,τnk (t)|2 + γ|ūk(t)|2 dx dt

(91)573

and therefore passing to the limit k →∞ yields, for all f ∈ K,574 ∫
ΩT

|yū
f,ω,f,ω(t)|2 + γ|ūf,ω(t)|2 dx dt ≤

∫
ΩT

|yū
f̄,ω,f̄,ω(t)|2 + γ|ūf̄,ω(t)|2 dx dt.(92)575

This shows that f ∈ X2(ω) and finishes the proof.576

3.5. Averaged adjoint equation and Lagrangian. For fixed τ ∈ [0, τX ] the577

mapping ϕ 7→ T−1
τ ◦ ϕ is an isomorphism on U, therefore,578

(93) min
u∈U

J(ωτ , u, f) = min
u∈U

J(ωτ , u ◦ T−1
τ , f).579

Hence a change of variables shows,580

inf
u∈U

J(ωτ , u, f) = inf
u∈U

∫ T

0

‖yu,f,ωτ (t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt

(93)
= inf

u∈U

∫
ΩT

ξ(τ)
(
|yu,f,τ (t)|2 + γ|u(t)|2

)
dx dt.

(94)581
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Introduce for every quadruple (u, f, y, p) ∈ U×K ×W (0, T )×W (0, T ) and for every582

τ ∈ [0, τX ] the parametrised Lagrangian583

G̃(τ, u, f, y, p) :=

∫
ΩT

ξ(τ)
(
|y|2 + γ|u|2

)
dxdt

+

∫
ΩT

ξ(τ) ∂ty p dx dt+A(τ)∇y · ∇p dx dt

−
∫
ΩT

ξ(τ)uχωp dx dt+

∫
Ω

ξ(τ)(y(0)− f ◦ Tτ )p(0) dx.

(95)584

Definition 3.16. Given (u, f) ∈ U × K, and τ ∈ [0, τX ], the averaged adjoint585

state pu,f,τ ∈W (0, T ) is the solution of averaged adjoint equation586

(96)

∫ 1

0

∂yG̃(τ, u, f, syu,f,τ + (1− s)yu,f,ω, pu,f,τ )(ϕ) ds = 0 for all ϕ ∈W (0, T ).587

Remark 3.17. The averaged adjoint state pu,f,τ in our special case only depends588

on u and f through the state yu,f,τ .589

It is evident that (96) is equivalent to590

∫
ΩT

ξ(τ)∂tϕp
u,f,τ +A(τ)∇ϕ · ∇pu,f,τ dx dt+

∫
Ω

ξ(τ)pu,f,τ (0)ϕ(0) dx

= −
∫
ΩT

ξ(τ)(yu,f,τ + yu,f,ω)ϕ dx dt

(97)

591

for all ϕ ∈W (0, T ), or equivalently after partial integration in time592

∫
ΩT

−ξ(τ)ϕ∂tp
u,f,τ +A(τ)∇ϕ · ∇pu,f,τ dx dt = −

∫
ΩT

ξ(τ)(yu,f,τ + yu,f,ω)ϕ dx dt

(98)

593

for all ϕ ∈ W (0, T ), and pu,f,τ (T ) = 0. This is a backward in time linear parabolic594

equation with terminal condition zero.595

3.6. Differentiability of max-min functions. Before we can pass to the proof596

of Theorem 3.5 we need to address a Danskin-type theorem on the differentiability of597

max-min functions.598

Let U and V be two nonempty sets and let G : [0, τ ]×U×V→ R be a function,599

τ > 0. Introduce the function g : [0, τ ]→ R,600

(99) g(t) := sup
y∈V

inf
x∈U

G(t, x, y)601

and let ` : [0, τ ] → R be any function such that `(t) > 0 for t ∈ (0, τ ] and `(0) = 0.602

We are interested in sufficient conditions that guarantee that the limit603

(100)
d

d`
g(0+) := lim

t↘0+

g(t)− g(0)

`(0)
604

exists. Moreover we define for t ∈ [0, τ ],605

(101) V(t) := {yt ∈ V : sup
y∈V

inf
x∈U

G(t, x, y) = inf
x∈U

G(t, x, yt)}.606
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Lemma 3.18. Let the following hypotheses be satisfied.607

(A0) For all y ∈ V and t ∈ [0, τ ] the minimisation problem608

(102) inf
x∈U

G(t, x, y)609

admits a unique solution and we denote this solution by xt,y.610

(A1) For all t in [0, τ ] the set V(t) is nonempty.611

(A2) The limits612

(103) lim
t↘0

G(t, xt,y, y)−G(0, xt,y, y)

`(t)
613

and614

(104) lim
t↘0

G(t, x0,y, y)−G(0, x0,y, y)

`(t)
615

exist for all y ∈ U and they are equal. We denote the limit by616

∂`G(0+, x0,y, y).617

(A3) For all real null-sequences (tn) in (0, τ ] and all sequences ytn in V(tn), there618

exists a subsequence (tnk) of (tn), and (ytnk ) of (ytn), and y0 in V(0), such619

that620

(105)

lim
k→∞

G(tnk , x
tnk ,y

tnk , ytnk )−G(0, xtnk ,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0)621

and622

(106) lim
k→∞

G(tnk , x
0,y

tnk , ytnk )−G(0, x0,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0).623

Then we have624

(107)
d

d`
g(t)|t=0+ = max

y∈V(0)
∂`G(0+, x0,y, y).625

In this section we apply the previous results for `(t) = t, and in the following one626

for `(t) = |Bt(η0)|, η0 ∈ Rd. For the sake of completeness we give a proof in the627

appendix; see [?,?,?].628

3.7. Proof of Theorem 3.5. The following is a direct consequence of (98) and629

Lemma 3.13.630

Lemma 3.19. For all sequences τn ∈ (0, τX ], un, u ∈ U and fn, f ∈ K, such that631

(108) un ⇀ u in U, fn ⇀ f in H1
0 (Ω), τn → 0, as n→∞,632

we have633

pun,fn,τn →pu,f,ω in L2(0, T ;H1
0 (Ω)) as n→∞,

pun,fn,τn ⇀pu,f,ω in H1(0, T ;L2(Ω)) as n→∞,
(109)634

where pu,f,ω ∈ Z(0, T ) solves the adjoint equation635 ∫
ΩT

−ϕ∂tpu,f,ω dx dt+

∫
ΩT

∇ϕ · ∇pu,f,ω dx dt = −
∫
ΩT

2yu,f,ωϕ dx dt(110)636

for all ϕ ∈W (0, T ), and pu,f,ω(T ) = 0 a.e. on Ω.637
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Now we have gathered all the ingredients to complete the proof of Theorem 3.5(a)638

on page 9.639

Proof of Theorem 3.5(a) Using the fundamental theorem of calculus we obtain for640

all τ ∈ [0, τX ],641

G̃(τ, u, f,yu,f,τ , pu,f,τ )− G̃(τ, u, f, yu,f,τ , pu,f,τ )

=

∫ 1

0

∂yG̃(τ, u, f, syu,f,τ + (1− s)yu,f,ω, pu,f,τ )(yu,f,τ − yu,f,ω) ds = 0,

(111)

642

where in the last step we used the averaged adjoint equation (98). In addition we643

have J(ωτ , u ◦ T−1
τ , f) = G̃(τ, u, f, yu,f,ω, pu,f,τ ), which together with (111) gives644

(112) J(ωτ , u ◦ T−1
τ , f) = G̃(τ, u, f, yu,f,ω, pu,f,τ ).645

As a consequence we obtain646

(113) J1(ωτ , f) = inf
u∈U

G̃(τ, u, f, yu,f,ω, pu,f,τ ).647

We apply Lemma 3.18 with `(t) := t,648

(114) G(τ, u, f) := G̃(τ, u, f, yu,f,ω, pu,f,τ ),649

U = U, and V = {f ∈ K : ‖f‖H1
0 (Ω) ≤ 1}.650

Since the minimization problem (94) admits a unique solution, Assumption (A0) is651

satisfied. A minor change in the proof of Lemma 2.5 to accommodate the reparametri-652

sation of the domain ω shows that (A1) is satisfied as well.653

Let (τn) be an arbitrary null-sequence and let (fn) be a sequence in K converging654

weakly in H1
0 (Ω) to f ∈ K, and let us set ūn := ūfn,τn . Thanks to Lemma 3.14 we655

have that ūn converges strongly in L2(0, T ;L2(Ω)) to ūf,ω. Moreover Lemma 3.19656

implies657

pūn,fn,τn →pū
f,ω,f,ω in L2(0, T ;H1

0 (Ω)) as n→∞,

pūn,fn,τn ⇀pū
f,ω,f,ω in H1(0, T ;L2(Ω)) as n→∞.

