Development, characterization, and evaluation of a simple polymicrobial colony biofilm model for testing of antimicrobial wound dressings

Shaun N. Robertson ${ }^{\oplus 1, *}$, Manuel Romero ${ }^{\oplus 1,2,3}$, Samuel Fenn ${ }^{1,4}$, Petra L. Kohler Riedi ${ }^{5}$, Miguel Cámara ${ }^{\text {© }}{ }^{\text {,* }}$
${ }^{1}$ National Biofilms Innovation Centre, School of Life Sciences, Biodiscovery Institute, University of Nottingham, NG7 2RD Nottingham, United Kingdom
${ }^{2}$ Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
${ }^{3}$ Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
${ }^{4}$ Schools of Microbiology and Medicine, University College Cork, and APC Microbiome Ireland, Cork T12 TP07, Ireland
${ }^{5} 3$ M Corporate Research Materials Laboratory, St. Paul, MN 55406, United States
*Corresponding author. School of Life Sciences, Biodiscovery Institute, National Biofilms Innovation Centre, University of Nottingham, University Park NG7 2RD, United Kingdom. E-mails: shaun.robertson1@nottingham.ac.uk; miguel.camara@nottingham.ac.uk

Abstract

Chronic wound infections are generally of polymicrobial nature with aerobic and anaerobic bacteria, as well as fungi frequently observed in them. Wound treatment involves a series of steps, including debridement of the wound, flushing, and often the use of multiple wound dressings many of which are antimicrobial. Yet, many wound dressings are tested versus single species of planktonic microbes, which fails to mirror the reallife presence of biofilms. Aims: Simple biofilm models are the first step to testing of any antimicrobial and wound dressing; therefore, the aim of this study was to develop and validate a simple polymicrobial colony biofilm wound model comprised of Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans on RPMI-1640 agar. The model was then used to evaluate the topical disinfectant chlorohexidine and four commercially available wound dressings using the polymicrobial model. The model used was as a starting point to mimic debridement in clinical care of wounds and the effectiveness of wound dressings evaluated afterwards. Methods and Results: Planktonic assessment using AATCC100-2004 demonstrated that all antimicrobial wound dressings reduced the planktonic microbial burden below the limit of detection; however, when challenged with polymicrobial colony biofilms, silver wound dressings showed limited effectiveness (1-2 log CFU reductions). In contrast, a single iodine releasing wound dressing showed potent antibiofilm activity reducing all species CFUs below the limit of detection ($>6-10 \log$) depending on the species. A disrupted biofilm model challenge was performed to represent the debridement of a wound and wound silver-based wound dressings were found to be marginally more effective than in whole colony biofilm challenges while the iodine containing wound dressing reduced microbial recovery below the limit of detection. Conclusions: In this model, silver dressings were ineffective versus the whole colony biofilms but showed some recovery of activity versus the disrupted colony biofilm. The iodine wound dressing reduced the viability of all species below the level of detection. This suggests that mode of action of wound dressing should be considered for the type of biofilm challenge as should the clinical use, e.g. debridement.

\section*{Impact Statement}

These results demonstrate that biofilm management capabilities vary considerably among the wound dressings when tested in this in vitro model. The results from this study may have clinical implications for wound management.

Keywords: colony biofilm model; Pseudomonas aeruginosa; Staphylococcus aureus; Candida albicans; wound dressing testing

Introduction

The burden of wounds in the UK has been estimated to affect up to 3.8 million patients, within the study year of 2017/18, of which overall 70% healed. Chronic wounds (49\%) had a significantly lower healing rate compared to acute wounds (89%) (Guest et al. 2020). Suspected infection is a main factor in the chronicity of wounds with an average of eight different types of dressings prescribed per patient. This resulted in an estimated 262.5 million wound dressings used over the 2017/18 period, in addition to varying combinations of nonsteroidal anti-inflammatory drugs (NSAIDs), analgesics, and antimicrobials (Guest et al. 2020). The estimated financial burden to
the NHS from the study was $£ 8.3$ billion (95% CI $£ 7.9-8.5$ billion) (Guest et al. 2020). In the USA, the estimated Medicare cost for acute and chronic wounds is $\$ 28.1$ to $\$ 96.8$ billion (Sen 2019). A recent economic impact assessment of biofilms has estimated that the global wound biofilm related cost is $\$ 281$ billion (Cámara et al. 2022). It is therefore evident that chronic wounds are a significant burden in terms of quality of life, mortality, and financial impact on the patient and healthcare services. Biofilm structures were initially observed in over 60% of chronic wound biopsies compared to only 6% of acute wound biopsies (James et al. 2008). With advances in combined molecular biology and microscopy methods, an es-

[^0]timated 78.2% prevalence of biofilms have now been shown in chronic wounds (Malone et al. 2017a). Chronic wounds are typified by the formation of microbial biofilms and aggregates, which are encompassed within a self-derived matrix formed from extracellular polymeric substances (EPS) (Attinger and Wolcott 2012), which provides resilience to environmental conditions and up to 1000 -fold increased tolerance to antimicrobial treatment (Mah 2012). This increased survival to external challenges is a result of the slow growth of microbes present, differential oxygenation, and the EPS, which has been shown to bind or reduce the effective concentration of antimicrobials reaching the microbial cells (del Pozo and Patel 2007). The complex biofilm structure can also incorporate host proteins, which further reduce the efficacy of treatments.

Next generation sequencing of rrn genes for encoding the 16 S rRNA in chronic wound biofilms has shown that many genera of anaerobic, e.g. Peptoniphilus, Anaerococ$c u s$, and Finegoldia and aerobic bacteria, e.g. Corynebacterium, Staphylococcus, and Pseudomonas can be identified in wounds (Smith et al. 2016, Malone et al. 2017b), which culture-based methods often fail to identify. The reason for failure to identify anaerobic bacteria in culture, stems from a view that anaerobes are not detrimental to wound healing, and that isolation, culture, and identification is more time consuming, labor intensive, and expensive than aerobic and facultative culture (Bowler et al. 2001). The use of 16 S sequencing, however, gives a bacteriocentric view of the wound environment, with culture and targeted PCR studies demonstrating the presence of fungi such as Candida albicans (Dowd et al. 2011). The appreciation of the implications of bacterial and fungal interactions has grown over the recent years and are the subject of many reviews (Peleg et al. 2010, Krüger et al. 2019, Lapiere and Richard 2022, Short et al. 2023). Interactions between P. aeruginosa, S. aureus, and C. albicans have significant clinical relevance. Systemic S. aureus infection can be mediated by attachment to C. albicans hyphae mediated through the interaction with Als3 adhesins. S. aureus is unable to adhere to C. albicans mutants of Als3 but this function is restored in the complemented mutant (Schlecht et al. 2015). P. aeruginosa has been shown to suppress and kill S. aureus through a variety of mechanisms (Pastar et al. 2013), but can also act synergistically in vivo, which can be replicated in vitro (DeLeon et al. 2014). P. aeruginosa can promote smallcolony variant formation in S. aureus by the production of cyanide and phenazines (Biswas et al. 2009) and 4-hydroxy-2-heptylquinoline N-oxide (HQNO) (Mitchell et al. 2010). C. albicans interactions with P. aeruginosa are likewise complex with both physical and chemical interactions occurring. P. aeruginosa can attach to C. albicans hyphae and secrete hydrolytic enzymes, such as haemolytic phospholipase C (PlcH) and phenazines resulting in hyphal killing (Fourie et al. 2016). Farnesol produced by C. albicans has been shown to inhibit P. aeruginosa quorum sensing and also provide protection for S. aureus to vancomycin through a postulated increase in the production of reactive oxygen species (Kong et al. 2017). These illustrative examples of microbial interactions between clinically relevant microbes, while not exhaustive, highlight the importance of testing antimicrobial interventions using an appropriate microbial complexity that is clinically relevant.

Chronic wound treatment involves debridement and cleansing of the wound coupled with the use of topical antiseptics and/or antimicrobial dressings. Many antimicrobial wound dressing technologies are available to clinicians, with
silver-based technologies being the most dominant and iodinebased antimicrobial wound dressings becoming widespread in recent years. It is important to note that antimicrobial testing for wound dressings is often performed either with planktonic suspensions of microbes such as the AATCC100-2004 (100-2004 2008) method, which is essentially a planktonic suspension challenge versus the antimicrobial material, or using suspensions of the antimicrobial components of a wound dressing, which have significantly different biochemical and biophysical interactions with the microbes in both planktonic and biofilm testing. A recent shift has seen wound dressing manufacturers testing antimicrobial products versus biofilms formed on coupons in a CDC bioreactor ASTM E2871-19 (Percival et al. 2017), or a drip flow model. Biofilms models of increased complexity, such as the Lubbock (Sun et al. 2008), modified Lubbock (Kucera et al. 2014), wound milieu (Sun et al. 2008), and polymicrobial hydrogel (Townsend et al. 2016) have been used to assess the efficacy of topical antimicrobials and antimicrobial wound dressings. It is therefore paramount that for research to have a translational impact, appropriate models for different stages of testing are developed and standardized (Highmore et al. 2022).

