Supplementary Files

Supplementary Methods

The NURTuRE-CKD cohort study and biorepository includes 2996 participants from 16 nephrology centres across the UK. Detailed methods have been described previously⁵. Eligibility criteria included age \geq 18 years, at least one attendance to a nephrology clinic, eGFR 15-59ml/min/1.73m² or eGFR \geq 60ml/min/1.73m² with urine albumin creatinine ratio (UACR) >30mg/mmol, willing to participate in two study visits and able to give informed consent. Solid organ transplant recipients, those receiving chemotherapy or cancer treatment, expected survival <1 year, AKI or a major cardiovascular event within three months of recruitment were excluded. Recruitment commenced in 2017 and was completed in 2019.

The study was approved by the South Central - Berkshire Research Ethics Committee and is registered at Clinical Trials.gov (NCT04084145). NURTuRE is a collaborative project with multiple academic and commercial partners and is governed by a formal collaboration agreement. Funding is provided by the commercial partners (UCB Biopharma, Evotec International GmbH, Astra Zeneca, AbbVie and Travere therapeutics) with all funds paid to Kidney Research UK and awarded to the investigators as a research grant^{S1}

A single baseline visit was conducted by trained members of research staff for each participant. Three seated BP readings differing by <10% were taken using an oscillometric device according to a standard operating procedure and the mean of the three systolic and diastolic values calculated.

Diabetes status was defined by self-reported diabetic history, or use of antidiabetic medication. Atherosclerotic cardiovascular disease was defined as any history of stroke, myocardial infarction, coronary artery bypass surgery, peripheral vascular

disease or amputation either self-reported or from medical notes and recorded on the case record form. Stored samples from the baseline visit were analysed centrally for serum creatinine and urine albumin to creatinine ratio (UACR) at Geneva University Hospitals Switzerland to give a baseline eGFR and UACR for each participant. Estimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI equation (2009) without the ethnicity variable as recommended by NICE. Anti-hypertensive medications were recorded at baseline by the research teams and categorized by their method of action. Preparations containing two agents were separated into medication classes. Data were kept centrally in a database held in the UK Renal Registry (UKRR).

Blood Pressure Control

Baseline mean systolic and diastolic BP values were compared against three guidelines; two applicable to participants at time of recruitment: the 2014 NICE guideline^{S2}, and the international KDIGO 2012^{S3} guideline. NICE recommended different targets by albuminuria and diabetes status (<140/90 mmHg without diabetes, <130/80 mmHg with diabetes or UACR \geq 70 mg/mmol) and KDIGO by albuminuria status only (<140/90 mmHg, unless high risk ACR >30 mg/g then <130/80 mmHg. In 2021 KDIGO issued an updated guideline ^{S4} suggesting a target of <120 mmHg systolic based on findings from the intensive versus standard blood pressure intervention (SPRINT) trial^{S1} and BP control was assessed against the lower target to gauge the proportion of the recruited population that would meet it. BP control was defined as systolic and/or diastolic reading at baseline below the recommended target for each.

Statistical Analysis

Continuous data are presented as mean ± standard deviation (SD) where normally distributed and otherwise as median and interquartile range (IQR). Categorical variables are presented as counts and percentages. Comparison of mean systolic and diastolic BP were performed by independent t-test or 1 way analysis of variance (ANOVA).

To investigate factors associated with BP control, univariable logistic regression analysis was performed with achievement of each BP target as the dependent variable. To identify independent associations, multivariable logistic regression analysis for BP control by guideline was performed adjusting for age (<65 years), sex, ethnicity, diabetes, history of atherosclerotic cardiovascular disease, body mass index (BMI), smoking status, employment, number of antihypertensives, renin angiotensin system inhibition (RAASi), albuminuria status and eGFR. Variables to be included in the models were selected based on previously reported associations with BP control^{S5-S8} or significant associations in the univariable analyses. Odds ratios are reported with 95% confidence intervals with a p value of <0.05 considered statistically significant.