(115)658

Using Lemma 3.7 we see that659

(116)
A(τn)− I

τn
→ div(X)− ∂X − ∂X> in L∞(Ω,Rd×d) as n→∞,660

and661

(117)
ξ(τn)− 1

τn
→ div(X) in L∞(Ω) as n→∞.662
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Therefore we get663

G(τn, ūn, fn)−G(0, ūn, fn)

τn

=
G̃(τn, ūn, fn, y

ūn,fn,ω, pūn,fn,τn)− G̃(0, ūn, fn, y
ūn,fn,ω, pūn,fn,τn)

τn

=

∫
ΩT

ξ(τn)− 1

τ

(
|yūn,fn,ω|2 + γ|ūn|2

)
dxdt

+

∫
ΩT

ξ(τn)− 1

τ
∂ty

ūn,fn,ω pūn,fn,τn dx dt

+

∫
ΩT

A(τn)− I
τn

∇yūn,fn,ω · ∇pūn,fn,τn dx dt

−
∫
ΩT

ξ(τn)− 1

τ
ūnχωp

ūn,fn,τn dx dt

+

∫
Ω

(ξ(τn)− 1

τn
(yūn,fn,ω(0)− fn ◦ Tτn)− fn ◦ Tτn − fn

τn

)
pūn,fn,τn(0) dx

(118)664

and using Lemma 3.2 and (115), we see that the right hand side tends to665

∫
ΩT

div(X)(|ȳf,ω|2 + γ|ūf,ω|2 + ∂tȳ
f,ωp̄f,ω +∇ȳf,ω · ∇p̄f,ω − ūf,ωp̄f,ωχω) dx dt

−
∫

ΩT

∂X∇ȳf,ω · ∇p̄f,ω + ∂X∇p̄f,ω · ∇ȳf,ω +
1

T
∇f ·Xp̄f,ω(0) dx dt.

(119)

666

Partial integration in time yields667

(120)∫
ΩT

p̄f,ω∂tȳ
f,ω div(X) dx dt = −

∫
ΩT

∂tp̄
f,ω ȳf,ω div(X) dx dt−

∫
Ω

div(X)fp̄f,ω(0) dx,668

where we used ȳf,ω(0) = f and p̄f,ω(T ) = 0. As a result, inserting (120) into (119),669

we see that (119) can be written as670

(121)

∫
ΩT

S1(ȳf,ω, p̄f,ω, uf,ω) : ∂X + S0 ·X dx dt671

with S1,S2 being given by (43). Hence we obtain672

(122)

lim
n→∞

G(τn, ūn, fn)−G(0, ūn, fn)

τn
=

∫
ΩT

S1(ȳf,ω, p̄f,ω, uf,ω) : ∂X + S0 ·X dx dt.673

Next let ūn,0 := ūfn,0. Then we can show in as similar manner as (122) that674

(123)

lim
n→∞

G(τn, ūn,0, fn)−G(0, ūn,0, fn)

τn
=

∫
ΩT

S1(ȳf,ω, p̄f,ω, uf,ω) : ∂X + S0 ·X dx dt.675

Hence choosing (fn) to be a constant sequence we see that (A2) is satisfied.676

But also (A3) is satisfied since according to Lemma 3.15 we find for every null-677

sequence (τn) in [0, τX ] and every sequence (fn), fn ∈ X2(ωτn), a subsequence (fnk)678
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and f ∈ X2(ω), such that fnk ⇀ f in H1
0 (Ω) as k → ∞. Now we use (122) and679

(123) with fn replaced by this choice of fnk , and conclude that (A3) holds. Thus all680

requirements of Lemma 3.18 are satisfied and this ends the proof of Theorem 3.5(a).681

4. Topological derivative. In this section we will derive the topological deriva-682

tive of the shape functions J1 and J2 introduced in (7) and (8), respectively. The683

topological derivative, introduced in [?], allows to predict the position where small684

holes in the shape should be inserted in order to achieve a decrease of the shape685

function.686

4.1. Definition of topological derivative. We begin by introducing the so-687

called topological derivative. Here we restrict ourselves to a particular definition of688

the topological derivative. For the general definition we refer the reader to [?, Sec.689

1.1] .690

Definition 4.1 (Topological derivative). The topological derivative of a shape691

funcional J : Y(Ω)→ R at ω ∈ Y(Ω) in the point η0 ∈ Ω \ ∂ω is defined by692

(124) T J(ω)(η0) =

{
limε↘0

J(ω\B̄ε(η0))−J(ω)
|B̄ε(η0)| if η0 ∈ ω,

limε↘0
J(ω∪Bε(η0))−J(ω)

|Bε(η0)| if η0 ∈ Ω \ ω
.693

4.2. Second main result: topological derivative of J2. Given ω ∈ Y(Ω)694

we set ωε := Ω \ B̄(η0) if η0 ∈ ω and ωε := ω ∪Bε(η0) if η0 ∈ Ω \ ω. Denote by ūf,ωε695

the minimiser of the right hand side of (7) with ω = ωε.696

Assumption 4.2. Let δ > 0 be so small that B̄δ(η0) b Ω. We assume that for all697

(f, ω) ∈ V ×Y(Ω) we have uf,ω ∈ C(B̄δ(η0)). Furthermore we assume that for every698

sequence (ωn) in Y(Ω) converging to ω ∈ Y(Ω) and every weakly converging sequence699

fn ⇀ f in V we have700

(125) lim
n→∞

‖ufn,ωn − uf,ω‖L1(0,T ;C(B̄δ(η0))) = 0.701

Remark 4.3. Lemmas 2.4, 2.3 show that Assumption 4.2 is satisfied in case U702

is equal to L2(Ω) or R. Indeed in case U = R we have shown in Remark 2.2,(b) that703

2γūω,f (t) =
∫
ω
p̄f,ω(t,x) dx, so that ūω,f is independent of space and Assumption 4.2704

is satisfied thanks to Lemma 2.4. In case U = L2(Ω) Remark 2.2,(a) shows that705

2γūω,f = p̄f,ω. In Lemma 4.7 below we show that (f, ω) 7→ p̄f,ω : V × Y(Ω) →706

C([0, T ] × B̄δ(η0)) is continuous for small δ > 0, when V is equipped with the weak707

convergence we also see that in this case Assumption 4.2 is satisfied.708

For ω ∈ Y(Ω) and f ∈ K, we set ȳf,ω := yū
ω,f ,f,ω and p̄f,ω := pū

ω,f ,f,ω. The709

main result that we are going to establish reads as follows.710

Theorem 4.4. Let ω ∈ Y(Ω) be open. Let Assumption 4.2 be satisfied at η0 ∈711

Ω \ ∂ω. Then the topological derivative of ω 7→ J2(ω) at ω in η0 is given by712

(126) T J2(ω)(η0) = max
f∈X2(ω)

