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Supervised machine learning requires training on the dataset with annotation. However, fine-grained annota-
tion is very expensive to acquire. In the medical image analysis domain, the sheer volume of data and lack
of annotation limit the performance of the model. To address these limitations, semi-supervised information
fusion has recently emerged as an important and promising paradigm owing to its ability to exploit labelled
and unlabelled data and combine information from multiple sources to obtain a more robust and accurate
performance. In this survey, we review the recent progress of semi-supervised information fusion for medical

image analysis. Moreover, we categorize the state-of-the-art information fusion applications of semi-supervised
learning with in-depth analysis. Finally, we discuss the challenges and outline the future perspective.

1. Introduction

Recent advances in machine learning and deep learning have shown
promising results in the medicine and healthcare domain [1-4]. Med-
ical imaging plays a crucial role in clinical decision-making, the infor-
mation extracted from medical images is clinically valuable in many
areas such as computer-aided detection, diagnosis, treatment planning,
intervention, and therapy. With the increasing demand for medical
imaging and the shortage of radiologists, automated methods have
become crucial in helping healthcare practitioners. The advancement
of deep learning models in medical image analysis has inspired in-
novations in the field [5]. These techniques enable more accurate
and efficient image acquisition, analysis, and interpretation, leading
to new insights and improved outcomes in areas such as registration,
reconstruction, tracking, segmentation, and image quality assessment.

However, traditional supervised machine learning training requires
labels and annotation of medical images that need manual manip-
ulation by experienced radiologists. Moreover, it is difficult to di-
rectly transfer trained models to other medical imaging datasets for
application due to the differences between various modalities and
objective organs. This can be challenging and it is often costly to
obtain large annotated datasets. In the medical domain, there exist
multiple data modalities such as Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), Positron Emission Tomography (PET),
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Ultrasound Imaging (US), X-ray Radiography (X-ray), endoscopy and
histology. Only using one modality of data may not achieve accurate
performance. Hence, many researchers explored integrating different
data modalities or different views of one data modality to improve the
overall performance of the model.

To address these challenges, semi-supervised data fusion, which ap-
plies both semi-supervised and data fusion techniques, has emerged as
a promising paradigm. Integrating these novel techniques with clinical
practice has the potential to revolutionize the way that medical imaging
is used in healthcare. This leads to better diagnosis and treatment
planning and a better understanding of underlying biological processes.

Semi-supervised learning is halfway between supervised and unsu-
pervised learning that has emerged as a solution to the problem of
limited labelled data, which is a common issue in many real-world
applications of machine learning. It originated as a heuristic self-
training method in pattern recognition tasks in the 1960s [6,7]. With
the rise of deep learning in recent years, semi-supervised learning has
emerged, combining the strengths of deep neural networks in capturing
complex image features with the benefits of large amounts of unlabelled
data to improve model performance. The availability of large amounts
of unlabelled medical images presents an opportunity to leverage semi-
supervised learning techniques that use a small amount of labelled data
to improve the performance of a model on large amounts of unlabelled
data and reduce the need for extensive manual annotation. In the
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medical field, single data modality may not achieve accurate results
compared to multimodal data mining with information fusion tech-
niques. Information fusion integrates different types of data together
and can be categorized into three types: data fusion, feature fusion,
and decision fusion [8,9].

1.1. Objectives and main contributions of research

This survey provides a comprehensive review on the recent progress
of semi-supervised information fusion in medical image analysis. We
summarize the background of the semi-supervised information fu-
sion techniques, including the taxonomy of semi-supervised learning
method and information fusion. We then address the recent works on
medical image analysis applications using semi-supervised information
fusion. We also discuss the challenges and provide future perspectives.

During the literature search process, we have identified several
published semi-supervised learning survey papers on deep learning
and semi-supervised learning [10-17]. In [15-17], the authors ex-
plained the principles of traditional semi-supervised learning. In [14],
Tajbakhsh et al. specifically analysed the segmentation solutions when
faced with imperfect datasets, e.g., scarce or weak annotations. In [11],
Cheplygina et al. focused on medical imaging applications with semi-
supervised, multiple instance, and transfer learning techniques. In
[10,13], a systematic analysis of graph-based semi-supervised learning
was presented. Yang et al. [12] described the development of deep
semi-supervised learning with representative models. Compared to the
existing surveys, we explore the recent progress on semi-supervised
information fusion for medical image analysis.

In this survey, we have articulated the following research ques-
tions (RQs): RQ1: What is the current research progress for semi-
supervised information fusion techniques in medical image analysis?
RQ2: What insights emerge from comparing semi-supervised informa-
tion fusion methodologies when applied to empirical medical image
analysis case studies? RQ3: What challenges are encountered while
implementing semi-supervised information fusion techniques in med-
ical image analysis? RQ4: What are the potential future perspectives
for semi-supervised information fusion techniques in medical image
analysis?

The contributions of this survey are threefold:

» To the best of our knowledge, this is the first survey on semi-
supervised information fusion.

» We provide a comprehensive and in-depth analysis of medical
image analysis applications using semi-supervised information
fusion.

» We present two case studies to demonstrate practical applications
and discuss challenges and future perspectives in this rapidly
evolving field.

1.2. Search strategy and organization

A literature search is conducted using the keywords semi-supervised
learning, deep learning, information fusion and medical images. In
addition, research papers cited in this review are found on four elec-
tronic databases - PubMed, IEEE Xplore, Science Direct and Springer
Link - for relevant publications between 2018 and 2023 inclusive. The
search strings we use in this survey include: (ALL (‘“‘Semi-supervised
Learning”) OR ALL (“Medical Image”) OR ALL (“Medical Imaging”)
OR ALL (“Deep Learning”)). We exclude review articles, non-medical
image analysis and non-deep semi-supervised learning articles being
the main reasons for exclusion from the title and abstract screening.
After full-text reviews, 50 studies have met the inclusion criteria.

The rest of the paper is organized as follows: Section 2 presents the
background of semi-supervised and information fusion. Section 3 de-
scribes the medical image analysis applications using semi-supervised
information fusion. Section 4 analysis two case studies on different
datasets. Section 5 discusses the challenges and future directions. Sec-
tion 6 concludes this survey.
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2. Preliminaries

In this section, we present the background of semi-supervised learn-
ing and information fusion respectively.

2.1. Overview of semi-supervised learning

There are four basic groups of semi-supervised learning, includ-
ing pseudo labelling, consistency regularization, graph-based method
and generative model. Each method and its subcategories are briefly
described below.

2.1.1. Pseudo labelling

Pseudo labelling is a direct and intuitive method which is similar to
a wrapper function [18,19]. It first trains the network with originally
labelled data and then uses the resulting network to infer labels for the
previously unlabelled data, and these predictions are used as pseudo
labels in conjunction with labelled data to update the network model.
Pseudo labelling is highly versatile, as it can be applied to almost
any supervised learning algorithm and used as a subtask for other
supervised, semi-supervised or even unsupervised learning methods,
although the loss function may vary. This section will focus on purely
pseudo-labelling methods, which are simply delineated — according
to whether the model processes data in a single view or in multiple
views, with the former referred to here as self-training and the latter
as co-training.

Self-training The self-training method upgrades the training model
itself with both labelled data and pseudo-labels from earlier iterations.
This concept of self-training was arguably first attempted in the 1960s
to incorporate unlabelled data training, and according to Scudder [6],
an untaught adaptive pattern recognition uses its output rather than
that of a teacher.

Over time, various improvements have been made to the basic
pseudo labelling technique. Nowadays, the self-training paradigm ac-
knowledges a number of design decisions, including techniques for
filtering reliable pseudo labels and techniques for weighing the impact
of pseudo labels on the final model.

Algorithm 1 An Example of Self-Training Procedure

Input {x;,y,;} from labelled dataset D,, x, from unlabelled dataset
D, iteration numbers T
Output trained model M,
: Train initial M, with D,
: while iteration < T do
Generate Pseudo labels {P,} for D, with M,
Generate Pseudo labels {j,} by selected predictions {p €
P,|p meets some criteria}
5: Update the new Dataset D, with D, = {x;,y,;} and {x,.9,}, new
unlabelled D,
6: Fine-tune the training model M, with D,
7: end while

Wb

Co-training In recent years pseudo labelling has been extended to
semi-supervised learning with multiple views, where different views
can be positioned for different processing methods, and objectives, or
aimed at analysing different features. This is referred to as co-training
methods, first proposed in [20]. For each data x in dataset D,, two or
more conditionally independent views v, v,, ..., v, are partitioned into
multiple different predicting functions M, M,, ..., M,,. For the data in
D,, the prediction generated by each view will supervise the other view
in a pseudo labelled manner. The possible views can be arranged in
parallel or recursively, and in general, they complement each other, or
one functions as a domain and the others as subtasks to complement it.

Due to the different structures, the manner of cross-supervision of
multiple views as pseudo labels may also differ. Meanwhile, the quality
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of the pseudo label still plays an important role similar to that in
self-training, so the techniques to ensure a high confidence level are
applicable here as well. It is worth noting that a key difference between
self-training and co-training is that the co-training approach optimizes
the model in a way that considers multiple perspectives jointly.

Algorithm 2 An Example of Co-Training Procedure

Input {x,,y,;} from labelled dataset D,, x, from unlabelled dataset

D, iteration numbers T
Output trained model M,, M,

: Train initial dominant model M, with D, in view v,
: Train initial sub-model M/ with D, in view v,
: while iteration < T do

Generate Pseudo labels {j,} by selected predictions {p €
P,|p meets some criteria} for D, with M,
5: Generate Pseudo labels {y/} by selected predictions {p/ €

P!|p’ meets some criteria} for D, with M)
6: Fine-tune the model M, with {x/,j/}
Fine-tune the model M/ with {x,, ,}
8: end while

A w N =

N

2.1.2. Consistency regularization

Unlike pseudo-labelling, this type of approach does not optimize the
model directly on the prediction error but focuses on the consistency
of predictions [21,22]. The perturbation-based method trains both
labelled and unlabelled data simultaneously by adding unsupervised
regularization to the unlabelled data. In deep semi-supervised learning,
a common skill is to apply an additional penalty component to incon-
sistent predictions from slightly perturbed inputs. Integrating the basic
assumptions of semi-supervised learning, if a realistic perturbation is
applied to an unlabelled example, the prediction should be similar to
the clean one according to the smoothing assumption, while the prob-
ability of switching categories is relatively small due to the clustering
assumption, based on the manifold assumption which also acts on the
topological space. Concretely, given an unlabelled data x belongs to D,
and its perturbed version X, the objective is to minimize the distance
between the two outputs d(f(x), f(X)).

