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Abstract
Weconstruct and compare two alternative quantizations, as a time-orderable prefactor-
ization algebra and as an algebraic quantum field theory valued in cochain complexes,
of a natural collection of free BV theories on the category of m-dimensional globally
hyperbolic Lorentzian manifolds. Our comparison is realized as an explicit isomor-
phismof time-orderable prefactorization algebras. The key ingredients of our approach
are the retarded and advanced Green’s homotopies associated with free BV theories,
which generalize retarded and advanced Green’s operators to cochain complexes of
linear differential operators.
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1 Introduction and summary

Several mathematical axiomatizations of quantum field theory (QFT) on Lorentzian
manifolds have been proposed in the literature, such as algebraic quantumfield theories
(AQFTs) [10, 11, 15] and time-orderable prefactorization algebras [7], i.e. a Lorentzian
variant of prefactorization algebras [12, 13]. These two approaches are a priori quite
different. For instance, while the former emphasizes the algebraic structure carried by
the quantum observables on each spacetime, the latter focuses on their time-ordered
products. The differences become even more striking when one tries to construct
simple QFT models, such as the free Klein–Gordon field of mass m ≥ 0: while
the corresponding time-orderable prefactorization algebra is constructed out of the
(−1)-shifted Poisson structure (antibracket) τ(−1)(ϕ ⊗ ϕ‡) := ∫

M ϕϕ‡ volM only,
the corresponding AQFT relies crucially also on the retarded and advanced Green’s
operators G± for the Klein–Gordon operator � + m2 through the unshifted Poisson
structure τ(0)(ϕ1 ⊗ ϕ2) := ∫

M ϕ1(G+ − G−)ϕ2 volM .
Because of these differences, it is interesting to compare time-orderable prefactor-

ization algebras and AQFTs. This task was undertaken first in a model-based approach
by [18] and then in a model-independent fashion by [7]. In [18], it is shown that the
time-orderable prefactorization algebra and the AQFT of the free Klein–Gordon field
encode equivalent information as a consequence of the time-slice axiom, i.e. the prop-
erty that any spacetime embedding whose image contains a Cauchy surface of the
codomain induces an isomorphism at the level of quantum observables. (The results
of [18] can be adapted with minor modifications to encompass any field theoretic
model that is ruled by a Green hyperbolic operator.) In [7], a model-independent com-
parison is developed in the form of an equivalence (actually isomorphism) between the
categories of time-orderable prefactorization algebras and of AQFTs, both satisfying
the time-slice axiom (and an additional technical requirement, called additivity, that
is fulfilled by many examples).

Unfortunately, the results of [7, 18] do not cover the examples of linear gauge
theories. On the one hand, the equation of motion of a linear gauge theory (with
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gauge transformations acting non-trivially) must be degenerate. In particular, the cor-
responding linear differential operator is not a Green hyperbolic operator, see [2] and
also Definition 2.8. As a consequence, the results of [18] cannot be applied directly.
On the other hand, linear gauge theories are most naturally encoded by cochain com-
plexes in the spirit of the BV formalism, see [8, 12, 13, 16, 17, 19]. In this context,
a weaker version of the time-slice axiom holds, where isomorphisms are replaced
by quasi-isomorphisms, see [5] and also Examples 4.4 and 4.7. Motivated by this
fact, linear gauge theories on Lorentzian manifolds are realized by means of time-
orderable prefactorization algebras or AQFTs that take values in the ∞-categoryChC

of cochain complexes with equivalences given by quasi-isomorphisms, see Defini-
tions 2.11 and 2.9 and also Remark 2.10.

While we are currently not able to upgrade the model-independent comparison
of [7] to the case where the target is the ∞-category ChC, with the present paper
we extend the results of [18] to linear gauge (and also higher gauge) theories. The
key ingredient to achieve this goal is a generalization of Green hyperbolic operators,
namely the recently developed Green hyperbolic complexes [6]. In contrast to Green
hyperbolic operators, Green hyperbolic complexes cover many important examples
of linear gauge theories, see [6] and also Examples 3.6, 3.7 and 3.8. Their key feature
is that they admit retarded and advanced Green’s homotopies �±, generalizing the
familiar retarded and advanced Green’s operators G± for Green hyperbolic operators.

The input of our construction is a free BV theory (F, Q, (−,−), W ) on an m-
dimensional oriented and time-oriented globally hyperbolic Lorentzian manifold M ∈
Locm , consisting of a complex of linear differential operators (F, Q)with a compatible
(−1)-shifted fiber metric (−,−) and a (formally self-adjoint) Green’s witness, see
Definitions 3.1, 3.3 and 3.5. Let us provide some interpretation of these data and some
information about the structures that can be defined out of it. In the spirit of the BV
formalism, one may think of the graded vector bundle F as encoding both gauge
and ghost fields, and the respective antifields. In the same spirit, the differential Q,
which is degree-wise a linear differential operator, encodes both the action of gauge
transformations and the equation of motion. The compatible (−1)-shifted fiber metric
(−,−) is a suitable generalization of the more familiar concept of a fiber metric on a
vector bundle. (−,−) is closely related to the antibracket from the BV formalism in
the sense that, upon integration, it defines the (−1)-shifted Poisson structure τ(−1) on
the 1-shift Fc(M)[1] ∈ ChR of the cochain complex of compactly supported smooth
sections of (F, Q), see (3.13). Finally, the role of theGreen’switnessW is to give rise to
theGreen hyperbolic operator P := Q W +W Q, which allows one to find particularly
simple retarded and advanced Green’s homotopies �± := W G±, where G± denote
the retarded and advancedGreen’s operator for P . In this sense, W “witnesses” the fact
that (F, Q) is aGreenhyperbolic complex.Taking the difference of�+ and�− defines
the retarded-minus-advanced cochain map � := �+ − �− and taking their average
defines the Dirac homotopy �D := 1

2 (�+ + �−), which generalize the familiar
retarded-minus-advancedG := G+−G− andDiracG D := 1

2 (G++G−) propagators.
In combination with the (−1)-shifted fiber metric (−,−), � and �D define, upon
integration, the unshifted Poisson structure τ(0) and respectively the Dirac pairing τD

on the cochain complex Fc(M)[1] ∈ ChR of compactly supported smooth sections,
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see (3.15) and (3.17). The (−1)-shifted Poisson structure τ(−1) plays a crucial role
in the first step of our construction (quantization as a time-orderable prefactorization
algebra), the unshifted Poisson structure τ(0) in the second step (quantization as an
AQFT) and the Dirac pairing τD in the last step (comparison).

In the first step, which is carried out in Sect. 4.1, we construct a time-orderable pref-
actorization algebraF ∈ tPFAm out of a collection (FM , QM , (−,−)M , WM )M∈Locm

of free BV theories that is natural with respect to the morphisms f : M → N in Locm

(see Appendix A for the technical details). The first part of this construction relies
only on the complexes of linear differential operators (FM , QM ) and on the compat-
ible (−1)-shifted fiber metrics (−,−)M , for all M ∈ Locm . These data are used to
define the (−1)-shifted Poisson structures τ(−1), whose BV quantization provides the
time-orderable prefactorization algebra F of interest to us. Explicitly, from τ(−1) we
define the BV Laplacian �BV on the symmetric algebra Sym(Fc(M)[1]) ∈ dgCAlgC,
see (4.3), and then we deform the original differential Q to the quantized differential
Q� := Q+ i � �BV. Even thoughQ� is not compatiblewith the commutativemultipli-
cation μ of the symmetric algebra Sym(Fc(M)[1]) ∈ dgCAlgC, it is compatible with
the time-ordered products constructed out ofμ, see Proposition 4.2.Hence, by defining
for all M ∈ Locm the cochain complexes F(M) := (Sym(Fc(M)[1]),Q�) ∈ ChC

that consist of the graded vector space underlying Sym(Fc(M)[1]) with the quantized
differential Q�, we obtain the time-orderable prefactorization algebra F with time-
ordered products constructed out of the symmetric algebra multiplication μ. At this
point, it is unclear whetherF fulfills the time-slice axiom. The Green’s witnesses WM

become crucial for this purpose, see Theorem 3.13 and Proposition 4.3.
In the second step, which is carried out in Sect. 4.2, we construct an AQFT

A ∈ AQFTm out of the same data. Explicitly, instead of using τ(−1) to deform the
differential, here one uses the unshifted Poisson structure τ(0) to deform the com-
mutative multiplication μ of the symmetric algebra Sym(Fc(M)[1]) ∈ dgCAlgC

to the (in general non-commutative) Moyal–Weyl star product μ�, see (4.13). The
deformed multiplication μ� is compatible with the original differential Q and with
the pushforward of compactly supported sections along Locm-morphisms. Hence, we
obtain the AQFT A by defining for all M ∈ Locm the differential graded algebras
A(M) := (Sym(Fc(M)[1]), μ�,1) ∈ dgAlgC that consist of (the cochain com-
plex underlying) Sym(Fc(M)[1]) with the Moyal–Weyl star product μ� and the unit
1 ∈ Sym(Fc(M)[1]), and extending the pushforward of compactly supported sections.

In the last step, which is carried out in Sect. 4.3, we compare the time-orderable
prefactorization algebra F ∈ tPFAm and the AQFT A ∈ AQFTm obtained in the
previous steps. Explicitly, we construct a comparison isomorphism T : F → FA in
tPFAm between F ∈ tPFAm and the time-orderable prefactorization algebra FA ∈
tPFAm associated with A ∈ AQFTm , whose time-ordered products are constructed
out of the Moyal–Weyl star product μ�. (FA is just the evaluation onA of the functor
AQFTm → tPFAm from [7].) The comparison isomorphism T := exp( i � �D) is
defined as the exponential of the Dirac Laplacian �D , which is obtained from the
Dirac pairing τD , see Theorem 4.9. In particular, we show that T intertwines the
quantized differential Q� with the original symmetric algebra differential Q and the
time-ordered products constructed out of the original symmetric algebramultiplication
μ with those constructed out of the quantized multiplication μ�.
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The outline of the rest of the paper is the following: Section2 contains the back-
ground material needed later on. In particular, Sect. 2.1 reviews some basic aspects of
the theory of cochain complexes ChK over a field K of characteristic zero; Sect. 2.2
describes the extension of (anti-)symmetric pairings τ of degree p ∈ Z on a cochain
complex V ∈ ChK to suitable bi-derivations {{−,−}}τ and, in the symmetric case,
to suitable Laplacians �τ on the symmetric algebra Sym V ∈ dgCAlgK; Sect. 2.3
recalls some relevant concepts from Lorentzian geometry and Green hyperbolic oper-
ators; Sect. 2.4 reviews the concepts of time-orderable prefactorization algebras and
AQFTs valued in cochain complexes ChC, including the Einstein causality and time-
slice axioms (the latter in the form of a quasi-isomorphism). Section3 focuses on
the concept of a Green’s witness and on the structures that can be constructed out
of it. More in detail, Sect. 3.1 recalls the concepts of a complex of linear differ-
ential operators (F, Q), of a compatible (−1)-shifted fiber metric (−,−) and of a
(formally self-adjoint) Green’s witness W , which together form a free BV theory
(F, Q, (−,−), W ) on M ∈ Locm , and out of these data it constructs the (−1)-
shifted Poisson structure τ(−1), the unshifted Poisson structure τ(0) and the Dirac
pairing τD; Sect. 3.2 investigates the properties of the structures τ(−1), τ(0) and τD

associated with a natural collection (FM , QM , (−,−)M , WM )M∈Locm of free BV
theories, proving in particular classical analogs of the Einstein causality and time-
slice axioms, see Theorem 3.13. The core of the paper is Sect. 4, which is devoted to
the construction and comparison of two alternative quantizations of a natural collec-
tion (FM , QM , (−,−)M , WM )M∈Locm of free BV theories. The starting point of both
quantization schemes is the symmetric algebra Sym(Fc(M)[1]) ∈ dgCAlgC, where
Fc(M)[1] ∈ ChR denotes the 1-shift of the cochain complex of compactly supported
smooth sections of the complex of linear differential operators (FM , QM ). Section 4.1
quantizes (FM , QM , (−,−)M , WM )M∈Locm as a time-orderable prefactorization alge-
bra F ∈ tPFAm by deforming the original differential Q of Sym(Fc(M)[1]) to
the quantized differential Q� := Q + i � �BV by means of the BV Laplacian
�BV defined from the (−1)-shifted Poisson structure τ(−1); Sect. 4.2 quantizes
(FM , QM , (−,−)M , WM )M∈Locm as an AQFT A ∈ AQFTm by deforming the
original commutative multiplication μ of the symmetric algebra Sym(Fc(M)[1]) ∈
dgCAlgC to the (in general non-commutative) Moyal–Weyl star product μ� by
means of the bi-derivation {{−,−}}(0) extending the unshifted Poisson structure τ(0);
Sect. 4.3 concludes the paper with constructing in Theorem 4.9 an isomorphism
T := exp( i � �D) : F → FA in tPFAm , where �D denotes the Dirac Laplacian
defined from the Dirac pairing τD . T intertwines the quantized differential Q� and
original (i.e. constructed out of μ) time-ordered products of F ∈ tPFAm with the
original differential Q and quantized (i.e. constructed out of μ�) time-ordered prod-
ucts of the time-orderable prefactorization algebra FA ∈ tPFAm associated with
A ∈ AQFTm according to [7]. Appendix A discusses some technical details about
naturality of vector bundles, fiber metrics and differential operators, which we require
to introduce the concept of natural free BV theories.
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2 Preliminaries

2.1 Cochain complexes

We review some basic aspects of the theory of cochain complexes to fix our notation
and conventions. More details on the well-known topics recalled here are covered by
the classical literature, see e.g. [20, 22]. Let us fix a field K of characteristic zero. In
the main part of this paper, K will be either the field R of real numbers or the field C

of complex numbers.