{
−
∫ T

0
uf,ω(η0, s)p̄

f,ω(η0, s) ds if η0 ∈ ω,∫ T
0
uf,ω(η0, s)p̄

f,ω(η0, s) ds if η0 ∈ Ω \ ω,
713

where the adjoint p̄f,ω belongs to C([0, T ]×Bδ(η0)) and satisfies714

∂tp̄
f,ω −∆p̄f,ω = −2ȳf,ω in Ω× (0, T ],(127)715

p̄f,ω = 0 on ∂Ω× (0, T ],(128)716

p̄f,ω(T ) = 0 in Ω.(129)717718
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Corollary 4.5. Let the assumptions of the previous theorem be satisfied. Let719

f ∈ V be given. Then topological derivative of ω 7→ J1(ω, f) at ω in η0 is given by720

(130) T J1(ω, f)(η0) =

{
−
∫ T

0
uf,ω(x0, s)p̄

f,ω(η0, s) ds if η0 ∈ ω,∫ T
0
uf,ω(x0, s)p̄

f,ω(η0, s) ds if η0 ∈ Ω \ ω,
721

where p̄f,ω solves the adjoint equation (127).722

Proof. For the same arguments as in proof of Theorem 3.5 we may assume that723

f̄ ∈ K with ‖f̄‖V ≤ 1. Setting K := {f̄} we obtain for all ω ∈ Y(Ω),724

(131) J2(ω) = max
f∈K,
‖f‖V ≤1

J1(ω, f) = J1(ω, f̄)725

and hence the result follows from Theorem 3.5 since X2(ω) = {f̄} is a singleton.726

Corollary 4.6. Let the hypotheses of Theorem 4.4 be satisfied. Assume that if727

v ∈ U then −v ∈ U . Then we have728

(132) T J1(ω,−f)(η0) = T J1(ω, f)(η0)729

for all η0 ∈ Ω \ ∂ω and f ∈ V .730

Proof. Let f ∈ V be given. From the optimality system (14) and the assumption731

that v ∈ U implies −v ∈ U , we infer that u−f,ω = −uf,ω, ȳ−f,ω = −ȳf,ω and732

p̄−f,ω = −p̄f,ω. Now the result follows from (130).733

4.3. Averaged adjoint equation and Lagrangian. Throughout this section734

we fix an open set ω ∈ Y(Ω) and pick η0 ∈ ω. The case η0 ∈ Ω\ω is treated similarly.735

Let us define ωε := ω \Bε(η0), ε > 0.736

For every quadruple (u, f, y, p) ∈ U×K ×W (0, T )×W (0, T ) and every ε ≥ 0 we737

define the parametrised Lagrangian,738

G̃(ε, u, f, y, p) :=

∫
ΩT

y2 + γu2 dx dt+

∫
ΩT

∂typ+∇y · ∇p dx dt

−
∫
ΩT

χωεup dx dt+

∫
Ω

(y(0)− f ◦ Tτ )p(0) dx.

(133)739

We denote by yu,f,ε ∈W (0, T ) the solution of the state equation (1) with χ = χωε in740

(1a). Then, similarly to (96), we introduce the averaged adjoint: find pu,f,ε ∈W (0, T ),741

such that742

(134)

∫ 1

0

∂yG̃(ε, u, f, σyu,f,ε + (1− σ)yu, pu,f,ε)(ϕ) dσ = 0 for all ϕ ∈W (0, T )743

or equivalently after partial integration in time, pu,f,ε(T ) = 0 and744

(135)

∫
ΩT

−ϕ∂tpu,f,ε +∇ϕ · ∇pu,f,ε dx dt = −
∫

ΩT

(yu,f,ε + yu,f )ϕ dx dt745

for all ϕ ∈W (0, T ).746
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4.4. Proof of Theorem 4.4.747

Lemma 4.7. Let δ > 0 be such that B̄δ(η0) b Ω. For all sequences εn ∈ (0, 1],748

un, u ∈ U and fn, f ∈ K, such that749

(136) un ⇀ u in U, fn ⇀ f in V, εn → 0, as n→∞,750

we have751

pun,fn,εn →pu,f,ω in L2(0, T ;H1
0 (Ω)) as n→∞,

pun,fn,εn ⇀pu,f,ω in H1(0, T ;L2(Ω)) as n→∞.
(137)752

Moreover there is a subsequence (punk ,fnk ,εnk ), such that753

(138) punk ,fnk ,εnk → pu,f,ω in C([0, T ]× B̄δ(η0)) as n→∞.754

Proof. The first two statements follow by a similar arguments as used in Lemma 3.19.755

To prove the third we have by interior regularity of parabolic equations that756

(139)
pu,f,ε ∈ Z̃(0, T ) := L2(0, T ;H4(Bδ(η0)))∩H1(0, T ;H1

0 (Bδ(η0)))∩H2(0, T ;L2(Bδ(η0)))757

and we have the apriori bound758

(140)

∑2
k=0 ‖

(
d
dt

)k
pu,f,ε‖L2(0,T ;H4−2k(Bδ(η0)))

≤ c(‖yu,f,ε + yu,f‖L2(H2) + ‖ ddt (y
u,f,ε + yu,f )‖L2(L2)),

759

see e.g. [?, p.365-367, Thm.6]. Hence (138) follows since the space Z̃(0, T ) embeds760

compactly into C([0, T ]× B̄δ(η0)) .761

Proof of Theorem 4.4 Proceeding as in the proof of Theorem 3.5 we obtain using762

the averaged adjoint equation,763

(141) J(ε, u, f) = G̃(ε, u, f, yu,f,ω, pu,f,ε)764

for (ε, u, f) ∈ [0, 1]×U×K, where G̃ is defined in (133). Hence to prove Theorem 4.4765

it suffices to apply Lemma 3.18 with766

(142) G(ε, u, f) := G̃(ε, u, f, yu,f,ω, pu,f,ε),767

U := U, V := {f ∈ K : ‖f‖V ≤ 1} and `(ε) = |Bε(η0)|. Since the minimisation768

problem in (7) is uniquely solvable and in view of Lemma 2.5 Assumptions (A0) and769

(A1) are satisfied. We turn to verifying (A2) and (A3) next.770

Let (εn) be an arbitrary null-sequence and let (fn) be a sequence in K converging771

weakly in V to f ∈ K. Thanks to Assumption 4.2 the sequence (un), ūn := ūfn,ωεn772

converges strongly in L1(0, T ;C(B̄δ(η0))) to u = uf,ω ∈ L1(0, T ;C(B̄δ(η0))). There-773

fore (recall the notation p̄f,ωεn = pūn,f,ωεn ) we obtain774

G(εn, ūn, fn)−G(0, ūn, fn)

|Bεn(η0)|
=− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ūnp̄
fn,εn dx dt

=− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ūn(p̄fn,εn − p̄f,ω) dx dt

− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

(ūn − ū)p̄f,ω dx dt

− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ū(x, t)p̄f,ω(x, t) dx dt.

(143)

775
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Further for all n,776

(144)
1

|Bεn (η0)|

∣∣∣∫ T0 ∫Bεn (η0)
(ūn − ū)p̄fn,ω dx dt

∣∣∣
≤ ‖p̄fn,ω‖C([0,T ]×B̄δ(η0))‖ūn − ū‖L1(0,T ;C(B̄δ(η0)))

777

and778

(145)
1

|Bεn (η0)|

∣∣∣∫ T0 ∫Bεn (η0)
ūn(p̄fn,εn − p̄f,ω) dx dt

∣∣∣
≤ ‖ūn‖L1(0,T ;C(B̄δ(η0)))‖p̄fn,εn − p̄fn,ω‖C([0,T ]×B̄δ(η0)).