Temporal Ensemble Temporal ensemble [23] is a random per-
turbation method that accelerates the computational time of the I7-
model [24]. It uses an ensembled prediction Y, from previous iterations
and a real-time perturbated prediction y to penalize the small changes
in outputs, therefore it only requires one propagation for each epoch. In
addition, the target of the temporal ensemble aggregates the previously
weighted average predictions rather than a single randomly augmented
value, increasing the stability of the training process. Y, of the ensemble
output is obtained by updating Y, < aY, + (1 — @)y, where « is a
momentum term that controls the range of the ensemble over the
training history. More interestingly, the hyperparameters can be further
applied in conjunction with uncertainty information, for example, by
placing more weight on high-confidence predictions.

Mean Teacher Tarvainen and Valpola [25] proposed Mean Teacher,
which separated the teacher model apart, similar to the temporal
ensemble where the teacher network was updated from the student
network, and the consistency cost was estimated between predictions
of the teacher and the stochastic augmentation and dropout predictions
of the student (see Tables 1 and 2). The authors named the ensembled
prediction method used in the temporal ensemble as Exponential Mov-
ing Average (EMA), which was formed by an ensemble of the model’s
current version and those earlier versions that evaluated the same
example, and they modified the EMA method to update the teacher
model weights: 6] = a8/ | + (1 - a)f;.

Mixup Zhang et al. presented Mixup that aimed to alleviate the
issues of deep neural networks exhibiting undesirable behaviours such
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as memorization and sensitivity to adversarial examples [26]. By en-
forcing linear variation in predictions between samples, the decision
boundary was pushed far away from the class boundaries. The proposed
augmentation method constructs virtual training examples by

X=Ax;+(1- A)x;
y=Ay;+ (1 =Dy,

where (x;,y;) and (x;,y;) are random examples, and 1 € [0,1]. By
enforcing linear variation in predictions between samples, the decision
boundary is pushed far away from the class boundaries.

Interpolation Consistency Training (ICT) Verma et al. [27] im-
plemented this skill in semi-supervised learning, as authors argued
that when applying on unlabelled samples the interpolations between
random data were still likely to fall in low-density regions and such
interpolations were exact ideal locations for consistency-based regular-
ization. The basic idea of the algorithm was to encourage consistent
prediction f(au; + (1 — @)uy) = af(u;) + (1 — a)f(u,) at interpolations of
unlabelled points u; and u,.

MixMatch In [28] Berthelot et al. further created a holistic semi-
supervised approach, MixMatch, which leveraged both labelled and
unlabelled samples via shuffling and Mixup to achieve satisfactory
performance.

(€8]

Algorithm 3 Pseudocode for MixMatch algorithm

Input Batch of labelled examples B; = ((x,, p,)), batch of unlabelled
examples B, = (u,), sharpening temperature T, number of augmenta-
tion N,, number of iteration N;

Output trained model M

1: while iteration < N; do

2: Xp, < Augment(x;)

3: fy,; < Augment(uy)

4: g, = Sharpen (NLa 3 My, 0)); a € {1,...,N,}
5: 3, = (X4, Pp)

6 B,=Wpgqp)a€{l....N,}

7: W =Shuffle(Concat(5,, B,))

8 B, =MixUp(B,,, W)); i € {1,.... B}

9 B, =MixUp(B,;, W, 50 i € {1,....1B,]}

10: mix = m Y L2norm (g, M(u, 9))

11: L=Lep+ ALy,

12: Update M with £
13: end while

2.1.3. Graph-based methods

Graph-based semi-supervised learning (GSSL) has a rich history of
development, with roots in both graph theory and machine learning.
These techniques involve constructing a graph to represent the rela-
tionships between data points, with edges between nodes indicating
similarities or proximities between the data points.

Label Propagation In the early days, approaches with graph struc-
ture have been popular in semi-supervised learning because the graphs
could naturally be used in clustering assumption [29] to identify clus-
ters of similar data points (i.e. nearby vertices) and then assign labels
to the clusters; or in the manifold assumption where nodes connected
by edges associated with large weights tend to reflect nearby samples
on a low-dimensional manifold and should have the same labels [30].
Label propagation and its variants make use of propagation matrices to
smooth the constructed graphs in a way that propagates information
layer by layer. However, they are limited to propagating the labelled
information within the graph structure and normally feed the extracted
scores to another downstream learning mechanism for special tasks.

Deep Embedding One solution is to find feasible node embeddings
that simultaneously contribute to the properties of the nodes and
exploit the graph structure. The main purpose of node embeddings is to
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Table 1
Theoretical analysis of typical random perturbation methods.
Methods Forward propagation for each input per iteration Consistency on Loss function Code source
Temporal Ensemble Once Prediction with stochastic L,= wﬁ XSG - Y(,,,,I,H2 https://github.com/smlaine2/tempens
augmentations and dropout xeD
vs. ensemble prediction
Mean Teacher Twice Predictions from teacher’s L, = a)ﬁ 3 11 (x,m,0) = fCen' 00| https://github.com/CuriousAl/mean-teacher
and student’s model e
Table 2

Theoretical analysis of three typical interpolation perturbation methods.

Methods Data mixed

Label guess by

Code source

MixUp [26] Labelled data only -

https://github.com/facebookresearch/mixup-cifar10

ICT [27] Unlabelled data only EMA

https://github.com/vikasvermal077/ICT

MixMatch [28] Both labelled and unlabelled data

Average of K weakly-augmented

https://github.com/google-research/mixmatch

prediction + temperature

sharpening

Algorithm 4 Pseudocode for label propagation algorithm

Algorithm 5 Pseudocode for GANs

while not converge do
Propagate Y «TY
Row-normalize ¥
Preserve labelled data ¥, « ,
end while

encode nodes as lower dimensional vectors, which can compressively
reflect node features and neighbourhood structure.

Deep embedding method, such as Graph Convolution Network
(GCN), is one of such techniques for embedding convolutional neural
networks into graph-structured data modelling, extending the label
smoothing procedure in label propagation to a feature smoothing
algorithm. At each convolutional layer, representations of each node’s
direct neighbours are first aggregated and then propagated to the graph
convolution. The general idea of graph convolutions is shown in Eq. (2),
where the representations X, are updated by the original information
and the aggregated feature vectors of neighbouring nodes.

X, = Update(X,, Aggregate(Vn, € N'(X)))) 2)

2.1.4. Generative models

Generative models differ from discriminative models where they
assume that the data is generated from a probability distribution and
the primary objective is to estimate the data distribution and generate
a similar one. Specifically, in machine learning classification tasks, the
final step is the same as in discriminative classifiers, i.e., calculating
the conditional probability of the target variable [31].

Generative adversarial networks To discover the underlying dis-
tribution in the actual data samples, Generative Adversarial Networks
(GANs) [32] set up a min-max two-player game between two deep
neural network models - a generator and a discriminator. The gener-
ator G aims to generate plausible samples by capturing the real data
distribution, while the discriminator D is a binary classifier designed
to determine whether the samples are real (from the domain) or false
(from the generator). The two models are trained adversarially, similar
to two opponents who must continually improve their abilities to win
the game.

Variational AutoEncoder Another well-known generative model is
called Variational Autoencoder (VAE), which was proposed by Kingma
and Welling [33]. Similar to traditional autoencoder (AE), it consists
of an encoder and a decoder, both of which can be arbitrary models,
usually neural networks. The input data x is down-dimensioned by
one neural network into a vector of latent variables, z, which is then
decoded by another neural network to give generated data identical to
the original input data. VAE is trained to balance the model accuracy

Input data distribution p,,,,(x), noisy prior p,(z), iteration numbers

T
Output trained model Discriminator D, Generator G

1: while iteration < T do

2: For k steps do

3 sample minibatch{x,, x,, ..., X,,} < pyaa(x)

4: sample minibatch{zl,zz, e Zy ) Pg(2)

5: Gy <V, Z[log D(x;) +log(1 = D(G(z)))]

6: update D by ascendlng its stochastic gradient G,
7: end for

8: sample minibatch {z, z;, ..., z,,} < p,(2)

9: G, < Vg Z [log(1 — D(G(z)))]

10: update G by descendlng its stochastic gradient G,
11: end while

and the distribution of latent vectors, which is represented by MSE
between synthetic and original images and KL divergence between
posterior and prior distributions respectively.

Algorithm 6 Pseudocode for VAEs

Input data distribution p,,,(x), noise distribution p,(¢), iteration
numbers T

Output trained model M

1: while iteration < T do
sample minibatch {x,,x,, ...
samples € < p(e)
z gets Encoder (¢, €, x)
m

Lgp =~ z[—DKL<q¢(z|x,-)||pg(z)>J

> Xm )} < Paara(X)

Lo = Z[Ingg(x [z)]

& < Vqﬁ 9(£KL + ‘Crec)
update M with g
end while

©®» N

2.2. Overview of information fusion

Information fusion is defined as a process that combines single or
multiple sources to increase the quality of the information [34]. By
applying information fusion, it can process the imperfect raw data
to obtain more consistent and reliable information. In principle, in-
formation fusion has great advantages over single-source data [35].
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pseudo labelling

consistency regularization

graph-based

semi-supervised
fusion method

generative
federated multi-national data
reconstruct input data
mixed labelled and unlabelled data
data fusion

multi-modality data

multi-resolution data

multi temporal/spatial data

{ information fusion

j» multi-subnetworks
feature fusion

multiple hidden layer features

multi-view branches

decision fusion multiple auxiliary tasks

multiple constraints

Fig. 1. An overview of semi-supervised information fusion methods.