Definition 2.1 A cochain complex V = (V , QV ) consists of a Z-graded K-vector
space V = (V n)n∈Z and a differential QV , that is a collection QV = (Qn

V )n∈Z of
degree increasing K-linear maps Qn

V : V n → V n+1 such that Qn+1
V Qn

V = 0, for
all n ∈ Z. A cochain map f : V → W is a family f = ( f n)n∈Z of K-linear maps
f n : V n → W n that is compatible with the differentials, i.e. Qn

W f n = f n+1 Qn
V , for

all n ∈ Z. We denote by ChK the category whose objects are cochain complexes and
whose morphisms are cochain maps.

The tensor product V ⊗W ∈ ChK of two cochain complexes V , W ∈ ChK consists
of

(V ⊗ W )n :=
⊕

p∈Z

(V p ⊗ W n−p), (2.1a)

for all n ∈ Z, and of the differential Q⊗ given by the graded Leibniz rule

Q⊗(v ⊗ w) := QV v ⊗ w + (−1)|v| v ⊗ QW w, (2.1b)

for all homogeneous v ∈ V and w ∈ W , where |−| denotes the degree. The monoidal
unit of the tensor product is given by K ∈ ChK, regarded as a cochain complex
concentrated in degree zero with trivial differential. The symmetric braiding is given
by the cochain maps γ : V ⊗ W → W ⊗ V in ChK that are defined by the Koszul
sign rule

γ (v ⊗ w) := (−1)|v| |w| w ⊗ v, (2.2)

for all homogeneous v ∈ V and w ∈ W . The internal hom [V , W ] ∈ ChK is the
cochain complex that consists of

[V , W ]n :=
∏

p∈Z

HomK(V p, W n+p), (2.3a)

for all n ∈ Z, where HomK denotes the vector space of linear maps, and of the
differential ∂ defined by

∂ f := QW ◦ f − (−1)| f | f ◦ QV , (2.3b)
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for all homogeneous f ∈ [V , W ].
To each cochain complex V ∈ ChK, one can assign its cohomology H•(V ) =

(Hn(V ))n∈Z, that is the graded vector space defined degree-wise by Hn(V ) :=
Ker(Qn

V )/Im(Qn−1
V ), for all n ∈ Z. The compatibility of cochain maps with dif-

ferentials entails that cohomology extends to a functor H• from ChK to the category
of graded vector spaces. A cochain map f : V → W in ChK is called a quasi-
isomorphism if it induces an isomorphism H•( f ) : H•(V ) → H•(W ) in cohomology.
In many circumstances, quasi-isomorphic cochain complexes should be regarded as
“being the same”, which can be made precise by using techniques from model cate-
gory theory. It is proven in [20] that ChK carries the structure of a closed symmetric
monoidal model category, whose weak equivalences are the quasi-isomorphisms and
whose fibrations are the degree-wise surjective cochain maps.

Remark 2.2 Let us briefly recall how one may interpret the cohomology of the internal
hom [V , W ] ∈ ChK between cochain complexes V , W ∈ ChK in terms of higher
cochain homotopies. Given two n-cocycles f , g ∈ Ker(∂n) in [V , W ], one defines
a cochain homotopy from f to g as an (n − 1)-cochain λ ∈ [V , W ]n−1 such that
∂λ = g − f . Since ∂λ ∈ Im(∂n−1) is an n-coboundary in [V , W ], the cohomology
classes [ f ] = [g] ∈ Hn([V , W ]) coincide if and only if a cochain homotopy from
f to g exists. In particular, for n = 0 one recovers the ordinary concept of cochain
homotopies between two cochain maps f , g : V → W in ChK. �

Let us alsofixour convention for shifts of cochain complexes. For a cochain complex
V ∈ ChK and an integer q ∈ Z, we define the q-shift V [q] ∈ ChK of V as the
cochain complex consisting of V [q]n := V q+n , for all n ∈ Z, and of the differential
QV [q] := (−1)q QV . Note that V [p][q] = V [p + q], for all p, q ∈ Z, and that
V [0] = V . Furthermore, recalling the definition of the tensor product (2.1), one
obtains natural cochain isomorphisms V [q] ∼= K[q] ⊗ V for all q ∈ Z.

2.2 Extension of pairings to symmetric algebras

In this paper, we will encounter various types of pairings τ ∈ [V ⊗ V , K]p of degree
p ∈ Z on a cochain complex V ∈ ChK. These pairings are either symmetric or
anti-symmetric, i.e.

τ ◦ γ = s τ (2.4)

with s = +1 in the symmetric case and s = −1 in the anti-symmetric case, where γ

denotes the symmetric braiding of ChK. In particular, we shall consider shifted and
also unshifted (i.e. 0-shifted) (linear) Poisson structures as defined below.

Definition 2.3 A p-shifted (linear) Poisson structure on a cochain complex V ∈ ChK

consists of a symmetric (respectively, anti-symmetric) pairing τ ∈ [V ⊗ V , K]p of
odd (respectively, even) degree p ∈ Z that is closed ∂τ = 0 with respect to the internal
hom differential (2.3).

The aim of this subsection is to describe an extension of such pairings to suitable
bi-derivations and, in the symmetric case, to suitable Laplacians on the symmetric
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algebra Sym V ∈ dgCAlgK. The latter is the commutative differential graded algebra
defined by Sym V = ⊕∞

n=0 Sym
n V , with unit element 1 := 1 ∈ Sym0 V = K and

multiplication

μ(v1 · · · vn ⊗ v′
1 · · · v′

n′) := v1 · · · vn v′
1 · · · v′

n′ , (2.5)

for all n, n′ ≥ 0 and all v1, . . . , vn, v′
1, . . . , v

′
n′ ∈ V . (By convention, the length n = 0

corresponds to the unit 1.)

Definition 2.4 Given an (anti-)symmetric pairing τ ∈ [V ⊗ V , K]p of degree p, we
define

{{−,−}}τ ∈ [
Sym V ⊗ Sym V ,Sym V ⊗ Sym V

]p (2.6)

as the unique graded linear map of degree p that fulfills the following conditions:

(i) {{−,−}}τ is (anti-)symmetric, i.e.

γ ◦ {{−,−}}τ ◦ γ = s {{−,−}}τ (2.7)

with s = +1 in the symmetric case and s = −1 in the anti-symmetric case;
(ii) for all v1, v2 ∈ V , {{v1, v2}}τ = τ(v1 ⊗ v2)1 ⊗ 1 ∈ Sym V ⊗ Sym V ;
(iii) for all homogeneous a ∈ Sym V , {{a,−}}τ : Sym V → Sym V ⊗ Sym V is a

graded derivation of degree |a|+ p with respect to the (Sym V )-module structure
on Sym V ⊗ Sym V given by multiplication on the second tensor factor, i.e.

{{a, bc}}τ = {{a, b}}τ (1 ⊗ c) + (−1)(|a|+p)|b| (1 ⊗ b) {{a, c}}τ , (2.8)

for all homogeneous b, c ∈ Sym V .

An immediate consequence of the previous definition is that

∂{{−,−}}τ = {{−,−}}∂τ . (2.9)

Furthermore, given two cochain complexes V , W ∈ ChK endowed with (anti-
)symmetric pairings τ ∈ [V ⊗ V , K]p and ω ∈ [W ⊗ W , K]p of degree p and a
cochain map f : V → W in ChK preserving them, i.e. τ = ω ◦ ( f ⊗ f ), one has

(Sym f ⊗ Sym f ) ◦ {{−,−}}τ = {{−,−}}ω ◦ (Sym f ⊗ Sym f ) . (2.10)

Remark 2.5 A p-shifted (linear) Poisson structure τ on V can be extended to a p-
shifted Poisson bracket {−,−}τ on Sym V . Indeed, from Definitions 2.3 and 2.4 it
follows that

{−,−}τ := μ ◦ {{−,−}}τ ∈ [
Sym V ⊗ Sym V ,Sym V

]p (2.11)

defines a p-shifted Poisson bracket, i.e. a graded linear map of degree p that is closed
∂{−,−}τ = 0, symmetric (respectively, anti-symmetric) for p odd (respectively, even)
and fulfills the graded Leibniz rule and the Jacobi identity. �
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Definition 2.6 Given a symmetric pairing τ ∈ [V ⊗ V , K]p of degree p, we define
the Laplacian

�τ ∈ [
Sym V ,Sym V

]p (2.12)

as the unique graded linear map of degree p that fulfills the following conditions:

(i) �τ (1) = 0;
(ii) for all v ∈ V , �τ(v) = 0;
(iii) for all v1, v2 ∈ V , �τ(v1 v2) = τ(v1 ⊗ v2)1;
(iv) for all homogeneous a, b ∈ Sym V ,

�τ (a b) = �τ(a) b + (−1)p|a| a �τ (b) + μ({{a, b}}τ ) . (2.13)

The defining properties of �τ imply the explicit formula

�τ (v1 · · · vn) =
∑

i< j

(−1)p
∑i−1

k=1 |vk |+|v j | ∑ j−1
k=i+1 |vk | τ(vi ⊗ v j ) v1 · · · v̌i · · · v̌ j · · · vn,

(2.14)

for all n ≥ 1 and all homogeneous v1, . . . , vn ∈ V , where ·̌ means to omit the
corresponding factor. Furthermore, for p even, iterating (2.13) and observing that
both �τ ⊗ id and id ⊗ �τ graded commute with {{−,−}}τ , one finds that, for all
n ≥ 1,

�n
τ ◦ μ = μ ◦ (

�τ ⊗ + {{−,−}}τ
)n =

n∑

k=0

(
n

k

)

μ ◦ {{−,−}}n−k
τ ◦ �k

τ ⊗, (2.15)

where �τ ⊗ := �τ ⊗ id + id ⊗ �τ . (For n = 1 this recovers (2.13). For p odd, the
left-hand side vanishes identically for n ≥ 2, see (2.17) below.) Taking also (2.9) into
account, one shows that

∂�τ = �∂τ . (2.16)

Given two symmetric pairings τ ∈ [V ⊗ V , K]p and τ ′ ∈ [V ⊗ V , K]p′
of degrees p

and p′, respectively, the explicit formula (2.14) for the Laplacian entails

�τ ◦ �τ ′ = (−1)pp′
�τ ′ ◦ �τ . (2.17)

Furthermore, given two cochain complexes V , W ∈ ChK endowed with symmetric
pairings τ ∈ [V ⊗ V , K]p and ω ∈ [W ⊗ W , K]p of degree p and a cochain map
f : V → W in ChK preserving them, i.e. τ = ω ◦ ( f ⊗ f ), it follows from (2.14)
that

Sym f ◦ �τ = �ω ◦ Sym f . (2.18)
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2.3 Lorentzian geometry and Green’s operators

In this subsection, we recall some relevant concepts from Lorentzian geometry and
Green hyperbolic differential operators. We refer to [2, 4, 21] for an in-depth intro-
duction to these topics.