779

Since x 7→
∫ T

0
ū(x, t)p̄f,ω(x, t) dt is continuous in a neighborhood of η0 we also have780

(146) lim
n→∞

1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ū(x, t)p̄f,ω(x, t) dx dt =

∫ T

0

ū(η0, t)p̄
f,ω(η0, t) dt.781

Hence in view of (143) we obtain782

lim
n→∞

G(εn, ūn, fn)−G(0, ūn, fn)

|Bεn(η0)|
= −

∫ T

0

ū(η0, t)p̄
f,ω(η0, t) dt(147)783

Next let ūn,0 := ūfn,0. Then we can show in as similar manner as (147) that784

lim
n→∞

G(εn, ūn,0, fn)−G(0, ūn,0, fn)

|Bεn(η0)|
= −

∫ T

0

ū(η0, t)p̄
f,ω(η0, t) dt(148)785

Hence choosing (fn) to be a constant sequence we see that (A2) is satisfied.786

But also (A3) is satisfied since according to Lemma 3.15 we find for every null-787

sequence (τn) in [0, τX ] and every sequence (fn), fn ∈ X2(ωτn), a subsequence (fnk)788

and f ∈ X2(ω), such that fnk ⇀ f in H1
0 (Ω) as k →∞. Now we use (147) and (148)789

with fn replaced by this choice of fnk , and conclude that (A3) holds.790

5. Numerical approximation of the optimal shape problem. In this sec-791

tion we discuss the formulation of numerical methods for optimal positioning and792

design which are based on the formulae introduced in previous sections. We begin793

by introducing the discretisation of the system dynamics and the associated linear-794

quadratic optimal control problem. Then, the optimal actuator design problem is795

addressed by approximating the shape and topological derivatives, which are embed-796

ded into a gradient-based approach and a level-set method, respectively.797

5.1. Discretisation and Riccati equation. Let T > 0. We choose the spaces798

K = H1
0 (Ω) and U = R, so that the control space U is equal to L2(0, T ; R). The cost799

functional reads800

J1(ω, f) = inf
u∈U

J(ω, u, f) =

T∫
0

‖y(t)‖2L2(Ω) + γ|u(t)|2 dt+ α(|ω| − c)2, α > 0,(149)801

802

where y is the solution of the state equation803

∂ty(x, t) = σ∆y(x, t) + χω(x)u(t) (x, t) ∈ Ω× (0, T ],(150)804

y(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],(151)805

y(0, x) = f x ∈ Ω ,(152)806807
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and Ω is a polygonal domain. The cost J in (149) includes the additional term808

α(|ω|−c)2 which accounts for the volume constraint |ω| = c in a penalty fashion. This809

slightly modifies the topological derivative formula, as it will be shown later. We derive810

a discretised version of the dynamics (150)-(152) via the method of lines. For this, we811

introduce a family of finite-dimensional approximating subspaces Vh ⊂ H1
0 (Ω), where812

h stands for a discretisaton parameter typically corresponding to gridsize in finite813

elements/differences, but which can also be related to a spectral approximation of the814

dynamics. For each fh ∈ Vh, we consider a finite-dimensional nodal/modal expansion815

of the form816

(153) fh =

N∑
j=1

fjφj , fj ∈ R , φj ∈ Vh ,817

where {φi}Ni=1 is a basis of Vh. We denote the vector of coefficients associated to
the expansion by f

h
:= (f1, . . . , fN )>. In the method of lines, we approximate the

solution y of (150)-(152) by a function yh in C1([0, T ];Vh(Ω)) of the type

yh(x, t) =

N∑
j=1

yj(t)φj(x) ,

for which we follow a standard Galerkin ansatz. Inserting yh in the weak formulation818

(2) and testing with ϕ = φk, k = 1, . . . , N leads to the following system of ordinary819

equations,820

(154) ẏ
h
(t) = Ahyh(t) +Bhuh(t) t ∈ (0, T ], y

h
(0) = f

h
,821

where Mh,Kh ∈ RN×N and Bh, fh ∈ RN are given by822

Ah = −M−1
h Sh , Bh = M−1B̂h , f

h
:= M−1

h f̂
h
,(155)823

with824

(Mh)ij = (φi, φj)L2 , (Sh)ij = σ(∇φi,∇φj)L2 ,

(B̂h)j = (χω, φj)L2
, (f̂h)j := (f, φj)L2

, i, j = 1, . . . , N .
(156)825

Note that y
h

= y
uh,fh

,ω

h depends on fh, uh, and ω. Given a discrete initial condition826

fh ∈ Vh(Ω), the discrete costs are defined by827

(157)

J1,h(ω, fh) := inf
uh∈U

Jh(ω, u, fh) = inf
uh∈U

T∫
0

(y
h
)>Mhyh + γ|uh(t)|2 dt+ α(|ω| − c)2,828

and829

(158) J2,h(ω) = sup
fh∈Vh
‖fh‖H1≤1

J1,h(ω, fh).830

The solution of the linear-quadratic optimal control problem in (157) is given by831

ūω,fh(t) = −γ−1B>h Πh(t)y
h
,832
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where Πh ∈ RN×N satisfies the differential matrix Riccati equation833

− d

dt
Πh = AhΠh + ΠhAh −ΠhBhγ

−1B>h Πh +Mh in [0, T ), Πh(T ) = 0 .834

The coefficient vector of the discrete adjoint state p̄fh,ωh (t) at time t can be recovered835

directly by p̄fh,ω
h

(t) = 2Πh(t)y
h
(t). Let us define the discrete analog of (40),836

(159) X2,h(ω) := {f̄h ∈ Vh : sup
fh∈Vh
‖fh‖H1≤1

J1,h(ω, fh) = J1,h(ω, f̄h)}.837

Since we have the relation838

(160) J1,h(ω, fh) = (Πh(0)f
h
, f
h
)L2

+ α(|ω| − c)2,839

the maximisers fh ∈ X2,h(ω) can be computed by solving the generalised Eigenvalue840

problem: find (λh, fh) ∈ R× Vh such that841

(161) (Πh(0)− λhSh)f
h

= 0.842

The biggest λh = λmaxh is then precisely the value J2,h(ω) and the normalised Eigen-843

vectors for this Eigenvalue are the elements in X2,h(ω):844

(162) X2,h(ω) = {fh : f
h
∈ ker((Πh(0)− λmaxh Kh)) and ‖f

h
‖ = 1}.845

Remark 5.1. It is readily checked that if fh ∈ X2,h(ω), then also −fh ∈ X2,h(ω).846

So if the Eigenspace for the largest eigenvalue is one-dimensional we have X2,h(ω) =847

{fh,−fh}. However, we know according to Corollary 3.8 (now in a discrete setting)848

that849

(163) T J1,h(ω, fh)(η0) = T J1,h(ω,−fh)(η0)850

for all η0 ∈ Ω \ ∂ω and fh ∈ Vh. Hence we can evaluate the topological derivative851

T J2,h(ω) by picking either fh or −fh. A similar argumentation holds for the shape852

derivative.853

5.2. Optimal actuator positioning: Shape derivative. Here we precise the854

gradient algorithm based upon a numerical realisation of the shape derivative. We855

consider (150)-(152) with its discretisation (154). Given a simply connected actuator856

ω0 ⊂ Ω we employ the shape derivative of J1 to find the optimal position. Let fh ∈ Vh.857

According to Corollary 3.6 the derivative of J1,h in the case U = R is given by858

(164) DJ1,h(ω, fh)(X) = −
∫
∂ω

ūfh,ωh (t)

