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Abstract

Efficient prediction of sampling-intensive thermodynamic properties is needed to evaluate material performance
and permit high-throughput materials modeling for a diverse array of technology applications. To alleviate the
prohibitive computational expense of high-throughput configurational sampling with density functional theory
(DFT), surrogate modeling strategies like cluster expansion are many orders of magnitude more efficient, but can
be difficult to construct in systems with high compositional complexity. We therefore employ minimal-complexity
graph neural network models that accurately predict, and can even extrapolate to out-of-train-distribution,
formation energies of DFT-relaxed structures from an ideal (unrelaxed) crystallographic representation. This
enables the large-scale sampling necessary for various thermodynamic property predictions that may otherwise be
intractable and can be achieved with small training datasets. Two exemplars, optimizing thermodynamic stability
of low-density high entropy alloys and the modulating the plateau pressure of hydrogen in metal alloys, demonstrate

the power of this approach, which will be extendable to a variety of materials discovery and modeling problems.
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Compositionally complex or high entropy alloys' have
been extensively investigated for a plethora of applica-
tions due to their outstanding thermal,? mechanical,® en-
ergy storage,®® and catalytic properties,” but rational

1 Supporting Information: details on density functional theory
calculations, graph neural network training, thermodynamic calcu-
lations, and experimental PCT measurements.

design of these materials is challenged by the combina-
torial explosion of the compositional space from which
they can be synthesized. Accurate and tractable model-
ing strategies® are therefore critical for discovering and /or
optimizing high entropy alloys®° to direct the synthesis
and testing of promising materials and conserve expen-
sive experimental resources.!’ Crucially, any modeling
approach must be accurate and data-efficient in treating
solid solutions with high compositional complexity. An-
other critical consideration is that the model’s input needs
to be trivial-to-generate such that hundreds of thousands
or millions of energy calculations can then be performed.
This enables convergence of materials’ property predic-
tions through first principles simulations like Monte Carlo
or direct statistical sampling.'!

The introduction of the cluster expansion (CE)
method!? often satisfies the aforementioned requirements
and its initial applications in the prediction of phase sta-
bility of complex alloys'®'* marked a significant mile-
stone in the ability to rationally design complex inor-
ganic materials and impact a host of technological appli-
cations. Its widespread popularity mainly stems from its
ability to accurately predict complex energy landscapes
in materials exhibiting significant configurational degrees



of freedom while requiring only a relatively small (or at
least tractable) number of expensive first-principles elec-
tronic structure calculations. The cluster expansion for-
malism has enabled first-principles accuracy calculations
of temperature-composition phase diagrams,'® activation
barriers,'%17 and even electronic excitations!'® across di-
verse materials applications, ranging from hydrogen stor-
age'¥ to battery?® to electronic device materials.?! Fur-
thermore, along with the recent explosion of machine
learning (ML) to accelerate various tasks in materials sci-
ence, ML improvements on the original cluster expansion
formalism have been proposed to ameliorate some of its
shortcomings.?2724

Parallely, in recent years, graph neural networks
(GNNs)?5°29 have undergone widespread adoption in ma-
terials science thanks to their automated feature extrac-
tion capabilities. They generally remove the need to man-
ually derive input features (e.g., the process of defining
the cluster functions in CE) that suitably describe a ma-
terial of high compositional complexity. They can serve
as direct surrogate models for highly demanding compu-
tational tasks (e.g., bulk modulus and equation-of-state
fitting, 393! supercell defect relaxations,3? or phonon den-
sity of state calculations®?) and more recently have been
developed towards "universal" force fields to enable first-
principles accuracy simulations across the periodic ta-
ble.343% Here we demonstrate how minimal-complexity
GNNs (i.e., ~2,000 parameter models) with identical ar-
chitectures and training hyperparameters are applicable
to relazed formation energy predictions from un-relazed
crystallographic representations to aid the design of com-
positionally complex materials with limited training data.
For example, this approach permits the high-throughput
screening needed to predict and therefore composition-
ally optimize phase stability of low density high-entropy
alloys and hydrogen equilibria in metal hydrides. Criti-
cally, these models’ predictions extrapolate to configura-
tions with formation energies outside the range of target
values in the training data, and small training datasets
can be rationally and efficiently constructed to maximize
performance. In the future, we expect such an approach
to be useful in any number of applications that CE has
typically been used to study, while alleviating challenges
of constructing cluster functions in high compositional
complexity systems.