A Lorentzian manifold (M, g) is a smooth manifold M endowed with a metric g
of signature (−,+, . . . ,+). Given a nonzero tangent vector 0 
= v ∈ Tx M at a point
x ∈ M , we say that v is spacelike if g(v, v) > 0, lightlike if g(v, v) = 0 and timelike if
g(v, v) < 0. v is also called causal if g(v, v) ≤ 0, that is v is either timelike or lightlike.
Let I ⊆ R be an open interval. A curve c : I → M is called spacelike (lightlike,
timelike or causal) if its tangent vectors ċ(t) are spacelike (lightlike, timelike or causal,
respectively), for all t ∈ I . A Lorentzian manifold M is called time-orientable if there
exists an everywhere timelike vector field t ∈ 
(T M). Such t determines a time-
orientation on M . We will denote oriented and time-oriented Lorentzian manifolds
by M = (M, g, o, t), where o is the chosen orientation. A timelike or causal curve
c : I → M is said to be future directed if g(t, ċ) < 0 and past directed if g(t, ċ) > 0.
The chronological future/past I ±

M (S) ⊆ M of a subset S ⊆ M consists of all points that
can be reached by a future/past directed timelike curve stemming from S. Similarly,
the causal future/past J±

M (S) ⊆ M consists of S itself and of all points that can
be reached by a future/past directed causal curve stemming from S. By definition,
I ±

M (S) ⊆ J±
M (S); moreover, recall from e.g. [21, Chapter 14] that

I ±
M (J±

M (S)) = I ±
M (S) = J±

M (I ±
M (S)) ⊆ M (2.19)

is always anopen subset.A subset S ⊆ M is called causally convex if J+
M (S)∩J−

M (S) ⊆
S, i.e. when all causal curves with endpoints in S lie in S. An example of a causally
convex subset is the causally convex hull

J+∩−
M (S) := J+

M (S) ∩ J−
M (S) ⊆ M (2.20)

of a subset S ⊆ M , i.e. the smallest causally convex subset of M that contains S.

Definition 2.7 An oriented and time-oriented Lorentzian manifold M is called glob-
ally hyperbolic if it admits a Cauchy surface � ⊂ M , i.e. a subset that is met exactly
once by any inextendible future directed timelike curve in M . Locm denotes the
category whose objects are all m-dimensional oriented and time-oriented globally
hyperbolic Lorentzianmanifolds M andwhosemorphisms are all orientation and time-
orientation-preserving isometric embeddings f : M → M ′ with open and causally
convex image f (M) ⊆ M ′.

For M ∈ Locm and O ⊆ M open, one has that the causal future/past

J±
M (O) = I ±

M (O) (2.21)

coincides with the chronological one. (Indeed, any p ∈ J±
M (O) lies along a future/past

directed causal curve emanating from some q ∈ O . Since O is open, q can be reached
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via a future/past directed timelike curve emanating from some r ∈ O . But then
p ∈ J±

M (q) ⊆ J±
M (I ±

M (r)) = I ±
M (r) ⊆ I ±

M (O).) In particular, when O ⊆ M is open,
the causal future/past J±

M (O) ⊆ M and the causally convex hull J+∩−
M (O) ⊆ M are

open subsets.

Consider an oriented and time-oriented globally hyperbolic Lorentzian manifold
M ∈ Locm of dimension m ≥ 2. Let E → M be a real or complex vector bundle of
finite rank. Denote the vector space of smooth sections of E by 
(E) and the vector
subspace of compactly supported sections by 
c(E) ⊆ 
(E).

Definition 2.8 A Green hyperbolic operator is a linear differential operator P :

(E) → 
(E) that admits retarded and advanced Green’s operators G±, which
are linear maps G± : 
c(E) → 
(E) such that, for all ϕ ∈ 
c(E), the following
conditions hold:

(i) PG±ϕ = ϕ;
(ii) G± Pϕ = ϕ;
(iii) supp(G±ϕ) ⊆ J±

M (supp(ϕ)).

The difference G := G+ − G− : 
c(E) → 
(E) between the retarded and advanced
Green’s operators is called the retarded-minus-advanced propagator and their average
G D := 1

2 (G+ + G−) : 
c(E) → 
(E) is called the Dirac propagator.

In [2], it is shown that the retarded and advanced Green’s operators associated with
a Green hyperbolic operator are unique.

Given a real vector bundle E → M endowed with a fiber metric 〈−,−〉, i.e. a
fiber-wise non-degenerate, symmetric, bilinear form, and denoting the volume form
on M by volM , one defines the integration pairing

〈〈ϕ, ϕ′〉〉 :=
∫

M
〈ϕ, ϕ′〉 volM , (2.22)

for all sections ϕ, ϕ′ ∈ 
(E) with compact overlapping support, i.e. such that
supp(ϕ) ∩ supp(ϕ′) ⊆ M is compact. Given two vector bundles (E1, 〈−,−〉1),
(E2, 〈−,−〉2) endowed with fiber metrics and a linear differential operator Q :

(E1) → 
(E2), one defines its formal adjoint Q∗ : 
(E2) → 
(E1) as the unique
linear differential operator such that

〈〈Q∗ϕ2, ϕ1〉〉1 := 〈〈ϕ2, Qϕ1〉〉2, (2.23)

for all sections ϕ1 ∈ 
(E1), ϕ2 ∈ 
(E2) with compact overlapping support. A linear
differential operator P : 
(E) → 
(E) on (E, 〈−,−〉) is formally self-adjoint if
P∗ = P . When P : 
(E) → 
(E) is a formally self-adjoint Green hyperbolic
operator, the associated retarded and advanced Green’s operators G± are “formal
adjoints” of each other, i.e.

〈〈G±ϕ, ϕ′〉〉 = 〈〈ϕ, G∓ϕ′〉〉, (2.24)
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for all compactly supported sections ϕ, ϕ′ ∈ 
c(E). This entails that the retarded-
minus-advanced propagator G is “formally skew-adjoint”, i.e.

〈〈Gϕ, ϕ′〉〉 = −〈〈ϕ, Gϕ′〉〉, (2.25)

for all compactly supported sections ϕ, ϕ′ ∈ 
c(E).

2.4 Algebraic QFTs and time-orderable prefactorization algebras

Algebraic quantum field theories (AQFTs) [10, 11, 15] and factorization algebras [7,
12, 13] provide two axiomatic frameworks to describe the algebraic structures on the
observables of a quantum field theory in various geometric settings. In this subsection,
we review some basic concepts from these two frameworks in the Lorentzian setting.

We say that two Locm-morphisms f1 : M1 → N ← M2 : f2 to a common target
are causally disjoint if there exists no causal curve in N connecting their images, i.e.
JN ( f1(M1)) ∩ f2(M2) = ∅, where JM (S) := J+

M (S) ∪ J−
M (S) denotes the union of

the causal future and past of a subset S ⊆ M . Furthermore, a morphism f : M → N
in Locm is Cauchy if its image f (M) ⊆ N contains a Cauchy surface of N .

Definition 2.9 A ChC-valued algebraic quantum field theory (AQFT) A on Locm is
a functor A : Locm → dgAlgC taking values in the category dgAlgC of differential
graded algebras that satisfies the following axioms:

(i) Einstein causality: For all causally disjoint morphisms f1 : M1 → N ← M2 : f2
in Locm , the diagram

A(M1) ⊗ A(M2)
A( f1)⊗A( f2)

A( f1)⊗A( f2)

A(N ) ⊗ A(N )

μ
op
N

A(N ) ⊗ A(N )
μN

A(N )

(2.26)

in ChC commutes, where μN and μ
op
N := μN ◦ γ are the multiplication and the

opposite multiplication of A(N ) ∈ dgAlgC;
(ii) Time-slice: For all Cauchy morphisms f : M → N in Locm , the morphism

A( f ) : A(M) → A(N ) in dgAlgC is a quasi-isomorphism.

A morphism κ : A → B between AQFTs is a natural transformation. This defines
the category AQFTm of ChC-valued AQFTs as the full subcategory AQFTm ⊆
dgAlgLocm

C
of the functor category consisting of all functors that satisfy the Einstein

causality and time-slice axioms.

Remark 2.10 There exists a more elegant and powerful operadic description [10] of
the category AQFTm . This more abstract perspective is particularly useful to endow
AQFTm with a model category structure [9], which provides a solid foundation for
the study of ChC-valued AQFTs. To prove the results of our present paper, we do not
have to make explicit use of these techniques. �
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Our goal is to construct and compare AQFTs and prefactorization algebras in the
Lorentzian setting. For this purpose, we recall below a Lorentzian version of the
prefactorization algebras from [12], called time-orderable prefactorization algebras
[7]. This requires some preliminaries. A tuple of Locm-morphisms ( f1 : M1 →
N , . . . , fn : Mn → N ), also denoted f : M → N , to a common target is called

time-ordered if J+
N ( fi (Mi )) ∩ f j (M j ) = ∅, for all i < j . Given a tuple f : M → N

in Locm of length n, a time-ordering permutation ρ ∈ �n is a permutation such that
the ρ-permuted tuple f ρ := ( fρ(1), . . . , fρ(n)) : Mρ → N of Locm-morphisms is
time-ordered. When a time-ordering permutation exists, one says that f : M → N
in Locm is time-orderable. (Note that the time-ordering permutation for a tuple may
not be unique. For instance, two morphisms f1 : M1 → N ← M2 : f2 in Locm are
causally disjoint precisely when both ( f1, f2) and ( f2, f1) are time-ordered pairs.)
A time-orderable 1-tuple ( f ) : M → N in Locm is denoted simply as a morphism
f : M → N in Locm and, for each N ∈ Locm , we define a unique time-orderable
empty tuple ∅ → N . Time-orderable tuples are composable and carry permutation
group actions, see [7]. These facts are crucial for the next definition.

Definition 2.11 A ChC-valued time-orderable prefactorization algebra F on Locm

consists of the data listed below:

(a) For each M ∈ Locm , a cochain complex F(M) ∈ ChC.
(b) For each time-orderable tuple f : M → N inLocm , a morphismF( f ) : F(M) →

F(N ) inChC, called time-ordered product, whereF(M) := ⊗n
i=1 F(Mi ) ∈ ChC

denotes the tensor product. By convention, the time-ordered product assigned to
an empty tuple ∅ → N is a morphismC → F(N ) inChC from the monoidal unit.

These data are subject to the following axioms:

(i) For all time-orderable tuples f = ( f1, . . . , fn) : M → N and g
i

=
(gi1, . . . , giki ) : Li → Mi , i = 1, . . . , n, in Locm , the diagram

n⊗

i=1
F(Li )

⊗
i F(g

i
)

F( f (g
1
,...,g

n
))

F(M)

F( f )

F(N )

(2.27)

inChC commutes,where f (g
1
, . . . , g

n
) :=( f1g11, . . . , fngnkn ) :(L1, . . . , Ln) →

N is the time-orderable tuple given by composition in Locm .
(ii) For all M ∈ Locm , F(idM ) = idF(M) : F(M) → F(M) in ChC is the identity.
(iii) For all time-orderable tuples f : M → N in Locm and permutations σ ∈ �n ,

the diagram

F(M)

γσ

F( f )

F(N )

F(Mσ)

F( f σ)

(2.28)
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in ChC commutes, where γσ is defined by the symmetric braiding γ of ChC.

We say that a time-orderable prefactorization algebra F satisfies the time-slice axiom
if, for all Cauchy morphism f : M → N in Locm , F( f ) : F(M) → F(N ) in ChC is
a quasi-isomorphism.

Amorphism ζ = (ζM )M∈Locm : F → Gof time-orderable prefactorization algebras
is a collection of cochain maps ζM : F(M) → G(M) in ChC, indexed by objects
M ∈ Locm , that is compatible with the time-ordered products in the sense that, for all
time-orderable tuples f : M → N in Locm , the diagram

F(M)
F( f )

ζM

F(N )

ζN

G(M) G( f )
G(N )

(2.29)

in ChC commutes, where ζM := ⊗
i ζMi . We denote the category of time-orderable

prefactorization algebras on Locm satisfying the time-slice axiom by tPFAm .