Despite the antagonistic interactions between P.aeruginosa, S. aureus, and C. albicans in in vitro culture systems, in this study, a standardized simple polymicrobial colony biofilm model comprised of these three organisms was developed and confocal laser scanning microscopy was used to visually that the biofilm features of EPS, eDNA, and spatial interactions between the three species were observed, indicating that a biofilm was formed in this model. Challenge of the model with the antiseptic chlorhexidine demonstrates that microorganisms are more resistant to killing in the three-species biofilm community than in a monospecies biofilms. Assessment of four commercially available antimicrobial dressings was conducted in this model and we show that the silver-based wound dressings were ineffective in the whole biofilm model and minimally effective in a physically disrupted version of the model, which is in keeping with the clinical observation of some wounds failing to respond to silver wound dressings. The iodine containing wound dressing was effective in eradicating the polymicrobial biofilm in both the whole and the disrupted model, mirroring their clinical effectiveness. Therefore, this multikingdom biofilm will be useful for the examination of antimicrobial wound care products in a semihigh throughput manner and represents a valuable tool to investigate interspecies and interkingdom interactions in a simple model system that has stability for up to 72 h .

Materials and methods

Culture conditions and standardization

Pseudomonas aeruginosa PAO1-L (P. aeruginosa PAO1-L), Staphylococcus aureus SH1000 (S. aureus SH1000), and Candida albicans SC5314 (C. albicans SC5314) were used for all work in this study, except S. aureus HCMC 6-1, which was used for growth of biofilms for electron microscopy studies (Stoffel et al. 2020). All working stocks of P. aeruginosa PAO1-L, S. aureus SH1000, and C. albicans SC5314 were maintained at $4^{\circ} \mathrm{C}$ on Lysogeny broth agar [LB (Oxoid, Cambridge, UK)] for bacteria and Sabouraud agar [SAB (Oxoid, Cambridge, UK)] for C. albicans SC5314. P. aeruginosa PAO1-L and S. aureus were propagated in LB for 16 h at $37^{\circ} \mathrm{C}$
with shaking at 200 rpm and C. albicans SC5314 was propagated in yeast peptone dextrose broth [YPD (Oxoid, Cambridge, UK)] for 16 h at $30^{\circ} \mathrm{C}$ with shaking at 200 rpm . Cultures were washed twice by centrifugation $(10000 \times g)$, resuspended in 1x phosphate buffered saline (PBS) (Oxoid, Cambridge, UK) then adjusted to $1 \times 10^{8} \mathrm{CFU} \mathrm{ml}{ }^{-1}$ by optical density (0.05 and $0.1 \mathrm{OD}_{600 \mathrm{~nm}}$, respectively) for bacteria and use of haemocytometer (Brand, Wertheim, Germany) for C. albicans SC5314. Fluorescent protein expressing strains were grown in appropriate media with the following antimicrobial selection, P. aeruginosa PAO1-L mTurquoise2 [125 $\mu \mathrm{g} \mathrm{ml}^{-1}$ Tetracycline (TC)] (this study), S. aureus SH1000 pTK005 YFP $\left[40 \mu \mathrm{~g} \mathrm{ml}^{-1}\right.$ chloramphenicol (CM)], and C. albicans CAF2-1 yCherry (Brothers et al. 2011).

Fluorescent P. aeruginosa PAO1-L was constructed using vector pSW002-PpsbA-mTurquoise2, a kind gift from Rosemarie Wilton (Addgene plasmid \#108237) (Wilton et al. 2017). P. aeruginosa PAO1-L was transformed with pSW002-PpsbA-mTurquoise 2 according to the procedure outlined by Choi and colleagues, yielding PAO1-L constitutively expressing mTurquoise2 (Choi et al. 2006).

Assessment of growth in liquid culture and on agar

The capacity of P. aeruginosa PAO1-L, S. aureus SH1000, and C. albicans SC5314 to grow in broth and agar culture was assessed with the following media, LB , trypticase soy broth (TSB), brain heart infusion (BHI), Mueller-Hinton (MH), YPD, and Roswell Park Memorial Institute (RPMI)1640 (Sigma-Aldrich, Haverhill, UK) without sodium bicarbonate and phenol red, buffered with $0.165 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{MOPS}$ (Sigma-Aldrich, Haverhill, UK). In addition, for selective isolation of microbes, Pseudomonas isolation agar [PIA (Oxoid, Cambridge, UK)] and mannitol salt agar [MSA (Oxoid, Cambridge, UK)] were utilized. To prevent growth of bacteria during enumeration of C. albicans SC5314 TC (SigmaAldrich, Haverhill, UK) was added to a final concentration of $125 \mu \mathrm{~g} \mathrm{ml}^{-1}$ in SAB agar. To prevent growth of C. albicans SC5314 during MSA and PIA agar enumeration, nystatin (Sigma-Aldrich, Haverhill, UK) was added to a final concentration of $10 \mu \mathrm{~g} \mathrm{ml}^{-1}$.

Biofilm model development

Polycarbonate (PC) discs [Isopore membrane filter (SigmaAldrich, Haverhill, UK)], with diameter of 13 mm and $0.2 \mu \mathrm{~m}$ pore size were used to support microbial biofilm growth. Briefly, the PC discs were short-wavelength ultraviolet (UVC) treated for 10 min on each side in a benchtop UV cabinet (Spectrolinker ${ }^{\text {TM }}$ XL-1000 Series UV Crosslinker, town country). Sterilization of the PC discs was confirmed by placing UV-C treated PC discs in 5 ml of LB broth O / N at $37^{\circ} \mathrm{C}$, with no growth indicating UV-C treatment was sufficient to sterilize the PC discs.

To prevent cross interference of biofilms on PC discs, 5 ml of the desired growth agar was added to the wells of a 6-well CELLSTAR ${ }^{\circledR}$ Cell Culture Multiwell Plates (Greiner, Stonehouse, UK). RPMI-1640 agar was formulated by combined prewarmed $2 x$ RPMI- 1640 with an equal volume of $3 \%(\mathrm{w} / \mathrm{v})$ agar (Oxoid, Cambridge, UK), then dispensing 5 ml per well. Sterilized PC discs were then placed by sterile forceps on the growth agar and $10 \mu \mathrm{l}$ of each desired microbial inoculum added in the centre of the disc. Inoculated discs on agar were
then incubated at $37^{\circ} \mathrm{C}$ for 72 h and transferred to fresh growth agar every 24 h interval.

Selection of wound dressings

Wound dressings were selected in discussion between academic and industrial partners, these represent the most commonly used wound dressings clinically in the UK and USA. Silver containing wound dressings are more commonly used than iodine wound dressings; therefore, three silver wound dressings were selected and one iodine-containing wound dressing selected. The three selected silver wound dressings were Aquacel ${ }^{\circledR} \mathrm{Ag}+$ Advantage (ConvaTec), Acticoat ${ }^{\text {TM }}$ Flex 7 (Smith \& Nephew, Inc.), Exufiber ${ }^{\circledR}$ Ag+ (Mölnlycke Healthcare), and the iodine containing wound dressing was Iodoflex ${ }^{\text {TM }}$ (Smith \& Nephew, Inc.).

Modified antimicrobial wound dressing planktonic testing

A modified method of AATCC100-2004 (100-2004 2008) was used to determine the antimicrobial activity of the selected wound dressings. Microbial inoculum was standardized to $1 \times 10^{5} \mathrm{CFU} \mathrm{ml}{ }^{-1}$ in RPMI- $1640 \mathrm{w} / \mathrm{MOPS}$. For combined polymicrobial planktonic challenge, overnight cultures were standardized to $1 \times 10^{5} \mathrm{CFU} \mathrm{ml}{ }^{-1}$ in the same volume of RPMI-1640 w/MOPS. Identical size ($15 \times 15 \mathrm{~mm}$) wound dressing swatches and wetted filter paper (control) were placed aseptically in a 5 ml bijou vial and inoculated with 1 ml of the respective microbial inoculum for single species and a combination of all three microbial species for a polymicrobial planktonic challenge (1000 S. aureus: 100 C. albicans: 10 P. aeruginosa). Microbial enumerations were performed at the $t=0$ time point in line with the AATCC100-2004 guidelines. The bijou vials were incubated at $37^{\circ} \mathrm{C}$ for 24 h in a static incubator. Following incubation, 4 ml of Dey-Engley neutralizing broth (Sigma-Aldrich, Haverhill, UK) was added to each bijou vial, and the vials were vortexed and placed in a sonicating water bath [Fisherbrand FB15050 (Fisher Scientific Ltd., Loughborough, UK)] 37 kHz for 15 min . Ten-fold serial dilutions were then performed in 1x PBS from the sonicated samples and 20μ l of each dilution were plated in triplicate on the desired selection agar [P. aeruginosa PAO1-L = PIA, S. aureus $\mathrm{SH} 1000=\mathrm{MSA}+10 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ nystatin, and C. albicans SC5314 $=\mathrm{SAB}+125 \mu \mathrm{~g} \mathrm{ml}^{-1}$ of tetracycline (TC)].