All statistical analysis was performed using IBM SPSS v 28.01.1

Supplementary Results

	Patient	SBP	DBP	P value	<i>P</i> value
	number	mmHg	mmHg	SBP	DBP
	(%)				
Whole cohort	2683	140±20	80±12		
Age years					
≥65	1384 (52)	143±19	76±12	< 0.001	< 0.001
<65	1299 (48)	136±19	84±12		
Sex					
Male	1590 (59)	140±20	80±13	0.015	0.980
Female	1093 (41)	138±21	80±12		
Ethnicity					
White	2322 (87)	140±21	80±12	< 0.001	< 0.001
Black	178 (7)	147±22	87±16		
Asian	84 (3)	135±20	82±12		
Other	97 (4)	135±17	81±11		
eGFR ml/min/1.73m ²					
>60	271 (10)	135±19	84±11	< 0.001	< 0.001
45-60	458 (17)	136±19	82±12		
30-44	891 (33)	141±21	81±12		
15-29	976 (36)	141±21	78±13		
<15	87 (3)	142±20	77±13		
Albuminuria mg/g					
<30	625 (23)	134±19	77±11	< 0.001	< 0.001
≥30-300	877 (33)	138±20	79±12		
≥300	1181(44)	144±21	82±13		
Diabetes					
Yes	812 (30)	144±21	76±12	< 0.001	< 0.001
No	1871 (70)	138±20	82±12		
BMI kg/m ²					
>30	1071 (40)	141±20	80±13	< 0.001	0.74
25-30	935 (35)	140±20	80±12		
<25	606 (23)	136±21	79±12		
RAASi					
Yes	1830 (68)	140±20	81±12	0.491	< 0.001
No	853 (32)	139±21	79±12		
Smoking status					
Current	230 (9)	141±19	83±12	0.609	< 0.001
Ex-smoker	1083 (40)	140±21	79±12		
Never smoked	1335 (50)	139±20	81±12		
History of					
atherosclerotic CVD		4.40.00	77.40	0.000	
Yes	445 (17)	143±23	//±13	0.003	< 0.001
NO	2197 (82)	139±20	81±12		
Primary Renal					
Disease					

Supplementary Table S1. Blood Pressure by baseline demographics

CKD of uncertain	816 (30)	141±21	79±12	< 0.001	< 0.001
aetiology					
Glomerular disease	650 (24)	137±18	82±11		
Diabetic kidney	310 (12)	147±20	76±12		
disease					
Inherited	291 (11)	135±17	83±11		
nephropathies					
Hypertension/renal	242 (9)	144±25	79±15		
vascular disease					
Tubulointerstitial	155 (6)	137±20	82±15		
disease					
Other systemic	56 (2)	131±27	75±14		
diseases affecting the					
kidney					
Congenital	45 (2)	137±19	83±12		
Urological	116 (4)	132±18	81±10		
Educational level					
No qualifications	685 (25)	143±22	77±12	< 0.001	< 0.001
GCSE	654 (24)	140±21	80±12		
A Levels	204 (8)	139±20	81±13		
NVQ	358 (13)	138±21	82±12		
First degree	442 (16)	137±18	82±11		
Higher degree	282 (11)	136±18	81±11		
Other	16 (0.6)	142 (127-	81 (66-		
		151)	89)		
Health Literacy					
SILS >2	138 (5)	140±19	80±14	0.936	0.805
SILS ≤2	2477 (92)	140±21	80±12		
Employment Status					
Working	926 (35)	135±18	84±11	< 0.001	< 0.001
Retired	1403 (52)	143±21	77±12		
Unemployed	61 (2)	138 (121-	82 (77-		
-		151)	90)		
Student	10 (0.3)	123 (117-	80 (78-		
		131)	83)		
Other	251 (9)	140±22	84 ±13		
IMD Quintile					
1 (Most deprived)	575	141±20	80±11	0.184	0.329
2	565	140±20	80±12		
3	507	138±20	80±12		
4	492	139±20	80±12		
5 (Least deprived)	538	139±21	81±13		

BMI- body mass index, CVD – cardiovascular disease, CKD – chronic kidney disease, eGFR – estimated glomerular filtration rate, GCSE – general certificate of secondary education, IMD- index of multiple deprivation, NVQ- national vocational qualification, RAASi - renin angiotensin system inhibition, SILS – single-item literacy screener where a score of >2 suggested impaired health literac

Supplementary Figure S1. Blood pressure in the NURTuRE-CKD cohort according KDIGO CKD risk categories (n=2683, data are median (IQR))