In [36], Meng et al. summarized three key components of data fusion:
data sources, operation, and purpose. In data fusion, single or multiple
data sources are gathered from different positions and at different
periods. Operation means combining data and refining information.
The purpose of data fusion is to improve detection or prediction while
reducing error possibilities and enhancing reliability. In terms of the
level of information fusion, it can be categorized into three groups: data
fusion, feature fusion, and decision fusion.

Data fusion refers to integrating different data modalities or multi-
ple data sources at the beginning before the analysis process. For exam-
ple, two different data modalities, 3D MRI and 3D CT, are fused for a
segmentation task with the consistency regularization semi-supervised
method [37].

Feature fusion means several sub-models, sub-networks, or layers
in the model learned from sub-data and then aggregated. For instance,
in [38], Wang et al. utilized sub-networks for feature fusion with 3D
Optical Coherence Tomography (OCT) data.

Decision fusion, also known as late fusion, means that each med-
ical data modality or view of data is trained and makes a prediction,
then integrates the decisions of each model to make a final decision.
For example, the authors designed multi-view branches and utilized
decision fusion for 3D CT segmentation [39].

For designing medical image analysis applications, single-modality
medical data may not provide sufficient information. From the perspec-
tive of medical data fusion, transforming information from multiple
data modalities into a single medical application can improve the
efficiency of the application. Moreover, it can also assist medical ex-
perts in making decision-making and provide more insights than a
single modality. Hence, it is necessary to conduct information fusion
in medical image analysis applications to enrich the model with more
information.

3. Medical image analysis applications with semi-supervised in-
formation fusion

The aim of this survey is to provide a comprehensive and in-
depth analysis of medical imaging applications with semi-supervised
information fusion methods. As shown in Fig. 1, instead of organizing
the structure according to the four classical semi-supervised learning
classifications, this survey is designed to classify them according to
three different types of information fusion, i.e., data fusion, feature
fusion and decision fusion. Following each subtitle, the corresponding
medical image applications employing the specified techniques are
delineated, for a total of 50 research papers.

3.1. Data fusion applications

This section summarizes semi-supervised information fusion appli-
cations in medical image analysis, utilizing various data fusion tech-
niques. Detailed descriptions of these applications can be found in
Table 3.

Federate multi-national data Yang et al. combined a pseudo
labelling-based deep semi-supervised learning with federated learning
to solve the Covid-19 region segmentation problem between multi-
national data [40]. The server-client communication scheme allowed
the server to aggregate the model weights of all clients, and clients
updated the server-assigned weights to fine-tune their local mod-
els, sending the new gradients to the server again. Each client with
multi-national source data might have completely different annota-
tion availability, and generally be trained in a self-training way. The
pseudo labels were generated by the current local model and filtered
using a hard threshold to increase the generalizability, with slight
augmentation applied during training.

Reconstruct input data In [41], Guo and Yuan presented a pseudo
labelling-based semi-supervised algorithm for wireless capsule
endoscopy image classification using an adaptive aggregated attention
technique with two branches trained jointly, one of which is an abnor-
mal region classifier that outputs texture and structure attention maps.
The maps were further fused in another information distiller, in order
to emphasize the abnormal regions.

Another pseudo labelling-based semi-supervised study presented by
Wang et al. focused on the multi-class infection segmentation task, in
which the proposed spatial self-attention network was combined with
few-shot techniques [42]. To achieve better segmentation performance,
each CT slice was concatenated with its lung mask as the network’s in-
put. They demonstrated a re-weighting module for the class imbalance
problem, which assigned weights based on the pixel ratio of classes and
respective estimated probabilities and obtained reliable pseudo-labels
from the trust module by selecting high confidence values.

Huo et al. proposed a consistency regularization method, which
added a novel constraint on attention mask consistency in the pro-
posed Dual Consistency-Mean Teacher (DC-MT) framework for grading
assessments for knee cartilage defects [43]. Concretely, concentrated
attention masks were generated using log-sum exp (LSE) pooling, and
the mean squared error (MSE) between attention masks derived from
the student and teacher models were calculated to ensure consistency
and to make the networks focus on the cartilage regions which can
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Table 3

Summary of medical image analysis applications leveraging data fusion.

Information Fusion 106 (2024) 102263

Publication Citations Venue Task Modality Data size Data fusion methods Semi-supervised method
[40]1 182 Medical Image Analysis, Segmentation 2D CT 1704 slices Multi-source Data Pseudo Labelling
1F:10.9, JCR Q1
[41] 47 Medical Image Analysis, Classification Endoscopy 1800L+1807U Reconstruct Input Data Pseudo Labelling
1F:10.9, JCR Q1
[42] 38 Medical Image Analysis, Segmentation 2D CT 2414 slices Reconstruct Input Data Pseudo Labelling
1F:10.9, JCR Q1
[43] 7 Medical Image Analysis, Segmentation 3D CT 140 volumes Reconstruct Input Data Consistency Regularization
IF:10.9, JCR Q1
[44] 37 MICCAI Segmentation 2D CT 463 slices Reconstruct Input Data Consistency Regularization
[45] 8 IEEE Transactions on Multimedia, Segmentation 2D MRI, 200 slices, 100 Reconstruct Input Data Consistency Regularization
IF:7.3, JCR Q1 3D MRI volumes
[46] 19 IEEE Transactions on Medical Imaging, Segmentation 3D MRI 2956 volumes Reconstruct Input Data Consistency Regularization
IF:10.6, JCR Q1 + Generative Model
[371 43 MICCAI Segmentation 3D MRI, 20 volumes, Multi-Modality Consistency Regularization
3D CT 20 volumes
[471 445 Medical Image Analysis, Classification Multi-modality image - Multi-Modality Graph-based Method
1F:10.9, JCR Q1 and non-imaging
measures
[48] 17 Medical Image Analysis, Classification Multi-modality image - Multi-Modality Graph-based Method
IF:10.9, JCR Q1 and non-imaging
measures
[49] 6 IEEE Transactions on Medical Imaging, Segmentation Histology, 2D CT, US, 500 images, 3779 Multi-Modality Graph-based Method
1F:10.6, JCR Q1 Colonscopy slices, 780 images,
1450 images
[50] 27 Medical Image Analysis, Diagnosis 3D MRI 2525 volumes Multi-Modality Generative Model
1F:10.9, JCR Q1
[51] 11 IEEE Transactions on Medical Imaging, Detection Microscopy 334 images Multi-Modality Pseudo Labelling +
1F:10.6, JCR Q1 Generative Model
[52]1 33 MICCAI Segmentation 3D MRI, 20 volumes, 20 Multi-Modality Consistency Regularization
3D CT volumes + Generative Model
[53] 32 IEEE Transactions on Medical Imaging, Classification 2D US 7000 images Mixing Labelled and Consistency Regularization
1F:10.6, JCR Q1 Unlabelled Data
[54] 38 MICCAI Classification X-ray, Dermoscopy 224316 images, Mixing Labelled and Consistency Regularization
10015 images Unlabelled Data
[55] 27 IEEE Transactions on Medical Imaging, Classification X-ray 43347 images Mixing Labelled and Consistency Regularization
1F:10.6, JCR Q1 Unlabelled Data
[56] 69 Medical Image Analysis, Regression, Histology 2978 images, 100k Multi-resolution Patches Consistency Regularization
1F:10.9, JCR Q1 Classification patches
[571 19 Medical Image Analysis, Generation Histology 678 images Multi-resolution Patches Generative Model
1F:10.9, JCR Q1
[58] 8 IEEE Transactions on Medical Imaging, Segmentation Microscopy 134 images Multi-resolution Patches Pseudo Labelling +
1F:10.6, JCR Q1 Generative Model
[59] 18 Medical Image Analysis, Segmentation 2D US video 10530 sequences Multi-temporal frames Consistency Regularization
IF:10.9, JCR Q1
[60] 143 Medical Image Analysis, Classification 2D CT 2018 slices Multi-spatial images Generative Model
IF:10.9, JCR Q1
[61] 9 IEEE Transactions on Medical Imaging, Contrast 3D MRI 104 subjects Multi-spatial images Generative Model
IF:10.6, JCR Q1 Translation

Note: Citations are based on Google Scholar (assessed date: 18 Oct 2023), IF: impact factor, JCR: web of science journal citation report, MICCAI: Medical Image Computing and Computer Assisted Intervention.

both achieve accurate attention masks and boost classification per-
formance simultaneously. Moreover, the constructed slice-level results
were further ensembled as fused inputs for subject-level diagnosis via
the proposed aggregation network.

In [45], Shu et al. also utilized a consistency regularization method
Cross-Mix Monitoring that incorporates Interpolation Consistency
Training (ICT) into mean teacher structure and was complemented by
a transductive monitor that acted as a bridge between student and
teacher models to facilitate knowledge transfer through a projector
network. A mix of unlabelled images independent of the teacher’s input
was fed into the student model, while the outputs of the teacher were
also mixed to provide consistency feature guidance for the student. The
proposed framework is shown in Fig. 2.

Xu et al. segmented hepatic vessels for CT slices from datasets with
different annotation qualities [44]. Auxiliary input information was
introduced from the vascular probability maps to avoid the model being
overly sensitive to high-intensity regions. The proposed consistency
regularization-based self-denoising process used class probability as
the confidence to smoothly refine the noisy label and update the
low-quality annotation in mixed learning.

In [46], Huang et al. proposed a hybrid method with consistency
regularization and generative model for reinforcing consistency learn-
ing by implementing a mean teacher basis scheme where one branch
is based on various perturbed images and another agent branch is
used for reconstructing the image from the perturbed counterpart with
an autoencoder. The extracted neuron structure features were again
fed into the segmentation network to reinforce the capabilities of
consistency learning.