Enumeration of microbes in mono and polymicrobial biofilms

At endpoint, PC discs were removed by sterile forceps to a 1 ml microcentrifuge tube containing 1 ml Dey-Engley neutralizing broth and $5 \times 2.6 \mathrm{~mm}$ zirconium ceramic oxide beads (Fisherbrand, Loughborough, UK). The samples were then vortexed to remove the biofilm from the PC disc. The PC discs were then removed using sterile forceps and the biofilm was subjected to bead beating for 30 s using a FastPrep-24 ${ }^{\mathrm{TM}} 5 \mathrm{G}$ Homogenizer (MP Biomedicals, Loughborough, UK). The 1 mL volume was then transferred to a 5 ml Bijou containing 4 ml Dey-Engley neutralizing broth. Bijous were then floated in a sonicating water bath and sonicated for 15 min at 37 kHz . Ten-fold serial dilutions were then performed in 1x PBS from the sonicated samples and 20μ l of each dilution was plated in triplicate on the desired selection agar (PAO1-L $=$ PIA $+4 \mu \mathrm{~g}$ ml^{-1} nystatin, S. aureus $\mathrm{SH} 1000=\mathrm{MSA}+4 \mu \mathrm{~g} \mathrm{ml}^{-1}$ nystatin, and C. albicans SC5314 $\left.=\mathrm{SAB}+125 \mu \mathrm{~g} \mathrm{ml}^{-1} \mathrm{TC}\right)$.

Polymicrobial colony wound biofilm model

Briefly, UV-C sterilized PC discs were placed on 1x RPMI1640 agar in 6 -well plates. To each PC disc, $20 \mu \mathrm{l}$ of a combined final inoculum of $1 \times 10^{6} \mathrm{CFU} \mathrm{ml}{ }^{-1} \mathrm{~S}$. aureus SH 1000 and $1 \times 10^{5} \mathrm{CFU} \mathrm{ml}{ }^{-1}$ C. albicans SC5314 was dispensed by pipette. The multiwell plates were then incubated statically for 24 h at $37^{\circ} \mathrm{C}$. The PC disc with biofilms were then transferred to new RPMI-1640 agar in 6-well plates. Then, $10 \mu \mathrm{l}$ of $1 \times 10^{4} \mathrm{CFU} \mathrm{ml}^{-1}$ of P. aeruginosa PAO1-L was added to each colony biofilm. The multiwell plates were then incubated statically for a further 24 h at $37^{\circ} \mathrm{C}$. After 48 h cumulative incubation the colony biofilms were mature and ready for subsequent imaging, enumeration, or wound dressing testing.

Imaging of microbial localization and matrix components in polymicrobial colony biofilm model

Microbial localization was determined by utilizing fluorescent protein (FP) expressing strains, briefly, the strains used were P. aeruginosa PAO1-L mTurquoise2 ($125 \mathrm{mg} \mathrm{ml}^{-1} \mathrm{TC}$), S. aureus SH1000 YFP ($20 \mu \mathrm{~g} \mathrm{ml}^{-1} \mathrm{CM}$), and C. albicans CAF2-1 yCherry. To assess the viability of the microbial population in the polymicrobial biofilms wild-type strains (no FP) were stained with the LIVE/DEAD BacLight bacterial viability kit [L7007 (Thermo Fisher Scientific, Loughborough, UK)] comprised of the active components SYTO9 and Propidium Iodide (PI). Staining was performed as per the manufacturer's instructions. Assessment of the biofilm matrix composition was carried out using Concanavalin A conjugated to Alexa Fluor 633 exopolysaccharide (Thermo Fisher Scientific, Loughborough, UK) and YOYO-1 eDNA (Thermo Fisher Scientific, Loughborough, UK). Briefly, $20 \mu \mathrm{l}$ of a $1 / 100$ dilution of ConA-633 was added to each colony biofilm for 1 h at RT in the dark. Following this incubation, $20 \mu \mathrm{l}$ of YOYO-1 to final concentration of $4 \mathrm{nmol} \mathrm{l} \mathrm{l}^{-1}$ was added and incubated for 15 min . Following staining, PC disks were rinsed with sterile water and imaged using a LSM 700 laser scanning confocal microscope (CLSM) (Carl Zeiss, Germany).

Scanning electron microscopy of polymicrobial colony biofilms

Polymicrobial biofilms were grown as described above for 24 h after adding P. aeruginosa except that S. aureus HCMC 6-1 (Stoffel et al. 2020) was used in place of S. aureus SH1000. Polycarbonate membranes with attached biofilms were immersed in $2.5 \%(\mathrm{w} / \mathrm{v})$ glutaraldehyde and 0.1% (w/v) alcian blue (Sigma-Aldrich, St. Louis, MO, USA) in deionized water and fixed for 24 h at $4^{\circ} \mathrm{C}$. Biofilms were dehydrated by immersion in increasing concentrations of ethanol $(15 \%, 25 \%, 50 \%, 75 \%, 90 \%)$ for 15 to 30 min with two successive final immersions in 100% ethanol for 30 min. A critical point dryer (Samdri 795, Tousimis Research Corporation, Rockville, MD, USA) was used to dry the biofilms prior to gold sputtering (Desk V Thin Film Deposition System, Denton, Moorestown, NJ, USA). Samples were imaged using a Jeol JCM-5000 scanning electron microscope using 10 kV beam acceleration and secondary electron detection under high vacuum (Jeol U.S.A, Peabody, MA, USA).

Assessment of wound dressing treatment by quantitative culture

The following wound dressings were evaluated: Aquace ${ }^{\circledR}{ }^{\circledR}$ $\mathrm{Ag}+$ Advantage (ConvaTec), Acticoat ${ }^{\text {TM }}$ Flex 7 (Smith \& Nephew, Inc.), Exufiber ${ }^{\circledR} \mathrm{Ag}+$ (Mölnlycke Healthcare), and Iodoflex ${ }^{\text {TM }}$ (Smith \& Nephew, Inc.). Dressings were sectioned to $15 \times 15 \mathrm{~mm}^{2}$. Colony biofilms on PC discs were transferred to fresh RPMI-1640 agar in 6-well plates. To apply wound dressing sections to the colony biofilms, sufficient $\mathrm{dH}_{2} \mathrm{O}$ was added onto the dressing to $\sim 50 \%$ saturation, this equated to $450 \mu \mathrm{l}$ for Aquacel ${ }^{\circledR} \mathrm{Ag}$ Advantage, $450 \mu \mathrm{l}$ for Exufiber ${ }^{\circledR} \mathrm{Ag}+$, $100 \mu \mathrm{l}$ for Acticoat ${ }^{\mathrm{TM}}$ Flex 7, and $200 \mu \mathrm{l}$ for Iodoflex ${ }^{\mathrm{TM}}$. Wound dressings were then placed on top of the colony biofilm to replicate the clinical challenge of a wound dressing being applied over the wound bed. Full saturation was deemed undesirable as wound dressings would be changed at this point. Control polymicrobial biofilms had wetted filter paper, dimensions $15 \times 15 \mathrm{~mm}^{2}$ applied. Following application of the wound dressing sections, multiwell plates were incubated statically for 24 h at $37^{\circ} \mathrm{C}$. Microbial enumeration was then performed as previously described.

To mimic debridement of the biofilm, polycarbonate discs were removed at 48 h and placed in a 1.5 ml Eppendorf tube with $200 \mu \mathrm{l}$ of 1 x PBS and vortexed for 1 min . The polycarbonate disc was removed and the $200 \mu \mathrm{l}$ volume of disrupted biofilm was pipetted onto the relevant wound dressing and placed inoculation side facedown on top of a sterile polycarbonate disc on 1x RPMI-1640 agar w/MOPS. Multiwell plates were incubated statically for 24 h at $37^{\circ} \mathrm{C}$. Microbial enumeration was then performed as previously described.

