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Abstract 21 

Periodontal diseases are one of the greatest healthcare burdens worldwide. The periodontal tissue 22 

compartment is an anatomical tissue interface formed from the periodontal ligament, gingiva, 23 

cementum, and bone. This multifaceted composition makes tissue engineering strategies challenging 24 

to develop due to the interface of hard and soft tissues requiring multiphase scaffolds to recreate the 25 

native tissue architecture. Multilayer constructs can better mimic tissue interfaces due to the 26 

individually tuneable layers. They have different characteristics in each layer, with modulation of 27 

mechanical properties, material type, porosity, pore size, morphology, degradation properties, and 28 

drug-releasing profile all possible. The greatest challenge of multilayer constructs is to mechanically 29 

integrate consecutive layers to avoid delamination, especially when using multiple manufacturing 30 

processes. Here, we review the development of multilayer scaffolds that aim to recapitulate native 31 

periodontal tissue interfaces in terms of physical, chemical, and biological characteristics. Important 32 

properties of multiphasic biodegradable scaffolds are highlighted and summarised, with design 33 

requirements, biomaterials, and fabrication methods, as well as post-treatment and drug/growth 34 

factor incorporation discussed. 35 
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1. Introduction 37 

Periodontal diseases are one of the greatest global healthcare challenges, affecting 19% of the global 38 

adult population and accounting for nearly one-third of the approximately 3.5 billion oral disease cases 39 

worldwide 1. With more than 1 billion instances of periodontitis globally in 2019, the burden is 40 

increasing, with the prevalence rate increasing by almost 8.5% since 1990 2.  41 

Periodontium, where soft tissues are in direct contact with calcified tissues, contains four distinct 42 

tissues: gingiva (the gums), cementum (a calcified material that covers the tooth), the periodontal 43 

ligament (PDL, which supports the teeth) and alveolar bone 3,4 (Figure 1A). Periodontal diseases refer 44 

to a broad range of chronic inflammatory conditions affecting the gingiva, alveolar bone, and PDL. 45 

Gingivitis, a local inflammation of the gingiva caused by bacteria in dental plaque, causes the gum to 46 

swell, redden, and bleed. Untreated, it leads to the separation of the gum from the tooth, and chronic 47 

periodontitis develops (Figure 1B). Eventually, it may result in the formation of deep periodontal 48 

pockets and tooth loss (Figure 1C). 49 

 50 

Figure 1: (A) Healthy tooth anatomy. Periodontal pathologies; (B) periodontitis; and (C) dental loss. And 51 
treatments; (D) GBR/GTR membrane use in periodontitis with or without scaffold; (E) GBR membrane in dental 52 
loss before implant placement. Navy blue arrows show the soft tissue whose infiltration is intended to be limited 53 
using dental membranes. 54 
 55 
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Due to their ability to spatially direct regeneration, guided tissue regeneration/guided bone 56 

regeneration membranes (GTR/GBR) are of note when treating pathological periodontitis. These 57 

membranes act as a barrier between the epithelial tissue and bone/bone graft, inhibiting migration of 58 

fast-proliferating fibroblasts and epithelial cells into the defect site (Figure 1D, E), allowing space and 59 

time for bone cells to infiltrate into the defect site and regenerate the dental tissue 5,6 (Figure 2A-C). 60 

When tooth loss has occurred, there is not sufficient alveolar bone remaining for implant placement, 61 

necessitating a bone graft. Whilst these membranes can be used in isolation as a barrier, they can also 62 

be combined with tissue engineering scaffolds that facilitate regeneration of the alveolar bone and 63 

PDL (Figure 1D) for the treatment of periodontitis. Long-term follow-up studies (5-12 years) showed 64 

that the survival rate of the implants placed simultaneously with the GBR membrane was higher than 65 

90%, demonstrating the capability of this approach 7–9.  66 

 67 

Figure 2: (A) GBR membrane implantation procedure 10, (B) multi-layer GBR membrane placement in dental loss 68 

before implant placement, (C) role of each layer of multi-layer GBR constructs. 69 

Membranes for GTR/GBR applications can be non-resorbable or bioresorbable 11. Non-resorbable 70 

membranes are made from synthetic materials, e.g. Cytoplast® TXT-200 (polytetrafluoroethylene 71 

(PTFE)), Cytoplast® Ti-250 (titanium-reinforced PTFE), and Gore-Tex (expanded PTFE). Whilst their 72 

inability to degrade necessitates a second surgery for removal, PTFE-based membranes are widely 73 

preferred due to their open microstructure and biocompatibility 12. Bioresorbable GBR/GTR 74 

membranes do not require secondary surgical operations as they degrade within the body and can be 75 

formed from natural or synthetic materials. Bioresorbable collagen membranes are mainly composed 76 

of collagen type I and III isolated from swine, bovine, and human sources 13. Collagen is a structural 77 

protein that makes up most of the connective tissue and demonstrates great biocompatibility in tissue 78 

engineering applications 14. However, its antigenicity must be removed chemically to avoid an immune 79 

response. Furthermore, whilst biodegradation is desirable to minimise surgical interventions, 80 

minimally processed collagen degrades rapidly, meaning various crosslinking agents such as 81 

glutaraldehyde, formaldehyde, or enzymes are often used to prevent their fast deterioration rate 15,16. 82 

Alternatively, biodegradable synthetic polymers such as poly(lactic acid) (PLA), polycaprolactone 83 
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(PCL), poly(glycolic acid) (PGA), poly(hydroxyl butyric acid) (PHB), poly(hydroxyl valeric acid), and their 84 

copolymers are also used clinically 17–19. Whilst the mechanical properties of synthetic polymers are 85 

superior to their native counterparts, their interaction with the biological tissue is limited. Therefore, 86 

it is common to dope synthetic membranes with bioactive natural polymers to enhance cellular 87 

responses 20. 88 

2. Design considerations for multiphase constructs for periodontal tissue interfaces 89 

Regeneration of the complex, hierarchical nature of periodontal tissues requires the design of 90 

multiphase GBR/GTR constructs where the composition and structure of each layer recapitulates the 91 

native tissue architecture 21. Although the barrier component between the gingiva and alveolar bone 92 

is referred to as ‘membrane’ and the regeneration component that restores the cementum, PDL and 93 

alveolar bone is referred to as ‘scaffold’ here, it should be noted the terms ‘scaffold’ and ‘membrane’ 94 

are often used interchangeably in periodontal literature (Figure 1D). Each phase of the scaffolds and 95 

membranes needs different chemical, physical, and biological properties to meet the unique design 96 

requirements of periodontal tissues (Figure 3). The different approaches taken to achieve these ranges 97 

of chemical and physical properties using different biomaterial compositions and fabrication 98 

techniques are reviewed herein. 99 

 100 
Figure 3: A) Periodontal scaffolds can be designed to mimic cementum, PDL, and alveolar bone and their 101 

combinations – in the form of monolayer, bilayer and trilayer scaffolds. B) In GBR membrane design, mostly 102 

bilayer membranes are designed to be implanted between the gingiva and alveolar bone. 103 
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The physical, mechanical, chemical, and biological properties of the membrane play a crucial role in 104 

the proliferation, adhesion, differentiation, and migration of cells and the regeneration of the defect 105 

site. These properties can be reduced into key characteristics that should be considered in the design 106 

of an ideal dental membrane/scaffold (Figure 4), namely: biocompatibility, biodegradability, porosity, 107 

mechanical strength, surface roughness, handleability, hydrophilicity, occlusiveness (barrier 108 

effectiveness), space maintenance, and swelling. 109 

 110 

 111 

Figure 4: Ideal design considerations for periodontal GBR/GTR membranes. 112 

Mechanically, the membrane should be elastic and flexible, rather than hard and brittle, with good 113 

fatigue and tensile strength to improve processability and durability post-implantation so it is not 114 

deformed by repetitive chewing forces 22,23. Regardless of the material and cell type, surface 115 

topography and micrometre to sub-micrometre scale surface roughness are also other design 116 

considerations that directly affect cell proliferation, morphology, migration, and phenotypic 117 

expression of the cell in vivo and in vitro 24–27. 118 

Swelling/water uptake is a crucial parameter for wound healing as it affects the release of biologically 119 

active substances in the wound area and ensures the absorption of exudate 22. An ideal scaffold should 120 

encourage cell adhesion, which is principally modulated by material hydrophilicity; more hydrophobic 121 

materials may reduce biological interaction 28. An additional consideration is the degradation rate, 122 

which should not be faster than the remodelling and maturation of the neo-tissue 29. 123 