∫ T

0

p̄fh,ωh (s, t)(X(s) · ν(s)) ds dt859

for X ∈
◦
C1(Ω,Rd). We assume that ω b Ω. We define the vector b ∈ Rd with the860

components861

(165) bi :=

∫
∂ω

ūfh,ωh (t)

∫ T

0

p̄fh,ωh (s, t)(ei · ν(s)) ds dt,862

where ei denotes the canonical basis of Rd. From this we can construct an admissible863

descent direction by choosing any X̃ ∈
◦
C1(Ω,Rd) with X̃|∂ω = b. Then it is obvious864
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that DJ1,h(ω, fh)(X̃) ≤ 0. Let us use the notation b = −∇J1,h(ω, fh). We write865

(id +t∇J1,h(ω, fh))(ω) to denote the moved actuator ω via the vector b. Note that866

only the position, but not the shape of ω changes by this operation. We refer to this867

procedure as Algorithm 1 below.868

Algorithm 1 Shape derivative-based gradient algorithm for actuator positioning

Input: ω0 ∈ Y(Ω), fh ∈ Vh, b0 := −∇J1,h(ω0, fh), n = 0, β0 > 0, and ε > 0.
while |bn| ≥ ε do

if J1,h((id +βnbn)(ωn), fh) < J1,h(ωn, fh) then
βn+1 ← βn
ωn+1 ← (id +βnbn)(ωn)
bn+1 ← −∇J1,h(ωn+1, fh)
n← n+ 1

else
decrease βn

end if
end while
return optimal actuator positioning ωopt

5.3. Optimal actuator design: Topological derivative. As for the shape869

derivative, we now introduce a numerical approximation of the topological deriva-870

tive formula which is embedded into a level-set method to generate an algorithm871

for optimal actuator design, i.e. including both shaping and position. According to872

Theorem 4.4 the discrete topological derivative of J1,h is given by873

(166)

T J1,h(ω, fh)(η0) =

{∫ T
0
ufh,ωh (t)p̄fh,ωh (η0, t) dt− 2α(|ω| − c) if η0 ∈ ω,

−
∫ T

0
ufh,ωh (t)p̄fh,ωh (η0, t) dt+ 2α(|ω| − c) if η0 ∈ Ω \ ω,

874

The level-set method is well-established in the context of shape optimisation and875

shape derivatives [?]. Here we use a level-set method for topological sensitivities as876

proposed in [?]. We recall that compared to the formulation based on shape sensitivi-877

ties, the topological approach has the advantage that multi-component actuators can878

be obtained via splitting and merging.879

For a given actuator ω ⊂ Ω, we begin by defining the function880

gfh,ωh (ζ) = −
∫ T

0

ufh,ωh (t)pfh,ωh (ζ, t) dt+ 2α(|ω| − c), ζ ∈ Ω881

which is continuous since the adjoint is continuous in space. Note that pfh,ω882

and ufh,ω depend on the actuator ω. For other types of state equations where the883

shape variable enters into the differential operator (e.g. transmission problems [?])884

this may not be the case and thus it is a particularity of our setting. The necessary885

optimality condition for the cost function J1,h(ω, fh) using the topological derivative886

are formulated as887

gfh,ωh (x) ≤ 0 for all x ∈ ω,

gfh,ωh (x) ≥ 0 for all x ∈ Ω \ ω.
(167)888
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Since gfh,ωh is continuous this means that gfh,ωh vanishes on ∂ω and hence889

(168)

∫ T

0

ufh,ωh (t)pfh,ωh (ζ, t) dt = 2α(|ω| − c) , for all ζ ∈ ∂ω.890

An (actuator) shape ω that satisfies (167) is referred to as stationary (actuator) shape.891

It follows from (166) and (167), that gfh,ωh vanishes on the actuator boundary ∂ω of892

a stationary shape ω.893

We now describe the actuator ω via an arbitrary level-set function ψh ∈ Vh, such894

that ω = {x ∈ Ω : ψh(x) < 0} is achieved via an update of an initial guess ψ0
h895

(169) ψn+1
h = (1− βn)ψnh + βn

gfh,ωnh

‖gfh,ωnh ‖
, ωn := {x ∈ Ω : ψnh(x) < 0},896

where βn is the step size of the method. The idea behind this update scheme is the897

following: if ψnh(x) < 0 and gfh,ωnh (x) > 0, then we add a positive value to the level-898

set function, which means that we aim at removing actuator material. Similarly, if899

ψnh(x) > 0 and gfh,ωnh (x) < 0, then we create actuator material. In all the other cases900

the sign of the level-sets remains unchanged. We present our version of the level-set901

algorithm in [?], which we refer to as Algorithm 2.902

Algorithm 2 Level set algorithm for optimal actuator design

Input: ψ0
h ∈ Vh(Ω), ω0 := {x ∈ Ω, ψ0

h(x) < 0}, β0 > 0, fh ∈ Vh, and ε > 0.
while ‖ωn+1 − ωn‖ ≥ ε do

if J1,h({ψn+1
h < 0}, fh) < J1,h({ψnh < 0}, fh) then

ψn+1
h ← (1− βn)ψnh + βn

g
fh,ωn
h

‖gfh,ωnh ‖
βn+1 ← βn
ωn+1 ← {ψn+1

h < 0}
n← n+ 1

else
decrease βn

end if
end while
return optimal actuator ωopt

Algorithm 2 is embedded inside a continuation approach over the quadratic903

penalty parameter α in (157), leading to actuators which approximate the size con-904

straint in a sensible way, as opposed to a single solve with a large value of α.905

Finally, for the functional J2(ω) we may employ similar algorithms for shape and906

topological derivatives. We update the initial condition fh ∈ X2,h(ω) at each iteration907

whenever the actuator ω is modified.908

6. Numerical tests. We present a series of one and two-dimensional numerical909

tests exploring the different capabilities of the developed approach.910

Test parameters and setup. We establish some common settings for the experi-911

ments. For the 1D tests, we consider a piecewise linear finite element discretisation912

with 200 elements over Ω = (0, 1), with γ = 10−3, σ = 0.01, c = 0.2, and ε = 10−7.913

For the 2D tests, we resort to a Galerkin ansatz where the basis set is composed by the914

eigenfunctions of the Laplacian with Dirichlet boundary conditions over Ω = (0, 1)2.915
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We utilize the first 100 eigenfunctions. This idea has been previously considered in the916

context of optimal actuator positioning in [?], and its advantage resides in the lower917

computational burden associated to the Riccati solve. The actuator size constraint is918

set to c = 0.04. An important implementation aspect relates to the numerical approx-919

imation of the linear-quadratic optimal control problem for a given actuator. For the920

sake of simplicity, we consider the infinite horizon version of the costs J1 and J2. In921

this way, the optimal control problems are solved via an Algebraic Riccati Equation922

approach. The additional calculations associated to J2 and the set X2(ω) are reduced923

to a generalized eigenvalue problem involving the Riccati operator Πh. The shape924

and topological derivative formulae involving the finite horizon integral of u and p are925

approximated with a sufficiently large time horizon, in this case T = 1000.926

Actuator size constraint. While in the abstract setting the actuator size constraint
determines the admissible set of configurations, its numerical realisation follows a
penalty approach, i.e. J1(ω, f) is as in (149),

J1(ω, f) = J LQ1 (ω, f) + J α1 (ω) ,

where J LQ1 (ω, f) is the original linear-quadratic (LQ) performance measure, and927

J α1 (ω) = α(|ω| − c)2 is a quadratic penalization from the reference size. The cost928

J2 is treated analogously. In order to enforce the size constraint as much as possible929

and to avoid suboptimal configurations, the quadratic penalty is embedded within a930

homotopy/continuation loop. For a low initial value of α, we perform a full solve of931