		A1	A2	A3
		UACR <30 mg/g	UACR 30-300 mg/g	UACR >300 mg/g
G1 (GFR >90ml/min/1.73m ²)	SBP	127 (119-150)	130 (119-151)	129 (118-138)
	DBP	81 (78-89)	88 (78-96)	84 (78-92)
G2 (GFR 60-89ml/min/1.73m ²)	SBP	130 (119-146)	136 (122-145)	136 (126-151)
	DBP	81 (75-90)	84 (75-92)	85 (77-93)
G3a (GFR 45-	SBP	132 (121-142)	134 (123-145)	140 (127-157)
59ml/min/1.73m ²)	DBP	80 (72-87)	81 (73-88)	84 (78-91)
G3b (GFR 30-	SBP	133 (123-143)	138 (125-153)	142 (130-156)
44ml/min/1.73m ²)	DBP	77 (69-85)	81 (73-88)	82 (74-90)
G4 (GFR 15-29 ml/min/1.73m ²)	SBP	132 (121-148)	135 (124-149)	144 (132-158)
	DBP	72 (64-80)	76 (68-82)	80 (72-89)
G5 (GFR <15 ml/min/1.73m ²)	SBP	128 (122-140)	135 (127-145)	142 (130-161)
	DBP	64 (56-75)	73 (64-80)	78 (71-91)

Supplementary Figure S2. Mean systolic and diastolic BP by number of antihypertensives

Supplementary Figure S3. Venn diagram showing the pattern of use of the three most commonly prescribed anti-hypertensives at baseline in the NURTuRE-CKD

Supplementary Table S2. Univariate associations with BP control by guideline

		Univariate Odds ratios		Univariate Odds ratio		Univariate Odds ratio	
		KDIGO 2012	D	KDIGO 2021	D		D
Age (years)	≥65	0.913	0.279	0.578	< 0.001	0.716	< 0.001
,		(0.774,1.077)		(0.467,0.716)		(0.612,0.837)	
	<65	Reference		Reference		Reference	
Sex	Male	0.731	< 0.001	0.843	0.116	0.739	< 0.001
	Fomalo	(0.619,0.683)		(0.682,1.043)		(0.630,0.65)	
Ethnicity	Non-white	0.894	0.372	0.881	0.409	0.889	0.320
	ethnicity	(0.699,1.143)	0.0.2	(0.653,1.190)	000	(0.705,1.121)	0.020
	White	Reference		Reference		Reference	
Diabotos	ethnicity	0 735	0.001	0.657	< 0.001	0.342	< 0.001
Diabetes	Diabetes	(0.611.0.884)	0.001	(0.514.0.840)	< 0.001	(0.283.0.413)	< 0.001
	No diabetes	Reference		Reference		Reference	
BMI (m/kg ²)	>30	0.648	< 0.001	0.496	< 0.001	0.536	< 0.001
	25.20	(0.524,0.802)	0.000	(0.380,0.646)	< 0.001	(0.437,0.658)	< 0.001
	25-30	(0.569.0.878)	0.002	0.595	< 0.001	(0.559.0.846)	< 0.001
	<25	Reference		Reference		Reference	
Smoking	Ever smoked	0.907	0.248	0.945	0.602	0.930	0.363
Status	Nover	(0.768,1.070)		(0.764,1.168)		(0.794,1.088)	
	smoked	Reference		Relefence		Reference	
History of	Yes	0.982	0.874	0.996	0.976	0.795	0.037
CVD disease		(0.786,1.227)		(0.749,1.324)		(0.641,0.987)	
Franks and	No	Reference		Reference		Reference	
Employment	Retired		0.308		< 0.001		< 0.001
	1 totilou	(0.762,1.090)	0.000	(0.518,0.819)	0.001	(0.594,0.835)	0.001
	Unemployed	1.033	0.908	1.334	0.362	0.745	0.284
	Chudant	(0.595,1.794)	0.075	(0.718,2.479)	0.000	(0.435,1.277)	0.000
	Student	(0.890-	0.075	2.900	0.095	5.205	0.030
		11.342)		8)		5)	
	Other	0.635	0.006	0.824	0.318	0.653	0.004
Education	No	(0.460,0.880)		(0.563,1.205)		(0.487,0.875) Reference	
status	qualifications	Reference		Relefence		Relefence	
	GCSE	1.115	0.365	1.150	0.372	1.265	0.040
		(0.881,1.411)	0.040	(0.846,1.562)		(1.011,1.583)	
	A Levels	0.988	0.948	1.244	0.323	1.231	0.209
	NVQ	1.030	0.839	1.430	0.043	1.172	0.245
		(0.776,1.366)		(1.011,2.023)		(0.897,1.532)	
	First degree		0.098		0.261	1.395	0.008
	Higher degree	(0.960, 1.613)	0 0 1 9	(0.000,1.099)	0 306	(1.069,1.766)	< 0 001
	righter degree	(1.059.1.910)	0.010	(0.831,1.802)	0.000	(1.271,2.241)	0.001
	Other	0.850	0.780	0.430	0.416	0.923	0.883)
	1 Moot	(0.271,2.667)	0 727	(0.056,3,292)	0.002	(0.317,2.689)	0.216
	deprived	(0.807	0.131	(0.426	0.003	(0.888.1.444)	0.310
	dopintod	1.353)		0.837)		(0.000,)	
	2	1.108	0.436	0.726	0.055	1.106	0.418
		(0.856,		(0.524,		(0.866,	
	3	1.433)	0.727	1.007)	0.965	1.045	0.734
		(0.804,		(0.734,		(0.812,	
		1.368)		1.382)		1.344)	
	4	1.137	0.344	0.881	0.446	1.164	0.239