Mix labelled and unlabelled data Nguyen et al. utilized proposed
a consistency regularization method ICT in a Siamese network-based
model for grading the severity of osteoarthritis of the knee from ra-
diographs [55]. The labelled and unlabelled data were first processed
linearly along the Mixup rays by Interpolation Consistency Training
(ICT), and then the fused data were randomly perturbed by multiple
transformations to form the in- and out-of manifold regularization.

The Mixup procedure could also be applied to latent space, Gyawali
et al. presented a consistency regularization method named latent mix-
ing technique for medical image classification [54]. For each layer, the
mapping function could be decomposed as f;(x) = d,(¢;(x)), where ¢,
encodes the input into latent representation and d; acts as the decoder
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Fig. 2. Cross-Mix Monitoring framework with mixed labelled and unlabelled data for medical image segmentation.

part. The authors implemented MixMatch by packing each input with
the encoding function of the guessed labels on the latent space and
comparing it with the decoded predictions of the interpolated data
samples.

While Meng et al. attempted to classify unseen categories in dif-
ferent domains by applying consistency regularization method through
Mixmatch, in which labelled and unlabelled data are mixed in a linear
matrix [53]. By extracting features that do not intersect in the latent
space through two independent encoders, the mutual information be-
tween the two features was minimized to encourage domain-invariant
representation learning. Feature clustering constraints on the categor-
ical information were used in order to keep the categorical features
consistent between the source and target domain.

Multi-modality data Li et al. leveraged a consistency regularization
method called Dual-Teacher to mitigate the need for tedious medical
annotations by simultaneously using abundant unlabelled data and
widely available cross-modality data [37]. Besides on traditional mean
teacher for the intra-domain knowledge transfer, the additional inter-
domain teacher instructed with knowledge beneath labelled sources to
narrow the modality gap through knowledge distillation. Principally,
the inputs for inter-domain teachers were synthesized by a generation
model from source samples, and the student model was encouraged to
produce consistent outputs as inter-domain teachers, which obtained
reliable source domain knowledge.

Wang et al. [50] synthesized high-quality multi-parameter mag-
netic resonance imaging (mp-MRI) of Clinically Significantly (CS) PCa
via generative model GANs with a Stitch layer, without requiring
paired Apparent Diffusion Coefficient T2-weighted (ADC-T2 W) images.
The authors also combined the prior knowledge of disease features

to maximize an auxiliary distance between CS and NonCS images.
The synthesizer learns both the marginal distributions of real multi-
modal image pairs and the distinguishable visual features of multi-class
images.

Graphs are widely used as a natural framework for capturing the
interactions between elements represented by the nodes in the graph.
This representation allows for the simultaneous inclusion of a large
amount of imaging and non-imaging information as well as individ-
ual subject characteristics in the disease classification task [47]. The
proposed graph convolutional networks integrated imaging and non-
imaging data by associating nodes with imaging-based feature vectors
while using phenotypic information as edge weights. Concretely, for
population graph construction, the authors made careful decisions
on both nodes, feature vectors, and edges. Non-imaging phenotypic
measures integrated with similarities between imaging data compose
the edge weights. A recursive feature elimination strategy using a ridge
classifier, a simple autoencoder, a multilayer perceptron and principal
component analysis was implemented for imaging feature selection.

In [48], Huang and Chung also took both imaging and non-imaging
data into account, a Pairwise Association Encoder was proposed to
normalize and rescale the non-imaging features, which consisted of
two parallel projection networks with sharing weights and a cosine
similarity function to compute hidden features as edge weights.

Zou et al. designed a Graph Flow framework, especially for resource-
limited and annotation-limited medical application scenes that utilized
knowledge distillation [49]. To exploit the semantic knowledge in
deep neural networks, salience graphs were created by extracting and
encoding the maximum activation in salience regions. In addition,
variation graphs were used to measure the flow of salience graphs
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between layers, and knowledge was distilled from the teacher model
to the student model.

Xing et al. leveraged the pseudo labelling and generative methods
to address cross-modal domain adaptation of microscopy images [51].
The authors first applied the source domain detector to the transformed
target training image to implement an effective self-labelling algorithm.
A bidirectional mapping between two domain data was used to pair the
real label with synthesized source data, and also to pair the real target
data with the pseudo labels selected using the self-training algorithm.

Zhao et al. proposed a hybrid method with consistency regular-
ization and generative model that embedded cycle GANs into a mean
teacher architecture to apply cross-modality image segmentation tasks
[52]. Two teacher models with intra-domain semantic and inter-domain
anatomical structural information simultaneously transferred their re-
spective knowledge to the student model. Generating reconstructed
images is also a common skill used in conjunction with consistency
constraints. The authors successfully constructed two newly augmented
data: source-like domain and target-like domain.

Multi-resolution data A self-supervised driven consistency regular-
ization method was proposed by Srinidhi et al. [56], which consisted
of a pre-trained self-supervised network for task-agnostic feature rep-
resentation learning and was finetuned with limited labelled data for
task-specific downstream features. The authors exploited the multi-
resolution contextual information present in the pyramidal nature of
histological whole-slide images to provide alternative supervised sig-
nals for representation learning. For unlabelled data input, consistency
loss was calculated by predictions from the teacher model with a
slight augmentation and the student model with a strong augmentation.
Specifically, the teacher model had all layers frozen, while the student
updated its last layers and replaced the original teacher at the end of
each epoch.

In [57], Li et al. generated high-resolution histopathology images
from multi-resolution conditional patch with generative model GANs
and selected sufficiently realistic image-label pairs for training. The
proposed pyramid of GAN structures shows how each is each responsi-
ble for generating and segmenting images at different scales.

Lou et al. performed a hybrid method with pseudo labelling and
generative model that self-training and conditional GAN combined
paradigm in a label-efficient cell nucleus segmentation framework, al-
lowing the generation of synthesized images from different augmented
masks and simultaneously constructing a label-efficient that only se-
lected image patch labels are needed [58]. Multi-scale conditional
generators and component-wise discriminators were used to process
real and synthetic masks at randomly different scales.

Multi-temporal/spatial data In [59], Wu et al. processed a consis-
tency regularization approach to segment the left ventricle of echocar-
diography videos, which particularly suffers from irregular and
anisotropic cardiac motions and the existence of speckle noise. The
proposed method exploited temporal and spatial information by ex-
tracting temporal context-aware features from k different encoders,
where the relative temporal positions of neighbouring frames could
lead to unique weights for each encoder on each layer, thus constituting
the feature maps. Besides, the convolutions-based semantic calibration
method would formulate a wider bandwidth signal for cardiac motion,
significantly reducing the effect of speckle noise by adaptively fusing
the bi-directional spatiotemporal semantics of adjacent frames.

In [61], Yurt et al. proposed a generative model named ssGAN to
improve learning-based multi-contrast MRI synthesis feasibility, which
can synthesize target images directly from under-sampled multi-coil
source acquisitions without intermediate reconstruction.

Xie et al. implemented a generative model-based semi-supervised
adversarial autoencoder model for lung nodule classification by extract-
ing multi-view features and constructing knowledge-based collabora-
tive learning models [60]. Multiple views of the overall appearance
(OA), voxel value heterogeneity (HVV), and shape heterogeneity (HS)
image patches of each nodule were extracted as inputs to the proposed
model. Specifically, a learnable layer transferred the representation
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ability of the reconstruction network to the classification network for
better decision-making.

3.2. Feature fusion applications

In this section, we provide an overview of semi-supervised applica-
tions in medical image analysis that employ feature fusion techniques.
For comprehensive details on these applications, please refer to Table 4.

Multi-subnetworks In [62], Liu et al. assessed paediatric diffu-
sion MRI quality by going from fine to coarse, applying a pseudo
labelling method self-training based on hierarchical non-local residual
networks, separately from slice to volume to subject, and applying
high-confidence pseudo labels layer by layer with a threshold. Another
study by the same team described image quality assessment on T1-
and T2- paediatric MRI, with self-training techniques applied to both
residual networks and random forests [63]. The method consists of two
subnetworks: a non-local network for weighted summation of features
at local and global locations; and a residual network to avoid the
gradient explosion problem. Therefore, the framework is holistic and
can effectively combine local and global features.

Zhang et al. took discriminative errors into consideration for the
colon gland segmentation task with a pseudo labelling-based dual error-
correlation framework [65]. Since they attributed segmentation errors
to inter-class similarity and intra-class inconsistency, in addition to
having a main segmentation branch, the proposed Discriminative Error
Prediction network (DEP-network) has two other auxiliary branches,
Bmul-Net and Eintra-Net, which provide inter-class and intra-class error
information respectively. These three networks share features in the en-
coder phase, and in the decoder phase, the global segmentation branch
received features from the subbranches in a cross-model concatenat-
ing manner. Each network was self-trained by softmax probabilistic
refinement of the pseudo labels.

In [67], Zhou et al. proposed a weakly and strongly augmented
alignment process guided by the Instance to Prototype Earth Mover
Distance (I2PEMD) model in a classification task using a joint proto-
type tilt with consistent regularization and an unpaired multi-modal
segmentation task. By introducing momentum updates, EMD was com-
puted for estimating cross-class prototype relationships. The model
was able to use prototype learning and EMD estimation to better
align feature distributions, which can mitigate distribution bias be-
tween multi-source inputs (e.g., CT and MRI) to help guide prediction
selection and maintain label quality.

A generative model named the SD-LayerNet proposed by Fazekas
et al. also included VAE components in retinal layer segmentation
with disentangled representation [68]. A fully differentiable topological
engine was additionally used to convert the surface probability maps to
anatomical factors, and the VAE aimed to infer style factors.

In [69], Chartsias et al. utilized a generative model and demon-
strated that disentangled representation had considerable potential
for medical images, as they proposed the SDNet, which decomposed
images into spatial anatomical factors and non-spatial modality factors,
via an anatomical encoder and a VAE respectively. These high-level
representations were then validated on several tasks such as multi-
modality segmentation, multi-task segmentation and regression, and
image-to-image synthesis.