Statistical analysis

All data were assessed for normality using a Shapiro-Wilk test. To assess the statistical significance of the wound dressing tests in planktonic cultures, a one-way ANOVA with Tukey post hoc test was performed, which adjusts the P values for multiple testing when pairwise comparisons between group means are made when the sample sizes for each group are equal. Polymicrobial biofilm wound dressing assessment was performed with two-way ANOVA using Šidák multiple comparison correction for nondisrupted, which adjusts the significance level for multiple comparisons and provides tighter bounds than Bonferroni. A two-way ANOVA with Dunnett's multiple comparison correction was used for disrupted polymicrobial biofilms, which creates a confidence interval for differences between the mean of each factor level and the mean of a control group. Statistical significance was achieved when $P<.05$. Data were input to Microsoft Excel 365 (Microsoft, USA). Assessment of normality, statistical analysis, and plotting of data were performed in GraphPad Prism 9.5.1 (GraphPad Software Inc, USA).

Results

Development of polymicrobial colony model

A number of media have been devised to mimic the wound environment, including chronic wound medium (Pouget et al. 2022); however, we were unable to establish a stable polymicrobial biofilm for the desired testing period (72 h) and P. aeruginosa swarmed off the polycarbonate discs after 48 h . RPMI-1640 has some similarities to the wound environment. RPMI-1640 is routinely used for tissue culture and shares
some similarities with the wound environment, including a neutral pH (chronic wounds range from neutral to alkaline pH), combinations of vitamins, amino acids, and inorganic compounds but lacks serum. RPMI-1640 contains $2 \mathrm{~g} \mathrm{l}^{-1}$ of glucose, which is a high level of blood glucose. High blood glucose is of concern in diabetic patients and has been implicated in poor phagocytosis of wound pathogens by neutrophils and nonhealing of wounds in diabetic foot ulcers (Spampinato et al. 2020). RPMI-1640 media can induce a hyphal phenotype in C. albicans compared to other standard media like LB, BHI, and TSB, which were unable to induce this hyphal phenotype. For these combined reasons, RPMI-1640 was investigated as the media of choice for this model alongside its ease of use and being relatively cheap.

To establish the suitability of RPMI-1640 agar for the colony biofilm model, monospecies biofilms were grown for 72 h for S. aureus and C. albicans, and 48 h for P. aeruginosa. All microbial species formed confluent biofilms on the PC discs under these conditions. Initial development of the polymicrobial colony biofilm model focused on the addition of all microbial species concurrently at varying inoculum size: C. albicans SC5314 ($\left.1 \times 10^{4}-1 \times 10^{6} \mathrm{CFU} \mathrm{ml}^{-1}\right)$, S. aureus SH1000 ($1 \times 10^{4}-1 \times 10^{6} \mathrm{CFU} \mathrm{ml}^{-1}$), and $1 \times 10^{4} \mathrm{CFU}$ ml^{-1} for P. aeruginosa PAO1-L, as P. aeruginosa is known to overgrow other microbes. After 72 h , an average of 1×10^{9} CFU ml ${ }^{-1}$ of P. aeruginosa PAO1-L was recovered from all colony biofilms. S. aureus SH1000 was not recovered after 72 h and C. albicans SC5314 recovery was variable between $1 \times 10^{5}-1 \times 10^{6} \mathrm{CFU} \mathrm{ml}^{-1}$ range (Fig. 1a). Modification was made to the time of addition of microbes with S. aureus and C. albicans added concurrently at 0 h and incubated for 24 h , following which PAO1-L 24 h was added at 24 h . After 72 h , total incubation time (48 h total for P. aeruginosa), S. aureus was recovered in contrast to concurrent addition of all three species. However, after 72 h , the stability of the model was lost, with no recovery of S. aureus SH1000 at 96 h (Fig. 1b). It was also observed at 96 h that P. aeruginosa PAO1-L was beginning to swarm off the polycarbonate disc. Collectively, this result and observation limit the use of the model to 72 h total. Therefore, in all further experiments, an inoculum of $10 \mu \mathrm{l}$ of $1 \times 10^{5} \mathrm{CFU} \mathrm{ml}^{-1}$ C. albicans, $1 \times 10^{6} \mathrm{CFU} \mathrm{ml}^{-1} \mathrm{~S}$. aureus, and $1 \times 10^{4} \mathrm{CFU} \mathrm{ml}^{-1} \mathrm{P}$. aeruginosa was used.

Determination of the polymicrobial biofilm architecture in the colony biofilm model

Localization of microbes in relation to each other is important in polymicrobial interactions (Wolcott et al. 2013), particularly, so between P. aeruginosa, S. aureus, and C. albicans where quorum sensing signalling molecules are known to interact across species and kingdom taxa (Hotterbeekx et al. 2017, Carolus et al. 2019, Grainha et al. 2020). Using strains modified to express fluorescent proteins, the spatiotemporal localization was investigated at 24 h to 72 h to determine the spatial orientation of the microorganisms in the colony biofilms over time. Representative micrographs are shown in Fig. 2. It was noted that C. albicans formed large budding yeast structures with hyphal projections emanating from the periphery and S. aureus localized around and between these structures in layers (Fig. 2a). This observation was maintained at 48 h and 72 h , with P. aeruginosa being initially distributed in areas surrounding but distinctly separate from regions where S. aureus was present (Fig. 2b). These regions of P.

Figure 1. Microbial population stability with concurrent and delayed addition of P. aeruginosa PAO1-L. (a) Concurrent addition of all three species led to the population of S. aureus SH 1000 being unstable and nonrecoverable at 72 h . (b) Delayed addition of P. aeruginosa PAO1-L at 24 h led to stable microbial populations between 24 and 72 h for all three species. At $96 h$, there was a small reduction in recovered C. albicans SC5314 and no recovery of S. aureus SH1000. $N=3$. \#-recovery below LOD.
aeruginosa did not co-localize with S. aureus earlier in the establishment within the biofilm, but at 72 h , it was co-localizing with C. albicans hyphae and S. aureus (Fig. 2c).

Biofilms are typically characterized by the production of a self-derived matrix of which polysaccharides and eDNA are key components. To establish, if matrix is formed in the colony biofilm, model Concanavalin A conjugated to Alexa Fluor 633 and YOYO-1 were used to visualize the PAO1-L exopolysaccharide and eDNA, respectively. In addition, live/dead staining was performed to determine the viability of the microbial population. At 48 h , there was minimal evidence of dead cells (Fig. 2d) with exopolysaccharide and eDNA present (Fig. 2f). At 72 h , there was visual evidence of an increased number of dead cells, likely attributed to the proliferation of P. aeruginosa (Fig. 2e) and its known impact on S. aureus. A complex structure of exopolysaccharide was observed (Fig. 2g), alongside an increased eDNA quantity compared to 48 h . There was some visible correlation between ConA and C. albicans especially the dense pockets of yeast morphology with protruding hyphae. eDNA is especially present where P. aeruginosa

Figure 2. Spatiotemporal localization of three species in a polymicrobial colony biofilm and matrix distribution. (a) Twenty-four hours with C. albicans (green) mixed structure of yeast and hyphal morphology visible, S. aureus (magenta) is observed growing around and attached to the hyphal network. (b) At 48 h , P. aeruginosa (cyan) is observed growing around the C. albicans hyphae and S. aureus. (c) At 72 h , a greater localization of the three species is observed where P. aeruginosa is visually more prevalent throughout the field of view. (d) Live/Dead (Syto 9/PI) staining of polymicrobial colony biofilms at 48 h shows minimal red staining indicating low cell death, note also the clearly visible C. albicans structures comprised of yeast and hyphal morphologies. (e) Live/Dead staining of polymicrobial colony biofilms at 72 h shows increased red staining indicating either increased cell death or staining of eDNA; it may also indicate a combination of both. (f) At 48 h, ConA-AF633 (green) was used to stain for exopolysaccharide and YOYO-1 (blue) was used to stain eDNA. (g) Matrix and eDNA staining at 72 h shows a complex distribution of these macromolecules. Scale bars $=100 \mu \mathrm{~m}$.
is localized. The representative micrographs provide clear indication that matrix components are being produced in the colony biofilm model strongly indicating a biofilm phenotype. Visualization of the polymicrobial biofilms (Fig. 3) with SEM indicates discrete regions containing S. aureus and Ps. aeruginosa. Staphylococcus aureus cells are observed attaching to C. albicans hyphae as described in the literature (Schlecht et al. 2015). C. albicans are present in both the hyphal and yeast morphology. The observed clustering of S. aureus in this model is similar to that seen from an S. aureus infected wound SEM (Li et al. 2016), which showed large amounts of cocci-shaped bacteria encased within a extracellular matrix; however, the representative micrographs shown only showed the presence of S. aureus. P. aeruginosa grown in an ex-vivo human skin wound model and visualized by SEM (Li et al. 2023) demonstrated cluster biofilm growth and encapsulation within a extracellular matrix. While P. aeruginosa is observed in this model, it is not observed to form the same clustering as seen in the mono-species ex-vivo human skin model. There are insufficient studies visualizing C. albicans by SEM in wounds, therefore, a comparison to morphology and clustering and the polymicrobial interaction.