		(0.871,		(0.635,		(0.904,	
		1.483)		1.221)		1.498)	
	5 (Least	Reference		Reference		Reference	
	deprived)						
Number of	None	Reference		Reference		Reference	
antihypertensi							
ves							
	One	0.659	0.004	1.003	0.987	0.827	0.211
		(0.496,0.878)		(0.698,1.442)		(0.613,1.114)	
	Two	0.576	< 0.001	0.846	0.419	0.636	0.007
		(0.433,0.767)		(0.564,1.269)		(0.458,0.883)	
	Three or more	0.373	< 0.001	0.487	< 0.001	0.447	< 0.001
		(0.282,0.493)		(0.352,0.675)		(0.345,0.579)	
RAASi	No	Reference		Reference		Reference	
	Yes	0.763	0.002	0.931	0.526	0.843	0.042
		(0.641,0.908)		(0.747,1.161)		(0.716,0.994)	
uACR mg/g	A1	Reference		Reference		Reference	
	A2	0.212	< 0.001	0.752	0.029	0.677	< 0.001
		(0.170,0.264)		(0.581,0.972)		(0.551,0.832)	
	A3	0.121	< 0.001	0.388	< 0.001	0.199	< 0.001
		(0.097,0.151)		(0.297,0.508)		(0.161,0.246)	
eGFR	Per	1.007	0.005	1.009	0.001	1.007	0.001
ml/min/1.73m ²	1ml/min/1.73	(1.002,1.011)		(1.004-1.015)		(1.003-1.011)	
	m ²						

BMI- body mass index, CVD - cardiovascular disease, eGFR - estimated glomerular filtration rate, GCSE - general certificate

of secondary education, IMD- index of multiple deprivation, NVQ- national vocational qualification, RAASi - renin angiotensin system inhibition, UACR – urinary albumin creatinine ratio

Supplementary Figure S4. Mean \pm standard deviation BP at baseline by KDIGO CKD risk categories in the NURTuRE CKD cohort study (n=2683)

KDIGO Risk	SBP	DBP
Very low	133±18	82±11
Low	134±18	82±11
Medium	135±19	81±11
High	142±11	80 ±13

DBP – diastolic blood pressure, SBP- systolic blood pressure

Supplementary Figure S5. Proportion of participants meeting KDIG0 2021 BP guideline (systolic BP <120mmHg) by KDIGO GFR category n

(%) in NURTuRE CKD at baseline

	A1	A2	A3
	uACR <30 mg/g	uACR 30-300 mg/g	uACR >300 mg/g
G1	1 (20)	3 (30)	10 (29)
(eGFR >90 ml/min/1.73m ²)			
G2	20 (29)	14 (20)	15 (17)
(eGFR 60-89 ml/min/1.73m ²)			
G3a	38 (22)	25 (17)	16 (10)
(eGFR 45-59 ml/min/1.73m ²)			
G3b	43 (19)	48 (16)	24 (7)
(eGFR 30-44 ml/min/1.73m ²)			
G4	35 (24)	64 (19)	47 (10)
(eGFR 15-29 ml/min/1.73m ²)			
G5	1 (14)	0	5 (12)
(eGFR <15 ml/min/1.73m ²)			

eGFR – estimated glomerular filtration rate, uACR – urinary albumin creatinine ratio