Wang et al. [38,66] used pseudo labelling-based method, achieved
glaucoma classification in OCT images, a subtask investigating visual
archival measures was performed in the regression module. They ar-
gued that the relationship between structural and functional changes
could positively influence the main classification task and the weighted
combination of losses was used for joint training. Pseudo labels were as-
signed by the similarity between homogeneous images (i.e., Euclidean,
cosine and Manhattan distance).

Multiple hidden layer features The method DSAL proposed by
Zhao et al. also used a dense condition random field (CRF) to generate
pseudo labels and additionally applies active learning to select samples
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Fig. 3. Lung Infection Segmentation Network (Inf-Net) model with multiple feature fusion modules [64].
Table 4

Summary of medical image analysis applications leveraging feature fusion method.

Publication Citations Venue Task Modality Data size Data Fusion Methods Semi-supervised Method
[63] 10 IEEE Transactions on Medical Imaging, Image quality 3D dMRI 3775L + 11778U Multiple sub-networks Pseudo Labelling
IF:10.6, JCR Q1 assessment
[62] 14 IEEE Transactions on Image Processing, Image quality 3D MRI 200L+814U Multiple sub-networks Pseudo Labelling
IF:10.6, JCR Q1 assessment
[65] 12 Medical Image Analysis, Segmentation Histology 378 images Multiple sub-networks Pseudo Labelling
1F:10.9, JCR Q1
[38] 8 MICCAIL Classification 3D OCT 4877 volumes Multiple sub-networks Pseudo Labelling
[66] 51 Medical Image Analysis, Classification 3D OCT 6108 volumes Multiple sub-networks Pseudo Labelling
1F:10.9, JCR Q1
[67] 1 Medical Image Analysis, Classification Dermoscopy 10015 images Multiple sub-networks Consistency Regularization
1F:10.9, JCR Q1
[68] 2 MICCAI Segmentation 3D OCT 68L + 391 U Multiple sub-networks Generative Model
[69] 142 Medical Image Analysis, Segmentation, 2D MRI, CT approx 38000, 2580 Multiple sub-networks Generative Model
IF:10.9, JCR Q1 Generation, images
Regression
[701 41 IEEE Journal of Biomedical and Health Segmentation Dermoscopy, X-ray 2000 images, 12611 Multiple layer features Pseudo Labelling
Informatics, images
1F:7.7, JCR Q1
[64] 956 IEEE Transactions on Medical Imaging, Segmentation 2D CT 100L+1600U Multiple layer features Pseudo Labelling
1F:10.6, JCR Q1
[71] 17 Neurolmage, Segmentation 3D MRI 416 volumes Multiple layer features Consistency Regularization
IF:5.7, JCR Q1
[72] 4 IEEE Transactions on Medical Imaging, Segmentation NIR, Fundus 3600 images, 133 Multiple layer features Generative Model
IF:10.6, JCR Q1 images
[731 40 IEEE Transactions on Medical Imaging, Quality OCT 512L + 1408U Multiple layer features Generative Model
1F:10.6, JCR Q1 improving
[74] 50 Medical Image Analysis, Segmentation 3D CT 196 volumes Multiple layer features Consistency Regularization
1F:10.9, JCR Q1 + Generative Model
[75] 59 Medical Image Analysis, Segmentation 3D MRI, 3D CT 593 volumes, 82 Multiple layer features Pseudo Labelling +

IF:10.9, JCR Q1

volumes Consistency Regularization

Note: Citations are based on Google Scholar (assessed date: 18 Oct 2023), IF: impact factor, JCR: web of science journal citation report, MICCAL Medical Image Computing and Computer Assisted Intervention.

for labelling [70]. The uncertainty score was calculated from the dice
coefficients of the prediction masks of the various hidden layers, which
were considered to reflect the accuracy and consistency of the predic-
tion. In query selection, the unlabelled data were ranked according to
their respective uncertainty, with the least reliable samples receiving
strong annotations from experts, and those that were reliable receiving
weak annotations via the denseCRF algorithm.

In [64], Fan et al. trained a pseudo labelling-based model named
Inf-Net to segment multi-class infection regions from Covid-19 CT
scans, which included a parallel partial decoder connected to a reverse

attention module as well as an edge attention module for enhanced
boundary and feature representation. Each low-level feature obtained
was fed to a further convolutional layer to extract high-level features,
while multiple inverse attention modules were organized in a cascade,
relying on higher-level outputs. The applied semi-supervised approach
was based on randomly selected propagation and the generated pseudo
labels were used to guide a multi-class labelling framework, which was
able to reflect quantitative information of different types of infections,
e.g., ground-glass opacity (GGO) and consolidation. The architecture of
the proposed model is shown in Fig. 3.
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Table 5
Summary of medical image analysis applications leveraging decision fusion.

Information Fusion 106 (2024) 102263

Publication Citations Venue Task Modality Data size Data Fusion Methods Semi-supervised Method
[76] 38 MICCAI Segmentation 3D CT, 3D MRI 210 volumes, 385 Multi-view branches Pseudo Labelling
volumes
[771 4 IEEE Transactions on Pattern Analysis Segmentation 2D MRI, 3D MRI, 200 slices, 60 Multi-view branches Pseudo Labelling
and Machine Intelligence, IF:23.6, JCR Fundus volumes, 800
Q1 images
[39] 161 Medical Image Analysis, IF:10.9, JCR Segmentation 3D CT 82 volumes Multi-view branches Pseudo Labelling
Q1
[78] 16 Computer Methods and Programs in Segmentation 3D MRI 200 volumes Multi-view branches Consistency Regularization
Biomedicine, IF:6.1, JCR Q1
[791 30 Medical Image Analysis, 1F:10.9, JCR Segmentation 3D MRI, CT 53L+460U, Multi-view branches Graph-based Method
Q1 20L+55U
[80] 19 Medical Image Analysis, 1F:10.9, JCR Segmentation 2D CT-PET, 2D MRI 5788 slices, 13850 Multi-view branches Pseudo Labelling
Q1 slices +Consistency
Regularization
[811 3 Artificial Intelligence in Medicine, Segmentation 2D CT 91L+913U Multi-tasks Pseudo Labelling
IF:7.5, JCR Q1
[82] 56 Medical Image Analysis, IF:10.9, JCR Segmentation 3D MRI 150 volumes Multi-tasks Consistency Regularization
Q1
[83] 209 MICCAI Segmentation 3D MRI 100 volumes Multi-tasks Generative Model
[84] 9 MICCAI Segmentation 3D MRI 120 volumes Multiple constraints Consistency Regularization
[85] 16 Artificial Intelligence in Medicine, Segmentation 3D MRI 435 volumes Multiple constraints Consistency Regularization
IF:7.5, JCR Q1
[86] 12 MICCAI Segmentation 2D CT, 3D MRI 82 slices, 100 Multiple constraints Pseudo Labelling

volumes +Consistency

Regularization

Note: Citations are based on Google Scholar (assessed date: 18 Oct 2023), IF: impact factor, JCR: web of science journal citation report, MICCAI: Medical Image Computing and Computer Assisted Intervention.

In [71], Chen et al. utilized consistency regularization and proposed
a novel framework for brain lesion segmentation, which considers
the multi-scale consistency based on hierarchical features that are
extracted and concatenated across multiple hidden layers. A shape-
aware discriminator was embedded using the predicted Signed Distance
Maps to force improving segmentation quality from both labelled and
unlabelled images.

Shen et al. proposed a generative model and demonstrated SCANet,
a tri-branch semi-supervised semantic segmentation network that relied
on a recurrent neural network, consistency decoder, and adversarial
learning [72]. The multi-scale recurrent networks embedded a pyra-
mid structure from coarse to fine, gradually incorporating semantic
information into feature fusion. The generator aimed to provide seg-
mentation predictions, the encoder encouraged synthetic images from
the segment’s predictions to be consistent with the original input image,
and the discriminator was used to identify predictions and ground truth
(GT). Generative adversarial models have their potential advantages
in disease detection and diagnosis. Multiparametric MRI (mp-MRI)
based on combining anatomical T2 W with diffusion-weighted imaging
(DWI) and its derived apparent diffusion coefficient (ADC) maps can
substantially improve the diagnostic power of prostate cancer (PCa)
detection and aggressiveness assessment.

A combination of feature extraction and image reconstruction was
applied by He et al. [74], which aimed to utilize the deep priori
anatomy and hard region adaptation information for fine renal artery
segmentation. The authors utilized a hybrid method with consistency
regularization and generative model. The applied dense connection
fused multi-receptive field and multi-scale features to adapt the net-
work to intra-scale changes.

For example, Luo et al. presented a hybrid method with consistency
regularization and pseudo labelling using uncertainty rectified pyramid
consistency, which encouraged latent predictions at various scales to
be similar to their average prediction [75]. Only latent predictions that
had passed the uncertainty map filter were used as pseudo labels.

A generative model named capsule conditional generative adversar-
ial network (Caps-cGAN) was proposed by Wang et al. for speckle noise
denoising of retinal OCT images [73]. A capsule deconvolution module
was introduced to effectively fuse the high-resolution and low-semantic
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features in the lower layers of the network with the high-semantic and
low-resolution features in the upper layers.

3.3. Decision fusion applications

This section presents a concise summary of semi-supervised ap-
plications in medical image analysis that incorporate decision fusion
techniques. Extensive information about these applications is detailed
in Table 5.

Multi-view branches Fang and Li utilized pseudo labelling-based
method and proposed a DMNet for semantic segmentation, which
employs two different decoders that cross-supervised each other [76].
The two decoders used different architectures to introduce diversity and
the loss function aimed at minimizing the difference between the two
generated masks. Under the assumption of semi-supervised learning,
low-entropy masks were also generated to force decision boundaries
located in low-density regions.

A multi-organ segmentation framework uncertainty-aware multi-
view co-training was developed by Xia et al. which produced data-level
view differences by transforming 3D data [39]. Co-trained pseudo
labels were computed by fusing the outputs of different views and
their respective weights, which were related to the epistemic uncer-
tainty measured by the random dropout configurations in the Bayesian
network.