Graph neural networks on ideal lattices. High-
throughput configurational sampling is often needed for
thermodynamic property predictions in solid solution ma-
terials; therefore, a DFT surrogate model that can pre-
dict, for example, relaxed formation energies from a
trivial-to-generate crystallographic representation is crit-
ical. In the case of the cubic FCC lattice (or BCC, HCP,
etc.), the idealized crystal representation, Xpcc, is de-
fined by the elemental identify of each lattice site at its
ideal fractional coordinate (Figure 1). The energy of the
DFT-relaxed crystal structure, Xppr, with respect to
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Figure 1: Parity plot for test set predictions of relaxed for-
mation energy from a model trained on the DFT-relaxed
crystal structures (Xppr) vs. a model trained on struc-
tures mapped back to the idealized FCC lattice (Xrcc).

possible decomposition products yields the desired pre-
diction target: the formation energy, Erprr. A useful
model for ML-accelerated calculation of thermodynamic
properties must utilize Xrce as input (if Xppr is known,
then so is Ef prr and the model is moot).

Therefore we seek a GNN model, fonn, parameterized
by optimized weights 6, that predicts the formation en-

ergy,
E; = fenn(Xrec; 6), (1)

where the idealized lattice in this example is Xpcg. De-
spite the continually expanding plethora of GNN vari-
ants,?> 29 we utilize CGCNN?® due to its comparative
simplicity and ability to construct models with low archi-
tecture complexity and a relatively small number of train-
able parameters (see Supplementary Section 2 for details).
For a simple test case, we generate a database of 284 ran-
dom Xpcc configurations with an equimolar AlLiMgSnZn
stoichiometry (the synthesis target of Ref. [10]), DFT op-
timize (Supplementary Section 1) their geometries to ob-
tain Xppr and Efppr, and map Xppr back to Xpcc.
Figure 1 summarizes both Xppr and Xpcc models’ test
set performance on a 80/10/10 train/validation/test split.
Henceforth referred to as Model 1, the GNN trained on
Xrcce inputs still predicts E’f with nearly identical ac-
curacy as one trained on Xppr, with a mean absolute
error (MAE) of 3.1 vs 3.6 meV/atom. Since Xppr un-
ambiguously maps to Xpcc despite local distortions, we



can model the relaxed formation enthalpies and perform
high-throughput configurational screening by using Xrcc
as a trivial-to-generate input.

Single-shot compositional optimization of low—
density HEAs. The design of low-density alloys has
attracted significant attention in structural materials ap-
plications,?® so we utilize our GNN modeling to demon-
strate whether one can explain an experimentally inac-
cessible target!? (the single-phase FCC solid solution of
equimolar AlLiMgSnZn) and improve its thermodynamic
synthesizability via compositional optimization. First,
Model 1 (from Figure 1) was tested by predicting for-
mation energies (Ef,lm) of 10,000 random equimolar Al-
LiMgSnZn and off-equimolar AlgsLiMgg 5SnZngs con-
figurations. This screening both converges the prob-
ability distribution of formation energies and predicts
significantly out-of-train-distribution values, especially
for AlgsLiMgg5SnZng s (Figure 2a). We re-validate a
sampling of these configurations (Figure 2b) to gen-
erally demonstrate both the overall model accuracy
(MAE = 5.2 and 7.9 meV/atom for AlLiMgSnZn and
Al 5LiMgg 5SnZng 5, respectively) and the accuracy in
extrapolating to out-of-train-distribution formation ener-
gies.