3 Green’s witnesses

In this section, we briefly recall the concept of a Green’s witness for a complex of
linear differential operators, see [6] for more details. This consists of a collection of
degree decreasing linear differential operators that enable the explicit construction of
retarded and advanced Green’s homotopies. The latter are differential graded analogs
of the usual retarded and advanced Green’s operators, see e.g. [2, 4] and also Sect.
2.3, and they will play a key role in our construction of AQFTs and their comparison
to time-orderable prefactorization algebras in Sect. 4. Given a Green’s witness, we
shall endow the underlying complex of linear differential operators with the following
three structures: 1.) a (−1)-shifted Poisson structure τ(−1), 2.) an unshifted Poisson
structure τ(0) and 3.) a symmetric pairing τD , that we call Dirac pairing, trivializing
the (−1)-shifted Poisson structure, i.e. τ(−1) = ∂τD . We shall show that τ(−1), τ(0) and
τD are natural when all input data are natural (with respect to the category Locm of m-
dimensional oriented and time-oriented globally hyperbolic Lorentzian manifolds). In
particular, we shall construct a functor (Fc[1], τ(0)) : Locm → PoChR that assigns to
each M ∈ Locm a Poisson cochain complex (Fc(M)[1], τ M

(0)) whose cochains may be
interpreted field-theoretically as linear observables. (HerePoChR denotes the category
whose objects are Poisson cochain complexes (V , τ ), consisting of a cochain complex
V ∈ ChR endowed with an unshifted linear Poisson structure τ , see Definition 2.3,
and whose morphisms f : (V , τ ) → (W , ω) are cochain maps f : V → W in
ChR preserving the Poisson structures, i.e. ω ◦ ( f ⊗ f ) = τ .) In Theorem 3.13, we
shall prove that the functor (Fc[1], τ(0)) satisfies the classical analogs of the Einstein
causality and time-slice axioms.
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3.1 �(−1), �(0) and �D over a fixed globally hyperbolic Lorentzianmanifold

Given a (Z-)graded (R-)vector bundle F → M (degree-wise of finite rank) over an
oriented and time-oriented globally hyperbolic Lorentzian manifold M ∈ Locm , we
denote by

F(M)n := 
(Fn) (3.1)

the vector space of degree n smooth sections, i.e. the smooth sections of the degree n
vector bundle Fn → M , and by

Fc(M)n := 
c(Fn) (3.2)

the vector space of degree n smooth sections with compact support.

Definition 3.1 A complex of linear differential operators (F, Q) over M ∈ Locm

consists of a graded vector bundle F → M and of a collection Q = (Qn : F(M)n →
F(M)n+1)n∈Z of degree increasing linear differential operators such that Qn+1Qn =
0, for all n ∈ Z.Wedenote byF(M) ∈ ChR the cochain complex of sections associated
with the complex of linear differential operators (F, Q).

A compatible (−1)-shifted fiber metric (−,−) on (F, Q) is a fiber-wise non-
degenerate, graded anti-symmetric, graded vector bundle map (−,−) : F ⊗ F →
M × R[−1] such that the identity

∫

M
(Qϕ1, ϕ2) volM + (−1)|ϕ1|

∫

M
(ϕ1, Qϕ2) volM = 0 (3.3)

holds for all homogeneous sections ϕ1, ϕ2 ∈ F(M)with compact overlapping support.

Remark 3.2 The compatibility condition (3.3) implies that the integration pairing

((−,−)) : Fc(M) ⊗ F(M) −→ R[−1], (3.4a)

defined by

((ψ, ϕ)) :=
∫

M
(ψ, ϕ) volM , (3.4b)

for all ψ ∈ Fc(M) and ϕ ∈ F(M), is a cochain map. �

Definition 3.3 A (formally self-adjoint) Green’s witness W = (W n)n∈Z for a complex
of linear differential operators (F, Q) endowed with a compatible (−1)-shifted fiber
metric (−,−) consists of a collection of degree decreasing linear differential operators
W n : F(M)n → F(M)n−1 such that the following conditions hold:

(i) For all n ∈ Z, Pn := Qn−1 W n + W n+1 Qn : F(M)n → F(M)n are Green
hyperbolic operators.

123



   36 Page 16 of 38 M. Benini et al.

(ii) Q W W = W W Q.
(iii)

∫
M (Wϕ1, ϕ2) volM = (−1)|ϕ1|

∫
M (ϕ1, Wϕ2) volM , for all homogeneous sec-

tions ϕ1, ϕ2 ∈ F(M) with compact overlapping support.

Remark 3.4 Some direct consequences of Definition 3.3 are listed below:

(1) For all n ∈ Z, there exist unique retarded and advanced Green’s operators Gn± :
Fc(M)n → F(M)n associated with the Green hyperbolic operators Pn ;

(2) It follows that P W = W P and P Q = Q P , hence also G± W = W G± and
G± Q = Q G±;

(3) P is formally self-adjoint, i.e.
∫

M (Pϕ1, ϕ2) volM = ∫
M (ϕ1, Pϕ2) volM , for

all sections ϕ1, ϕ2 ∈ F(M) with compact overlapping support. It follows that∫
M (ψ1, G±ψ2) volM = ∫

M (G∓ψ1, ψ2) volM , for all sections ψ1, ψ2 ∈ Fc(M)

with compact support, andhence also
∫

M (ψ1, Gψ2) volM =− ∫
M (Gψ1, ψ2) volM

and
∫

M (ψ1, G Dψ2) volM = ∫
M (G Dψ1, ψ2) volM , where G := G+ − G− and

G D := 1
2 (G++G−) denote, respectively, the retarded-minus-advanced and Dirac

propagators.

These observations will be used frequently in our constructions in this paper. �

In analogy with the Riemannian setting [13], we introduce the following terminol-
ogy.

Definition 3.5 A free BV theory (F, Q, (−,−), W ) on M ∈ Locm consists of a com-
plex of linear differential operators (F, Q)with a compatible (−1)-shifted fibermetric
(−,−) and a Green’s witness W .

Several examples of free BV theories, closely related to the examples from [1, 5,
6], are presented below.

Example 3.6 Our first example of a free BV theory over M ∈ Locm is obtained from
an ordinary field theory, which is defined by a formally self-adjoint Green hyperbolic
operator P acting on sections of a vector bundle E over M endowed with a fiber
metric 〈−,−〉. To these data, one assigns the free BV theory (FP , Q P , (−,−)P , WP )

consisting of the complex of linear differential operators

(FP , Q P ) := (
E

P
E

)
(3.5a)

concentrated in degrees 0 and 1, of the compatible (−1)-shifted fiber metric (−,−)P

uniquely determined by

(ϕ‡, ϕ)P := 〈ϕ‡, ϕ〉, (3.5b)

for all ϕ ∈ F0
P = E and ϕ‡ ∈ F1

P = E over the same base point, and of the Green’s
witness

WP := (
E E

id )
. (3.5c)
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Here and in the following examples, we decided to use a convenient graphical visu-
alization for a Green’s witness as a sequence of linear differential operators, which is
pointing from right to left because W decreases the degree. It is important to empha-
size that this sequence is in general not a chain complex because a Green’s witness is
not necessarily square-zero.

Example 3.7 The free BV theory (FCS, QCS, (−,−)CS, WCS) associated with linear
Chern–Simons theory on M ∈ Loc3 consists of the complex of linear differential
operators

(FCS, QCS) := (
�0M

d
�1M

d
�2M

d
�3M

)
(3.6a)

concentrated between degrees−1 and 2 (this is the 1-shift of the de Rham complex up
to a global sign), of the (−1)-shifted fiber metric (−,−)CS uniquely determined by

(A‡, A)CS := ∗−1(A‡ ∧ A), (c‡, c)CS := − ∗−1 (c‡ ∧ c), (3.6b)

for all c ∈ F−1
CS = �0M , A ∈ F0

CS = �1M , A‡ ∈ F1
CS = �2M and c‡ ∈ F2

CS = �3M
over the same base point, where ∧ denotes the wedge product on differential forms
and ∗ denotes the Hodge operator on M , and of the Green’s witness

WCS := (
�0M �1M

δ
�2M

δ
�3M

δ )
, (3.6c)

where δ := (−1)k ∗−1 d ∗ denotes the de Rham codifferential on M on k-forms,
for k = 1, 2, 3. (It is useful to keep in mind that ∗−1 = −∗ in odd dimension and
Lorentzian signature.)

Example 3.8 The free BV theory (FMW, QMW, (−,−)MW, WMW) associated with
Maxwell p-forms on M ∈ Locm , for p = 0, . . . , m − 1, consists of the complex
of linear differential operators

(FMW, QMW) := (
�0M

d · · · d
�p M

δd
�p M

δ · · · δ
�0M

)

(3.7a)

concentratedbetweendegrees−p and p+1, of the (−1)-shiftedfibermetric (−,−)MW
uniquely determined by

(a‡, a)MW := sk+1 ∗−1 (a‡ ∧ ∗a), (3.7b)

for all k = 0, . . . , p, a ∈ F−k
MW = �p−k M and a‡ ∈ Fk+1

MW = �p−k M over the same
base point, where s1 := 1 and sk := (−1)ksk−1, for k = 2, . . . , p + 1, and of the
Green’s witness

WMW := (
�0M · · ·δ

�p M
δ

�p M
id · · ·d

�0M
d )

.

(3.7c)
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Note that for p = 1 Maxwell p-forms recover linear Yang–Mills theory.

Let (F, Q, (−,−), W ) be freeBV theory.Wedefine the retarded/advanced Green’s
homotopy

�± := W G± = G± W ∈ [Fc(M),F(M)]−1, (3.8)

where G± denotes the retarded/advancedGreen’s operator associatedwith P , see Def-
inition 3.3 andRemark 3.4. (In (3.8), we usedRemark 3.4 (2) and thatW preserves sup-
ports.) Note that the retarded/advanced Green’s homotopy �± ∈ [Fc(M),F(M)]−1

is a cochain homotopy that trivializes the cochain map j : Fc(M) → F(M) in ChR

forgetting compact supports. More explicitly, one computes

∂�± = Q W G± + W G± Q = P G± = j, (3.9)

where in the first step we used the definition of the internal hom differential ∂ , the
second step follows from Remark 3.4 (2) and in the last step we used that G± is the
retarded/advanced Green’s operator associated with P .

Remark 3.9 �± as defined in (3.8) is a specific choice of a retarded/advanced Green’s
homotopy in the more general sense of [6, Definition 3.5]. Such level of generality
plays a crucial role to ensure uniqueness of retarded/advanced Green’s homotopies,
see [6, Proposition 3.9]. This general andmore abstract concept of a retarded/advanced
Green’s homotopy is not needed for the present paper because a Green’s witness W
for the complex of linear differential operators (F, Q) is given, which allows us to
consider the explicit choices�± from (3.8). This considerably simplifies our analysis,
in particular in view of naturality with respect to M ∈ Locm , see Sect. 3.2 below. �

We shall now endow the complex Fc(M)[1] ∈ ChR of linear observables with
both a (−1)-shifted Poisson structure τ(−1) and an unshifted one τ(0). Furthermore,
we shall construct a symmetric pairing τD , called Dirac pairing, that trivializes τ(−1),
i.e. ∂τD = τ(−1). The key ingredients for our construction are the integration pairing
((−,−)) from (3.4) and the retarded and advanced Green’s homotopies�± from (3.8).
By taking their difference, we define the retarded-minus-advanced cochain map

� := �+ − �− : Fc(M)[1] −→ F(M) (3.10)

in ChR, where �± are regarded here as 0-cochains in [Fc(M)[1],F(M)] ∈ ChR

(under the isomorphism [Fc(M)[1],F(M)] ∼= [Fc(M),F(M)][−1] in ChR given by
(−1)n in degree n). Note that � is a cochain map because ∂�± = j . Similarly, we
define the Dirac homotopy

�D := 1

2

(
�+ + �−

) ∈ [Fc(M)[1],F(M)]0 (3.11)

as a graded linear map of degree 0. We have seen in (3.9) that the cochain map
j : Fc(M) → F(M) is trivialized by �±. It follows that a similar result is achieved
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by the Dirac homotopy �D , namely

∂�D = j ∈ [Fc(M)[1],F(M)]1. (3.12)

First, we define the (−1)-shifted Poisson structure

Fc(M)[1]⊗2
τ(−1)

∼=

R[1]

Fc(M)[1] ⊗ R[1] ⊗ Fc(M)
γ⊗ j

R[1] ⊗ Fc(M)[1] ⊗ F(M)
id⊗((−,−))[1]R[1] ⊗ R

∼=

(3.13)

in ChR, where γ denotes the symmetric braiding. To confirm that (3.13) defines a
(−1)-shifted Poisson structure we have to check symmetry τ(−1) ◦ γ = τ(−1). Indeed,
for all homogeneous sections ψ1, ψ2 ∈ Fc(M)[1] with compact support, one has

τ(−1)γ (ψ1 ⊗ ψ2) = (−1)(|ψ1|+1)|ψ2|
∫

M
(ψ2, ψ1) volM

= (−1)|ψ1|
∫

M
(ψ1, ψ2) volM

= τ(−1)(ψ1 ⊗ ψ2), (3.14)

where in the first and last steps we used the definition of τ(−1) from (3.13) and in
the second step we used that the fiber metric (−,−) is graded anti-symmetric, see
Definition 3.1.