Cell morphology is directly affected by pore geometry and scaffold stiffness. Pore size and 124 

interconnectivity must permit cell infiltration through the scaffold, with higher porosity also 125 

facilitating efficient nutrient transport and timely vascularisation by new blood vessels, which are 126 

essential for successful regeneration 30,22,31,32. Since wound healing begins with hemostasis, it is 127 
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important periodontal scaffold materials are hemocompatible by avoiding damaging the erythrocytes 128 

22. Additionally, ideally, the scaffold would also resist the accumulation of bacterial plaque to minimise 129 

infection risk due to the high probability of bacterial contamination in the mouth 22. Some of the 130 

critical design parameters, such as morphological properties, mechanical properties, and the 131 

degradation rate of the periodontal constructs, will be reviewed in the following section. 132 

2.1.1. Morphological properties 133 

Porosity is a material-independent morphological feature that is defined as the percentage of empty 134 

space in a solid 33, 34. Materials with high porosity facilitate the efficient release of biological factors, 135 

serve as excellent substrates for nutrition transfer, and permit the ingrowth of more cells and neo-136 

vasculature. Consequently, various porosity-related elements such as pore distribution, pore 137 

geometry, pore size, total porosity, and pore interconnectivity must be considered when 138 

manufacturing scaffolds for tissue engineering 35. They modulate tissue regeneration by affecting the 139 

mechanical properties, topography, degradation rate, surface-specific area, and roughness of the 140 

scaffold, which consequently affect cell penetration, cell distribution, cell migration, cell-to-cell 141 

interaction, fluid diffusion, extracellular matrix (ECM) deposition, angiogenesis, and initial adsorption 142 

of proteins 36. 143 

Although high porosity is desirable from the biological point of view, this must be balanced with the 144 

corresponding reduction in mechanical properties so that the structural integrity of the biomaterial is 145 

not compromised 37. Greater fluid entry into the scaffold and a larger surface area with increased 146 

porosity will also accelerate degradation 38. Consequently, there is a limit to the degree of 147 

porosity that may be included in a scaffold without significantly impairing its degradation rate and 148 

mechanical strength 36. Wall thickness and density of the scaffolds are also related to mechanical 149 

performance, directly contributing to compressive strength 39. The use of materials with high innate 150 

mechanical strength may provide a solution to these problems that arise with greater porosity 40. 151 

Another critical morphological parameter in membrane design is pore size 41, as it affects cell 152 

morphology, differentiation, and gene expression 42,43. Pore diameter has been shown to be an 153 

effective modulator of bone marrow-derived stem/stromal cell differentiation into osteogenic, 154 

chondrogenic and myogenic lineages and adipose-derived stem cells into chondrogenic and hepatic 155 

lineages 44. Due to the multiscale nature of biological tissues, it has also been shown that a hierarchy 156 

of pore sizes is beneficial to recreate the different native length scales. For example, membrane 157 

nanoporosity improves the deposition of collagen fibres and ECM, while membrane macroporosity 158 

modulates cell attachment, distribution, migration, and subsequent angiogenesis in vivo 45. 159 
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Pore morphology also affects the physical and biological properties of the scaffold. As the complexity 160 

of the pore structure increases, so does the compressive strength of the scaffold 46. Pore curvature, 161 

e.g., concave or convex, can also be used to modulate cell behaviour 47. Nonetheless, the complexity 162 

of pore morphology should not impede normal cellular functions. Optimising pore morphology must 163 

establish a balance that maximises mechanical performance whilst preserving or promoting desirable 164 

cellular behaviour 35. 165 

Interconnected and open pore networks govern the permeability of the scaffold via regulating fluid 166 

circulation 35 and are required for cell proliferation, migration, and nutrition for tissue vascularisation 167 

and the development of neo-tissues 37,48,49. Specific surface area is the relative scaffold volume 168 

accessible for cell attachment and is inversely proportional to the average pore size 50. Consequently, 169 

a scaffold with larger pores gives a smaller specific surface area for cell attachment, while a scaffold 170 

with smaller pores has a larger specific surface area that promotes greater initial cell adhesion 51. 171 

However, very strong initial cell attachment may lead to cellular overcrowding and the creation of a 172 

compact cellular capsule at the exterior of the scaffold, which inhibits appropriate cell movement and 173 

restricts diffusion 34,52. 174 

Ensuring the continued survival of new tissue and cells at the site healing requires neo- vascularisation. 175 

Porosity and permeability significantly impact the degree of vascularisation and viability of 176 

the regenerating tissue inside the scaffold 35. Different pore sizes are suggested for optimal 177 

vascularisation and angiogenesis within a scaffold. The proposed minimal pore size for penetration of 178 

endothelial cells is 30–40 µm 53, yet alternative larger size ranges, such as 160–270 µm 54 and 300 µm 179 

55, are also commonly suggested. 180 

Vaquette et al. fabricated a biphasic scaffold that is in contact with the PDL and bone tissue using 181 

solution and melt electrospinning, respectively. The bone compartment of the structure showed a 182 

three-dimensional (3D), highly porous, highly interconnected morphology with low stiffness and an 183 

average macroscopic pore size of 220 ± 141 µm. On the other side, the periodontal portion 184 

is comprised of a flexible membrane with comparably smaller pore-sizes (10-20 µm range), which is 185 

capable of mechanically assisting the cell sheet and offering initial tissue occlusion. After up to 10 186 

weeks in an ovine periodontal defect model, the histological investigation revealed the membrane 187 

was completely infiltrated by cells and ECM, confirming excellent integration of the construct with the 188 

surrounding tissues. As shown by oblique attachment in bone and cementum and the existence of a 189 

vascularised PDL, the regenerated periodontium exhibited a striking similarity to the natural, healthy 190 

periodontium 56. 191 
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Zhang et al. fabricated sandwich-like multifunctional scaffolds composed of chitosan/gelatin/PCL 192 

using lyophilisation and electrospinning techniques. Fabricated scaffolds had an average pore size of 193 

10 μm and porosity of less than 50%. These composite scaffolds had blood-clotting capability, with 194 

the porosity and swelling properties of the scaffolds improving hemostatic effectiveness. Blood cells 195 

adhered to the surfaces of the scaffolds, and the hierarchical pore structure and morphology of the 196 

sandwich-like scaffolds resulted in high liquid absorbability for hemostasis control. Therefore, small 197 

pore-size composite scaffolds may serve as useful barrier membranes by restricting cell infiltration 198 

and enhancing blood clotting 57. 199 

2.1.2. Mechanical properties 200 

Mechanical characteristics are one of the most important considerations for periodontal scaffolds. 201 

They must retain their integrity peri-transplantation and survive the constant dynamic mechanical 202 

environment of the jaw post-implantation. Ideally, scaffold mechanical properties would closely 203 

match those of the tissues where the scaffold is transplanted to avoid adverse effects arising from 204 

stress-shielding 58–60. Table 1 shows the mechanical properties of periodontal tissues.  205 

Table 1: Young’s modulus and tensile strength for dental structures 61, 62, 63, 64. 206 

Structure Young’s modulus (MPa) Tensile strength (MPa) 

Alveolar bone 1.38×104 121 

Gingiva 3-37.36 3.81 

Cementum 1.8×104 - 

PDL 6.9 - 

 207 

Biomaterials made from synthetic and natural biodegradable polymers have shown significant 208 

potential for regenerative medicine 65. Among natural polymers, collagen and chitosan are the most 209 

used for periodontal regeneration 66–68. Natural polymers mimic the ECM, have good biocompatibility, 210 

and in the case of chitosan, antimicrobial capabilities; however, they often have poor mechanical 211 

properties 69,70. Natural polymers can be combined with synthetic polymers or can be cross-linked with 212 

various chemicals such as genipin or N-(3-Dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride 213 

(EDC) to improve mechanical performance 71.  214 

Varoni et al. developed a tri-layered porous periodontal scaffold using chitosan with different 215 

molecular weights and genipin-mediated crosslinking to improve mechanical performance. For 216 

gingiva, bone and PDL, low molecular weight (LMW) chitosan, medium molecular weight (MMW) 217 

chitosan, and MMW-chitosan with microchannels were used, respectively. The MMW-chitosan layer 218 

had more than 2-fold higher compressive modulus (18 ± 6 KPa and 7.7 ± 0.8 KPa, respectively) and 219 

degraded more slowly than the LMW-chitosan layer 72.  220 
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Rather than genipin crosslinking, Tai et al. modulated the mechanical performance of their biphasic 221 

chitosan scaffold through the incorporation of calcium phosphate (Ca) particles and PHB to make it 222 

suitable for bone regeneration. The elastic modulus of separate chitosan and PHB layers were 223 