In [78], Xiao et al. utilized consistency regularization and built a
dual-teacher module by adding a Transformer in segmentation tasks.
Teacher A worked in a UA-MT paradigm while Teacher B and the
student models collaborated in the co-training scheme, they created
pseudo labels for each other and performed cross-supervision. Another
layer of consistency regularization constraint between dual teachers
was used to enhance guidance consistency and information interaction.
Teacher B’s system consisted of a combined CNN and Transformer
structure, where the CNN-based student excelled at convolutional com-
putations on local regions, while the Transformer-based teacher had
access to remote self-attention on global information.

Ganaye et al. proposed a graph-based semi-supervised method that
leveraged adjacent graphs to mitigate segmentation inconsistency un-
der the assumption that all subjects would have the same anatomical
adjacencies and inter-region connectivity [79]. The adjacency relation-
ship was represented as a differentiable metric, with an auxiliary loss
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Fig. 4. A triple-uncertainty guided mean teacher model with fused decision of multiple branches [82].

penalty for outputs from regions containing anatomically incorrect ad-
jacencies. The proposed 2.5D network with 6 directional constraints in-
corporates inference from multiple slicing architectures and generated
correspondence maps.

Wu and Zhuang presented a risk estimator for unlabelled data
and built a risk-based framework MERU for pseudo labelling-based
semi-supervised medical image segmentation, where the prediction
risks relied on binary classification [77]. The modified U-net outputs
multi-scale predictions, which were integrated to generate the final
segmentation with several convolution layers. Pseudo labels generated
from the model were used to calculate the respective class portions,
which were further used to form unbiased and consistent empirical risk
estimates, by assuming all images are from the same distribution. The
estimated risk on unlabelled images was partially incorporated into the
regularization terms, i.e., positive risks on positive pixels of each class.

Multiple auxiliary tasks In [81], Hao et al. embedded feature
importance weighting within the feature maps along with the pseudo
label quality into a self-attention module, and iteratively updated the
teacher model, which took the initial label data and the pseudo labels
that had passed the label grader as training data. An automatic label
grader was proposed for the quality control of pseudo labels.

In [82], Wang et al. proposed a consistency regularization-based
method with a triple-uncertainty guided network for MRI segmenta-
tions. The proposed multi-task framework combined three separate
tasks (segmentation, reconstruction, and Signed Distance Field predic-
tion), for each of which the authors performed MC-dropout uncertainty
estimation. Auxiliary tasks’ results help the segmentation network cap-
ture more semantic information and constrain the global geometric
shape of the outputs. A contrastive learning-based constraint was also
equipped to help the encoder extract more diverse representations
to facilitate the performance of the dominant task segmentation. An
overview of the proposed model is shown in Fig. 4.

Li et al. utilized generative model and built a multi-task deep net-
work for 3D semantic segmentation with a subtask of predicting signed
distance maps using a shared backbone module [83]. The adversarial
loss was added for learning shape-aware representations and naturally
emphasizing the internal regions of each category, which were further
seen as proxies for confidence measurement.

Zhang et al. used hybrid method with consistency regularization and
pseudo labelling and exploited the intrinsic correlation of multimodal
data, combined with comparative mutual learning for semi-supervised

11

learning, to segment multiple modalities simultaneously [80]. Specif-
ically, two modalities were fed into two independent models in a
co-training manner and regularized by the correlations and differences
between the modalities. In addition, a novel soft-pseudo label re-
learning scheme was implemented via a mean-teacher-like module,
which narrowed the gap between the multimodal performances.

Multiple constraints on outputs The work by Xiang et al. fused
two sources of uncertainty — aleatoric uncertainty to guide supervised
learning and epistemic uncertainty to determine certain predictions as
pseudo labels and uncertain data under consistency constraints [86].

In [84], Basak et al. utilized consistency regularization and incor-
porated fuzzy adaption fusion using the Gompertz function to com-
bine the three proposed class-wise confidence (entropy, variance, av-
eraged probability) into individual confidence scores for each sample.
The robust class-wise sampling was embedded into the Mean Teacher
structure, with a dynamic modulation of weights for better training
stabilization.

Zhang et al. [85] not only incorporated uncertainty estimation
into a Monte-Carlo dropout consistency regularization framework but
also constructed a two-branch network for multiple tasks performed
simultaneously. The final loss function was fused by both within-task
consistency and cross-task consistency regularization strategies.

4. Case study

To further illustrate the practical applications of the various deep
semi-supervised fusion methodologies explored in this survey, this
section presents two comprehensive case studies. Each case study is
conducted on a different public dataset with separate statistical anal-
ysis and experimental exploration. These case studies provide detailed
examinations of these approaches in real-world scenarios.

As depicted in Fig. 8, the majority, exceeding 60%, of the surveyed
papers concentrate on segmentation tasks. Consequently, this section
delves into two specific medical image segmentation tasks, encom-
passing the two most frequently utilized modalities: MRI and CT. The
first statistical case study provides a thorough analysis of the results
obtained by the various methods applied to a specific MRI dataset
ACDC [87], for a comprehensive overview of the advantages and dis-
advantages of each method. On the contrary, the second experimental
case study delves into a different classical experimental approach on
another dataset ‘COVID-19 CT Segmentation Dataset’ [88], examining
the performance of each method by controlling the labelled ratio and
providing an in-depth analysis of the results obtained.



Y. Weng et al. Information Fusion 106 (2024) 102263
Table 6
Dice scores comparison for different semi-supervised information fusion methods on the ACDC dataset.
Studies Semi-supervised information fusion method Labelled data proportion Dice score Code available
[45] Consistency Regularization 10% 0.872 -
Data Fusion 5% 0.867
[69] Generative Models 13% 0.808 here
Feature Fusion 6% 0.789
3% 0.778
2% 0.731
[77] Pseudo Labelling 6% 0.839 here
Decision Fusion
[82] Consistency Regularization 27% 0.914 -
Decision Fusion 13% 0.875
6% 0.864
[84] Consistency Regularization 10% 0.889 -
Decision Fusion 3% 0.842
1% 0.746

Table 7
Comparison of Dice scores for various semi-supervised in:
categorized according to the proportion of labelled data.

formation fusion methods applied to the ACDC dataset,

Labelled data proportion Top 3 results and labelled ratio Respective study
0.867 (5%) [45]
0%-5% 0.842 (3%) [84]
0.778 (3%) [69]
0.889 (10%) [84]
6%-10% 0.872 (10%) [45]
0.864 (6%) [82]
0.914 (27%) [82]
>10% 0.875 (13%) [82]
0.808 (13%) [691]
0.9302 [89]
100% 0.9232 [90]
0.9206 [91]

4.1. Case I: Segmentation for cardiac diagnosis

Dataset One of the extensively used MRI datasets for segmentation
tasks within the medical domain is the ACDC (Automated Cardiac
Diagnosis Challenge) dataset [87], which consists of short-axis MR-
cine T1 3D volumes of cardiac anatomy acquired using 1.5T and 3T
scanners of 100 subjects. In this survey, a total of 5 papers use the ACDC
dataset for training and testing their semi-supervised learning methods.
In this context, a specific case study centred around the ACDC dataset
is presented to elucidate the solutions and experimental results covered
in this systematic review on semi-supervised learning in medical image
analysis.

Quantitative results The presented Table 6 illustrates the findings
from five different studies employing various deep semi-supervised
fusion methods, each using different proportions of labelled data for
training and assessing performance primarily through Dice Scores.
Notably, Consistency Regularization consistently demonstrates efficacy
across three studies [45,82,84], where Wang et al. [82] showcased a
remarkable Dice Score, particularly at a substantial 27% labelled data
proportion. Generative models, as investigated in Chartsias’s work [69],
and Pseudo Labelling, employed by Wu and Xia [77], also exhibit
competitive performance. From the part of the fusion method, Decision
Fusion is applied in three papers and emerges as a robust strategy with
exceptional performance. Within the body of literature, certain studies
documented experimental results for multiple labelled datasets, while
a few listed only the appropriate proportion of labelled and unlabelled
data. Noteworthy, when evaluating results based on the Dice score, the
most remarkable performances arise from Wang’s [82] and Basak’s [84]
models with scores of 91.4 and 88.9, respectively, both of which
incorporate decision fusion with consistency regularization, hinting at

the potential of amalgamating diverse deep learning techniques with
semi-supervised learning paradigms to amplify network segmentation
proficiency. Wang [82] fused the final decision of multiple branches
to balance the specific knowledge captured by different subnetworks,
while Basak et al. [84] employed a fuzzy confidence fusion combining
three class-wise performance indicators to generate the final score. Ad-
ditionally, Wang et al. [82] introduced contrastive learning, supported
by an ablation study revealing a 1.8%, 0.4%, and 0.1% enhancement
in Dice performance when integrating contrast loss with 5, 10, and 20
labelled data instances out of a total of 75 images.