Algorithm 2, which is then used to initialized a subsequent solve with an increased932

value of α. As it will be discussed in the numerical tests, for sufficiently large val-933

ues of α and under a gradual increase of the penalty, results are accurate within the934

discretisation order.935

Algorithm 2 and level-set method. The main aspect of Algorithm 2 is the level-936

set update of the function ψn+1
h which dictates the new actuator shape. In order to937

avoid the algorithm to stop around suboptimal solutions, we proceed to reinitialize the938

level-set function every 50 iterations. This is a well-documented practice for the level-939

set method, and in particular in the context of shape/topology optimisation [?, ?].940

Our reinitialization consists of reinitialising ψn+1
h to be the signed distance function941

of the current actuator. The signed distance function is efficiently computed via the942

associated Eikonal equation, for which we implement the accelerated semi-Lagrangian943

method proposed in [?], with an overall CPU time which is negligible with respect to944

the rest of the algorithm.945

Practical aspects. All the numerical tests have been performed on an Intel Core i7-946

7500U with 8GB RAM, and implemented in MATLAB. The solution of the LQ control947

problem is obtained via the ARE command, the optimal trajectories are integrated948

with a fourth-order Runge-Kutta method in time. While a single LQ solve does not949

take more than a few seconds in the 2D case, the level-set method embedded in a950

continuation loop can scale up to approximately 30 mins. for a full 2D optimal shape951

solve.952

6.1. Optimal actuator positioning through shape derivatives. In the first953

two tests we study the optimal positioning problem (11) of a single-component ac-954

tuator of fixed width 0.2 via the gradient-based approach presented in Algorithm 1.955

Tests are carried out for a given initial condition f(x), i.e. the J1 setting.956

Test 1. We start by considering f(x) = sin(πx), so the test is fully symmetric,957

and we expect the optimal position to be centered in the middle of the domain, i.e.958

at x = 0.5. Results are illustrated in Figure 1, where it can be observed that as959
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the actuator moves from its initial position towards the center, the cost J1 decays960

until reaching a stationary value. Results are consistent with the result obtained by961

inspection (Figure 1 left), where the location of the center of the actuator has been962

moved throughout the entire domain.

Fig. 1. Test 1. Left: different single-component actuators with different centers have been
spanned over the domain, locating the minimum value of J1 for the center at x = 0.5. Center:
starting from an initial guess for the actuator far from 0.5, the gradient-based approach of Algorithm
1 locates the optimal position in the middle. Right: as the actuator moves towards the center in the
subsequent iterations of Algorithm 1, the value J1 decays until reaching a stationary point.

963

Test 2. We consider the same setting as in the previous test, but we change964

the initial condition of the dynamics to be f(x) = 100|x − 0.7|4 + x(x − 1), so the965

setting is asymmetric and the optimal position is different from the center. Results966

are shown in Figure 2, where the numerical solution coincides with the result obtained967

by inspecting all the possible locations.

Fig. 2. Test 2. Left: inspecting different values of J1 by spanning actuators with different
centers, the optimal center location is found to be close to 0.2 . Center: the gradient-based approach
steers the initial actuator to the optimal position. Right: the value J1 decays until reaching a
stationary point, which coincides with the minimum for the first plot on the left.

968

6.2. Optimal actuator design through topological derivatives. In the969

following series of experiments we focus on 1D optimal actuator design, i.e. problems970

(9) and (10) without any further parametrisation of the actuator, thus allowing multi-971

component structures. For this, we consider the approach combining the topological972

derivative, with a level-set method, as summarized in Algorithm 2.973

Test 3. For f(x) = max(sin(3πx), 0)2, results are presented in Figures 3 and 4974

. As it can be expected from the symmetry of the problem, and from the initial975

condition, the actuator splits into two equally sized components. We carried out two976

types of tests, one without and one with a continuation strategy with respect to α.977

Without a continuation strategy, choosing α = 103 we obtain the result depicted in978

Figure 3 (b). With a continuation strategy, as the penalty increases, the size of the979

components decreases until approaching the total size constraint. The behavior of980

this continuation approach is shown in Table 1. When α is increased, the size of981

the actuator tends to 0.2, the reference size, while the LQ part of J1, tends to a982
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stationary value. For a final value of α = 104, the overall cost J1 obtained via the983

continuation approach is approx. 80 times smaller than the value obtained without984

any initialisation procedure, see Figure 3 (b)-(d). Figure 4 illustrates some basic985

relevant aspects of the level-set approach, such as the update of the shape (left), the986

computation of the level-set update upon βn and ψnh (middle), and the decay of the987

value J1 (right).988

(a) f(x) (b) α = 103, no init. (c) α = 10−1 (d) α = 103

Fig. 3. Test 3. (a) Initial condition f(x) = max(sin(3πx), 0)2. (b) Optimal actuator for
α = 103, without initialization via increasing penalization. (c) Optimal actuator for α = 10−1, sub-
sequently used in the quadratic penalty approach. (d) Optimal actuator for α = 103, via increasing
penalization.

α J1 J LQ1 J α1 (size) iterations

0.1 1.84×10−2 1.62×10−2 2.30×10−3 (0.35) 225
1 2.35×10−2 2.26×10−2 9.10×10−4 (0.23) 226
10 2.56×10−2 2.46×10−2 1.00×10−3 (0.21) 316
102 3.46×10−2 2.46×10−2 1.00×10−2 (0.21) 226
103 0.12 2.46×10−2 1.00×10−1 (0.21) 226
103* 8.18 8.00×10−2 8.10 (0.29) 629

Table 1
Test 3. optimisation values for f(x) = max(sin(3πx), 0)2. Each row is initialized with the

optimal actuator corresponding to the previous one, except for the last row with α = 103∗, illustrating
that incorrectly initialized solves lead to suboptimal solutions. The reference size for the actuator is
0.2 .

Test 4. We repeat the setting of Test 3 with a nonsymmetric initial condition989

f(x) = sin(3πx)2χ{x<2/3}(x). Results are presented in Table 2 and Figure 5, which990

illustrate the effectivity of the continuation approach, which generates an optimal991

actuator with two components of different size, see Figure 5d and compare with Figure992

5b.993

Test 5. We now turn our attention to the optimal actuator design for the worst-994

case scenario among all the initial conditions, i.e. the J2 setting. Results are presented995

in Figure 6 and Table 3. The worst-case scenario corresponds to the first eigenmode996

of the Riccati operator (Figure 6a), which generates a two-component symmetric997

actuator (Figure 6d). This is only observed within the continuation approach. For a998

large value of α without initialisation, we obtain a suboptimal solution with a single999

component (last row of Table 3, Figure 6b).1000

Test 6. As an extension of the capabilities of the proposed approach, we explore1001

the J2 setting with space-dependent diffusion. For this test, the diffusion operator1002
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Fig. 4. Test 3. Level set method implemented in Algorithm 2. Left: starting from an initial
actuator, the topological derivative of the cost is computed and an updated actuator is obtained.
The new shape is evaluated according to its closed-loop performance. If the update is rejected, the
parameter βn is reduced. Middle: the level-set approach generates an update of the actuator shape
based on the information from ψn

h , βn and gωn . Right: This iterative loop generates a decay in the
total cost J1, (which accounts for both the closed-loop performance of the actuator and its volume
constraint).

α J1 J LQ1 J α1 (size) iterations

0.1 6.48×10−2 6.31×10−2 1.7×10−3 (0.33) 229
1 8.0×10−2 6.31×10−2 1.69-2 (0.33) 226
10 0.176 0.164 1.23×10−2 (0.235) 226
102 0.207 0.184 2.25×10−2 (0.215) 316
103 0.234 0.209 2.50×10−2 (0.195) 316
104 0.459 0.209 0.250 (0.195) 316
104* 9.09 9.66×10−2 9 (0.23) 629

Table 2
Test 4. optimisation values for f(x) = sin(3πx)2χx<2/3(x). Each row is initialized with the

optimal actuator corresponding to the previous one, except for the last row with α = 104∗, illustrating
that incorrectly initialized solves lead to suboptimal solutions. The reference size for the actuator is
0.2 .