10.7 ± 0.6 MPa and 554 ± 25 MPa, respectively. It was 467 ± 22 MPa in combination, and CaP 224 

incorporation further increased this to 524 ± 20 MPa 73. 225 

Among synthetic polymers, PCL 74,75, PGA 76, PLA 77, and polylactide-co-glycolide (PLGA) 76,78 are the 226 

most used materials for dental regeneration. Although those synthetic polymers have superior 227 

mechanical properties to natural materials, they are poor in bioactivity 69,70. Therefore, in periodontal 228 

membrane applications, they are often combined with natural biomaterials and nanoparticles to 229 

boost biological performance whilst retaining good mechanical strength. 230 

Puppi et al. created a biphasic scaffold by combining a wet-spun PCL fibre construct (with and without 231 

hydroxyapatite (HA)) and a chitosan/poly(𝜸-glutamic acid) hydrogel. The pure PCL layer had the 232 

highest Young's Modulus; HA doping reduced it from 1.3401 ± 0.1923 MPa to 1.2375 ± 0.2282 MPa. 233 

The Young's modulus of the bilayer scaffold with and without HA doping to the PCL layer were 0.0348 234 

± 0.0114 MPa and 0.1472 ± 0.0808 MPa, respectively. Both HA incorporation and inclusion of the 235 

chitosan layer reduced the mechanical properties of the PCL-based membrane 79. 236 

Li et al. prepared a bilayer scaffold composed of PLGA and PLGA/micro-nano bioactive glass (MNBG) 237 

by solvent casting and electrospinning, respectively. MNBG is used to enhance PLGA bioactivity in the 238 

layer that will be in contact with bone tissue. Three different osteogenic layers with concentrations of 239 

0%, 20%, and 40% MNBG were prepared to observe the impact on the mechanical properties of the 240 

scaffolds. 40% MNBG incorporation reduced Young's modulus of the PLGA electrospun layer from 14.5 241 

MPa to 10 MPa. Moreover, in this study, it is observed that the fabrication method, which directly 242 

affects the morphology, also influences mechanical properties. While the dense layer, which is 243 

obtained with the solvent casting method, has Young's modulus of 20.90 MPa, the electrospun PLGA 244 

layer has 14.5 MPa 80. 245 

2.1.3. Degradation rate 246 

A key tenet of tissue engineering is that implanted materials resorb at a rate that matches new tissue 247 

formation, ultimately leaving no traces behind. Scaffolds should direct cell attachment and 248 

proliferation on the surface whilst simultaneously degrading and being resorbed by the body. As non-249 

degradable periodontal membranes have the disadvantage of requiring a second surgery for removal 250 

after they have fulfilled their purpose, biodegradable alternatives are preferred where possible 78,81. 251 
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Natural biocompatible and biodegradable polymers such as collagen are widely used in GBR 252 

applications 82,83. Synthetic biocompatible and biodegradable polymers such as PLA, PGA and PCL are 253 

also widely used; however, they have the disadvantage of releasing lactic acid or glycolic acid into the 254 

environment, which lowers the pH of the site during degradation and eventually triggers an 255 

inflammatory response. Although PCL also releases various acids upon degradation, it doesn’t trigger 256 

an inflammatory response to the same extent as PGA and PLA, as it is released at a slower rate, making 257 

it a preferable choice 84. Furthermore, -caprolactone is water-soluble, making it easier to distribute 258 

throughout the body, minimising local inflammatory effects, and is also easier to excrete via urination, 259 

making the product quick to eliminate and relatively non-toxic 85. This, in combination with PCL’s high 260 

mechanical stability, makes it a robust material choice, with the main shortcoming being its relatively 261 

long (up to 3–4 years) degradation time, which can be undesirable for some tissues 86,87.  262 

Multiphase, composite membranes and scaffolds allow fine tuning of degradation properties to 263 

achieve the desired material profile, which in the case of successful regeneration of periodontal 264 

tissues should be 4-6 weeks 84. Imazato et al. developed a poly(l-lactic acid/caprolactone) (PLCL) 265 

bilayer GBR membrane and investigated degradation in phosphate buffer saline (PBS) at 37°C for 2 - 266 

52 weeks. By week 26, only half of the PLCL scaffold weight was lost, with PCL copolymerisation 267 

enhancing the durability of the membrane. Although longer than the timeframe outlined by Kiremitçi, 268 

it may bring the advantage of slower accumulation of acidic degradation byproducts in the host tissue, 269 

reducing inflammation 81. Faster degradation within bilayer membranes has been achieved using a 270 

PLGA-based approach where one phase is grafted with hyaluronic acid, observing 40% degradation of 271 

hyaluronic acid-grafted PLGA/PLGA membranes within 8 weeks 6. Apart from polymer type, molecular 272 

weight and degree of crystallinity are other critical parameters that have a direct impact on the 273 

degradation rate and should also be taken into consideration in the engineering process of the 274 

degradation rate of a scaffold. 275 

2.2. Fabrication routes 276 

2.2.1. Electrospinning 277 

Electrospinning uses electrostatic force to produce fibres with a pore size between 5 µm and 150 µm 278 

88 using solutions of natural or synthetic polymers 80,89. It has found application in a wide range of 279 

fields, including catalysis, filtration, protective clothing production, and the food industry, but most 280 

importantly, here, within healthcare, it has been investigated for drug, cell and gene delivery, 281 

biosensing, wound healing and tissue engineering 90.  282 

The electrospinning apparatus consists of four main components: a syringe pump, a high-voltage 283 

power supply, a spinneret, and a conductor collector (Figure 5A) 91. The polymer solution is held at the 284 
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end of the capillary tube by surface tension, and the electric field is applied until the electric force 285 

overcomes this. The jet of the charged solution is sprayed from the tip of the Taylor cone, and a spiral-286 

like structure is formed between the capillary tip and the collector. Meanwhile, the solvent 287 

evaporates, leaving a solid polymer. Since the jet is stable only at the tip of the nozzle, fibre formation 288 

is achieved 92. 289 

Electrospinning can provide aligned or random fibres with a radius as low as 100–1100 nm that mimics 290 

the ECM structure 93–95. However, a critical disadvantage of the technique is its reliance on the use of 291 

toxic organic solvents to create polymer solutions, necessitating thorough post-processing for use in 292 

medical applications. Recently, green solvents have been investigated to minimise associated toxicity 293 

96. Whilst the effect of various parameters, such as polymer concentration, needle-to-collector 294 

distance, and needle diameters on fibre morphology, is known, optimisation of the process to achieve 295 

the desired morphology takes time and needs experience and is best performed under tightly 296 

controlled environmental conditions (temperature, humidity, etc.) to improve reproducibility 97. 297 

Despite this, electrospinning is the most widely used technique for the fabrication of GBR/GTR 298 

membranes 22,56,98–102 . 299 

The tissue-specific performance of electrospun scaffolds can be improved by doping the polymer 300 

solution with appropriate compounds. Zhong et al. developed a bi-layered PLGA electrospun 301 

membrane that used different pore sizes to achieve occlusive and osteogenic properties and nano-HA 302 

(nHA) particles in the bone-adjacent phase 103. Barrier properties were attained with 4-7 µm pores and 303 

200-300 nm fibres, and osteogenic properties with 20-28 µm pores and 1000-1800 nm fibres. 304 

Achieving different fibre and pore morphology and inclusion of additives requires different 305 

electrospinning parameters that must be optimised for each condition. For GBR membrane 306 

applications, processing parameters for core polymers of PLGA, PCL and polyethylene oxide (PEO) 307 

have been investigated with nHA 103, MNBG 80, calcium carbonate 104, and silicon-doped nHA 105 as 308 

additives to improve performance. These changes in material and desired morphology all require 309 

careful fine-tuning of voltage, flow rate, polymer/plasticizer ratio, syringe diameter, and solvent ratio. 310 
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 311 

Figure 5: Schematic diagrams showing the setups of the most common scaffold fabrication techniques (A) 312 

solution electrospinning, (B) melt electrospinning, (C) wet spinning, (D) porogen leaching, (E) emulsion 313 

templating, (F) freeze-drying, (G) fused deposition modelling, (H) stereolithography. 314 
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2.2.2. Melt electrospinning 315 