Evaluation of antimicrobial susceptibility differences between monospecies and polymicrobial colony biofilm models

To investigate whether there are differences in antimicrobialsusceptibility between microorganisms grown as single species biofilms and as polymicrobial communities using the colony
biofilm model, biofilms were subjected to treatment with 1% chlorhexidine [CHX (Sigma-Aldrich, UK)], an antiseptic widely used to decolonize the skin of patients before medical procedures and in antimicrobial oral rinses. The colony biofilm of P. aeruginosa PAO1-L was not susceptible to 1% CHX treatment ($P=.1127$) (Fig. 4a). Colony biofilms of S. aureus SH1000 and C. albicans SC5314 were susceptible with a $5-\log$ and $2-\log$ reduction, respectively $(P=.0056$ and $P=.0072$) (Fig. 4b and c). Treatment of the polymicrobial biofilms with 1% CHX resulted in no \log reduction for P. aeruginosa ($P>.9999$) and C. albicans $(P>.9999)$ and a 2\log reduction in S. aureus that was not significant $(P=.1799)$ (Fig. 4d) with some small colony variants observed on the MSA agar plates.

Antimicrobial wound dressing testing using monospecies and polymicrobial planktonic suspensions

Prior to investigating the effectiveness of the wound dressings in the colony biofilm model, an assessment of antimicrobial wound dressings against planktonic cultures was performed. To do this, a modified AATCC100-2004 bacterial reduction method in single species and polymicrobial cultures was used as indicated in the 'Materials and methods' section. As expected, all wound dressings (Fig. 5) were effective in reducing the planktonic microbial burden below the limit of detection ($\mathrm{LOD}=50 \mathrm{CFU} \mathrm{ml}{ }^{-1}$) of the microbial enumeration in both single and polymicrobial cultures.

Figure 3. SEM visualization of 48 h polymicrobial colony biofilm model. Representative micrographs of polymicrobial biofilms (a) C. albicans hyphae visible (arrow), with adhered S. aureus along the length of the hyphae. C. albicans yeast morphology is visible in aggregated clusters through the visualized structure. (b) Dehydrated biofilm matrix (arrow), an artefact created through the fixation process and multiple rounds of dehydration and critical drying. C. albicans in yeast morphology amongst P. aeruginosa indicated by lower white arrow. (c) $800 \times$ magnification biofilm showing enhanced resolution of the C. albicans yeast and hyphae morphology with S. aureus adhered to the hyphae only. (d) $1700 \times$ magnification micrograph showing clear C. albicans yeast and hyphae morphology (arrows) and aggregated S. aureus. Biofilm matrix components are also visible. All SEM images captured using electron beam at 10 kV .

Testing the effectiveness of the antimicrobial wound dressings versus monospecies and polymicrobial biofilms

Polymicrobial biofilms were grown on the polycarbonate disks and wetted wound dressing sections placed on top of the biofilms with sterile forceps. The Acticoat ${ }^{\text {TM }}$ Flex 7 wound dressing was difficult to wet due to its high hydrophobicity. Aquacel ${ }^{\circledR} \mathrm{Ag}$ advantage did not significantly reduce CFUs in the three monospecies colony biofilms of P. aeruginosa PAO1-L, S. aureus SH1000, and C. albicans S5314 (Fig. 6a-c). Acticoat ${ }^{\text {TM }}$ Flex 7 was effective in reducing the microbial burden by 4-log versus P. aeruginosa PAO1-L, 1.5 \log versus S. aureus SH1000, and no significant reduction was observed versus C. albicans SC5314. Treatment with Exufiber ${ }^{\circledR} \mathrm{Ag}+$ reduced microbial burden of PAO1-L, S. aureus SH 1000 , and C. albicans SC5314 by less than one log. Iodoflex reduced the recoverable microorganisms in all of the monospecies colony biofilms to levels below the LOD of the assay.
P. aeruginosa and S. aureus showed reduced susceptibility against the wound dressings Aquacel ${ }^{\mathrm{TM}} \mathrm{Ag}+$ advantage, Acticoat ${ }^{\text {TM }}$ Flex 7 and Exufiber ${ }^{\circledR} \mathrm{Ag}+$ in the polymicrobial compared the single species colony biofilms (Fig. 6d).

Iodoflex ${ }^{\text {TM }}$ showed no recovery (below the LOD of the assay) of C. albicans and S. aureus in both types of biofilms.

Initial assessment using the colony biofilm model showed silver based wound dressings were generally ineffective against mature biofilm structures. In the clinical management of biofilms, sharp surgical debridement is still seen as a gold standard of wound care (Sen et al. 2021), where established biofilms are disrupted and in part resuspended for synergistic antimicrobial approaches. To partially replicate this clinical approach, colony biofilms were established as previously described then disrupted by vortexing only prior to wound dressing challenge, resulting in disrupted aggregates and a slightly cloudy suspension of microbial cells.

All biofilm dressings showed activity against the disrupted polymicrobial biofilm (Fig. 7). Aquacell ${ }^{\circledR} \mathrm{Ag}+$ advantage demonstrating a $2-\log$ reduction for P. aeruginosa, $2-\log$ reduction for S. aureus, and $1-\log$ reduction in C. albicans. Acticoat ${ }^{\text {TM }}$ Flex 7 showed a $3-\log$ reduction for P. aeruginosa, 3-log reduction for S. aureus, and 3-log reduction for C. albicans. Exufiber ${ }^{\circledR} \mathrm{Ag}+$ caused a $2-\log$ reduction for P. aeruginosa, a 1-log reduction for S. aureus, and $0.5-\log$ reduction for C. albicans. Iodoflex ${ }^{\text {TM }}$ was effective in reducing the microbial burden below LOD.

Figure 4. Treatment of monospecies and polymicrobial biofilms with 1% chlorhexidine gluconate. (a) P. aeruginosa PAO1-L was not susceptible to 1% CHX treatment. (b) S. aureus SH1000 was susceptible to $1 \% \mathrm{CHX}$ treatment. (c) C. albicans SC5314 was susceptible to 1% CHX. (d) P. aeruginosa and C. albicans in the polymicrobial biofilms were not susceptible to $1 \% \mathrm{CHX}$ with no significant log reduction. (a)-(c) Student t-test, (d) $1 \% \mathrm{CHX}$ challenge of polymicrobial biofilm versus control microbial recovery. Two-way ANOVA with Šidák multiple comparison correction. ${ }^{* * *} P<.01$, LOD 50 CFU ml ${ }^{-1}$, $n=3$.

Figure 5. Antimicrobial textile microbial reduction test. Microbial enumeration was performed at 24 h endpoint where wound dressings were sonicated in Dey-Engley neutralizing broth, and 10 -fold serial dilutions performed on appropriate selective media. All wound dressing reduced planktonic counts below of the limit of detection of (a) P. aeruginosa PAO1-L, (b) S. aureus SH1000, and (c) C. albicans SC5314. (d) All three species were grown separately overnight and pooled using the same inoculum size as in (a)-(c), all wound dressings reduced microbial counts below the limit of detection. Limit of detection was 50 CFU. (a)-(c) One-way Anova with Dunnet multiple comparison correction. (d) Two-way ANOVA with Šidák multiple comparison correction. ${ }^{* * * *} P<.0001, n=3$. LOD 250 CFU. $n=3$.

Figure 6. Microbial enumeration of polymicrobial biofilms treated with four wound dressings. Microbial enumeration was performed at 72 h endpoint biofilms were disaggregated, sonicated in Dey-Engley neutralizing broth and 10-fold serial dilutions performed on appropriate selective media. Monospecies colony biofilms of (a) P. aeruginosa PAO1-L, (b) S. aureus SH1000, and (c) C. albicans SC5314. (d) Polymicrobial colony biofilm. The names of the dressings used are specified in the axis. Controls are untreated wetted filter paper. Two-way ANOVA with Dunnett's multiple comparison correction was used. LOD 250 CFU. $n=3$.