Second, we define the unshifted Poisson structure

Fc(M)[1]⊗2 τ(0)

∼=⊗�

R

R[1] ⊗ Fc(M) ⊗ F(M)
id⊗((−,−))

R[1] ⊗ R[−1]
∼=

(3.15)

in ChR. To confirm that (3.15) defines an unshifted Poisson structure, we have to
check anti-symmetry τ(0) ◦γ = −τ(0). Indeed, for all homogeneous sectionsψ1, ψ2 ∈
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Fc(M)[1] with compact support, one has

τ(0)γ (ψ1 ⊗ ψ2) = (−1)|ψ1| |ψ2|
∫

M
(ψ2, GWψ1) volM

= −(−1)|ψ1|
∫

M
(GWψ1, ψ2) volM

= −
∫

M
(ψ1, W Gψ2)

= −τ(0)(ψ1 ⊗ ψ2), (3.16)

where in the first and last steps we used the definition of τ(0) from (3.15), in the second
step we used that the fiber metric (−,−) is graded anti-symmetric, see Definition 3.1,
and in the third step we used Definition 3.3 (iii) and Remark 3.4 (3).

Finally, we define the Dirac pairing

Fc(M)[1]⊗2 τD

∼=⊗�D

R

R[1] ⊗ Fc(M) ⊗ F(M)
id⊗((−,−))

R[1] ⊗ R[−1]
∼=

(3.17)

as a graded linear map of degree 0, i.e. τD ∈ [Fc(M)[1]⊗2, R]0. The same calculation
as in (3.16) (with the Dirac propagator G D replacing the retarded-minus-advanced one
G) proves symmetry τD ◦ γ = τD . Note that τD trivializes the (−1)-shifted Poisson
structure τ(−1), i.e.

∂τD = τ(−1). (3.18)

Indeed, for all homogeneous sections ψ1, ψ2 ∈ Fc(M)[1] with compact support, one
has

∂τD(ψ1 ⊗ ψ2) =
∫

M
(Qψ1,�Dψ2) volM − (−1)|ψ1|

∫

M
(ψ1,�D Q[1]ψ2) volM

= (−1)|ψ1|
∫

M
(ψ1, (Q �D − �D Q[1])ψ2) volM

= (−1)|ψ1|
∫

M
(ψ1, ψ2) volM

= τ(−1)(ψ1 ⊗ ψ2), (3.19)

where in the first step we used the definition of τD from (3.17), in the second step we
used (3.3), in the third step we used (3.12) and in the last step we used the definition
of τ(−1) from (3.13).
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3.2 Properties of �(−1), �(0) and �D

Let us now consider a collection (FM , QM , (−,−)M , WM )M∈Locm of free BV the-
ories, indexed by M ∈ Locm . We assume that (FM , QM , (−,−)M , WM )M∈Locm is
natural with respect to the morphisms f : M → N in Locm in the sense of the next
definition.

Definition 3.10 A natural collection of free BV theories (FM , QM , (−,−)M ,

WM )M∈Locm consists of natural vector bundles Fn , natural linear differential oper-
ators Qn : 
(Fn) → 
(Fn+1) and W n : 
(Fn) → 
(Fn−1) and natural fiber
metrics (−,−)n : Fn ⊗ F1−n → R, for all n ∈ Z, such that, for all M ∈ Locm ,
(FM , QM , (−,−)M , WM ) is a free BV theory in the sense of Definition 3.5.

The concepts of natural vector bundles, natural fiber metrics and natural differential
operators, which are relevant for the definition above, are recalled in Appendix A.

Example 3.11 Let us upgrade Examples 3.6, 3.7 and 3.8 to natural collections of free
BV theories as formalized in Definition 3.10.

Concerning the natural upgrade of Example 3.6, it suffices to take as input a natural
vector bundle E endowed with a natural fiber metric 〈−,−〉 and a natural linear differ-
ential operator P defined on E, whose components PM are formally self-adjoint Green
hyperbolic operators, for all M ∈ Locm . Taking the natural Green’s witness given, for
all M ∈ Locm , by the identity as in Example 3.6, one obtains a natural collection of
free BV theories. For instance, the natural collection of free BV theories associated
with the real Klein–Gordon field of mass m ≥ 0 is obtained by taking E = R to be the
natural trivial line bundle, whose components are the trivial line bundles M ×R → M ,
endowed with its canonical natural fiber metric 〈−,−〉, given component-wise by the
multiplication on R, and the Klein–Gordon operator P = � + m2, whose naturality
follows from the fact that morphisms of Locm are isometries.

The upgrade of Examples 3.7 and 3.8 to natural collections of free BV theories is
obtained as follows. First, consider the natural vector bundles of differential k-forms
�k , whose components are the vector bundles �k M → M . (Naturality follows from
the fact that morphisms of Locm are open embeddings.) Second, note that the wedge
product ∧ of differential forms, the Hodge operator ∗ and the de Rham differential
d are natural with respect to the morphisms in Locm . (This relies also on the fact
that morphisms of Locm are orientation-preserving isometries.) This defines a natural
structure in the sense of Definition 3.10 on the collection of free BV theories from
Examples 3.7 and 3.8, which describe linear Chern–Simons theory and Maxwell p-
forms.

We summarize below the key facts thatwill play a crucial role in the rest of the paper.
These are part of Definition 3.10, or follow from it and the constructions outlined in
Appendix A, especially (A.1), (A.5), (A.7) and (A.8). For all f : M → N in Locm ,
one has the following:

(1) A pushforward cochain map f∗ : Fc(M) → Fc(N ) in ChR for compactly sup-
ported sections and a pullback cochain map f ∗ : F(N ) → F(M) in ChR for
sections. (In particular, QN f∗ = f∗ QM and QM f ∗ = f ∗ QN .)
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(2) Naturality of the integration pairing (3.4), i.e. the diagram

Fc(M) ⊗ F(N )
id⊗ f ∗

f∗⊗id

Fc(M) ⊗ F(M)

((−,−))M

Fc(N ) ⊗ F(N )
((−,−))N

R[−1]

(3.20)

in ChR commutes.
(3) Naturality of Green’s witnesses, i.e. WN f∗ = f∗ WM and WM f ∗ = f ∗ WN .

(1) and (3) entail that also the Green hyperbolic operators PM := QM WM + WM QM

are natural, hence PN f∗ = f∗ PM and PM f ∗ = f ∗ PN , for all f : M → N in
Locm . As a consequence of the naturality of P = (PM )M∈Locm and of the theory of
Green hyperbolic operators, for all f : M → N in Locm , one has the usual naturality
property f ∗ G N± f∗ = G M± for the retarded/advanced Green’s operator G M± associated
with PM , see [3], as well as the analogs f ∗ G N f∗ = G M and f ∗ G N

D f∗ = G M
D for the

retarded-minus-advanced propagator G M := G M+ − G M− and for the Dirac propagator
G M

D := 1
2 (G

M+ + G M− ). Therefore, the retarded/advanced Green’s homotopies �M± :=
WM G M± , the retarded-minus advanced cochain maps �M := �M+ − �M− and the
Dirac homotopies �M

D := 1
2 (�

M+ + �M− ) inherit the same naturality, that is, for all
Locm-morphisms f : M → N , one has

f ∗ �N± f∗ = �M± , f ∗ �N f∗ = �M , f ∗ �N
D f∗ = �M

D . (3.21)

Finally, for all M ∈ Locm , let us consider the (−1)-shifted Poisson structures τ M
(−1)

from (3.13), the unshifted Poisson structures τ M
(0) from (3.15) and the Dirac pairings

τ M
D from (3.17), with additional superscripts emphasizing the underlying object in
Locm . As a consequence of (3.21) and of the naturality of the integration pairing, see
(3.20), one obtains the following result.

Lemma 3.12 For all f : M → N in Locm, the following holds

τ N
(−1) ◦ ( f∗ ⊗ f∗) = τ M

(−1), τ N
(0) ◦ ( f∗ ⊗ f∗) = τ M

(0), τ N
D ◦ ( f∗ ⊗ f∗) = τ M

D .

(3.22)

Proof The first equality follows immediately from (3.13) and (3.20). To prove also
the second equality, recall (3.15) and, for all ψ1, ψ2 ∈ Fc(M), compute

τ N
(0)( f∗ψ1 ⊗ f∗ψ2) = ((ψ1, f ∗�N f∗ψ2))M = ((ψ1,�

Mψ2))M = τ M
(0)(ψ1 ⊗ ψ2),

(3.23)

where we used (3.20) in the first and (3.21) in the second step. Recalling (3.17), the
proof of the third equality is the same. ��
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This means that τ M
(−1), τ

M
(0) and τ M

D are the components at M ∈ Locm of the natural
transformations τ(−1), τ(0) and τD , respectively. In particular, the assignment to each
object M ∈ Locm of the Poisson cochain complex (Fc(M)[1], τ M

(0)) ∈ PoChR and to

each morphism f : M → N in Locm of the pushforward f∗ : (Fc(M)[1], τ M
(0)) →

(Fc(N )[1], τ N
(0)) in PoChR defines a functor (Fc[1], τ(0)) : Locm → PoChR. (Note

that (3.22) expresses the necessary compatibility of f∗ with the unshifted Poisson
structures τ M

(0) and τ N
(0).)

The next result shows that classical analogs of the Einstein causality and time-slice
axioms hold. To simplify our notation, from now on we shall suppress the superscripts
and subscripts emphasizing the underlying object of Locm , whenever this information
can be inferred from the context.

Theorem 3.13 Let (FM , QM , (−,−)M , WM )M∈Locm be a natural collection of free
BV theories.

(a) For all causally disjoint morphisms f1 : M1 → N ← M2 : f2 in Locm,

τ(0) ◦ ( f1 ∗ ⊗ f2 ∗) = 0 (3.24)

vanishes.
(b) For all Cauchy morphisms f : M → N in Locm, the pushforward cochain map

f∗ : Fc(M)[1] −→ Fc(N )[1] (3.25)

in ChR is a quasi-isomorphism.

Proof Item (a) follows from JN ( f1(M1)) ∩ f2(M2) = ∅ (because f1 and f2 are
causally disjoint), the definition of the unshifted Poisson structure τ(0) and the support
properties of retarded and advanced Green’s operators, see (3.15) and Definition 2.8.

To prove also item (b),we shall construct a quasi-inverse g : Fc(N )[1] → Fc(M)[1]
inChR for f∗ and homotopiesη ∈ [Fc(N )[1],Fc(N )[1]]−1,witnessing that f∗ g ∼ id,
and ζ ∈ [Fc(M)[1],Fc(M)[1]]−1, witnessing that g f∗ ∼ id. Recalling that f : M →
N inLocm is by hypothesis a Cauchy morphism, let us consider two spacelike Cauchy
surfaces �± ⊂ N lying inside the image of f such that �+ ⊂ I +

N (�−) is contained
in the chronological future of �−. Choose a partition of unity {χ+, χ−} subordinate
to the open cover {I +

N (�−), I −
N (�+)} of N .

Quasi-inverse g: We construct a candidate quasi-inverse as the (unique) cochainmap

g : Fc(N )[1] −→ Fc(M)[1] (3.26a)

in ChR that satisfies the equation

j f∗ g = ∓∂(χ± �) : Fc(N )[1] −→ F(N )[1] (3.26b)
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in ChR, where j : Fc(N )[1] → F(N )[1] in ChR denotes the inclusion forgetting
compact supports, the (−1)-cochain χ± ∈ [F(N ),F(N )[1]]−1 denotes multipli-
cation by the partition function χ± and ∂ denotes the internal hom differential
of [Fc(N )[1],Fc(N )[1]] ∈ ChR. Such cochain map g exists (uniquely) because
∓∂(χ± �) is manifestly a cochain map and, for all sections ψ ∈ Fc(N )[1], the
section −(∂(χ+ �))ψ = (∂(χ− �))ψ ∈ F(N )[1] lies in the image of the degree-
wise injective cochain map j f∗. Indeed, the support of the section −(∂(χ+ �))ψ =
(∂(χ− �))ψ is contained in the compact subset JN (supp(ψ))∩ J+

N (�−)∩ J−
N (�+) ⊆

f (M). (The latter subset is compact by [4, Corollary A.5.4] and contained in f (M)

because by construction J+
N (�−) ∩ J−

N (�+) ⊆ f (M).)