Melt electrospinning, also known as melt electrowriting, uses heat rather than solvents to create a 316 

polymer solution that can then be deposited via ionisation using an electric field and spraying onto a 317 

collector (Figure 5B) 106. In comparison to traditional electrospinning, molten polymers are more 318 

viscous than dissolved polymers, and solid fibres are formed via cooling rather than evaporation. 319 

Whilst this eliminates the solvent toxicity risk, it cannot form fibres with diameters as low as traditional 320 

electrospinning as the solvent evaporation process helps thin the fibres 107,108. Melt 321 

electrospinning/writing can be considered a form of extrusion 3D printing and can be combined with 322 

other manufacturing techniques to create multiphase scaffolds 109. S. Ivanovski et al. developed a 323 

biphasic membrane where melt electrospinning was used to fabricate the bone compartment. Here, 324 

an extraskeletal ovine calvarial model revealed the PCL-based bone compartment with 400 µm pore 325 

size mimicked native cancellous bone and encouraged bone formation 110. 326 

2.2.3. Wet spinning 327 

Wet spinning requires a polymer solution, a spinneret, and a coagulation bath (Figure 5C). The polymer 328 

solution is extruded into the coagulation bath with the help of a hollow wire-like structure resembling 329 

a very thin tunnel that the polymer passes through. As the polymer indirectly interacts with the 330 

coagulation bath, it solidifies, creating polymer fibres. In the final step, traces of the coagulation bath 331 

are removed by chemical reaction or diffusion. For molecular alignment and orientation, fibres may 332 

go through several mechanical changes, such as applying tension or drawing. Dry-jet wet spinning is a 333 

modified version of wet spinning where the polymer is extruded into an air gap rather than directly 334 

onto the coagulation bath. This results in the opportunity to obtain greater molecular alignment 111.  335 

The main advantages of wet spinning over traditional and melt electrospinning are that thick fibres 336 

with high mechanical strength can be obtained with no thermal degradation 109. However, the process 337 

is slow and requires additional steps to remove the impurities 112.  338 

As with other spinning techniques, wet spinning can be combined with other manufacturing 339 

techniques to create multiphase scaffolds. Gomes et al. developed a double-layer membrane by 340 

combining wet-spinning and solvent-casting 113,114. The wet spun layer was fabricated by dissolving 341 

starch and PCL in chloroform and injecting it through the coagulation bath. Two different fibre types 342 

were created by varying the solution in the coagulation bath from methanol to calcium silicate 343 

solution. Whilst diameters remained similar (192 µm vs. 195 µm, respectively), the surface of the 344 

calcium silicate group was smoother than the methanol group. Post-functionalisation with silanol 345 

groups showed increased expression of osteocalcin in canine adipose-derived stem cells over a 28-day 346 

period 113.  347 
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2.2.4. Solvent casting and particulate leaching 348 

The process of solvent casting and particulate leaching (SCPL) requires dissolving a polymer in an 349 

organic solvent, supplementing the solution with particles insoluble in the selected solvent (porogen), 350 

and casting it in a mould to create a scaffold or a membrane (Figure 5D). The polymer and porogens 351 

combine to form a composite material structure as the solvent evaporates. Particles are then 352 

dissolved, leaving a porous structure behind. Porogens can have different sizes, shapes, and 353 

proportions 115; paraffin beads, salt, and sugar are some of the most frequently utilized porogens. A 354 

high porogen ratio is needed to obtain scaffolds with high interconnectivity 116; however, it is 355 

challenging to achieve an even dispersal of porogen in the polymer solution. As such, the degree of 356 

direct contact between particles is not well regulated, which can lead to uneven pore distribution 117. 357 

Furthermore, as porogens are entirely encased by the polymer solution, it is difficult to fully remove 358 

these even with a porogenic solvent due to the physical polymer barrier around them. As a result, the 359 

thickness of most porous materials created using the SCPL process is 4 mm or less to improve this 360 

process, and the necessity of cytotoxic solvents is a further drawback to this technique 118,119. 361 

Jamuna-Thevi et al. developed a triple-layered PLGA/nano apatite/lauric acid-graded composite 362 

membrane for periodontal-guided bone regeneration by combining solvent casting and phase 363 

separation techniques in the same step with dimethyl sulfoxide (DMSO) as the solvent for PLGA. 364 

Instead of employing the traditional solvent evaporation procedure, PLGA solutions were frozen at 365 

- 18 °C, and the solidified DMSO was removed by immersion in cold water at 4 °C, which significantly 366 

decreased membrane toxicity. The pore sizes of all three layers were larger than 100 μm and 367 

asymmetric columnar in shape, with the PGA and nano apatite ratio having a significant impact on the 368 

morphology of the membrane 120. 369 

Gümüşderelioğlu et al. developed a chitosan and PCL-based bilayer barrier membrane, with the 370 

chitosan-based layer created by SCPL. Here, chitosan was dissolved in aqueous acetic acid and silica 371 

particles were included as a porogen. The solvent was evaporated at room temperature before 372 

submerging in 80 °C aqueous 5% (w/v) sodium hydroxide (NaOH) to dissolve the silica particles and 373 

obtain a porous membrane. The resulting chitosan membrane had an interconnected and 374 

homogenous morphology with an average pore size of 170 ± 79 µm. However, the surface that was in 375 

contact with the glass petri dish was comparably less porous with small pores 84. 376 

2.2.5. Emulsion templating 377 

Emulsion templating is based on creating a stable emulsion by mixing two immiscible liquids in the 378 

presence of a surfactant or Pickering particles and then polymerising the continuous phase 121. 379 

Emulsion droplets (internal phase) act as a pore template during polymerisation and, when removed 380 
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afterwards, leave porous matrices (Figure 5E). When the internal phase volume (total droplet volume) 381 

of the emulsion is greater than 74%, it is defined as a High Internal Phase Emulsion (HIPE) 122. Emulsion-382 

templated matrices have been used in various fields, such as catalysis, separation columns, heavy 383 

metal removal, solid-phase synthesis, and substrates for electrodes 123. 384 

Recently, emulsion templating has also gained attention as a tissue engineering scaffold fabrication 385 

technique 10,121,123–134 as it provides (i) high porosity (up to 99% 135), (ii) high interconnectivity, (iii) high 386 

tunability 121,123,136–141, and (iv) can be combined with other fabrication techniques (such as 3D printing 387 

121,130,142 and electrospinning 143) for the fabrication of more complex structures. Although emulsion-388 

templated matrices have been widely used for soft 133,134,144–146 and hard 121,132,147–152 tissue engineering 389 

applications, there is only a limited number of studies on the use of emulsion-templated matrices in 390 

the fabrication of GBR membranes. 391 

Aldemir Dikici et al. recently investigated the potential use of photocurable PCL-based polymerised 392 

HIPE (PolyHIPE) scaffolds for guided bone regeneration. 90% of the pores of PCL PolyHIPEs have pore 393 

sizes between the 20–75 µm range and window sizes distributed between the 2–13 µm range (Figure 394 

7F). They showed that PolyHIPE morphology supported attachment, proliferation, and infiltration of 395 

murine long bone post-osteoblasts/pre-osteocytes (MLO-A5s) up to 400 µm. The suitability of the 396 

morphology of the pores for blood vessel ingrowth has also been shown using the chick chorioallantoic 397 

membrane (CAM) assay 10, which is an alternative in vivo model to assess the angiogenic potential of 398 

biomaterials, cells, and drugs 121,153–156. The CAM of the chick embryo is an extraembryonic membrane 399 

that functions as an organ for gas exchange between the chick embryo and the environment. Working 400 

on the membrane without direct contact with the experimental animal and before nerve tissue 401 

development makes the CAM model a more ethical alternative to studying angiogenesis on more 402 

developmentally advanced animals. 403 

2.2.6. Freeze-drying  404 

Freeze-drying (lyophilisation) is based on the dehydration of polymeric solutions and has traditionally 405 

been employed in the field of tissue engineering for manufacturing 3D porous biomaterials, where the 406 

resulting overall morphology of the biomaterial solution is defined by the shape of the mould 157. 407 

Lyophilization is an attractive fabrication method as (i) high temperatures are not applied, (ii) there is 408 

no need for separate leaching, and (iii) varied sizes of scaffolds can be fabricated with (iv) high porosity 409 