Figure 7. Microbial enumeration of dispersed polymicrobial biofilms treated with four wound dressings. At 48 h , biofilms were disaggregated by vortexing and challenged with each wound dressing or wetted filter paper for control for 24 h . Dey-Engley neutralizing broth was added to each Bijou prior to sonication and microbial enumeration was performed as described with 10-fold serial dilutions performed on appropriate selective media. Limit of detection was 50 CFU $\mathrm{ml}^{-1}, n=3$. Two-way ANOVA with Dunnett's multiple comparison correction.

Discussion

The management of infected wounds is complex with a combination of debridement, systemic antibiotics, and wound dressings utilized. As with antibiotic use to treat specific microbial infections, there are an array of wound dressings available for the treatment of infected wounds. Dressing formats may be appropriate for the volume of exudate produced, e.g. low, moderate, or heavy. P. aeruginosa and S. aureus are the most commonly isolated and studied microbes in relation to chronic
wounds (Puca et al. 2021). It is well documented that their presence in wounds causes significant delays in wound healing and have significant risk association with morbidity (Han and Ceilley 2017). There is growing evidence that fungi can be part of the wound microbiome; however, the role these play in chronic wound pathogenesis is poorly understood (Ge and Wang 2022, Short et al. 2023). It is however abundantly clear that chronic wounds often contain cross-interacting polymicrobial communities. Although some of these interactions are known, there are still many that remain to be identified par-
ticularly those involving anaerobic microorganism. P. aeruginosa exoproducts have been shown to have both antimicrobial sensitizing and protective properties. P. aeruginosa rhamnolipids increase tobramycin uptake and efficacy against S. aureus (Radlinski et al. 2017). P. aeruginosa 2-n-heptyl-4hydroxyquinoline N-oxide (HQNO), HCN, and pyocyanin can increase S. aureus tolerance to killing by ciprofloxacin, tobramycin, and vancomycin through the inhibition of respiration and depletion of ATP (Radlinski et al. 2017). Conversely, HQNO has been shown to increase S. aureus sensitivity to chloroxylenol (Orazi et al. 2019). P. aeruginosa has also been observed to protect S. aureus in mixed biofilms from tobramycin.

Dual species C. albicans and S. aureus biofilms have been shown in vivo and in vitro to reduce sensitivity of C. albicans to miconazole (Kean et al. 2017). Protection of S. aureus by the secreted $\beta-1,3$-glucan cell wall component can result in enhanced tolerance of S. aureus to vancomycin in vitro, which could be overcome by addition of the antifungal caspofungin (Kong et al. 2016).

Three silver dressings were selected for this study as representative of those used in clinical settings. An iodinecontaining wound dressing was included due to the broadspectrum antimicrobial action of the active ingredient versus Gram-negative and positive bacteria, fungi, viruses, and protozoa (Bigliardi et al. 2017). There has been a wide range of literature demonstrating wound healing promotion with silver nitrate wound dressings however excessive loading of silver nitrate can inhibit wound healing (Atiyeh et al. 2007, AshaRani et al. 2009), and increased host tissue toxicity (Burd et al. 2007, Hiro et al. 2012). With advances in nanotechnology, formulation of silver nanoparticles (AgNPs) (Paladini and Pollini 2019) incorporation into wound dressings is desirable. The topic of antimicrobial resistance to silver has been debated over the last two decades (Percival et al. 2005) with sporadic evidence presented for silver resistance; however, plasmidmediated silver resistance has been clinically observed in P. aeruginosa, Acinetobacter baumannii, and S. aureus isolates (Hosny et al. 2019). Repeated exposure to subinhibitory concentrations of silver nanoparticles has been shown to induce rapid resistance in E. coli and P. aeruginosa in vitro (Panáček et al. 2018), which may be a cause for concern particularly as there is emerging evidence that silver and other heavy metals can co-select for antibiotic resistance (McNeilly et al. 2021). Iodine-containing wound dressings have contraindications for some patient groups but have demonstrated that they do not interfere with wound healing or have cytotoxic effects at clinically relevant concentrations (Vermeulen et al. 2010). It is also of note that there is evidence of wound healing promotion by Povidone-iodine in mice through increased expression of TGF- β, and promotion of neovascularisation and reepithelialisation (Wang et al. 2017). Microbial resistance development to iodine has not been documented to date (Barreto et al. 2020).

The format of this polymicrobial biofilm model makes it amenable to the investigation of antimicrobial wound care products because wound dressings can be laid on top of the biofilm. This is in contrast to three-dimensional biofilm models like the CDC reactor or nonsupported biofilm models like the Lubbock biofilm model. Also, microbes are easily recovered because the entire membrane can be placed into neutralizing or recovery buffer. Furthermore, the membrane supports transfer of the biofilm without disruption of
the structure, making the model amenable to microscopic examination. This simplified wound model tested provides a low cost, medium throughput assay that can be assessed using traditional microbiological methodologies by performing colony forming units counts. Microscopy-based methodologies can also be performed with live/dead visualization and visualization of the matrix components produced by the monospecies and polymicrobial biofilms. Additional quantification methodologies that could be conducted but were not studied here include measurement of ratios of fluorescent expressing proteins and investigation of matrix components.

The difference in antimicrobial effectiveness of chlorhexidine in monospecies and polymicrobial biofilms in this study demonstrates that living in a polymicrobial environment changes antimicrobial susceptibility. This is consistent with literature demonstrating differences in antibiotic and broadspectrum antiseptic susceptibility in polymicrobial systems (Stoffel et al. 2020). When monospecies biofilms were treated with commercially available antimicrobial wound care products, the P. aeruginosa biofilms were susceptible to killing by one of the silver-containing products (Acticoat ${ }^{\text {TM }}$ Flex 7). In contrast, P. aeruginosa living in complex, polymicrobial biofilms was not susceptible to killing by this product. Other silver-containing wound care products, however, were effective at significantly reducing the $\log \left(\mathrm{CFU}\right.$ biofilm $\left.{ }^{-1}\right)$ of S. aureus and C. albicans in monospecies and polymicrobial biofilms. This result suggests that P. aeruginosa in polymicrobial biofilms is protected against killing by some antimicrobial formulations. The iodine-containing wound care product, Iodoflex, killed microorganisms to a level below the limit of detection in monospecies and polymicrobial biofilms except for one replicate of a polymicrobial biofilm, where there was some surviving P. aeruginosa detected. This result indicates that the polymicrobial biofilm system as grown here does not protect against the oxidative killing mechanism of iodine. This is consistent with published literature where Cadexomer iodine was effective in reducing the bacterial biofilm in porcine ex vivo model while silver carboxymethylcellulose dressings had minimal impact on biofilms (Roche et al. 2019). IoPlex® with I-Plexomer is a controlled release iodine foam dressing and has been shown to have broad-spectrum biofilm management in CDC ASTM 2871-19, drip flow bioreactor, and direct contact testing (Salisbury et al. 2022), which included anaerobic bacteria but not fungi. In contrast, silver wound dressings showed some activity in comparison to the whole direct contact biofilm method demonstrated here.

With regards to mimicking the wound debridement and subsequent application of antimicrobial dressing, an increased killing was observed compared to the intact colony biofilm model with the silver wound dressings. Debridement and combined wound debridement is often associated with better resolution of a wound and can be combined with antimicrobial wound dressings where appropriate (Nowak et al. 2022). It should be noted though that a review by NICE in 2016 (NICE 2016) concluded that 'there was no evidence that silver dressings are effective for complete wound healing and measures of infection were not assessed'. It is not possible from this study to conclude that silver dressings are ineffective for wound management given the lack of measurement of infection in this NICE report. Further investigation with silver wound dressings with clinical isolates of P. aeruginosa and S. aureus would help to further assess the utility of silver
wound dressings in microbial resolution alongside incorporation into simple wound healing models (Jordana-Lluch et al. 2020).

Limitations of this study include the in vitro nature of the model, which lacks host-derived macromolecules, immune system components, and some wound fluid components. The model is grown on solid agar with a limited amount of moisture and lack of dynamic flow conditions, which could be observed in highly exuding wounds. The model is grown in an oxygenated environment and may not replicate microaerophilic and anaerobic conditions, which exist in in vivo wound conditions. Anaerobic bacteria have often been observed in metagenomic studies of wound biofilms and this model does not include strict anaerobes, but the model is amenable to use in microaerobic conditions. The model is stable for 72 h but was unstable at 96 h , this demonstrates that the model has temporary stability a common limitation observed in, in vitro models, e.g. cystic fibrosis (O'Brien et al. 2021); however, our model generally has greater throughout and a lower cost scale.