Next, we screened compositions with greater off-
equimolar stoichiometry, i.e., all possible permutations of
at. fractions z € {0.5, 1.5}, and computed E; ppr for the
min, median, and max predicted energy configurations for
each composition (Figure 2¢). With a slope of ~1 for most
compositions, Model 1 predicts relative formation ener-
gies of the intra-composition configurations correctly but
with a constant error shift that is composition dependent.
This yields a lower than desired accuracy with MAE =
41 meV /atom and Pearson correlation coefficient (PCC)
= 0.72. To remedy this, F;ppr was calculated for the
5 elemental Xpco configurations and four random Xpcco
configurations for each 2-, 3-, and 4-element equimolar
compositions, requiring 544 ((i) + (g) + (g)) = 105 new
DFT relaxations. With this additional training data,
Model 2’s predictions, Ef’MQ, achieve significantly im-
proved quantitative accuracy on the same off-equimolar
test set in Figure 2d (MAE = 4.4 meV/atom and PCC
= 0.99). Model 2 is now sufficiently accurate to quan-
titatively differentiate formation energies between dif-
fering compositions, can be employed for phase stabil-
ity predictions, and importantly can be derived from in
a single-shot execution of DFT relaxations involving at
most ~300-400 training examples.

Synthetic accessibility of a target phase is dependent
upon its free energy above the convex hull, Ej,37 sub-
ject to standard assumptions for DFT-computed phase
stability and thermodynamic synthesizability limits of
metastable phases.® Eh’Mg is computed from E vz dis-
tributions for select off-equimolar, 5-element composi-
tions using Materials Project data®® and pymatgen3”
(Figure 2e). Even the minimum FEj configurations, let

alone a Boltzmann weighted average across configura-
tions, are near or above the typically assumed values for
the upper synthesizability limit for metastable materi-
als (~0.05-0.10 eV/atom above the hull). The strong
thermodynamic driving force for decomposition of the
FCC phase is qualitatively consistent with the inabil-
ity of experiments to isolate single-phase FCC solid so-
lutions in this composition space.!® The hull energy of
the phase diagram is lowered significantly by the highly
favorable formation of, for example, MgsSn intermetallic
compounds. Therefore, removing Sn and screening E M2
for (Al,Li,Mg,Zn) compositions, the minimum EhMg can
be reduced by ~0.04 eV /atom, which remains high but
marginally improves potential for synthesizability from a
thermodynamic perspective. In the future, FCC train-
ing databases with more elements can be developed*’ to
enable accurate predictions of more alloying strategies or
altogether different composition spaces that can identify
candidate low-density high entropy alloys with low or zero
Ey.

PCT curve prediction for Pd-alloyed hydrides.
The excellent stability and reversible hydrogen absorp-
tion of Pd has led to its establishment as a benchmark
material in the hydrogen storage community. The ability
to model its thermodynamic equilibrium with hydrogen,
i.e., the pressure-composition-temperature (PCT) curve,
and a priori predict the affects of alloying are critical to
both practically test any proposed thermodynamic mod-
eling strategy and also inform rational tuning strategies
for specific storage applications.*!*2 Now, Equation (1)
is modified to account for hydrogen atom occupation of
the octahedral interstitial sites, and the idealized crys-
tallographic input to the GNN is a concatenation of the
alloyed FCC lattice and the interstitial lattice,
Ef = fGNN (XFCC @ Xinterstitials; 9) (2)