This section categorizes all experimental data in proportion to the
labelled data, compares and lists the top three models in each group
using dice scores, and additionally describes the control group of the
state-of-the-art (SOTA) methods using the fully labelled dataset, which
is listed in the last three rows of the Table 7. From the aspect of labelled
data proportion, the four categories here are assigned to cover the
entire distribution:0%-5%, 6%-10%,> 10% and 100% fully labelled.
It is evident that the segmentation results are directly related to the
proportion of labelled data. Thus a clear trend emerges: an increase in
the amount of labelled data is synonymous with higher performance
metrics. For cohorts comprising no more than 5% labelled data, the
dice scores consistently fall below the threshold of 0.87. However, as
the labelled data percentage ascends to 6% and beyond, the dice scores
demonstrate an upward trajectory, consistently surpassing the 0.86
benchmarks. Notably, in scenarios with over 10% labelled data, Wang
et al. [82] outperforms with a Dice score of 0.914 at a 27% labelled
ratio, which is significantly closer to the results of the SOTA method
derived using fully labelled training data, which achieves a score of
0.9302. Interestingly, Wang et al. [82]) also performs well in the 6%—
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Table 8
Segmentation results with different labelled proportion by four typical semi-supervised information fusion methods on COVID-19 CT dataset [88].
Semi-supervised method Detailed fusion application Labelled data proportion Dice score Sensitivity Specificity
10% 0.6598 0.8119 0.9312
1 Pseudo labelling Self-training + feature fusion 20% 0.6744 0.6324 0.9726
100% 0.7476 0.7526 0.9723
10% 0.6645 0.6881 0.9021
2 Consistency regularization Mean teacher + data fusion 20% 0.7328 0.6933 0.9601
100% 0.7412 0.8212 0.8919
10% 0.6796 0.6664 0.9789
3 Graph-based method GCN + decision fusion 20% 0.6822 0.6635 0.9117
100% 0.7340 0.7481 0.9348
10% 0.6913 0.6725 0.9355
4 Generative model GANSs + feature fusion 20% 0.7312 0.8124 0.9237
100% 0.7814 0.7676 0.8979

10% range, emphasizing the adaptability of the method across different
labelled data scenarios. While Shu et al. [45] and Chartsias et al. [69]
exhibit competitive performance, particularly within the lower labelled
proportion groups, showcasing Dice scores of 0.867 and 0.889, in
scenarios with 0%-5% labelled and 6%-10% labelled data respectively.
This finding highlights the transformative potential of semi-supervised
learning, where judiciously combining labelled and unlabelled data is
an effective strategy for circumventing data scarcity and improving
segmentation accuracy. By demonstrating that semi-supervised learning
can produce results comparable to fully supervised learning under
resource-constrained conditions, this analysis emphasizes the utility of
semi-supervised learning and illuminates its value as an indispensable
tool for advancing medical image analysis research.

4.2. Case II: Segmentation for COVID-19

Dataset The COVID-19 CT segmentation dataset [88] is a public
lung CT dataset, which comprises 100 axial CT images sourced from
over 40 patients diagnosed with COVID-19. These radiological im-
ages were gathered and processed by the Italian Society of Medical
and Interventional Radiology. A radiologist manually segmented these
images, establishing the ground truth used in the training process.

Implementation details The above case study has entailed a com-
parative analysis of five different methodologies applied to the same
MRI dataset. However, these methodologies were tested with varying
proportions of labelled data and within diverse experimental settings.
In pursuit of a more equitable and comparable case study, this section
implement four classical semi-supervised fusion methods that ensure
identical labelled data distribution and precisely replicated experimen-
tal conditions. Specifically, the experiments were implemented on an
RTX 3080 GPU with PyTorch.

The preprocessing phase followed the method outlined by Fan
et al. [64] and consisted of uniformly resizing the images to 352 x 352,
with on-the-fly randomized scale augmentations in subsequent training.
Out of 100 CT images, 80 were used for the training and validation
phase and the remaining 20 for testing purposes. Each experiment
implements a different deep semi-supervised fusion method at three la-
belled data scales: 10%, 20% and 100%. This approach was adopted to
fully evaluate the segmentation performance and to assess the efficacy
of utilizing unlabelled data.

Quantitative results The four methods included in this part are
mainly classifies by semi-supervised learning methods: Pseudo
labelling, Consistency regularization, Graph-based method and Gener-
ative model. Three different fusion techniques were also considered
in the implementation. Among them, the self-training scheme refer-
enced the feature fusion approach of Fan et al. [64], which enhanced
the boundary and feature representations using additional attention
modules. Mean teacher, a typical semi-supervised learning method,
has been applied as a benchmark to various consistency regularization
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models [43-45], and combined with data fusion by reconstructing
the input data. For instance, the experiment used probability maps as
auxiliary input information [44] which were extended to the normal
mean teacher model. While Graph Neural Networks (GNN) could
further leverage adjacent graph information for decision fusion [79]
using an auxiliary loss penalty for anatomical outputs. In terms of
generative models, the experiment reproduced the disentangled feature
representation of a multi-subnetwork model structure based on Genera-
tive Adversarial Networks (GAN), demonstrated by Chartsias [69]. The
Table 8 below lists the segmentation results produced by four different
methods with labelled data proportions and compares them by dice
score, sensitivity, and specificity.

The Table 8 presents segmentation outcomes derived from four
distinct semi-supervised fusion methods, each evaluated across three
varying labelled data proportions (10%, 20% and 100%). The pseudo
labelling, employing self-training with feature fusion, demonstrated
a noticeable improvement in performance with an increase in the
percentage of labelled data. While consistency regularization utilizing
a mean-teacher approach coupled with data fusion, showcased the
highest efficacy at 20% labelled data, achieving a dice score of 0.7328,
closely approaching the result produced by the fully labelled model
(dice score of 0.7412). The graph fusion decision method, integrat-
ing GNN with decision fusion, exhibited relatively stable performance
across different labelled data ratios, underscoring the robustness of
its approach. The generative model utilizing GAN with feature fusion,
displayed a notable enhancement in all metrics as the labelled data
proportion increased. Moreover, it showed substantial potential in both
lower labelled and fully labelled data scenarios, with dice scores of
0.6913 and 0.7814 respectively. Overall, these results highlight the
subtle dynamic relationship between the proportion of labelled data
and segmentation performance for each method. It is worth noting that
some methods continue to improve as the labelled data increases, while
others exhibit relative stability in performance metrics.

The average specificity values for the twelve experiments exceeded
0.9, indicating a reasonably high accuracy for the prediction of negative
pixels, whereas the sensitivity values varied considerably depending on
the method. This may be attributed to the inherent imbalance between
background and foreground pixels because in most cases there are more
background pixels than foreground pixels. Models tend to prioritize pre-
dicting the majority class (background) at the expense of the minority
class (disease mask). Furthermore, the varying disease conditions across
different patients, including ground glass, consolidation, and pleural
effusion, contribute to the complexity.

Qualitative results Fig. 5 illustrates the four disease levels ((a)
to (d)) and the segmentation results of the four semi-supervised in-
formation fusion methods with 20% labelled data. It is worth noting
that when the infected region covers a large portion of the lung, more
ground truth is labelled, making it easier to capture complex disease
details and textures. In contrast, smaller infected regions provide less
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Method 2

Method 3

-

Method 4

Dice score:0.86 Dice score:0.72 Dice score:0.84

Dice score:0.91 Dice score:0.79 Dice score:0.89

Dice score:0.68

Dice score:0.64 Dice score:0.41 Dice score:0.59

Fig. 5. Visualization of segmentation results from various methods on four COVID-19 chest CT images from a public dataset [88]. Methods include: (1) Pseudo Labelling, (2)
Consistency Regularization, (3) Graph-Based Method, and (4) Generative Model. The bottom of each figure displays its Dice score.

detail in the ground truth, making the segmentation task more chal-
lenging, especially in semi-supervised training scenarios. The average
Dice scores from (a) to (d) show a clear correlation with the disease
regions obtained in the ground truth images.

It can be noted that although sometimes the Dice scores are similar,
each method performs differently in terms of segmentation results, as
shown in Fig. 5. For example, pseudo labelling with feature fusion
(Method 1) outperforms at capturing the boundaries and anatomi-
cal features. Consistency regularization with data fusion (Method 2)
benefits from additional possibility maps, enhancing overall segmen-
tation accuracy. The graph-based model with decision fusion (Method
3) strikes a balance of multiple considerations, yielding smooth re-
sults. The generative method with feature fusion (Method 4) integrates
auxiliary feature representations resulting in superior performance.

In general, the observed dice scores ranged from 0.6 to 0.7. While
an increase in the proportion of labelled data tended to correlate with
higher dice scores to some extent, this effect was not consistently
significant across all methods, particularly in the case of graph-based
methods. As for the consistency regularization and generative models,
the fully labelled data did not improve the performance much com-
pared to the pseudo labelling method with 20% labelled data. The
relatively small size of the dataset may be one of the reasons, poten-
tially introducing challenges of overfitting and limited representative-
ness, and increasing complexities in achieving significant performance
improvements even with more labelled data.

In conclusion, we have evaluated the efficacy of various semi-
supervised information fusion techniques in segmentation tasks by

14

using two real-world datasets. Our findings indicate that these semi-
supervised methods, while promising, are currently underperformed
compared to their fully supervised counterparts. We observe a positive
correlation between the volume of labelled data and the performance of
the semi-supervised techniques. This suggests that there is room for im-
provement in these methods, particularly compared to fully supervised
learning techniques. The decision fusion approach with consistency
regularization has yielded the best results in the cardiac diagnosis
dataset. Conversely, for the COVID-19 diagnosis dataset, the generative
model with feature fusion has emerged as the most effective in terms
of the Dice score.

5. Discussion on challenges and future perspectives

Semi-supervised information fusion has attracted attention to im-
prove model performance through unlabelled data in medical image
analysis. This section discusses current trends of the existing semi-
supervised information fusion algorithms and various combinations
of other deep learning techniques. This section also investigates the
open research questions, challenges, and potential future directions.
We address the previously stated research questions in details. To ad-
dress RQ1, Section 3 thoroughly reviews the current research progress
in semi-supervised information fusion techniques applied to medical
image analysis. In Section 4, we empirically compare semi-supervised
information fusion methodologies to offer insights that respond to RQ2.
Section 5.2 explores the challenges that arise during the implemen-
tation of these techniques in corresponding to RQ3. In Section 5.3,
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Fig. 6. A temporal overview of the distribution of research papers with different fusion
techniques during the years from 2018 to 2022.

we discuss potential future directions for semi-supervised information
fusion techniques in medical image analysis to provide answers to RQ4.

5.1. Research progress

In our survey, we have meticulously selected 50 research articles
that align with the thematic focus of our study. Notably, these arti-
cles have been published in premier journals classified under JCR Q1
or in leading conferences in the field. Upon conducting an in-depth
assessment of the publishers, we have discerned that the predom-
inant publishers are as follows: “Medical Image Analysis” with 22
articles, “IEEE Transactions on Medical Imaging” with 11 articles,
and “MICCAI” accounting for 10 articles. Collectively, these eminent
publishers constitute 84% of the papers we surveyed, underscoring
their significant contribution to the research discourse on this topic.