(over 90% can be achieved) 158,159. 410 

The first step is freezing (liquid nitrogen or mechanical refrigeration), where the obtained polymer 411 

solutions are inserted into the desired mould and cooled to a temperature that is below the solvent's 412 

triple point, ensuring sublimation will occur in the subsequent drying step. The last step is split into 413 
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two parts: primary and secondary drying. In primary drying, the sublimation process takes place, 414 

extracting approximately 95% of the water (Figure 5F). In secondary drying, evaporation removes 415 

residual unfrozen solvent molecules 160. 416 

Parivatphun et al. developed a biphasic scaffold with a freeze-dried and micro-bubbled layer for the 417 

regeneration of the oral maxillofacial area. The micro-bubble technique is used to obtain the main 418 

pores of the scaffold (~400 µm), and freeze-drying is secondarily applied to form the sub-pores 419 

(~100 µm) of the scaffold for better mimicry of natural trabecular bone. Desired pore dimensions were 420 

achieved with homogenous distribution 161. 421 

Tamburaci et al. fabricated a bilayer membrane by lyophilization with phases designed to be in contact 422 

with soft and hard tissues. Si-doped nHA particle (Si-nHAp) incorporated chitosan fabricated with 423 

lyophilization of both LMW and MMW chitosan formed the soft tissue phase, whilst chitosan/PEO 424 

formed the hard tissue phase. Molecular weight significantly influenced membrane morphology, with 425 

greater molecular weight increasing pore size (LMW: 174-191 µm, MMW: 252-306 µm) 105. 426 

2.2.7. Cryo-gelation 427 

Cryo-gelation has gained popularity recently due to its ability to provide both macroporous 428 

morphology and outstanding swellability 162. To produce a cryogel, the cross-linkable polymer is 429 

dissolved in water, poured into a mould, and then immediately frozen. Ice crystals start to form and 430 

result in phase separation between the crystals and solutes (macromonomers, initiators). 431 

Concurrently, the polymer in the liquid phase starts to cross-link (cryo-polymerization). Once 432 

crosslinked, cryo-gels can be thawed at room temperature to dissolve ice crystals, revealing a 433 

macroporous structure 163,164.  434 

Huang et al. fabricated a biphasic scaffold by cryo-gelation to enhance periodontal regeneration at 435 

the soft and hard tissue interface. The first layer, designed to be in contact with soft tissue, was 436 

composed of gelatin; the other layer, designed for bone tissue, was made of β-TCP/HA particles 437 

incorporated in gelatin. The soft tissue layer had a pore size and porosity of 406 ± 76 µm and 95.5 ± 438 

0.2%, respectively, and the addition of ceramic particles to the gelatin increased the pore size to 431 439 

± 61 µm, reducing the porosity to 81.7 ± 1.2%. In vivo, the scaffold preserved its structural integrity 440 

and permitted rapid hemostasis and early vascularisation, increasing early bone deposition 165. 441 

2.2.8. 3D printing 442 

3D printing (3DP), also known as additive manufacturing (AM), rapid prototyping (RP), and solid free-443 

form fabrication (SFF), has enabled the production of scaffolds with complex morphologies that could 444 

not be achieved with traditional manufacturing techniques 166,167. The most common 3DP techniques 445 
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are extrusion-based (e.g., fused deposition modelling (FDM), Figure 5G)), light-based (e.g., 446 

stereolithography (SLA, Figure 5H) multi-photon lithography/two-photon polymerisation (MPL/2PP), 447 

computed axial lithography (CAL)/volumetric additive manufacture (VAM), and selective laser 448 

sintering (SLS)), and inkjet-based printing. System choice depends on the properties of the 449 

biomaterials and the design requirements 168,169. 450 

First, a 3D model is designed in computer-aided design (CAD) software and exported into a file format 451 

that defines the surface mesh in 3D space, such as .stl 170. Another application converts this model into 452 

print instructions relevant to the printing technique, e.g., for SLA, a ‘slicer’ would be used to create a 453 

cross-section of each printed layer. Algorithms may be used to determine optimal fill patterns for each 454 

layer, and parameters such as exposure time, layer thickness, laser power, light intensity, and 455 

printhead speed can also be fine-tuned to achieve precise replication of the original 3D model 171,172. 456 

The advantages of 3DP are reproducibility, enabling tight control of pore morphology, connectivity, 457 

and spatial distribution with otherwise unachievable complex designs, high resolution (nm to mm 458 

resolution across available technologies), rapid prototyping, comparably fast fabrication, cost-459 

effectiveness, and being environmentally friendly by reducing waste material, especially when 460 

compared with subtractive manufacturing technologies 172, 173, 174. Depending on the printing method, 461 

cells may be incorporated directly into scaffold material at high densities, allowing spatial distribution 462 

of multiple cell types within a single construct. Multiple materials can be printed concurrently, 463 

bioactive compounds can be printed without loss of function, and gradients of mechanical, chemical, 464 

and geometric properties can be achieved throughout a single scaffold 167. It is worth noting that for 465 

biological applications, the choice of materials available is currently limited as non-biological 3DP 466 

materials are often cytotoxic, but this is an active area of research and development. Furthermore, 467 

initial equipment setup costs may be expensive 175,173,176. 468 

Lee et al. developed an HA-doped PCL-based trilayer scaffold with gradient microchannels using FDM 469 

for periodontal applications. The cementum-dentin interface, the PDL compartment, and the alveolar 470 

bone section were designed to have channels with 100 µm, 600 µm and 300 µm, respectively. In vivo, 471 

testing with an immunodeficient mouse model that scaffolds with bioactive agents and dental 472 

stem/progenitor cells promoted the regeneration of multiphasic tissue when implanted in the dorsum 473 

177. 474 

Park et al. designed and fabricated 3D-printed wax moulds, which were then cast with PGA and PCL 475 

for PDL and bone regions of the scaffold, respectively. Acid-treated human tooth dentin slices were 476 

integrated into designed bilayer scaffolds to better mimic the periodontal environment. Subcutaneous 477 

examination in vivo showed fibrous tissue on PGA constructs with oblique or perpendicular 478 
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alignments to dentin and mineral tissue formed in the dentin interface and bone construct, suggesting 479 

the regeneration of bone and cementum tissue. Periodontal ligament-bone tissues were generated 480 

with distinct compartmentalisation and highly controlled organisation, with the most significant 481 

finding being that the structural/geometric cues precisely influence the orientation of connective 482 

tissue in the 250-300 µm interfaces. In addition to the alignment of fibrous tissue, the restricted 483 

infiltration of newly formed bone into the PDL structure improved the spatial-temporal tissue 484 

organisation 178. 485 

2.2.9. Alternative strategies  486 

In addition to conventional scaffold fabrication techniques, there are alternative tissue engineering 487 

approaches such as cell sheet technology and decellularisation. Cell sheet technology enables the 488 

fabrication of 3D constructs without the use of any tissue engineering scaffold. Using a temperature-489 

responsive polymer-grafted (poly(N-isopropyl acrylamide) (PIPAAm)) cell culture surface, confluent 490 

cultivated cells may be retrieved as an entire cell sheet. PIPAAm provides non-invasive regulation of 491 

cell attachment and detachment by reducing the temperature to 32 °C without any protease 492 

treatments. The ECM, cell surface proteins, and cell-cell junctions are preserved, allowing many cell 493 

sheets to be layered to readily create functional 3D tissue that can be directly implanted without the 494 

need for scaffolds 179. Cell sheet technology is widely used in periodontal tissue engineering, e.g., 495 

through the generation of intact periodontal cell sheets with a robust ECM due to the presence of 496 

ascorbic acid during culture. The ECM contains many proteins, including fibronectin, which serves as 497 

a natural adhesive to bind cell sheets to other surfaces 180. 498 

Dan H. et al. developed a cell sheet-supported CaP-coated PCL (CaP-PCL) scaffold from harvested PDL, 499 

alveolar bone and gingival margin-derived human cells (hGMC). Following primary cell culture and in 500 

vitro characterisation, a cell sheet was prepared and combined with CaP-coated melt electrospun PCL 501 