σ∆y is rewritten as div(σ(x)∇y), with σ(x) = (1 − max(sin(9πx), 0))χ{x<0.5}(x) +1003

10−3. Iterates of the continuation approach are presented in Table 4. Again, the1004

lack of a proper initialization of Algortithm 2 with a large value of α leads to a poor1005

satisfaction of both the size constraint and the LQ performance, which is solved via1006

the increasing penalty approach. A two-component actuator present in the area of1007

smaller diffusion is observed in Figure 7d.1008

6.3. Two-dimensional optimal actuator design. We now turn our attention1009

into assessing the performance of Algorithm 2 for two-dimensional actuator topology1010

optimisation. While this problem is computationally demanding, the increase of de-1011

grees of freedom can be efficiently handled via modal expansions, as explained at the1012

beginning of this Section. We explore both the J1 and J2 settings.1013
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(a) f(x) (b) α = 104, no init. (c) α = 10−1 (d) α = 104

Fig. 5. Test 4. (a) Initial condition f(x) = sin(3πx)2χ{x<2/3}(x). (b) Optimal actuator for

α = 104, without initialization via increasing penalization. (c) Optimal actuator for α = 10−1, sub-
sequently used in the quadratic penalty approach. (d) Optimal actuator for α = 104, via increasing
penalization.

(a) X2(ω) (b) α = 103, no init. (c) α = 10−1 (d) α = 103

Fig. 6. Test 5. (a) First eigenmode of the Riccati operator, which corresponds to the set X2(ω).
(b) Optimal actuator for α = 103, without initialization via increasing penalization. (c) Optimal
actuator for α = 10−1, subsequently used in the quadratic penalty approach. (d) Optimal actuator
for α = 103, via increasing penalization.

α J2 J LQ2 J α2 (size) iterations

0.1 0.402 0.401 1.1×10−3 (0.305) 307
1 0.369 0.364 4.0×10−4 (0.22) 225
10 0.343 0.342 1.0×10−3 (0.19) 228
102 0.352 0.342 1.0×10−2 (0.19) 226
103 0.442 0.342 0.1 (0.19) 226
103* 0.761 0.536 0.225 (0.215) 941

Table 3
Test 5. optimisation values for J2. Each row is initialized with the optimal actuator corre-

sponding to the previous one, except for the last row with α = 103*. The reference size for the
actuator is 0.2 .

Test 7. This experiment is a direct extension of Test 3. We consider a unilaterally1014

symmetric initial condition f(x1, x2) = max(sin(4π(x1−1/8)), 0)3 sin(πx2)3, inducing1015

a two-component actuator. The desired actuator size is c = 0.04. The evolution of the1016

actuator design for increasing values of the penalty parameter α is depicted in Figure1017

8. We also study the closed-loop performance of the optimal shape. For this purpose1018

the running cost associated to the optimal actuator is compared against an ad-hoc1019

design, which consists of a cylindrical actuator of desired size placed in the center of1020

the domain, see Figure 9 . The closed-loop dynamics of the optimal actuator generate1021

a stronger exponential decay compared to the uncontrolled dynamics and the ad-hoc1022
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α J2 J LQ2 J α2 (size) iterations

0.1 1.792 1.743 4.97×10−2 (0.908) 194
1 2.240 1.743 0.497 (0.908) 228
10 4.734 4.462 0.272 (0.365) 225
102 3.134 3.071 6.25×10−2 (0.175) 538
103 1.023 0.998 0.025 (0.195) 226
104 1.248 0.998 0.250 (0.195) 226
104* 28.19 3.195 25.0 (0.25) 673

Table 4
Test 6. J2 values with space-dependent diffusion σ(x) = (1 −max(sin(9πx), 0))χ{x<0.5}(x) +

10−3. Each row is initialized with the optimal actuator corresponding to the previous one, except
for the last row with α = 104*. The reference size for the actuator is 0.2 .

(a) X2(ω) (b) σ(x) (c) α = 0.1 (d) α = 104

Fig. 7. Test 6. (a) First eigenmode of the Riccati operator, which corresponds to the set
X2(ω). (b) space-dependent diffusion coefficient σ(x) = (1 −max(sin(9πx), 0))χ{x<0.5}(x) + 10−3.
(c) Optimal actuator for α = 10, subsequently used in the quadratic penalty approach. (d) Optimal
actuator for α = 104, via increasing penalization.

shape.1023

Test 8. In an analogous way as in Test 5, we study the optimal design problem1024

associated to J2. The first eigenmode of the Riccati operator is shown in Figure 10a.1025

The increasing penalty approach (Figs. 10c to 10f) shows a complex structure, with1026

a hollow cylinder and four external components. The performance of the closed-loop1027

optimal solution is analysed in Figure 11, with a considerably faster decay compared1028

to the uncontrolled solution, and to the ad-hoc design utilised in the previous test.1029

Concluding remarks. In this work we have developed an analytical and com-1030

putational framework for optimisation-based actuator design. We derived shape and1031

topological sensitivities formulas which account for the closed-loop performance of a1032

linear-quadratic controller associated to the actuator configuration. We embedded1033

the sensitivities into gradient-based and level-set methods to numerically realise the1034

optimal actuators. Our findings seem to indicate that from a practical point of view,1035

shape sensitivities are a good alternative whenever a certain parametrisation of the1036

actuator is fixed in advance and only optimal position is sought. Topological sensi-1037

tivities are instead suitable for optimal actuator design in a wider sense, allowing the1038

emergence of nontrivial multi-component structures, which would be difficult to guess1039

or parametrise a priori. This is a relevant fact, as most of the engineering literature1040

associated to computational optimal actuator positioning is based on heuristic meth-1041

ods which strongly rely on experts’ knowledge and tuning. Extensions concerning1042
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(a) f(x1, x2) (b) ψn+1
h

(c) α = 0.1 (d) α = 1

(e) α = 1× 102 (f) α = 104

Fig. 8. Test 7. (a) initial condition f(x1, x2) = max(sin(4π(x1 − 1/8)), 0)3 sin(πx2)3 for J1
optimisation. (b) within the level-set method, the actuator is updated according to the zero level-set
of the function ψn+1

h . (c) to (f) optimal actuators for different volume penalties.

robust control design and semilinear parabolic equation are in our research roadmap.1043

Appendix.1044
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Fig. 9. Test 7. Closed-loop performance for different shapes. The running cost in J1 is
evaluated for uncontrolled dynamics (u ≡ 0), an ad-ho cylindrical actuator located in the center of
the domain, and the optimal shape (Figure 8f). Closed-loop dynamics of the optimal shape decay
faster.