Supplementary Figure S6. Proportion of participants meeting KDIGO 2012 BP target (<140/90 mmHg, unless high risk ACR >30 mg/g then <130/80 mmHg) in NURTuRE CKD at baseline

	A1	A2	A3
	uACR <30 mg/g	uACR 30-300 mg/g	uACR >300 mg/g
G1	3 (60)	2 (20)	9 (26)
(eGFR >90 ml/min/1.73m ²)			
G2	39 (56)	19 (27)	21 (33)
(eGFR 60-89 ml/min/1.73m ²)			
G3a	111 (66)	36 (25)	26 (16)
(eGFR 45-59 ml/min/1.73m ²)			
G3b	137 (60)	70 (23)	568(15)
(eGFR 30-44 ml/min/1.73m ²)			
G4	95 (65)	96 (29)	75 (15)
(eGFR 15-29 ml/min/1.73m ²)			
G5	4 (57)	4 (31)	9 (21)
(eGFR <15 ml/min/1.73m ²)			

eGFR – estimated glomerular filtration rate, uACR – urinary albumin creatinine ratio.

Supplementary Figure S7. Proportion of participants meeting NICE BP target (<140/90 mmHg without diabetes, <130/80 mmHg with diabetes or uACR ≥ 70mg/mmol) in NURTuRE CKD

	Diabetes	A1	A2	A3	A3
		uACR <30mg/g	uACR 30-300 mg/g	uACR <70mg/mmol	uACR >70mg/mmol
G1 (eGFR >90	Yes	No participants	0/3 (0)	1 (33)	2 (29)
ml/min/1.73m ²)	No	3 (60)	4 (57)	1 (100)	6 (26)
G2 (eGFR 60-89	Yes	1 (25)	3 (33)	0 (0)	5 (28)
ml/min/1.73m ²)	No	37 (56)	33 (53)	6 (46)	14 (24)
G3a (eGFR 45-59	Yes	8 (32)	5 (22)	0 (0)	5 (14)
ml/min/1.73m ²)	No	95 (66)	72 (60)	26 (72)	9 (11)
G3b (eGFR 30-44	Yes	23 (36)	20 (22)	9 (20)	13 (13)
ml/min/1.73m ²)	No	99 (61)	108 (50)	30 (41)	20(13)
G4 (eGFR 15-	Yes	21 (46)	32 (28)	7 (19)	12 (8)
29ml/min/1.73m ²)	No	64 (63)	130 (59)	33 (40)	37 (18)
G5 (eGFR	Yes	2 (100)	3 (43)	2 (50)	2 (17)
<15ml/min/1.73m ²)	No	2 (40)	3 (50)	2 (100)	3 (13)

eGFR- estimated glomerular filtration rate, urinary albumin creatinine ratio uACR.

Supplementary References

S1 Wright JT, Jr., Williamson JD, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. *N Engl J Med*. Nov 26 2015;373(22):2103-16. doi:10.1056/NEJMoa1511939

S2 National Institute of Health and Care Excellence (NICE). Chronic kidney disease: assessment and management. ed2014.

S3 Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Guideline. *Kidney International*. 2013 2013;3(1)

S4 Cheung AK, Chang TI, Cushman WC, et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney International. 2021/03/01/ 2021;99(3, Supplement):S1-S87. doi:https://doi.org/10.1016/j.kint.2020.11.003

S5 Schneider MP, Hilgers KF, Schmid M, et al. Blood pressure control in chronic kidney disease: A cross-sectional analysis from the German Chronic Kidney Disease (GCKD) study. *PLoS One*. 2018;13(8):e0202604. doi:10.1371/journal.pone.0202604

S6 Muntner P, Anderson A, Charleston J, et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. *Am J Kidney Dis*. Mar 2010;55(3):441-51. doi:10.1053/j.ajkd.2009.09.014

S7 Alencar de Pinho N, Levin A, Fukagawa M, et al. Considerable international variation exists in blood pressure control and antihypertensive prescription patterns in chronic kidney disease. *Kidney Int*. Oct 2019;96(4):983-994. doi:10.1016/j.kint.2019.04.032

S8 Fraser SD, Roderick PJ, McIntyre NJ, et al. Suboptimal blood pressure control in chronic kidney disease stage 3: baseline data from a cohort study in primary care. *BMC Fam Pract*. Jun 24 2013;14:88. doi:10.1186/1471-2296-14-88