(CaP-PCL) and transplanted into a rat periodontal defect model for in vivo evaluation. After 4 weeks, 502 

the CaP-PCL scaffold without cell sheet-support had encouraged alveolar bone formation. Although 503 

hGMC-based cell sheets did not support regeneration, bone and PDL-derived sheets significantly 504 

promoted periodontal attachment, showing that the source of the cell sheet has a significant impact 505 

on the biological performance of the scaffolds 181. Other research groups have also utilised cell sheets 506 

with reinforcing carriers (e.g., hyaluronic acid 182) or without the use of any supporting scaffold 180 for 507 

periodontal regeneration. 508 

Another alternative strategy, decellularisation, involves removing DNA and other cellular components 509 

from the tissue whilst retaining the native ECM structure and regulatory proteins via a combination of 510 

chemical, enzymatic, and physical methods 121,183,184. The removal of genetic material to avoid 511 
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immuno-rejection of the construct, the preservation of ECM and the retention of mechanical 512 

properties define the quality of the decellularisation process 185. To be considered effective, 513 

decellularised ECM must have no visible nuclear material by 4',6-diamidino-2-phenylindole (DAPI) 514 

staining, fewer than 50 ng double-stranded DNA (dsDNA) per mg ECM dry weight, and less than 200 515 

bp DNA fragment lengths 186.  516 

Son et al. investigated the regeneration potential of decellularised human tooth slices as periodontal 517 

scaffolds, assessing two different decellularisation protocols: (1) 2% TritonX-100 and 0.1% ammonium 518 

hydroxide (NH4OH) for 72 hours or (2) three cycles of 1% sodium dodecyl sulfate (SDS) for 24 hours 519 

and 1% TritonX-100 for 24 hours. Total DNA quantification showed that protocol 2 was almost twice 520 

as effective as protocol 1, removing 62.32% of DNA. Tissue type and decellularisation procedure 521 

influence the effectiveness of the process, and incomplete decellularization could result in an 522 

immunological response that has a detrimental impact on the course of treatment 187,188. Here, 523 

collagen I was preserved after decellularisation, the scaffolds maintained their structural integrity, and 524 

they supported the repopulation and differentiation of PDL cells 188. 525 

2.2.10. Challenges in the fabrication of multiphasic constructs 526 

In multilayer GBR/GTR membranes, the occlusive layer should limit the infiltration of the soft tissue, 527 

whilst the other layer should facilitate bone infiltration and regeneration. Accordingly, the occlusive 528 

soft tissue layer is fabricated with a smaller pore size than the bone regeneration phase. Each of the 529 

common fabrication modalities reviewed here has distinct advantages and disadvantages with regard 530 

to creating the unique morphologies required in each layer of these multiphase constructs (Table 2). 531 

Whilst these are general to the technique, there is an opportunity within each manufacturing method 532 

to fine-tune the structures created through modulation of the parameters and materials used, 533 

allowing a construct with morphologically distinct layers to be created with the same manufacturing 534 

technique. Alternatively, this can be achieved through hybrid manufacturing, combining different 535 

techniques.  536 

Regardless of which approach is selected, the main challenge to overcome is the integration of 537 

consecutive layers into each other to avoid delamination and maintain mechanical integrity during 538 

surgical implantation and subsequent tissue regeneration. The most common way this is achieved is 539 

by fabricating the first layer via one of the aforementioned fabrication techniques (3D printing (Figure 540 

6B, 6F), emulsion templating (Figure 6C), electrospinning (Figure 6G), freeze-drying (Figure 6H), 541 

solvent casting (Figure 6J)), then constructing the second layer directly on the top via electrospinning 542 

189, 10, 190, 102, 105, 80. Hutmacher et al. used an alternative approach where they developed a bilayer 543 

membrane with a PCL and β-tricalcium phosphate (β-TCP)-based bone phase fabricated by FDM and 544 
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a PCL periodontal phase created by melt electrospinning. For the latter, random-oriented PCL fibres 545 

were achieved with diameters of 10-15 µm and pore sizes ranging from 100 µm to 400 µm. In this 546 

study, layers were integrated into each other by heating and press-fitting (Figure 6A, Figure 7A) 191.  547 

Table 2: Advantages and disadvantages of various scaffold fabrication techniques widely used in the 548 

development of multiphasic periodontal constructs. 549 

 Advantages Disadvantages REF 
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+ Solvent free (environment friendly) 

+ Diameter is controllable with the mass flow rate 

+ Low production cost due to the absence of the solvent 

+ High fibre consistency and quality 

- Viscosity can interfere with the process 

- Thermal stability of polymers is required 

- Low fibre diameter can be difficult to obtain 

107 
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+ Can provide large fibres with maximum strength 

+ Low cost 

+ Large-scale production 

- Solvent and chemical recovery 

- Non-aligned fibres 
- Can produce only microfibers 

192 

El
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g + Can produce uniform and/or aligned fibres 

+ High interconnectivity 

+ High porosity 

+ Scaffold architecture similar to natural ECM 

+ Comparably facile fabrication 

- Use of cytotoxic organic solvents 

- Limited control on pore morphology 
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+ High porosity (up to 99%) 
+ High interconnectivity 
+ Precise tunability of the morphology 
+ Can be combined with other fabrication techniques 
for the fabrication of more complex structures 

- Surfactant removal may be needed (except 
Pickering PolyHIPEs) 
 

123 

P
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g + No extra specific equipment needs 
+ Can provide high porosity 

- Residual solvent and porogen materials  
- Time-consuming 
- Poor interconnectivity 

194,195,196 

Fr
ee

ze
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in
g + No need for separate leaching 

+ High porosity (over 90% can be achieved) 
+ High temperatures are not applied 

- Slow 
- Expensive 
- High energy consumption  

158,159 197–

199 
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+ Macroporous morphology 
+ Outstanding swellability 
+ Flexibility 

- Low surface area 
- Low adsorption capacity 

163,165,200, 

201,202 

3D
 P
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n
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+ Customised design and production 
+ Control on outer architecture 
+ Cost effective 
+ Environment friendly  

- Specific equipment needs 
- Clinical impacts and potential risks are poorly 
understood  
- Extrusion techniques have low resolution 
- May have insufficient mechanical properties  

173, 

203,204,205,

172 
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 550 

Figure 6: Multiphasic scaffold fabrication schemes combining various porous material production routes (A) FDM 551 
deposition and electrospinning 206, (B) 3D printing and coaxial electrospinning 189, (C) emulsion templating and 552 
electrospinning 10, (D) self-assembly and microstamping 207, (E) hydrogels 208, (F) solution electrospinning writing 553 
and solution electrospinning 190, (G) electrospinning 102, (H) electrospinning and freeze-drying 105, (I) 554 
electrospinning 209, (J) electrospinning and solvent casting 80. 555 

 556 

 557 
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 558 

Figure 7: SEM images of the multilayer membrane designs. (**: bone compartment, *: barrier layer). (A) *: melt 559 
electrospun PCL, **: FDM fabricated PCL and β-TCP 191, (B) *: solvent-cast chitosan and gelatin, **: freeze-cast 560 
chitosan and gelatin 210, (C) *: solvent-cast PLGA and wool keratin, **: electrospun PLGA and wool keratin 211, (D) 561 
*: poly(L-lactide-co-ε-caprolactone) (PLC) electrospun, **: commercially available collagen type I scaffold 209, (E) 562 
*: coaxial electrospinning of poly(ethylene oxide) (PEO)/curcumin/tetracycline hydrochloride as the core and 563 
zein/PCL/β-glycerolphosphate (β-GP) as the sheath, **: 3D printed honeycomb PLA/zein/Curcumin 189, (F) *: PCL 564 
electrospun, **: emulsion templated photocurable PCL 10, (G) *: Solvent-cast PLGA, **: micro-nano bioactive 565 
glass and PLGA-based electrospun 80, (H) *: PCL electrospun, **: FDM fabricated PCL and β-TCP 206, (I) *: chitosan 566 
and PEO electrospun, **: freeze-dried chitosan and Si-doped nHA 105. 567 

 568 

2.3. Biomaterials used in the fabrication of periodontal tissue engineering scaffolds 569 

2.3.1. Synthetic polymers 570 

The physical and chemical properties of biomaterials affect tissue regeneration by mediating cell 571 

adhesion, proliferation, and differentiation 205. Consequently, the selection of a biomaterial for the 572 

regeneration of a specific target tissue requires an understanding of how these properties affect said 573 

tissue. Synthetic polymers, natural polymers, and ceramics are the most commonly used biomaterials 574 

in periodontal tissue engineering, with each having advantages and disadvantages (Table 3). 575 
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Table 3: Advantages and disadvantages of various biomaterial types widely used in the development of 576 

multiphasic periodontal constructs. 577 

 Advantages Disadvantages Refs 

Synthetic Polymers 
Polycaprolactone (PCL) 
poly(lactic acid) (PLA) 
poly(glycolic acid) (PGA) 
polylactide-co-glycolide (PLGA) 
polyvinyl alcohol (PVA) 

+ Controllable mechanical strength 
+ Controllable degradation rate 
+ Highly processable 
 
 
 