Human serum albumin composes up to 60% of the whole blood protein and therefore be an important molecule in wounds. Silver nanoparticles in the selected wounds dressings are used to generate silver ions; however, albumin both human (Gnanadhas et al. 2013) and bovine (Grade et al. 2012) has been demonstrated to bind silver and silver ions reducing their efficacy. The model could be improved by the addition of human serum albumin, which has also been demonstrated to attenuate killing of S. aureus by P. aeruginosa (Smith et al. 2017), which could lead to an increase in model stability. Furthermore, nutrient conditions could be modified further to influence antagonistic interactions between S. aureus and P. aeruginosa. The model could be modified to include dynamic flow of microbial growth medium or simulated wound fluid to further challenge wound dressings, or to include host cell macromolecules such as collagen.

Conclusions

The polymicrobial colony biofilm model presented shows promise as a medium throughput, low-cost model to study the effectiveness of antimicrobials and novel compounds, which could be standardized. Treatment with silver-containing antimicrobial wound dressings in this model did not result in significant log reduction of microorganisms when tested against whole biofilms with minimal log reductions versus the disrupted colony biofilm. Cadexomer iodine wound dressing eradicated both monospecies and polymicrobial biofilms; however, iodine-containing wound dressings have contraindications in some patients (Formulary 2023). This result suggests differences in the mechanism of action in biofilms between released ingredients in antimicrobial wound care products and those retained within the wound dressing. Differences in antimicrobial activity between products may also result from differences in neutralization kinetics by biofilm macromolecules or kinetics in release of antimicrobial molecules. These results suggest there may be differences in clinical effectiveness between products as tested in the whole and disrupted biofilm models.

The polymicrobial colony biofilm model represents also a useful tool to study interactions between clinically relevant microbes, investigating phenotypic interactions and the regulation of cross-signalling processes. Media choice can be
adapted to those that mimics in vivo conditions, e.g. SCFM2 for Cystic Fibrosis (Turner et al. 2015) and wound like media (Sun et al. 2008, Pouget et al. 2022). The easy handleability of the polycarbonate membrane discs lends itself to good throughput for multiple end point assays, from basic microbial enumeration, microscopic examination, viability PCR through to mass spectrometry analysis of key microbial metabolites (Robertson et al. 2023).

Conflict of interest: No conflict of interest declared.

Funding

This work was supported by funding from the National Biofilms Innovation Centre (NBIC), which is an Innovation and Knowledge Centre funded by the Biotechnology and Biological Sciences Research Council, Innovate, UK and Hartree Centre (Award numbers BB/R012415/1 and 554 BB/X002950/1) and 3M. M.R. is supported by the Maria Zambrano programme and a Research Consolidation grant (CNS2023-145299) from the Spanish Ministry Science, Innovation and Universities..

Author contributions

Shaun N. Robertson (Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Validation, Visualization, Writing - original draft, Writing - review \& editing), Manuel Romero (Investigation, Methodology, Resources, Visualization, Writing - original draft, Writing - review \& editing), Samuel Fenn (Methodology, Resources, Writing - original draft, Writing - review \& editing), Petra L. Kohler Riedi (Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Supervision, Visualization, Writing - original draft, Writing - review \& editing) and Miguel Cámara (Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing - review \& editing).

Data availability

The datasets generated are available from the National Biofilms Innovation Centre at the University of Nottingham. DOI: 10.17639/nott. 7324.

References

100-2004, A.T.M. Antibacterial Finishes on Textile Materials: Assessment of AATCC Technical Manual, American Association of Textile Chemists and Colorists. NC: Research Triangle Park, 2008.

AshaRani PV, Low Kah Mun G, Hande MP et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009;3:279-90. https://doi.org/10.1021/nn800596w.
Atiyeh BS, Costagliola M, Hayek SN et al. Effect of silver on burn wound infection control and healing: review of the literature. Burns 2007;33:139-48. https://doi.org/10.1016/j.burns.2006.06.010.
Attinger C, Wolcott R. Clinically addressing biofilm in chronic wounds. Adv Wound Care 2012;1:127-32. https://doi.org/10.1089/wound. 2011.0333.

Barreto R, Barrois B, Lambert J et al. Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents 2020;56:106064. https://doi.org/10.1016/j.ijantimicag.2020.10606 4.

Bigliardi PL, Alsagoff SAL, El-Kafrawi HY et al. Povidone iodine in wound healing: a review of current concepts and practices. Int Surg J 2017;44:260-8. https://doi.org/10.1016/j.ijsu.2017.06.073.
Biswas L, Biswas R, Schlag M et al. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microb 2009;75:6910-2. https://doi.org/10.1128/AEM.01211-09.
Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001;14:244-69. https://doi.org/10.1128/CMR.14.2.244-269.200 1.

Brothers KM, Newman ZR, Wheeler RT. Live imaging of disseminated Candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Euk Cell 2011;10:932-44. https://doi.org/10.1 128/EC.05005-11.
Burd A, Kwok CH, Hung SC et al. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 2007;15:94-104. https: //doi.org/10.1111/j.1524-475X.2006.00190.x.
Cámara M, Green W, MacPhee CE et al. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. npj Biofilms Microbiomes 2022;8:42. https://doi.org/10.1038/s41522-0 22-00306-y.
Carolus H, Van Dyck K, Van Dijck P. Candida albicans and Staphylococcus species: a threatening twosome. Front Microbiol 2019;10:119. https://doi.org/10.3389/fmicb.2019.02162.

Choi K-H, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 2006;64:391-7. https: //doi.org/10.1016/j.mimet.2005.06.001.
DeLeon S, Clinton A, Fowler H et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect Immun 2014;82:4718-28. https://doi.org/10 .1128/IAI.02198-14.
del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 2007;82:204-9. https://doi.or g/10.1038/sj.clpt. 6100247.
Dowd SE, Hanson JD, Rees E et al. Survey of fungi and yeast in polymicrobial infections in chronic wounds. J Wound Care 2011;20:40-47. https://doi.org/10.12968/jowc.2011.20.1.40.
Formulary BN. Iodine dressings. 2023.
Fourie R, Ells R, Swart CW et al. Candida albicans and Pseudomonas aeruginosa interaction, with focus on the role of eicosanoids. Front Physiol 2016;7:64. https://doi.org/10.3389/fphys.2016.00064.
Ge Y, Wang Q. Current research on fungi in chronic wounds. Front Mol Biosci 2022;9:1057766. https://doi.org/10.3389/fmolb.2022.1 057766.

Gnanadhas DP, Ben Thomas M, Thomas R et al. Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 2013;57:4945-55. https://do i.org/10.1128/AAC.00152-13.

Grade S, Eberhard J, Neumeister A et al. Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. RSC Adv 2012;2:7190-6. https://doi.org/10.1 039/c2ra20546g.
Grainha T, Jorge P, Alves D et al. Unraveling Pseudomonas aeruginosa and Candida albicans communication in coinfection scenarios: insights through network analysis. Front Cell Infect Microbiol 2020;10:550505. https://doi.org/10.3389/fcimb.2020.550505.
Guest JF, Fuller GW, Vowden P. Cohort study evaluating the burden of wounds to the UK's National Health Service in 2017/2018: update from 2012/2013. BMJ Open 2020;10:e045253. https://doi.org/10.1 136/bmjopen-2020-045253.
Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther 2017;34:599-610. https://doi.org/ 10.1007/s12325-017-0478-y.

Highmore CJ, Melaugh G, Morris RJ et al. Translational challenges and opportunities in biofilm science: a BRIEF for the future. npj

Biofilms Microbiomes 2022;8:68. https://doi.org/10.1038/s41522-0 22-00327-7.
Hiro ME, Pierpont YN, Ko F et al. Comparative evaluation of silvercontaining antimicrobial dressings on in vitro and in vivo processes of wound healing. Eplasty 2012;12:e48.
Hosny AEM, Rasmy SA, Aboul-Magd DS et al. The increasing threat of silver-resistance in clinical isolates from wounds and burns. Infect Drug Resist 2019;12:1985-2001. https://doi.org/10.2147/IDR. S209881.
Hotterbeekx A, Kumar-Singh S, Goossens Het al. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect 2017;7:1-13.
James GA, Swogger E, Wolcott R et al. Biofilms in chronic wounds. Wound Repair Regen 2008;16:37-44. https://doi.org/10.1111/j.15 24-475X.2007.00321.x.
Jordana-Lluch E, Garcia V, Kingdon ADH et al. A simple polymicrobial biofilm keratinocyte colonization model for exploring interactions between commensals, pathogens and antimicrobials. Front Microbiol 2020;11:1-12. https://doi.org/10.3389/fmicb.2020.00291.
Kean R, Rajendran R, Haggarty J et al. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Front Microbiol 2017;8:111. https://doi.org/10.3389/fmicb.2017.00258.