To examine the overall trends in the usage of different methods,
Fig. 6 shows the distribution of different research papers using each
information fusion method across different years. The general trend
from 2018 to 2022 demonstrates an increase in the total number of
papers related to fusion techniques in the domain of semi-supervised
medical image analysis and in particular a significant increase in the
number of papers on data fusion. This ascending trend illustrated a
growing recognition of the involvement of fusion techniques in address-
ing complex challenges in medical image processing and analysis, thus
further highlighting the importance of fusion methods in the medical
image research community.

Fig. 7 shows an insightful analysis of the utilization of fusion tech-
niques in amalgamation with five semi-supervised learning methods,
i.e., pseudo labelling, consistency regularization, graph-based method,
generative model and hybrid method. In summary, pseudo labelling
and regularized are particularly well represented in the fusion do-
main, demonstrating their adaptabilities to the diverse fusion strate-
gies. Although graph-based and generative model-based fusion methods
present relatively few examples, both categories do exhibit instances
of data fusion, and generative models extensively display notable ap-
plications in the feature fusion area. The hybrid categories have a
balanced distribution, showing their adaptabilities to the various fusion
strategies and semi-supervised learning methods.

To explore the correlation between the different methods and var-
ious medical imaging tasks, Fig. 8 provides an overview on the distri-
bution of research papers across different methods and task categories.
Among the included 50 publications, the two most prominent tasks are
segmentation and classification, with 32 and 14 papers respectively,
and attract significant attention in traditional medical imaging analysis.
It is also obvious that feature fusion and data fusion are versatile and
frequent choices, to offer potential improvements in the various aspects
of segmentation, classification and generation tasks. Meanwhile, the
presence of data fusion in both diagnosis and generation categories
demonstrates its adaptability. And interestingly, all of these instances
include semi-supervised generative models, due to their unique creative
ability that differs from other semi-supervised methods.
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Fig. 7. Analysis of the utilization of fusion techniques in amalgamation with different
semi-supervised learning methods.
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Fig. 8. A categorization of the distribution of research papers on different fusions
according to various medical image analysis tasks.

5.2. Current challenges

However, there are several challenges that need to be addressed for
semi-supervised information fusion to reach its full potential.

Data bias and imbalance A prominent challenge is the problem
of data bias and imbalance. Semi-supervised learning models may be
biased towards the existing labelled data, resulting in poor general-
ization to new and unseen data for data fusion. This is a common
problem in real-world scenarios, especially in medical images, where
the valid sample of each modality is quite limited and there is even less
guarantee of annotation by an expert which might cause variations and
shifts in data distributions, and differences in data quality, noise and
feature representations.

Data bias may arise from the heterogeneous nature of radiographic
equipment, such as variations in brand and software versions, which
can significantly impact data uniformity. Moreover, diverse patient co-
horts from various medical centers and countries can introduce further
biases. Addressing these challenges requires amalgamating multi-center
data and expanding dataset sizes to meet the demands of deep learning
algorithms. However, the ethical considerations, and financial impli-
cations associated with data collection and expert annotation may
pose significant barriers. Given these constraints, data augmentation
emerges as a pragmatic and effective strategy [92]. By synthesizing
new data from the existing datasets, data augmentation can effectively
alleviate bias and imbalance concerns while enhancing the model’s
generalizability to diverse and unseen data.

Lack of theoretical analysis The lack of a clear theoretical under-
standing of how semi-supervised learning and information fusion tech-
niques work and how to optimize them effectively is another challenge.
This leads to difficulties in selecting suitable models and designing
effective algorithms for various tasks. All semi-supervised approaches
are based on well-known assumptions made for semi-supervised sce-
narios, but solid theoretical support is still lacking. Quantifying the



Y. Weng et al.

Table 9

Distribution of other methods applied for medical image application.
Methods Studies included
Attention mechanism [41-43,64,81]
Contrastive learning [80,82,85]
Knowledge distillation [37,49]
Self-supervised Learning [56,68]
Active Learning [58,70]
Transfer Learning [60]
Transformer model [781
Federated Learning [40]
Few-shot Learning [42]

uncertainty in fused data and propagating it efficiently throughout the
analysis process is a challenging task as theoretical support is similarly
lacking. Meanwhile, the characteristics of black-box schemes in deep
learning may introduce incomprehension and mistrust into the end
result, a more transparent and interpretable model is inevitably needed
in medical clinical applications.

Security Medical image analysis is a safety-critical domain, and
data security is always a challenge for the Al community. For semi-
supervised information fusion, during multiple data modalities of med-
ical imaging are analysed and fusion, the researchers should maintain
the safety and the high security of these data and prevent reverse
engineering of the sensitive medical data and any ethical issues that
may arise. Federated learning stands out as a powerful paradigm, hold-
ing potential to uphold the privacy and security integrity of medical
imaging data [93]. To fully benefit from this paradigm, it is important
to integrate semi-supervised information fusion techniques in future
developments. This will help advance the field of medical imaging by
maximizing the advantages offered by federated learning.

Absence of fair comparison and external validation While nu-
merous studies have tested their algorithms on public datasets, incon-
sistencies in experimental setups may compromise fair comparisons.
Variations in implementation details, such as software versions and
hardware differences, can also influence the fair assessment of these
algorithms. Furthermore, the diversity in medical imaging modalities
and targeted organs could bias the selection of SOTA semi-supervised
information fusion algorithms.

Additionally, the lack of validation on external datasets and multi-
center data undermines the reliability of these results in a clinical
context. In this field, DL models are trained and tested on datasets from
a single hospital or institution, which may inadvertently introduce the
risk of information leakage and compromise the generalizability of the
findings. Future studies should incorporate external datasets in their
validation processes. This approach would strengthen the models and
improve their applicability across diverse clinical settings. Developing
a comprehensive benchmark dataset, encompassing medical images
of various modalities and organs from multiple sources, would be
instrumental in overcoming this challenge and facilitating a balanced
comparison of different algorithms.

5.3. Future perspectives

The evidence strongly suggests that the right combination of meth-
ods can achieve better performance than applying these methods sepa-
rately. By leveraging the strengths of different approaches, synergistic
effects can be achieved due to the potential synergies and complemen-
tary nature of different semi-supervised information fusion approaches.
Generally speaking, it is crucial to balance the effectiveness and effi-
ciencies of the selected methods, carefully consider the compatibility
and potential interactions between them and avoid any conflicting
assumptions or limitations.

By observing the included studies, a number of incorporated mecha-
nisms (excluding the mentioned semi-supervised fusion methods) have
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been applied for better model performance, see Table 9. Among the
total of included 50 studies that work on semi-supervised informa-
tion fusion in medical imaging analysis, 5 studies consider attention
mechanism in their models, and 3 directly apply or fuse the con-
trastive learning techniques. 2 studies each use knowledge distillation,
self-supervised learning and active learning. There are a few other
publications that may try methods such as the Transformer model, fed-
erated learning and few-shot learning in their proposed solutions. From
another point of view, it presents the generalization of semi-supervised
fusion as its possible application in various perspectives.

Designing robust and scalable methods for semi-supervised fusion
remains an ongoing challenge. The listed methods from Table 9 could
be referred to some extent as they have shown excellent performance
in the various phases of medical imaging tasks. For example, active
learning techniques are valuable in semi-supervised learning scenarios,
where the model can select the most informative instances for annota-
tion to improve performance [70]. As for the attention mechanism, it
can help identify the most informative and relevant parts of the input
data, and can also help the model adapt to changes in distribution by
dynamically adjusting the attention weights to improve model perfor-
mance and make effective usage of unlabelled data. Federated learning
can resolve the security challenge and make medical image data secure
sharing between multi-centers feasible [40].

The interpretability of deep learning models is crucial, particu-
larly in critical fields such as medical image analysis. To achieve
this, researchers should explore Explainable Artificial Intelligence (XAI)
methodologies, including Class Activation Map (CAM) and Gradient-
weighted Class Activation Mapping (Grad-CAM) [94]. These advanced
techniques provide a clear understanding of the model’s predictions
to aid in decision making and increase transparency. Moreover, in-
sights gained from XAI methodologies can provide valuable feedback
to improve the design and effectiveness of semi-supervised information
fusion methods. Ultimately, this can result in more reliable and inter-
pretable models to foster trust and acceptance of these technologies in
essential medical settings.

The advancement in large-scale language models and foundation
models such as “Segment Anything” [95] opens up new horizons for
future research. It is important for researchers to utilize the capabilities
inherent in these foundation models. Alongside the progression in
theoretical understanding of semi-supervised information fusion tech-
niques, when integrated with methodologies like foundation model,
transfer learning, federated learning, and self-supervised learning, the
deployment of semi-supervised information fusion in clinical settings
becomes an achievable prospect.

The future perspective of semi-supervised information fusion is
promising, as there is a vast amount of unlabelled data available for
various applications, but labelled data is often costly to obtain. Semi-
supervised learning in conjunction with information fusion has the
potential to significantly reduce the need for labelled data and make
full use of existing data while still achieving high accuracy.

6. Conclusion

The domain of semi-supervised information fusion represents a
rapidly evolving and promising research area with significant practical
implications in medical imaging. This comprehensive survey carries out
an inclusive examination of semi-supervised learning methods, includ-
ing pseudo labelling, consistency regularization, graph-based methods,
generation models, and information fusion (data fusion, feature fusion,
and decision fusion). A total of 50 publications using semi-supervised
information fusion for medical image analysis are included and anal-
ysed in this survey. Furthermore, the advantages and disadvantages
of each classic method and future challenges are discussed. Two case
studies on different datasets are conducted to analyse and investi-
gate the nuanced effects of different semi-supervised fusion methods
on different medical image tasks by statistically and experimentally
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testing. With further research and development, we sincerely believe
that semi-supervised information fusion has the potential to unlock
new applications and enable more efficient and effective machine
learning across a wide range of domains. Particularly, this approach
demonstrates potential in improving diagnostic accuracy, representing
a significant advancement in the application of machine learning within
the realms of medicine and healthcare.
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