- Lower cell attachment  
- Slow degradation rate (PCL) 
- Hydrophobicity (PCL) 

212 

Natural Polymers 
Collagen 
Chitin/chitosan 
Gelatin 
Silk 

+ Hydrophilicity 
+ Chemically modifiable 

- Rapid degradation rate 
- Low mechanical strength 
- Batch-to-batch variation  

213,214,215 

Ceramics 
Biphasic calcium phosphate (BCP) 
Tricalcium phosphates (TCPs) 
Hydroxyapatite (HA) 
Bioglass 

+ Bioactivity 
+ Hydrophilicity 
+ Availability 
+ Resemblance to bone 
+ Osteoconductivity 

- Brittle 
- Not easy to process 
 

216,191 

 578 

Most natural polymers have the advantage of being biocompatible and hydrophilic, which facilitates 579 

cell attachment. However, they typically undergo rapid degradation and have low mechanical 580 

strength, which may hinder the process of tissue regeneration 213. Synthetic polymers generally have 581 

superior and controllable degradation and mechanical strength, and 220 can be mass-produced217. 582 

However, they typically are more hydrophobic, resulting in lower cell attachment unless overcome 583 

through post-treatment. Furthermore, whilst degradation is controllable, it is still slower than natural 584 

polymers 253,212. Some of the widely used synthetic polymers in periodontal tissue engineering are PCL, 585 

PLA, PGA, polyvinyl alcohol (PVA) and their copolymers 218,217,252. 586 

2.3.1.1. PCL 587 

PCL is a semi-crystalline, aliphatic polymer with high thermal stability (melting point ~ 60°C, glass 588 

transition temperature ~-60°C) 219. It degrades more slowly than most other synthetic polymers, which 589 

can reduce the inflammatory effect of acidic degradation products that can occur with faster 590 

degrading synthetic materials 219,220. As the Food and Drug Administration (FDA) has already approved 591 

the use of several PCL-based products, including surgical sutures in clinics 221, this polymer is an 592 

attractive choice for biomedical applications. In addition to the more common linear, high molecular 593 

weight, thermoplastic PCL, thermoset, photocurable, in-house synthesised PCL that has functional 594 

groups and can create polymer networks, is increasingly used as a biomaterial in the development of 595 

GBR membranes 10. 596 

Türkkan et al. designed a bilayer membrane that combines a nano-CaP-incorporated silk fibroin-PCL-597 

PEG-PCL (SPCA) layer with a PCL layer fabricated using electrospinning. PEG was used to enhance the 598 

hydrophilicity, biocompatibility, and biodegradability of PCL, whilst CaP nanoparticles were 599 

incorporated with the PCL-PEG-PCL layer to boost osteoconductivity. In vitro confirmation of cell 600 
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adhesion, proliferation, and differentiation through calcium deposition and alkaline phosphatase 601 

(ALP) activity of human dental pulp stem cells suggest its suitability for periodontal regeneration 602 

applications 222.  603 

Gürbüz et al. developed a trilayer membrane using electrospinning and solvent casting/particulate 604 

leaching techniques, with layers composed from (1) PCL/collagen-bone morphogenetic protein-7 605 

(BMP-7), (2) PCL-nHA, and (3) PCL/collagen, finding that the BMP-7 incorporated multilayer 606 

membrane supported cell proliferation and osteogenic differentiation 223. 607 

2.3.1.2. PLA, PGA, and PLGA 608 

PLA is an aliphatic thermoplastic, biodegradable, and biocompatible polymer with linear polymeric 609 

chains 224,225. During the hydrolytic degradation of PLA, lactic acid - a natural intermediary in the 610 

metabolism of carbohydrates, is produced 226. With a melting temperature of ~180°C and a 611 

crystallization temperature of ~130°C, it can easily be thermally extrusion printed (FDM) 227. Although 612 

PGA has a chemically similar structure to PLA, it provides very different properties, with much faster 613 

degradation and a melting and crystallisation temperature ~50°C higher than PLA 228. PLGA is the 614 

copolymer of PGA and PLA. The lactic acid: glycolic acid (LA:GA) ratio has a critical impact on the 615 

properties of PLGA scaffolds, and through modulation of this copolymerisation, the final properties 616 

(glass transition temperature, degradation rate, mechanical strength) of the material can be tuned 229 617 

230. As PLGA has low osteoconductivity, it is often used with other biomaterials in bone and periodontal 618 

applications to augment this 231. 619 

Sowmya et al. manufactured a tri-layered scaffold for the treatment of periodontitis. The PLGA/chitin-620 

based scaffold was designed to mimic cementum, PDL and alveolar bone. Accordingly, they 621 

incorporated nano bioglass ceramics (nBGC) into the chitin/PLGA matrix for cementum and bone 622 

layers to increase the bioactivity of the scaffold. Chitin was selected due to its similarity with natural 623 

ECM, and PLGA was incorporated to overcome the limitations of rapid degradation and negate the 624 

mechanical instability of natural polymers. Cementum, PDL and alveolar bone layers were enriched 625 

with cementum protein 1 (CEMP1), fibroblast growth factor 2 (FGF-2) and platelet-rich plasma-derived 626 

growth factor (PRP), respectively. Lyophilised scaffolds were implanted into rabbit maxillary 627 

periodontal defects, achieving complete regeneration of the periodontal defect according to results 628 

of micro-computed tomography (micro-CT) and histological analyses 208. 629 

Similarly, in a study conducted by Zhong et al., an electrospun PLGA-based bilayer membrane was 630 

developed with different pore and fibre sizes in each layer, aiming to achieve occlusive and osteogenic 631 

properties. PLGA was chosen as a biomaterial because of its controllable degradation rate, good 632 

biocompatibility, and appropriate mechanical properties (e.g., surviving stresses exerted from 633 
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chewing). To provide osteoconductivity, nHA was incorporated into the bone layer. In vitro 634 

degradation rates were appropriate for use on periodontal tissue engineering, losing 40% of their 635 

weight within 9 weeks 103. 636 

2.3.1.3. PVA 637 

PVA is formed from the polymerisation of vinyl acetate 232. Due to it being a non-toxic 232,233, highly 638 

hydrophilic 234, and biocompatible 233,235 polymer, with good chemical resistance and physical 639 

properties 234, it is used in a wide range of industrial applications 236. It can be electrospun 233 and has 640 

been used in several FDA-approved pharmaceuticals for a range of medical conditions 237. 641 

Shoba et al. designed a two-layer membrane composed of a freeze-dried collagen and sericin phase 642 

and an electrospun PVA phase enriched with bromelain-conjugated magnesium-doped HA 643 

nanoparticles. The PVA provides mechanical and structural stability by increasing the tensile strength 644 

of the scaffold, whilst the use of collagen and sericin improved the biocompatibility and regeneration 645 

capacity by modifying the surface chemistry. Contact angle measurements of the collagen/sericin 646 

layer, the nanoparticle encapsulated PVA layer, and the bromelain-conjugated magnesium-doped HA 647 

nanoparticle doped PVA coated collagen/sericin construct were 40 ± 3.2 °C, 78 ± 1.2 °C, and 60 ± 1.6 648 

°C, respectively 22, demonstrating how this property and subsequently the hydrophilicity, water 649 

absorption, degradation rate and the release of the bioactive agents can be tuned for the specific need 650 

and application. 651 

2.3.2. Natural polymers 652 

The definition of a tissue engineering scaffold has evolved since the field's inception, moving from a 653 

substance that serves as an inert provision of surface area to support cell attachment to one that 654 

provides a more complex, dynamic, instructive environment for tissue formation 238. With few 655 

exceptions, natural polymers are biocompatible, biodegradable, inexpensive at small scales, easily 656 

accessible, and chemically modifiable 214,215. They can be included in oral treatment or bolus matrix 657 

delivery systems since they are often non-toxic, even at high doses 239. However, there are questions 658 

about whether it would be possible to locate significant quantities of these natural polymers for 659 

therapeutic uses in a commercially viable manner, as well as concerns over their comparatively poor 660 

mechanical qualities and the certainty of pathogen elimination. The immune system can identify some 661 

regions of these molecules as unfamiliar, which might result in material rejection 240. Despite this, 662 

naturally derived polymers are the most frequently used materials for bioengineered resorbable 663 

periodontal membranes. They are generally not used alone as they are insufficient in terms of 664 

mechanical and mineralisation properties; instead, they are often produced as composites with 665 

synthetic polymers or ceramics 241.  666 
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2.3.2.1. Collagen 667 