S9 Thomas G, Xie D, Chen HY, et al. Prevalence and Prognostic Significance of Apparent Treatment Resistant Hypertension in Chronic Kidney Disease: Report From the Chronic Renal Insufficiency Cohort Study. *Hypertension*. Feb 2016;67(2):387-96. doi:10.1161/HYPERTENSIONAHA.115.06487

\$10 Fraser SD, Taal MW. Multimorbidity in people with chronic kidney disease: implications for outcomes and treatment. Curr Opin Nephrol Hypertens. Nov 2016;25(6):465-472. doi:10.1097/MNH.000000000000270

S11 Schmidt IM, Hubner S, Nadal J, et al. Patterns of medication use and the burden of polypharmacy in patients with chronic kidney disease: the German Chronic Kidney Disease study. Clin Kidney J. Oct 2019;12(5):663-672. doi:10.1093/ckj/sfz046

S12 Schmitt KE, Edie CF, Laflam P, Simbartl LA, Thakar CV. Adherence to antihypertensive agents and blood pressure control in chronic kidney disease. Am J Nephrol. 2010;32(6):541-8. doi:10.1159/000321688

STROBE Statement—checklist of items that should be included in reports of observational studies

	ltem No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a	1
		commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and	N/A
		balanced summary of what was done and	
		what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in	Supplementary
, ,		the paper	1
Setting	5	Describe the setting, locations, and relevant	Supplementary
		dates, including periods of recruitment,	1,2
		exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria,	Supplementary
		and the sources and methods of selection of	1,2
		participants. Describe methods of follow-up	
		Case-control study—Give the eligibility	
		chiena, and the sources and methods of case	
		rationale for the choice of cases and controls	
		Cross-sectional study—Give the eligibility	
		criteria and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give	
		matching criteria and number of exposed and unexposed	
		Case-control study—For matched studies,	
		give matching criteria and the number of	
		controls per case	
Variables	7	Clearly define all outcomes, exposures,	
		predictors, potential confounders, and effect	
	0*	modifiers. Give diagnostic criteria, if applicable	
Data sources/	8^	For each variable of interest, give sources of	
measurement		data and details of methods of assessment	
		(measurement). Describe comparability of	
		assessment methods it there is more than one	
Rias	9	Describe any efforts to address potential	14
Did3	5	sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were	8
		handled in the analyses. If applicable,	
		describe which groupings were chosen and	
		why	
Statistical methods	12	(a) Describe all statistical methods, including	8
		those used to control for confounding	

		(b) Describe any methods used to examine	
		subgroups and interactions	
		(c) Explain how missing data were addressed	6
		(d) Cohort study—If applicable, explain how	
		loss to follow-up was addressed	
		Case-control study—If applicable, explain how	
		matching of cases and controls was	
		addressed	
		Cross-sectional study—If applicable, describe	
		analytical methods taking account of sampling	
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of	
rantopanto		study—eq numbers potentially eligible, examined for	
		eligibility confirmed eligible included in the study	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eq	Supplementary
data	17	demographic clinical social) and information on	Cappiententary
uala		exposures and potential confounders	
		(b) Indicate number of participants with missing data for	Supplementary
		each variable of interest	Cuppiementary
		(c) Cobort study—Summarise follow-up time (eq	
		average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or	
	10	summary measures over time	
		Case-control study—Report numbers in each exposure	
		category or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome	
		events or summary measures	
Main results	16	(a) Give upadjusted estimates and if applicable	Supplementary
Main results	10	confounder-adjusted estimates and their precision (eq	Cuppiementary
		95% confidence interval) Make clear which	
		confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous	Supplementary
		variables were categorized	Cappionicitary
		(c) If relevant consider translating estimates of relative	
		risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eq analyses of subgroups	
	.,	and interactions and sensitivity analyses	
Discussion	10		0
Key results	18	Summarise key results with reference to study	9
Limitationa	10	Discuss limitations of the study, taking into account	0
LIMILATIONS	19	Discuss initiations of the study, taking into account	3
		direction and magnitude of any notartial bias	
linke we we te C		Circo a continuo en any potential blas	0
interpretation	20	Give a cautious overall interpretation of results	9
		considering objectives, limitations, multiplicity of	
		analyses, results from similar studies, and other	
		relevant evidence	

Generalisability	21	Discuss the generalisability (external validity) of the study results	9,10			
Other information						
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	S 1,2			