Homotopy �: We construct a candidate homotopy as the (unique) (−1)-cochain

η ∈ [Fc(N )[1],Fc(N )[1]]−1 (3.27a)

that satisfies the equation

j η = −χ− �+ − χ+ �− ∈ [Fc(N )[1],F(N )[1]]−1, (3.27b)

where�± are regarded here as 0-cochains in [Fc(N )[1],F(N )] ∈ ChR (under the iso-
morphism [Fc(N )[1],F(N )] ∼= [Fc(N ),F(N )][−1] inChR given by (−1)n in degree
n). Such (−1)-cochain η exists (uniquely) because, for all sectionsψ ∈ Fc(N )[1], the
section χ∓�±ψ ∈ F(N )[1] lies in the image of the degree-wise injective cochain map
j that forgets compact supports. Indeed, the support of the sectionχ∓�±ψ ∈ F(N )[1]
is contained in the compact subset J∓

N (�±) ∩ J±
N (supp(ψ)) ⊆ N . Let us check that

∂η = id − f∗ g. Since j is degree-wise injective, this follows from

j (∂η) = ∂(−χ− �+ − χ+ �−) = j + (∂χ+)� = j (id − f∗ g), (3.28)

where in the first step we used that j is a cochain map and the equation defining η,
in the second step we used the Leibniz rule of ∂ with respect to the composition,
χ+ + χ− = 1 (hence ∂χ+ = −∂χ−), ∂�± = j and � = �+ − �−, and in the last
step, we used ∂� = 0 and (3.26).

Homotopy �: We construct a candidate homotopy as the (unique) (−1)-cochain

ζ ∈ [Fc(M)[1],Fc(M)[1]]−1 (3.29a)

that satisfies the equation

f∗ ζ = η f∗ ∈ [Fc(M)[1],Fc(N )[1]]−1. (3.29b)

Such (−1)-cochain ζ exists (uniquely) because, for all homogeneous sections ψ ∈
Fc(M)[1], the section χ∓�± f∗ψ ∈ F(N )[1] lies in the image of the degree-wise
injective cochain map f∗. Indeed, the support of the section χ∓�± f∗ψ ∈ F(N )[1] is
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contained in the compact subset J∓
N (�±) ∩ J±

N ( f (supp(ψ))) ⊆ f (M). Let us check
that ∂ζ = id − g f∗. Since f∗ is degree-wise injective, this follows from

f∗ (∂ζ ) = (∂η) f∗ = f∗ (id − g f∗) (3.30)

where in the first step we used that f∗ is a cochain map and the definition of ζ and in
the last step we used ∂η = id − f∗ g. ��

To conclude this section, we record a simple result relating τ(0) and τD via time-
ordering.

Proposition 3.14 Let (FM , QM , (−,−)M , WM )M∈Locm be a natural collection of free
BV theories. Then, for all time-ordered pairs ( f1, f2) : (M1, M2) → N in Locm,

τD ◦ ( f1 ∗ ⊗ f2 ∗) = 1

2
τ(0) ◦ ( f1 ∗ ⊗ f2 ∗). (3.31)

Proof For all ψ1 ∈ Fc(M1)[1] and ψ2 ∈ Fc(M2)[1], recalling the support properties
of retarded and advanced Green’s operators from Definition 2.8, one computes

1

2
τ(0)( f1 ∗ψ1 ⊗ f2 ∗ψ2) = 1

2

∫

N
( f1 ∗ψ1,� f2 ∗ψ2)N volN

= 1

2

∫

N
( f1 ∗ψ1,�+ f2 ∗ψ2)N volN

=
∫

N
( f1 ∗ψ1,�D f2 ∗ψ2)N volN

= τD( f1 ∗ψ1 ⊗ f2 ∗ψ2). (3.32)

The first step uses the definition of the unshifted Poisson structure τ(0), see (3.15).
Both the second and third steps use that f1(M1)∩ J−

N ( f2(M2)) = ∅ is empty (because
( f1, f2) is time-ordered), in combination either with � = �+ − �− or with �D =
1
2 (�+ + �−). The last step uses the definition of the Dirac pairing τD , see (3.17). ��

4 Quantizations and comparison

In this section, we shall present two a priori different approaches to the quantization
of a natural collection (FM , QM , (−,−)M , WM )M∈Locm of free BV theories. First, in
Sect. 4.1 we shall construct a time-orderable prefactorization algebra F ∈ tPFAm by
deforming the ordinary differential of the symmetric algebra Sym(Fc(M)[1]) gener-
ated by linear observables with the BV Laplacian, as prescribed by the BV formalism
[12, 13]. Second, in Sect. 4.2 we shall construct an AQFTA ∈ AQFTm by deforming
the commutativemultiplication of Sym(Fc(M)[1]) ∈ dgAlgC to the non-commutative
Moyal–Weyl star product. These two constructions involve different input data. More
specifically, the time-orderable prefactorization algebra F ∈ tPFAm relies only on
the natural (−1)-shifted fiber metric (−,−) through the natural (−1)-shifted Poisson
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structure τ(−1) (except for the time-slice axiom), while the AQFTA ∈ AQFTm relies
also on the natural Green’s witness W through the natural unshifted Poisson struc-
ture τ(0). Last, we shall show in Sect. 4.3 that, when both (−,−) and W are given,
the natural Dirac pairing τD leads to an isomorphism T : F → FA in tPFAm to
the time-orderable prefactorization algebra FA ∈ tPFAm canonically associated with
A ∈ AQFTm , see [7]. Let us mention that the deformation parameter � > 0 will not
be formal in our constructions below. Indeed, all expansions in powers of � that appear
later on actually stop at finite order, see for instance the comment after (4.13).

As a preparatory step, let us present a geometric construction that will be used
frequently in the rest of the paper.

Lemma 4.1 Let f = ( f1, . . . , fn) : M = (M1, . . . , Mn) → N be a time-ordered
tuple in Locm of length n ≥ 2. Then there exist M ∈ Locm, f : M → N in Locm

and a time-ordered tuple f ′ = ( f ′
1, . . . , f ′

n−1) : (M1, . . . , Mn−1) → M in Locm of
length n − 1 such that ( f , fn) : (M, Mn) → N is a time-ordered pair in Locm and
f ◦ f ′

i = fi , for all i = 1, . . . , n−1. In short, each time-ordered n-tuple f : M → N,
for n ≥ 2, admits a factorization

M

( f ′,idMn )

f
N

(M, Mn)

( f , fn)

(4.1)

with f ′ a time-ordered (n − 1)-tuple and ( f , fn) a time-ordered pair.

Proof Recalling Sect. 2.3, we define the subset

M := J+∩−
N

(
n−1⋃

i=1

fi (Mi )

)

⊆ N (4.2)

as the causally convex hull of the union of the images of fi , for i = 1, . . . , n − 1.
Since the images are open, M ⊆ N is open and causally convex. Endowing it with
the restriction of the orientation, time-orientation and metric of N defines an object
M ∈ Locm and promotes the subset inclusion M ⊆ N to a morphism f : M → N in
Locm . Since, for each i = 1, . . . , n − 1, fi (Mi ) ⊆ M by construction, fi : Mi → N
in Locm factors as fi = f ◦ f ′

i , where f ′
i : Mi → M in Locm is the codomain

restriction of fi . To conclude, let us also check that ( f , fn) is a time-ordered pair,
i.e. J+

N ( f (M)) ∩ fn(Mn) = ∅. By contraposition, suppose that the intersection is not
empty. Then there exists a future directed causal curve in N emanating from f (M) and
reaching fn(Mn). Since any point in the causally convex hull M is by definition in the
causal future of fi (Mi ), for some i = 1, . . . , n −1, it follows that there exists a future
directed causal curve in N emanating from fi (Mi ), for some i = 1, . . . , n − 1, and
reaching fn(Mn), leading to a contradictionwith the hypothesis that f is time-ordered.

��
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4.1 BV quantization

Let (FM , QM , (−,−)M , WM )M∈Locm be a natural collection of free BV theories.
Consider the symmetric algebra Sym(Fc(M)[1]) ∈ dgCAlgC generated by the com-
plexification of Fc(M)[1] ∈ ChR, whose differential Q is defined by the differential
Q[1] = −Q of Fc(M)[1] and the graded Leibniz rule. BV quantization consists of
deforming Q by means of the BV Laplacian

�BV := �τ(−1) ∈ [
Sym(Fc(M)[1]),Sym(Fc(M)[1])]1, (4.3)

which is the Laplacian associated with the (−1)-shifted Poisson structure τ(−1), see
Definition 2.6 and (3.13). Explicitly, one defines the degree increasing graded linear
map

Q� := Q + i � �BV ∈ [
Sym(Fc(M)[1]),Sym(Fc(M)[1])]1, (4.4)

where � > 0 is Planck’s constant and i ∈ C is the imaginary unit. Note that Q�

defines a new differential since it squares to zero

Q2
�

= Q2 + i � ∂�BV − �
2 �2

BV = 0, (4.5)

where we usedQ2 = 0, ∂�BV = �∂τ(−1) = 0 and �2
BV = −�2

BV = 0, see (2.16) and
(2.17). We define the cochain complex of quantum observables

F(M) := (
Sym(Fc(M)[1]),Q�

) ∈ ChC (4.6)

by replacing the original differential Q with the quantized one Q�. The assignment
Locm � M �→ F(M) ∈ ChC of the cochain complex of quantum observables can
be promoted to a time-orderable prefactorization algebra F ∈ tPFAm . For this pur-
pose, we need to define time-ordered products that are compatible with the quantized
differential Q�. This is the goal of the next proposition.

Proposition 4.2 Let f : M → N be a time-orderable tuple in Locm of length n. Then,
the time-ordered product

F(M)
F( f )

⊗
i fi ∗

F(N )

F(N )⊗n
μ(n)

, (4.7)

is a cochain map, i.e. Q� F( f ) = F( f )Q� ⊗. Here fi ∗ denotes the symmetric alge-
bra extension of the pushforward cochain map fi ∗ : Fc(Mi )[1] → Fc(N )[1] for
compactly supported sections, see Sect. 3.2, and μ(n) denotes the n-ary multiplication
on the symmetric algebra Sym(Fc(N )[1]) ∈ dgCAlgC.
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Proof Since Q is natural and compatible Qμ = μQ⊗ with the symmetric algebra
multiplication μ, one hasQF( f ) = F( f )Q⊗. Hence, it suffices to prove the analog
�BV F( f ) = F( f )�BV⊗ for the BV Laplacian �BV. Furthermore, since the sym-
metric algebra multiplication μ is commutative, it suffices to prove the claim for f
time-ordered. We argue by induction on the length n. For n = 0, the time-ordered
productC → F(N ) defined above assigns the unitμ(0) = 1 of the symmetric algebra;
hence, the claim follows from�BV(1) = 0, see Definition 2.6. For n = 1,F( f ) = f∗,
hence the claim follows because the BV Laplacian �BV inherits the naturality of the
(−1)-shifted Poisson structure τ(−1), see (2.18) and (3.22). For n = 2, one computes

�BV ◦ F( f1, f2) = �BV ◦ μ ◦ ( f1 ∗ ⊗ f2 ∗)
= μ ◦ (

�BV⊗ + {{−,−}}(−1)
) ◦ ( f1 ∗ ⊗ f2 ∗)

= μ ◦ ( f1 ∗ ⊗ f2 ∗) ◦ �BV⊗
= F( f1, f2) ◦ �BV⊗, (4.8)

where in the first and last steps we used the definition of the time-ordered product
F( f1, f2), in the second step we used the degree increasing graded endomorphism
{{−,−}}(−1) := {{−,−}}τ(−1) to spell out the modified Leibniz rule of �BV, see
Definitions 2.4 and 2.6, and in the third step we used naturality of the BV Lapla-
cian �BV and that {{−,−}}(−1) vanishes on the image of f1 ∗ ⊗ f2 ∗, because
f1(M1) ∩ f2(M2) = ∅ and τ(−1) vanishes on sections with disjoint supports, see
(3.13). For n ≥ 3, taking M ∈ Locm , f : M → N in Locm and a time-ordered tuple
f ′ : (M1, . . . , Mn−1) → M in Locm as provided by Lemma 4.1, one computes

F( f ) = μ(n) ◦
n⊗

i=1

fi ∗ = μ ◦ ( f∗ ⊗ fn ∗) ◦
((

μ(n−1) ◦
n−1⊗

i=1

f ′
i ∗

)

⊗ id

)

= F( f , fn) ◦ (F( f ′) ⊗ id), (4.9)

where in the first and last steps we used the definition of the time-ordered product
F( f ) and in the second step we used μ(n) = μ ◦ (μ(n−1) ⊗ id), f ◦ f ′

i = fi , for all
i = 1, . . . , n −1, and the naturality of the symmetric algebra multiplicationμ. Hence,
the claim for length n ≥ 3 follows from lengths 2 and n − 1. ��

With these preparations, we define the time-orderable prefactorization algebraF ∈
tPFAm by the data listed below:

(a) For each M ∈ Locm , the cochain complex F(M) ∈ ChC from (4.6);
(b) For each time-orderable tuple f : M → N in Locm , the time-ordered product

F( f ) : F(M) → F(N ) in ChC from Proposition 4.2.