Figure 3 first validates the capabilities of Equa-
tion (2) to capture the configurational energy landscape
of hydrogen absorption in PdH,, Pdgy.91Rhg o9H,, and
Pdg.o1Ago.09H, alloys. Training configurations for 0 <
x < 1, where z is the hydrogen to metal ratio (H/M),
were generated by sampling random alloy configura-
tions in the 32 atom FCC supercell and random hydro-
gen occupation of the octahedral interstitials, with 80
DFT-relaxed configurations per z (Supplementary Sec-
tion 1). Figure 3a’s test set parity plots for 80/10/10
train/validation/test splits demonstrate excellent model
performance with MAEs of 0.3, 0.8, 1.1 meV/atom
for Pde, Pdoigtho_ogHw and Pdo_glAgoiong, respec-
tively. Figure 3b shows train and test set predictions for
Pdg.91Rhg.g9Hp.5 alongside several minimum and max-
imum energies predicted by ML screening 10,000 ran-
dom configurations, which again demonstrates successful
out-of-train-distribution predictions. Finally, Figure 3c
shows both histograms of the signed test set errors for
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Figure 2: (a) Distribution of Efppr for the 284 random AILiMgSnZn configuration dataset used to train Model
1 (top) and the distribution of Model 1’s predictions, Ef,lvu, from screening 10,000 random configurations per
composition (bottom). (b) Validating the screening predictions in panel (a) after computing Efprr. (c) The
screening of all possible 5-element permutations with atomic fractions « € {0.5,1.5} with the min, median, and max
Ef,Ml configuration validated after computing Ey ppr. (d) Model 2’s predictions, E M2, on the same configurations
as panel (c). (e) Model 2’s predicted E M2 and Eh’Mg distributions from 5,000 randomly sampled configurations for
select compositions.
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Figure 3: (a) Test set predictions from 80/10/10 train/validation/test split models for Pd, Rh-substituted, and Ag-
substituted alloys across all 0 < x < 1 [H/M] densities. (b) An expanded view of the train and test predictions for
the Rh-substituted alloy at a density of x = 0.5. Green stars indicate low and high energy configurations discovered
by screening 10,000 new configurations at = 0.5 which were subsequently re-tested with DFT. (¢) The test set
errors for PdagAgsH, when only 80%, 8%, 4%, or 1% of the train split was utilized for model training.

ing. The ML still achieves high performance with a test
set MAE of ~1.5 meV /atom when only ~100 configura-

Pdg.91Ag0.09H, and the overall test MAE when only 80%,
8%, 4% or 1% of the train split is used for model train-
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Figure 4: (a-c) ML screened configurational energies for each system are shown in the density plot, as well as (F)(z)
and Eyin (), for 10% of the training data, 100% of the training data, and the high-throughput ML predictions. (d)
Comparison of the MFT PCT curve predictions based on the ML screening with experiments for each system at 300
K. (e) Elucidation of the phase envelope by computing PCT curves at increasing temperatures. (f) Comparison of the
PCT curves for Pdg g1 Rhg g9 based on 10% of the training data, 100% of the training data, and the high-throughput

ML predictions using either MFT or BZ weighting.

tions are used for training, although the addition of 20x
more training data still contributes to significant error
reduction.

For 0 < z < 1 [H/M], we compute formation energies
of either 1,000 (fOI‘ Pde) or 10,000 (fOI‘ Pdo.gtho.QgHzx
and Pdg.91Ago.09H,) random configurations per z. Den-
sity plots in Figure 4a-c show the ML screened energies,
E(z), for each system. A linear interpolation of the av-
erage energy between E(x = 0) and E(x = 1), denoted
E(x), has been subtracted to better visualize the change

in convexity as a function of x. The average energy,
(E)(x), and minimum energy, Fni,(x), are also plotted
for a "10%" sampling of the training data, "100%" sam-
pling of the training data, and the full "ML" screening.
The narrowly distributed E(x) for PdH, makes even the
"10%" sampling of the training data sufficient to converge
(E)(z), and Emniy(z) within 1 meV per metal of the "ML"
screening. However, due to the substantially wider F(z)
distribution in the alloyed systems, the "10%" sampling
is insufficient to even smoothly converge (F)(x), and the



"ML" screening systematically converges the sampling of
low energy configurations with several meV /atom lower
Epnin(z) than the "100%" sampling of the training data.