Differentiability of maximum functions. In order to prove Lemma 3.18 we1045

recall the following Danskin-type lemma see, e.g., [?] and [?], which we adapt to1046

account for topological sensitivities.1047

Let V1 be a nonempty set and let G : [0, τ ] × V1 → R be a function, τ > 0.1048

Introduce the function g1 : [0, τ ]→ R,1049

(170) g1(t) := sup
x∈V1

G(t, x),1050

and let ` : [0, τ ] → R be any function such that `(t) > 0 for t ∈ (0, τ ] and `(0) = 0.1051

We give sufficient conditions that guarantee that the limit1052

(171)
d

d`
g1(0+) := lim

t↘0

g1(t)− g1(0)

`(t)
1053

exists. For this purpose we introduce for each t the set of maximisers1054

(172) V1(t) = {xt ∈ V1 : sup
x∈V1

G(t, x) = G(t, xt)}.1055

The next lemma can be found with slight modifications in [?, Theorem 2.1, p. 524].1056

Lemma 6.1. Let the following hypotheses be satisfied.1057

(A1) (i) For all t in [0, τ ] the set V1(t) is nonempty,1058

(ii) the limit1059

(173) ∂`G(0+, x) := lim
t↘0

G(t, x)− G(0, x)

`(t)
1060

exists for all x ∈ V1(0).1061

(A2) For all real null-sequences (tn) in (0, τ ] and all sequence (xtn) in V1(tn), there1062

exists a subsequence (tnk) of (tn), (xtnk ) in V1(tnk) and x0 in V1(0), such1063

that1064

(174) lim
k→∞

G(tnk , xtnk )− G(0, xtnk )

`(tnk)
= ∂`G(0+, x0).1065
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(a) X2(ω) (b) ψn+1
h

(c) α = 0.1 (d) α = 10

(e) α = 102 (f) α = 104

Fig. 10. Test 8. (a) first eigenmode of the Riccati operator. (b) within the level-set method, the
actuator is updated according to the zero level-set of the function ψn+1

h . (c) to (f) optimal actuators
for different volume penalties.

Then g1 is differentiable at t = 0+ with derivative1066

(175)
d

dt
g1(t)|t=0+ = max

x∈V1(0)
∂`G(0+, x).1067
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Fig. 11. Test 8. Closed-loop performance for different shapes. The running cost in J2 is
evaluated for uncontrolled dynamics (u ≡ 0), a suboptimal cylindrical actuator of size c located in
the center of the domain, and the optimal shape with five components (Figure 10f). Closed-loop
dynamics of the optimal shape decay faster.

Proof of Lemma 3.18. Our strategy is to prove Lemma 3.18 by applying1068

Lemma 6.1 to the function G(t, y) := infx∈VG(t, x, y) with V1 := V. This will1069

show that g(t) := supy∈V G(t, y) is right-differentiable at t = 0+. By construction1070

Assumption (A0) of Lemma 3.18 is satisfied.1071

Step 1: For every t ∈ [0, τ ] and y ∈ V we have G(t, y) = G(t, xt,y, y). Hence1072

G(t, y)− G(0, y) =G(t, xt,y, y)−G(0, x0,y, y)

= G(t, xt,y, y)−G(0, xt,y, y) +G(0, xt,y, y)−G(0, x0,y, y)︸ ︷︷ ︸
≥0

≥ G(t, xt,y, y)−G(0, xt,y, y)

(176)1073

and similarly1074

G(t, y)− G(0, y) =G(t, xt,y, y)−G(0, x0,y, y)

= G(t, xt,y, y)−G(t, x0,y, y)︸ ︷︷ ︸
≤0

+G(t, x0,y, y)−G(0, x0,y, y)

≤ G(t, x0,y, y)−G(0, x0,y, y).

(177)1075

Therefore using Assumption (A2) of Lemma 3.18 we obtain from (103) and (104)1076

(178) lim inf
t↘0

G(t, y)− G(0, y)

`(t)
≥ ∂`G(0+, x0,y, y) ≥ lim sup

t↘0

G(t, y)− G(0, y)

`(t)
.1077

Hence Assumption (A1) of Lemma 6.1 is satisfied.1078

Step 2: For every t ∈ [0, τ ] and yt ∈ V(t) we have G(t, yt) = G(t, xt,y
t

, yt) and1079
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hence1080

G(t, yt)− G(0, yt) =G(t, xt,y
t

, yt)−G(0, x0,yt , yt)

=G(t, xt,y
t

, yt)−G(0, xt,y
t

, yt) +G(0, xt,y
t

, yt)−G(0, x0,yt , yt)︸ ︷︷ ︸
≥0

≥G(t, xt,y
t

, yt)−G(0, xt,y
t

, yt)

(179)

1081

and similarly1082

G(t, yt)− G(0, yt) =G(t, xt,y
t

, yt)−G(t, x0,yt , yt)︸ ︷︷ ︸
≤0

+G(t, x0,yt , yt)−G(0, x0,yt , yt)

≤G(t, x0,yt , yt)−G(0, x0,yt , yt).

(180)

1083

Thanks to Assumption (A3) of Lemma 3.18 For all real null-sequences (tn) in (0, τ ]1084

and all sequences (ytn), ytn ∈ V(tn), there exists a subsequence (tnk) of (tn), (ytnk )1085

of (ytn), and y0 in V(0), such that1086

(181) lim
k→∞

G(tnk , x
tnk ,y

tnk , ytnk )−G(0, xtnk ,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0)1087

and1088

(182) lim
k→∞

G(tnk , x
0,y

tnk , ytnk )−G(0, x0,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0).1089

Hence choosing t = tnk in (179) we obtain1090

lim inf
k→∞

G(tnk , y
tnk )− G(0, ytnk )

`(tnk)

(179)

≥ lim inf
k→∞

G(tnk , x
tnk ,y

tnk , ytnk )−G(0, xtnk ,y
tnk , ytnk )

`(tnk)

(181)
= ∂`G(0+, x0,y0

, y0)

(183)1091

and similarly choosing t = tnk in (180) we get1092

lim sup
k→∞

G(tnk , y
tnk )− G(0, ytnk )

`(tnk)

(180)

≤ lim sup
k→∞

G(tnk , x
0,y

tnk , ytnk )−G(0, x0,y
tnk , ytnk )

`(tnk)

(182)
= ∂`G(0+, x0,y0

, y0).

(184)1093

Combining (183) and (184) we conclude that1094

(185) lim
k→∞

G(tnk , y
tnk )− G(0, ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0),1095

which is precisely Assumption (A2) of Lemma 6.1.1096

Step 1 and Step 2 together show that Assumptions (A1) and (A2) of Lemma 6.11097

are satisfied and this finishes the proof.1098
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6.4. Proof of Lemma 2.8.1099

Proof. Let an be a minimizing sequence for (24) in P . Then there exists ā ∈ P1100

and a subsequence of {an}, denoted by the same symbol, such that an ⇀ ā in Lp(Ω),1101

for every p ∈ [1,∞). Let fn denote an associated maximizer of J̃ 1 and uan,fn an1102

element assuming the minimum in (25). Then we have1103

J̃ 1(an, fn) =

∫ T

0

‖yu
an,fn ,fn,an(t)‖2L2(Ω) + γ‖uan,fn‖2L2(Ω)dt

≤
∫ T

0

‖y0,fn,an‖2L2(Ω)dt ≤ c1,
1104

where c1 is independent of n.1105

Hence {yuan,fn ,fn,an} is bounded in L2(0, T ;L2(Ω)) and by (14b) and regularity results1106

for parabolic equations, analogous to (4) the sequence {puan,fn ,fn,an} is bounded in1107

Z. By (14c) and Remark 2.1 therefore, the sequence {uan,fn} is bounded in Z.1108

Thus there exists a subsequence, denoted by the same symbol, and ū ∈ Z, such that1109

uan,fn → ū in L∞(0, T ;H1
0 (Ω)). This implies that anu

an,fn ⇀ āū in L2(0, T ;L2(Ω)).1110

Moreover there exists f̄ ∈ K such that for a subsequence fn ⇀ f in H1
0 . Combining1111

these facts we have that yu
an,fn ,fn,an → ȳ := yū,f̄,ā in L2(0, T ;L2(Ω)). Since {an}1112

was chosen as a minimizing sequence for (24) we have1113

(186) J̃ 2(ā) = lim
n→∞

J̃ 2(an) = inf
a∈P
J̃ 2(a) = inf

a∈P
max
f∈K

‖f‖
H1

0
≤1

J̃ 1(a, f),1114

as desired.1115
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