Kong EF, Tsui C, Kucharíková Set al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans niofilm matrix. mBio 2016;7:1-12. https://doi.org/10.1128/mBio.01365-1 6.

Kong EF, Tsui C, Kucharíková S et al. Modulation of Staphylococcus aureus response to antimicrobials by the Candida albicans quorum sensing molecule farnesol. Antimicrob Agents Chemother 2017;61:1-14. https://doi.org/10.1128/AAC.01573-17.
Krüger W, Vielreicher S, Kapitan M et al. Fungal-bacterial interactions in health and disease. Pathogens 2019;8:1-41. https://doi.org/10.3 390/pathogens 8020070.
Kucera J, Sojka M, Pavlik V et al. Multispecies biofilm in an artificial wound bed-a novel model for in vitro assessment of solid antimicrobial dressings. J Microbiol Methods 2014;103:18-24. https: //doi.org/10.1016/j.mimet.2014.05.008.
Lapiere A, Richard ML. Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: a short review. Gut Microbes 2022;14:2105610. https://do i.org/10.1080/19490976.2022.2105610.

Li T, Zhang L, Han L et al. Early application of negative pressure wound therapy to acute wounds contaminated with Staphylococcus aureus: an effective approach to preventing biofilm formation. Exp Ther Med 2016;11:769-76. https://doi.org/10.3892/etm. 2016 . 3008 .
Li Z, Zhang S, Zuber F et al. Topical application of Lactobacilli successfully eradicates Pseudomonas aeruginosa biofilms and promotes wound healing in chronic wounds. Microbes Infect 2023;25:105176. https://doi.org/10.1016/j.micinf.2023.105176.
Mah T-F. Biofilm-specific antibiotic resistance. Future Microbiol 2012;7:1061-72. https://doi.org/10.2217/fmb.12.76.
Malone M, Bjarnsholt T, McBain AJ et al. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care 2017a;26:20-25. https://doi.org/10.12968/jow c.2017.26.1.20.

Malone M, Johani K, Jensen SO et al. Next generation DNA sequencing of tissues from infected diabetic foot ulcers. EBioMedicine 2017b;21:142-9. https://doi.org/10.1016/j.ebiom.2017.06.026.
McNeilly O, Mann R, Hamidian M et al. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front Microbiol 2021;12:1-20. https://doi.org/10.3389/fmic b.2021.652863.

Mitchell G, Séguin DL, Asselin A-E et al. Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. BMC Microbiol 2010;10:33. https://do i.org/10.1186/1471-2180-10-33.

NICE. Chronic Wounds: Advanced Wound Dressings and Antimicrobial Dressings. London: National Institute for Health and Care Excellence, 2016.
Nowak M, Mehrholz D, Barańska-Rybak W et al. Wound debridement products and techniques: clinical examples and literature review. Postepy Dermatol Alergol 2022;39:479-90. https://doi.org/10.511 4/ada.2022.117572.
O'Brien T, Hassan M, Harrison F et al. An in vitro model for the cultivation of polymicrobial biofilms under continuous-flow conditions. F1000Research 2021;10. https://doi.org/10.12688/f1000research. 5 5140.1.

Orazi G, Ruoff KL, O’Toole GA. Pseudomonas aeruginosa increases the sensitivity of biofilm-grown Staphylococcus aureus to membranetargeting antiseptics and antibiotics. mBio 2019;10:e01501-01519. https://doi.org/10.1128/mBio.01501-19.
Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials 2019;12:1-16. https://doi.org/10.3390/ma12162540.
Panáček A, Kvítek L, Smékalová M et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 2018;13:65-71. https://doi.org/10.1038/s41565-017-0013-y.
Pastar I, Nusbaum AG, Gil J et al. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One 2013;8:e56846. https: //doi.org/10.1371/journal.pone. 0056846.
Peleg AY, Hogan DA, Mylonakis E. Medically important bacterialfungal interactions. Nat Rev Micro 2010;8:340-9. https://doi.org/ 10.1038/nrmicro2313.

Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect 2005;60:1-7. https://doi.org/10.1016/j. jhin.2004.11.014.
Percival SL, Mayer D, Salisbury AM. Efficacy of a surfactantbased wound dressing on biofilm control. Wound Repair Regen 2017;25:767-73. https://doi.org/10.1111/wrr.12581.
Pouget C, Dunyach-Remy C, Bernardi T et al. A relevant wound-like in vitro media to study bacterial cooperation and biofilm in chronic wounds. Front Microbiol 2022;13:1-11. https://doi.org/10.3389/fm icb.2022.705479.
Puca V, Marulli RZ, Grande R et al. Microbial species isolated from infected wounds and antimicrobial resistance analysis: data emerging from a three-years retrospective study. Antibiotics 2021;10:1-14. https://doi.org/10.3390/antibiotics10101162.
Radlinski L, Rowe SE, Kartchner LB et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol 2017;15:e2003981. https://doi.org/10.1371/journa 1.pbio. 2003981.

Robertson SN, Soukarieh F, White TM et al. Probing interkingdom signaling molecules via liquid extraction surface analysis-mass spectrometry. Anal Chem 2023;95:5079-86. https://doi.org/10.1021/ac s.analchem.2c05703.

Roche ED, Woodmansey EJ, Yang Q et al. Cadexomer iodine effectively reduces bacterial biofilm in porcine wounds ex vivo and in vivo. Int Wound J 2019;16:674-83. https://doi.org/10.1111/iwj.13080.

Salisbury A-M, Mullin M, Foulkes L et al. Controlled-release iodine foam dressings demonstrate broad-spectrum biofilm management in several in vitro models. Int Wound J 2022;19:1717-28. https: //doi.org/10.1111/iwj.13773.
Schlecht LM, Peters BM, Krom BP et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 2015;161:168-81. https://doi.org/10.1099/mi c.0.083485-0.

Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care 2019;8:39-48. https://doi.org/10.108 9/wound.2019.0946.
Sen CK, Roy S, Mathew-Steiner SS et al. Biofilm management in wound care. Plast Reconst Surg 2021;148:275e-88e. https://doi.org/10.109 7/PRS.0000000000008142.
Short B, Bakri A, Baz A et al. There is more to wounds than bacteria: fungal biofilms in chronic wounds. Curr Clin Microbiol Rep 2023;10:9-16. https://doi.org/10.1007/s40588-022-00187-x.
Smith AC, Rice A, Sutton B et al. Albumin inhibits Pseudomonas aeruginosa quorum sensing and alters polymicrobial interactions. Infect Immun 2017;85:1-12. https://doi.org/10.1128/IAI.00116-17.
Smith K, Collier A, Townsend EM et al. One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers. BMC Microbiol 2016;54:1-12 .
Spampinato SF, Caruso GI, De Pasquale R et al. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals 2020;13:1-17. https://doi.org/10.3390/ph13040060.
Stoffel JJ, Kohler Riedi PL, Hadj Romdhane B. A multimodel regime for evaluating effectiveness of antimicrobial wound care products in microbial biofilms. Wound Repair Regen 2020;28:438-47. https: //doi.org/10.1111/wrr. 12806
Sun Y, Dowd SE, Smith E et al. In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair Regen 2008;16:805-13. https: //doi.org/10.1111/j.1524-475X.2008.00434.x.
Townsend EM, Sherry L, Rajendran R et al. Development and characterisation of a novel three-dimensional inter-kingdom wound biofilm model. Biofouling 2016;32:1259-70. https://doi.org/10.1080/0892 7014.2016.1252337.

Turner KH, Wessel AK, Palmer GC et al. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci USA 2015;112:4110-5. https://doi.org/10.1073/pnas. 1419677112.
Vermeulen H, Westerbos SJ, Ubbink DT. Benefit and harm of iodine in wound care: a systematic review. J Hosp Infect 2010;76:191-9. https://doi.org/10.1016/j.jhin.2010.04.026.
Wang L, Qin W, Zhou Y et al. Transforming growth factor β plays an important role in enhancing wound healing by topical application of Povidone-iodine. Sci Rep 2017;7:991. https://doi.org/10.1038/s4 1598-017-01116-5.
Wilton R, Ahrendt AJ, Shinde S et al. A new suite of plasmid vectors for fluorescence-based imaging of root colonizing pseudomonads. Front Plant Sci 2017;8:2242. https://doi.org/10.3389/fpls.2017.02242.
Wolcott R, Costerton JW, Raoult D et al. The polymicrobial nature of biofilm infection. Clin Microbiol Infect 2013;19:107-12. https: //doi.org/10.1111/j.1469-0691.2012.04001.x.

[^0]: Received 15 August 2023; revised 12 January 2024; accepted 15 February 2024
 © The Author(s) 2024. Published by Oxford University Press on behalf of Applied Microbiology International. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