Finally, PCT curves were computed using either a
mean field theory formalism (MFT) or a Boltzmann (BZ)
weighting of the energies (Supplementary Section 3) for
each alloy system and using the "10%" sampling, "100%"
sampling, or the ML screening. Figure 4d demonstrates
how this methodology can successfully resolve the rank-
ing of experimental plateau pressures, plateau width, and
saturation capacity between the 3 systems. The Pd-
hydrogen PCT curve was measured in-house (Supplemen-
tary Section 4), while experimental PCT curves for Pd-
Rh and Pd-Ag were taken from Ref. [43]|. Figure 4e shows
how PCT curves can be computed at different tempera-
tures to resolve the phase envelope, i.e., the decrease in
plateau width and increase in plateau pressure as a func-
tion of increasing temperature. Interestingly, Figure 4f
demonstrates that similar PCT curves are computed re-
gardless of data source and methodology in these systems,
mainly due the narrowly distributed E(x). We expect the
ML-based configurational screening will compound in ne-
cessity when moving to higher complexity systems where
the energy probability distributions broaden significantly
with varying local alloy environments (e.g., Figure 2) and
varying strengths of hydrogen binding in more diverse in-
terstitial environments.

Discussion. This work demonstrates the accuracy and
transferability of graph neural network models to accu-
rately predict the DFT-relaxed properties (i.e., formation
energies) of a crystal structure that has been mapped onto
an idealized lattice/interstitial representation. It shares
the advantages of the CE method in that (1) only a small
number of DFT training examples are needed (~100s) to
obtain meV/atom MAEs in up to quinary composition
spaces and (2) model inputs are derived from a trivial-
to-generate representation of the relaxed crystal struc-
ture. Therefore, one can then rapidly and accurately
compute energetics of hundreds of thousands of random
alloy configurations that may be needed to converge ther-
modynamic property predictions. At the same time, we
showed how the CGCNN approach employing an iden-
tical, low-complexity architecture and identical hyperpa-
rameters can accurately predict configurational energetics
in diverse materials for diverse applications. This removes
the need for manual tuning of the CE method when tran-
sitioning between problems of varying complexity.

We have shown meV /atom and sub-meV /atom MAEs,
i.e., below the expected error of DFT with respect to ex-
periments,** using a limited amount of training data in
two different and important practical applications of com-
positionally complex metals. First, we provided a single-
shot learning approach to compositionally optimize the
thermodynamic stability of low-density HEAs. The re-
sults were used to explain experimental observations in
the failed synthesis of a phase pure AlLiMgSnZn solid so-

lution FCC alloy. Our screening found a similar compo-
sition that reduces the energy above the hull from ~100
meV /atom by ~40 meV/atom and the density. In the
second application, we applied our methodology to more
structurally intricate FCC hydrides and screened the en-
ergy landscape of H occupation in Pd-substituted alloys.
To predict the key thermodynamic property for materials-
based hydrogen storage, we then calculated the PCT
curves with sufficient accuracy (for the first time to our
knowledge) to quantitatively capture alloy substitution
effects on the plateau pressure, its effect on saturation
capacities, and elucidate the phase envelope of the metal
to hydride transition. Moving forward, we anticipate this
approach to be useful in any variety of inorganic materials
applications that have traditionally been investigated by
the CE method. Meanwhile, the clear limitation of this
approach (and that of CE) occurs if lattice distortions are
so great that there is no longer a unique mapping from
the DFT-relaxed structure to its ideal lattice configura-
tion, in which case one would likely resort to atomistic
potentials and simulations for phase diagram predictions.
We envision the build-up of large-scale FCC, BCC, HCP,
etc. databases,* where the generalizability and flexibil-
ity of GNN models can be used for accurate predictions
across large compositional spaces without explicitly ac-
counting for, for example, sparsity of the cluster functions
in CE. We envision this to impact not only structural al-
loy and hydride design as demonstrated in this work, but
the expansive realm of applications in which high entropy
materials are being investigated today.
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