Note that these data satisfy the axioms of Definition 2.11 because Fc[1] : Locm →
ChR is a functor, see Sect. 3.2, and the symmetric algebra multiplication μ is asso-
ciative, unital and commutative. The resulting time-orderable prefactorization algebra
F ∈ tPFAm satisfies the time-slice axiom, as explained by the next proposition.

Proposition 4.3 If f : M → N inLocm is a Cauchy morphism, thenF( f ) : F(M) →
F(N ) in ChC is a quasi-isomorphism.

123



Quantization of Lorentzian free BV theories Page 29 of 38    36 

Proof For any L ∈ Locm , consider the filtration ofF(L) = ⊕
n≥0 Sym

n(Fc(L)[1]) ∈
ChC associatedwith symmetric powers. Explicitly, we denote the subcomplex ofF(L)

consisting of symmetric powers up to p ≥ 0 by

Fp(F(L)) :=
( p⊕

n=0

Symn(Fc(L)[1]),Q�

)

⊆ F(L). (4.10)

(Note that this filtration is compatible with the quantized differential Q� = Q +
i � �BV because the original differential Q preserves the symmetric power and the
BV Laplacian �BV lowers the symmetric power by 2.) The resulting filtration is
bounded from below, i.e. Fp(F(L)) = 0 vanishes, for all p < 0. The quotient
maps F(L) → F(L)/Fp(F(L)) in ChC, for all p ∈ Z, form a universal cone, i.e.
F(L) ∼= lim p∈Z F(L)/Fp(F(L)). This shows that the filtration is complete, see [14].
Furthermore, for p ≥ 0, the p-th component of the associated graded cochain complex

E◦
p(L) := Fp(F(L))/Fp−1(F(L)) ∼= Sym p(Fc(L)[1]) ∈ ChC (4.11)

is isomorphic to the p-th symmetric power of Fc(L)[1] ∈ ChC (endowed with the
original differential Q) because the BV Laplacian �BV lowers the symmetric power
by 2, see (2.14). Functoriality with respect to L ∈ Locm of the filtration (4.10) and
naturality of the isomorphism (4.11) entail that, for all f : M → N in Locm , the
diagram

E◦
p(M)

E◦
p( f∗)

�

E◦
p(N )

�

Sym p(Fc(M)[1])
f∗

Sym p(Fc(N )[1])

(4.12)

in ChC commutes. Since the bottom cochain map is a quasi-isomorphism by Theo-
rem 3.13, the claim follows from [14, Theorem 7.4]. ��
Example 4.4 Taking the natural free BV theories from Example 3.11 as inputs, the
constructions and results from this subsection produce time-orderable prefactorization
algebras satisfying the time-slice axiom that quantize ordinary field theories, linear
Chern–Simons theory and Maxwell p-forms (including linear Yang–Mills theory for
p = 1).

4.2 Moyal–Weyl star product

Let (FM , QM , (−,−)M , WM )M∈Locm be a natural collection of free BV theories
and consider again the symmetric algebra Sym(Fc(M)[1]) ∈ dgCAlgC gener-
ated by the complexification of Fc(M)[1] ∈ ChR. Canonical quantization can be
realized by deforming the commutative multiplication μ of the symmetric algebra
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Sym(Fc(M)[1]) ∈ dgCAlgC to the Moyal–Weyl star product

Sym(Fc(M)[1])⊗2 μ�

exp
(

i�
2 {{−,−}}(0)

)

Sym(Fc(M)[1])

Sym(Fc(M)[1])⊗2

μ

, (4.13)

where {{−,−}}(0) := {{−,−}}τ(0) is the degree preserving graded endomorphism asso-
ciatedwith the unshifted Poisson structure τ(0), seeDefinition 2.4 and (3.15). Note that,
for all polynomials a, b ∈ Sym(Fc(M)[1]), the exponential series defining μ�(a ⊗ b)

truncates to a finite sum. In particular, there is no need to regard� as a formal parameter.

Remark 4.5 TheMoyal–Weyl star productμ� is a non-commutative deformation of the
commutative multiplication μ of the symmetric algebra Sym(Fc(M)[1]) ∈ dgCAlgC

in the sense that the multiplications

μ� = μ + O(�) (4.14)

coincide up to terms of order at least � and, moreover, the μ�-commutator

[−,−]� = i � {−,−}(0) + O(�2) (4.15)

is proportional to the Poisson bracket {−,−}(0) := μ ◦ {{−,−}}(0), see Remark 2.5,
up to terms of order at least �

2. �
The Moyal–Weyl star product μ� is manifestly a degree preserving graded linear

map. Furthermore, it is associative and unital with respect to 1 ∈ Sym(Fc(M)[1])
as a consequence of the properties of the degree preserving graded endomorphism
{{−,−}}(0) = {{−,−}}τ(0) and of the exponential. Let us also check that the Moyal–
Weyl star product μ� is compatible with the differential Q of Sym(Fc(M)[1]), i.e.

∂μ� = μ ◦ ∂ exp

(
i �

2
{{−,−}}(0)

)

= μ ◦
( ∑

n≥1

1

n!
(
i �

2

)n n−1∑

k=0

{{−,−}}k
(0) ◦ (

∂{{−,−}}(0)
) ◦ {{−,−}}n−1−k

(0)

)

= 0, (4.16)

where in the first step we used the compatibility ∂μ = 0 of the symmetric algebra
multiplicationμwith thedifferentialQ, in the second stepweexpanded the exponential
series and applied the Leibniz rule for ∂ and in the last step we used that ∂{{−,−}}(0) =
{{−,−}}∂τ(0) = 0 vanishes, see (2.9) and recall that τ(0) is a cochain map. Therefore,
we define the quantized differential graded algebra

A(M) := (
Sym(Fc(M)[1]), μ�,1

) ∈ dgAlgC. (4.17)
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To promote the assignment Locm � M �→ A(M) ∈ dgAlgC of the quantized dif-
ferential graded algebra to a functor, we check the naturality of the Moyal–Weyl star
product μ� with respect to morphisms f : M → N in Locm , i.e.

f∗ ◦ μ� = μ ◦ ( f∗ ⊗ f∗) ◦ exp

(
i �

2
{{−,−}}(0)

)

= μ� ◦ ( f∗ ⊗ f∗), (4.18)

where in the first step we used naturality of the symmetric algebra multiplication μ

and in the second step we used the naturality of the unshifted Poisson structure τ(0),
see (3.22), in combination with (2.10) at all orders in �. We are now ready to define
the functor

A : Locm −→ dgAlgC (4.19)

that assigns to any object M ∈ Locm the differential graded algebraA(M) ∈ dgAlgC

and to any morphism f : M → N in Locm the morphism A( f ) : A(M) → A(N )

in dgAlgC, whose underlying cochain map is the symmetric algebra extension of the
pushforward cochain maps f∗ : Fc(M)[1] → Fc(N )[1] in ChR. The next proposition
shows that A is an AQFT.

Proposition 4.6 The functor A : Locm → dgAlgC from (4.19) satisfies the Einstein
causality and time-slice axioms of Definition 2.9, hence A ∈ AQFTm is an AQFT.

Proof First, let us check the Einstein causality axiom. For causally disjoint morphisms
f1 : M1 → N ← M2 : f2 in Locm , Definition 2.4 applied to the unshifted Poisson
structure τ(0) and Theorem 3.13 entail that

{{−,−}}(0) ◦ ( f1 ∗ ⊗ f2 ∗) = 0 (4.20)

vanishes. Therefore, on the image of f1 ∗ ⊗ f2 ∗ the Moyal–Weyl star product μ�, see
(4.13), coincides

μ� ◦ ( f1 ∗ ⊗ f2 ∗) = μ ◦ (
f1 ∗ ⊗ f2 ∗

)
(4.21)

with the symmetric algebra multiplication μ. Since the latter is commutative, the
Einstein causality axiom follows.

Second, let us check the time-slice axiom. Given a Cauchy morphism f : M → N
in Locm , it suffices to show that the cochain map underlyingA( f ) : A(M) → A(N )

indgAlgC is a quasi-isomorphism.This is the case because the cochainmapunderlying
A( f ) is by definition the symmetric algebra extension of the pushforward cochainmap
f∗ : Fc(M)[1] → Fc(N )[1] in ChR, which is a quasi-isomorphism by Theorem 3.13.

��
Example 4.7 Taking the natural free BV theories from Example 3.11 as inputs, the
constructions and results of this subsection produce AQFTs that quantize ordinary
field theories, linear Chern–Simons theory and Maxwell p-forms (including linear
Yang–Mills theory for p = 1). In the case of the Klein–Gordon field and of Maxwell
p-forms, earlier constructions of the same AQFTs can be found in [1, 5].
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4.3 Comparison

This subsection compares the twodifferent quantization schemes fromSects. 4.1 and4.2.
More specifically, we establish an isomorphism between the time-orderable pref-
actorization algebra F ∈ tPFAm constructed using the BV formalism and the
time-orderable prefactorization algebra FA ∈ tPFAm canonically associated with
the AQFT A ∈ AQFTm . For this purpose, recall from [7] that FA ∈ tPFAm consists
of the data listed below:

(a) For each M ∈ Locm , the cochain complex FA(M) := Sym(Fc(M)[1]) ∈ ChC

underlying A(M) ∈ dgAlgC;
(b) For each time-orderable tuple f : M → N in Locm , the time-ordered product

FA(M)
FA( f )

⊗
i fi ∗

FA(N )

FA(N )⊗n
μ

(ρ)
�

(4.22)

inChC, where n denotes the length of the tuple f , ρ is a time-ordering permutation

for f and μ
(ρ)

�
:= μ

(n)
�

◦ γρ denotes the n-ary Moyal–Weyl star product in the
order prescribed by ρ. (The Einstein causality axiom of A ensures that FA( f )

does not depend on the choice of the time-ordering permutation ρ.)

The above data fulfill the axioms of Definition 2.11, see [7] for more details.

In preparation for our comparison result stated in Theorem 4.9, the next lemma
explains how the time-orderable prefactorization algebra FA ∈ tPFAm captures the
usual time-ordered products built out of the Dirac multiplication

Sym(Fc(M)[1])⊗2 μD

exp( i� {{−,−}}D)

Sym(Fc(M)[1])

Sym(Fc(M)[1])⊗2

μ

, (4.23)

where {{−,−}}D := {{−,−}}τD denotes the degree preserving graded endomorphism
associated with the natural Dirac pairing τD (3.17). Note that the Dirac multiplication
μD is associative, unitalwith respect to1 ∈ Sym(Fc(M)[1]) and commutative because
the Dirac pairing τD is symmetric; however, it is not compatible with the differential
Q of FA(M) ∈ ChC because ∂τD = τ(−1) does not vanish, see (2.9) and (3.18).
Furthermore, the naturality of τD and that of the symmetric algebra multiplication μ

entail that the Dirac multiplication μD is natural too.
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Lemma 4.8 Let f : M → N be a time-orderable tuple in Locm of length n. Then, the
time-ordered product FA( f ) can be computed using the Dirac multiplication μD, i.e.

FA(M)
FA( f )

⊗
i fi ∗

FA(N )

FA(N )⊗n
μ

(n)
D

. (4.24)

Proof Since the Dirac multiplication μD is commutative and FA ∈ tPFAm is a time-
orderable factorization algebra (hence its time-ordered products are equivariant with
respect to permutations, see Definition 2.11), it suffices to check the claim for f time-
ordered. We argue by induction on the length n. For n = 0 and n = 1, the claim holds
because μ

(0)
D = 1 = μ

(0)
�

and μ
(1)
D = id = μ

(1)
�
. For n = 2, Proposition 3.14 entails

that, for all k ≥ 1,

{{−,−}}k
D ◦ ( f1 ∗ ⊗ f2 ∗) =

(
1

2
{{−,−}}(0)

)k

◦ ( f1 ∗ ⊗ f2 ∗). (4.25)

Then, one computes

μD ◦ ( f1 ∗ ⊗ f2 ∗) = μ ◦ exp ( i � {{−,−}}D) ◦ ( f1 ∗ ⊗ f2 ∗)

= μ ◦ exp

(
i �

2
{{−,−}}(0)

)

◦ ( f1 ∗ ⊗ f2 ∗)

= FA( f1, f2), (4.26)

where in the first step we used the definition of the Dirac multiplicationμD , see (4.23),
in the second step we used (4.25) and in the last step we used the definition of the time-
ordered product FA( f1, f2), see (4.22). For n ≥ 3, taking M ∈ Locm , f : M → N
in Locm and a time-ordered tuple f ′ : (M1, . . . , Mn−1) → M in Locm as provided
by Lemma 4.1, one computes

μ
(n)
D ◦

n⊗

i=1

fi ∗ = μD ◦ ( f∗ ⊗ fn ∗) ◦
((

μ
(n−1)
D ◦

n−1⊗

i=1

f ′
i ∗

)

⊗ id

)

, (4.27)

where we used μ
(n)
D = μD ◦ (μ

(n−1)
D ⊗ id), f ◦ f ′

i = fi , for all i = 1, . . . , n − 1,
and the naturality of the Dirac multiplication μD . Hence, the claim for length n ≥ 3
follows from lengths 2 and n − 1. ��

The alternative description from Lemma 4.8 of the time-ordered products of FA ∈
tPFAm plays a key role in the proof of our main result.

Theorem 4.9 The time-orderable prefactorization algebra F ∈ tPFAm (constructed
via the BV formalism in Sect. 4.1) and the time-orderable prefactorization algebra

123



   36 Page 34 of 38 M. Benini et al.

FA ∈ tPFAm associated with the AQFT A ∈ AQFTm (constructed via the Moyal–
Weyl star product in Sect. 4.2) are isomorphic. Explicitly, the time-ordering map

T := exp( i � �D) : F ∼=−→ FA (4.28)

in tPFAm is an isomorphism. Here �D := �τD , called Dirac Laplacian, is the Lapla-
cian associated with the Dirac pairing τD, see Definition 2.6 and (3.17).

Proof Suppose that T as defined above is a morphism of time-orderable prefactoriza-
tion algebras. Then, it is also an isomorphism with inverse T −1 := exp(− i � �D) :
FA → F in tPFAm . Therefore, it suffices to check that T is a morphism of time-
orderable prefactorization algebras. We split this check in two parts. First, we show
the compatibility with differentials, i.e. that, for all M ∈ Locm , the M-component
TM : F(M) → FA(M) is a cochain map. Second, we show the compatibility with
time-ordered products, i.e. that, for all time-orderable tuples f : M → N in Locm ,
TN ◦ F( f ) = FA( f ) ◦ TM .

Compatibility with differentials: Recall the BV and Dirac Laplacians �BV :=
�τ(−1) ∈ [Sym(Fc(M)[1]),Sym(Fc(M)[1])]1 and �D := �τD ∈ [Sym(Fc(M)[1]),
Sym(Fc(M)[1])]0, seeDefinition2.6, (3.13) and (3.17). From (2.16), (2.17) and (3.18),
it follows that

∂�D = �∂τD = �BV, �BV ◦ �D = �D ◦ �BV. (4.29)

Therefore, regarding TM as a 0-cochain in [Sym(Fc(M)[1]),Sym(Fc(M)[1])] ∈ ChC,
one computes

Q ◦ TM − TM ◦ Q = ∂TM =
∑

n≥1

1

n! ∂
(
( i � �D)n) = TM ◦ ( i � �BV). (4.30)

In the first step we used the definition of ∂ . In the second step we expanded the
exponential that definesTM (recall that the series evaluatedonanya ∈ Sym(Fc(M)[1])
truncates to a finite sum) and used that ∂ is linear and vanishes on id. In the last step,
we used the Leibniz rule for ∂ with respect to composition, (4.29) and the definition of
TM . Equation (4.30) means thatQ◦ TM = TM ◦Q�, which shows that TM : F(M) →
FA(M) is a cochain map.

Compatibility with time-ordered products: Since F,FA ∈ tPFAm are time-
orderable prefactorization algebras, their time-ordered products are equivariant with
respect to permutations, see Definition 2.11. Hence, it suffices to show the compati-
bility of T with time-ordered products for f : M → N time-ordered. We argue by
induction on the length n of f . For n = 0 this is trivial. For n = 1, the claim follows
from naturality of the Dirac Laplacian �D ◦ f∗ = f∗ ◦ �D , see (2.18) and (3.22). For
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n = 2, one computes

TN ◦ F( f1, f2)=μD ◦ (TN ⊗ TN ) ◦ (F( f1) ⊗ F( f2)
)=FA( f1, f2) ◦ (TM1 ⊗ TM2),

(4.31)

where in the first step we used TN ◦μ = μD ◦ (TN ⊗ TN ), which follows from (2.15),
and in the last step we used the claim for n = 1 and Lemma 4.8. For n ≥ 3, taking
M ∈ Locm , f : M → N in Locm and a time-ordered tuple f ′ : (M1, . . . , Mn−1) →
M in Locm as provided by Lemma 4.1, one computes

TN ◦ F( f ) = TN ◦ F( f , fn) ◦ (F( f ′) ⊗ id
) = FA( f , fn) ◦ (FA( f ′) ⊗ id

) ◦ TM

= FA( f ) ◦ TM , (4.32)

where in the first and last steps we used the composition and identity axioms of time-
orderable prefactorization algebras and f ◦ f ′

i = fi , for all i = 1, . . . , n − 1, and in
the second step we used the claim for lengths 2 and n − 1. ��

Example 4.10 The abstract comparison result established in Theorem 4.9, when spe-
cialized to the time-orderable prefactorization algebras from Example 4.4 and the
corresponding AQFTs from Example 4.7, provides concrete comparison results
between the time-orderable prefactorization algebras and the AQFTs quantizing ordi-
naryfield theories, linearChern–Simons theory andMaxwell p-forms (including linear
Yang–Mills theory for p = 1). Our result generalizes the earlier comparison result
in [18], which is formulated only for ordinary field theories, to the case of gauge and
also higher gauge theories.
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A Natural geometric structures

This appendix provides an explicit description of the constituents of the natural collec-
tions of free BV theories from Definition 3.10, namely natural vector bundles, natural
fiber metrics and natural linear differential operators. This appendix also outlines the
relevant constructions that lead to the key facts (1–3) from Sect. 3.2.

Let us consider the category VBunR, whose objects are pairs (M, E) consisting of
M ∈ Locm and a finite rank real vector bundle E → M and whose morphisms are
pairs ( f , f̄ ) : (M1, E1) → (M2, E2) consisting of a morphism f : M1 → M2 in
Locm and a vector bundle map f̄ : E1 → E2 over f that acts as an isomorphism on
the fibers, namely such that, for all p ∈ M , the linear map f̄ p : E1 p → E2 f (p) is an
isomorphism. Let us consider the evident functor π : VBunR → Locm , (M, E) �→
M .

A natural vector bundle E is a section of π , i.e. a functor E : Locm → VBunR

such that π ◦ E = id. This means that E sends M ∈ Locm to an object of the form
E(M) = (M, EM ) ∈ VBunR and f : M1 → M2 to a morphism of the form E( f ) =
( f , E f ) : E(M1) → E(M2) inVBunR.Given anatural vector bundleE and amorphism
f : M1 → M2 in Locm , one constructs the pullback and pushforward linear maps

f ∗ : 
(EM2) −→ 
(EM1), f∗ : 
c(EM1) −→ 
c(EM2) (A.1)

for sections and sections with compact support, respectively. Explicitly, given ϕ ∈

(EM2), f ∗ϕ ∈ 
(EM1) is defined by f ∗ϕ := E−1

f ◦ ϕ ◦ f , where we note that

E−1
f can be inverted as only fibers over f (M1) are involved. Furthermore, given

ψ ∈ 
c(EM1), f∗ψ ∈ 
c(EM2) is defined as the extension by zero along the open
embedding f (M1) ⊆ M2 of the compactly supported section E f ◦ψ◦ f −1 : f (M1) →
EM2 . Note that f ∗ and f∗ upgrade the assignments M �→ 
(EM ) and M �→ 
c(EM )

to functors


(E) : Locopm −→ VecR, 
c(E) : Locm −→ VecR (A.2)

with values in the category of real vector spaces and linear maps. By constructions of
f ∗ and f∗, it follows that

f ∗ f∗ ψ = ψ, f∗ f ∗ ϕ = ϕ, (A.3)

for all ψ ∈ 
c(EM1) and all ϕ ∈ 
c(EM2) with supp(ϕ) ⊆ f (M1).

A natural fiber metric 〈−,−〉 on a natural vector bundle E is a natural transformation
〈−,−〉 : E ⊗ E → R to the natural trivial line bundle R : Locm → VBunR , M �→
M × R, whose components 〈−,−〉M : EM ⊗ EM → M × R are fiber metrics, for all
M ∈ Locm . Given M ∈ Locm , one defines the integration pairing

〈〈−,−〉〉M : 
c(EM ) ⊗ 
(EM ) −→ R (A.4a)
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by

〈〈ψ, ϕ〉〉M :=
∫

M
〈ψ, ϕ〉M volM , (A.4b)

for all ψ ∈ 
c(EM ) and ϕ ∈ 
(EM ), see also (2.22). Because 〈−,−〉 is a natural
fiber metric, it follows that the integration pairing 〈〈−,−〉〉 is natural in the following
sense: for all f : M1 → M2 in Locm , the diagram


c(EM1) ⊗ 
(EM2)
id⊗ f ∗

f∗⊗id


c(EM1) ⊗ 
(EM1)

〈〈−,−〉〉M1


c(EM2) ⊗ 
(EM2) 〈〈−,−〉〉M2

R

(A.5)

in VecR commutes. Indeed, for all ψ ∈ 
c(EM1) and ϕ ∈ 
(EM2), one has

〈〈ψ, f ∗ϕ〉〉M1 = 〈〈 f ∗ f∗ψ, f ∗ϕ〉〉M1 =
∫

M1

(〈 f∗ψ, ϕ〉M2 ◦ f
)
volM1 = 〈〈 f∗ψ, ϕ〉〉M2 ,

(A.6)

where we used (A.3) in the first step, naturality of 〈−,−〉 and the definitions (A.1)
of f ∗ and f∗ in the second step and naturality of the integral with respect to Locm-
morphisms in the last step.

A natural linear differential operator P between natural vector bundles E and E′
is a natural transformation P : 
(E) → 
(E′) whose components PM : 
(EM ) →

(E ′

M ) are linear differential operators, for all M ∈ Locm . Explicitly, this means that,
for all f : M1 → M2 in Locm , the diagram


(EM2)
PM2

f ∗


(E ′
M2

)

f ∗


(EM1) PM1


(E ′
M1

)

(A.7)

in VecR commutes. The latter diagram entails that P defines also a natural transfor-
mation P : 
c(E) → 
c(E′). Indeed, for all f : M1 → M2 in Locm , the diagram


c(EM1)
PM1

f∗


c(E ′
M1

)

f∗


c(EM2) PM2


c(E ′
M2

)

(A.8)
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in VecR commutes, as it follows from the straightforward computation

f∗ PM1 = f∗ PM1 f ∗ f∗ = f∗ f ∗ PM2 f∗ = PM2 f∗, (A.9)

where we used (A.3) in the first and last steps and (A.7) in the second step.
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