Collagen is an abundant structural protein in animals and the most frequent component of ECM in 668 

humans, making up one-third of the total protein and three-quarters of the dry weight of skin ECM. In 669 

vertebrates, 28 different forms of collagen are made up of at least 46 different polypeptide chains, 670 

and many additional proteins have collagenous domains 242–244. As a biomaterial, its key advantages 671 

derive from its excellent biocompatibility, resorbability and remodellability by the body, with minimal 672 

antigenicity 245. For GTR applications, there are products based on natural polymers available on the 673 

market, such as ParoGuide®, which contains a combination of collagen and chondroitin sulfate 246, and 674 

BioMend®, which consists of cross-linked bovine type I collagen 247. These products are simple to use, 675 

which reduces intervention time and patient discomfort. However, they are not perfect solutions due 676 

to their erratic rate of resorption, degree of breakdown and low mechanical strength 248. 677 

Zhou et al. developed a bilayer GBR membrane where layers were composed of fish collagen and PVA. 678 

The layers were well-integrated, and both layers exhibited hydrophilic characteristics. Degradation 679 

studies showed that the remaining weights of collagen/PVA bilayer membrane and PVA membrane 680 

were around 58-67% and 80-86%, respectively, after 17 days of incubation in PBS, with the PVA layer 681 

improving the durability and degradation time of the collagen/PVA-based bilayer membrane 249. 682 

Tang et al. developed a nanofiber electrospun membrane with core and shell structures using coaxial 683 

electrospinning to promote bone growth, drug release, and occlusiveness for periodontal 684 

regeneration. The core and shell of the fibres were composed of PLGA/HA and collagen/amoxicillin 685 

(AMX), respectively. Collagen concentration was shown to have a direct impact on the fibre 686 

morphology and drug release rate, likely due to the degradation rate of collagen 250. 687 

Li et al. tested the in vivo performance of bi-layered electrospun fish collagen/PLGA and FDM printed 688 

nHA/PLGA scaffolds with/without injectable platelet-rich fibrin (I-PRF) in a New Zealand White Rabbit 689 

model. I-PRF is a flowable fibrin extracted from blood that sets in 15 minutes to a hydrogel. It is rich 690 

in platelets, leukocytes, and growth factors and is used in tissue engineering to enhance angiogenesis, 691 

mechanical strength, degradation time of the scaffolds and tissue regeneration. Results showed that 692 

I-PRF incorporation reduced inflammatory reactions and provided a higher degree of angiogenesis, 693 

with micro-CT showing bone volume fraction was higher in scaffold alone and scaffold+ I-PRF groups 694 

compared to control (no scaffold). However, I-PRF inclusion provided a higher degree of bone 695 

regeneration 251. 696 

2.3.2.2. Chitin/chitosan 697 

Chitin is one of the most abundant biopolymers in nature, and it is found in the exoskeletons of 698 

shellfish, insects, and the cell walls of fungi. It is a polymer of β-(1→4)- linked N-acetyl-glucosamine 699 
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monomers, whilst chitosan is the deacetylated form of chitin. These materials are widely used in tissue 700 

engineering applications due to being non-toxic, biodegradable, biocompatible, having antimicrobial 701 

properties, their amenability to drug release applications, and being easily brought into gel form 252. 702 

In periodontal and bone tissue engineering applications, they are mostly used as a composite with 703 

other materials 253.254–256. 704 

Gorgieva et al. developed a bi-layer GBR membrane made of chitosan and gelatin in both layers, with 705 

the soft tissue layer made by solvent casting and the bone tissue layer made by freeze casting. 706 

Chitosan was selected due to its film and membrane-forming ability and similarity to periodontal ECM 707 

properties 210. In addition to chitosan composites being made with natural polymers257,258, synthetic 708 

polymers and ceramics have also been used to enhance the overall properties of the membranes 208. 709 

Rehman et al. developed a freeze-dried, functionally graded, trilayer scaffold manufactured by 710 

changing concentrations of chitosan, hydroxypropyl methylcellulose (HPMC), Pluronic F127, and 711 

bioglass nanoparticles. They tested the in vivo performance of these scaffolds in 8 weeks old adult 712 

Wistar rats. Histological analysis on day 21 and day 35 showed no bacterial accumulation on the 713 

wound, and there was no difference in the presence of the inflammatory cells in the test group 714 

compared to the control group. Also, a layer of connective tissue was observed at the tissue-implant 715 

interface, indicating good tissue-material interaction 259. 716 

2.3.2.3. Gelatin 717 

Gelatin is a natural biopolymer that is obtained from the tendons, skin, and bones of animals by partial 718 

acid (type A) or alkaline hydrolysis (type B) 260. As gelatin is structurally similar to the collagen from 719 

which it is ultimately derived, it is often used in lieu 261,262. However, whereas native collagen can form 720 

a polymerised network through physical crosslinking 263, pure gelatin gels are highly unstable and weak 721 

at physiological conditions and, therefore, need to be chemically crosslinked. This can be done using 722 

a crosslinker such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or genipin 264 , or through 723 

a photochemical reaction by the addition of reactive side groups. The most common of these is gelatin 724 

methacryloyl (GelMA), which is a gelatin derivative that contains mostly methacrylamide groups and 725 

a few methacrylate groups 265. Alternatives, such as gelatin-norbonene (GelNB) that undergoes thiol-726 

mediated crosslinking are increasingly common due to improved cytocompatibility in comparison to 727 

GelMA 266, and both can be photopolymerised and 3D printed 267,268. As a result, GelMA and GelNB are 728 

widely used in wound healing and other tissue engineering applications 269–272. In alveolar bone 729 

regeneration, GelMA is preferred as an injectable biomaterial due to its ability to fill the defect site 730 

273. 731 
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Huang et al. fabricated a gelatin-based bilayer membrane using the cryogel technique, with a pure 732 

gelatin PDL phase and a gelatin/ β-TCP/HA bone phase. Bioactive cues, enamel matrix derivatives and 733 

bone morphogenetic protein-2 (BMP-2) were incorporated into the membrane with gelatin, providing 734 

high cell affinity and sustained release of the biomolecules 165. 735 

Wang et al. designed a bilayer scaffold using electrospinning and photo-crosslinking for GBR 736 

applications made of GelMA and GelMA/poly (ethylene glycol) diacrylate (PEGDA) to be in contact 737 

with soft and bone tissues, respectively. The incorporation of PEGDA into the composition improved 738 

the mechanical properties of the scaffold significantly, suggesting this composite fibrous membrane 739 

is a new promising and tunable material to be used in GBR applications 274.  740 

2.3.2.4. Silk 741 

Silk is a natural protein-based polymer produced from the larvae of animals such as spider mites, flies, 742 

and silkworms, and it is widely used in tissue engineering applications 275,276,277. Silk fibres are mainly 743 

composed of two proteins: sericin and fibroin. Silk fibroin is commonly used in tissue engineering due 744 

to being biocompatible, biodegradable, bioabsorbable, having low immunogenicity, and controllable 745 

mechanical properties 278–281. Silk fibroin (SF) is used in periodontal treatment for buccal healing, 746 

mineralised tissue formation, and implant treatment 282. Silk sericin provides mechanical strength; in 747 

nature sericin filaments ensure the integrity of the cocoon 283. In bone regeneration applications, it 748 

supports bone-like HA nucleation 284, which would typically occur on collagen.  749 

Guo et al. designed a bilayer GTR membrane, with one layer consisting of SF cast over an 750 

electrospunSF/PCL mat and the other composed of freeze-dried SF/nHA. Although silk fibroin is a 751 

favourable material due to the aforementioned advantages, it has low mechanical strength. 752 

Accordingly, casting SF into an SF/PCL electrospun mat improved the mechanical characteristics of the 753 

scaffolds significantly, with HA addition (up to 30%) further enhancing the compressive strength and 754 

modulus of the scaffolds 285. Freeze-dried sericin was also used as a GBR material in combination with 755 

collagen, with the sericin/collagen ratio influencing pore morphology where greater sericin presence 756 

resulted in larger, more homogenous pores 22. 757 

2.3.3. Ceramics 758 

Bioceramics, such as CaP ceramics and bioactive calcium glasses, are inorganic biomaterials 286. 759 

Calcium phosphate bioceramics are composed of TCP (𝛼-TCP and 𝛽-TCP), HA, and a combination of 760 

these as a biphasic calcium phosphate (BCP) 287. Due to their bioactivity, hydrophilicity, 761 

biocompatibility, availability, resemblance to inorganic components of natural bone, 762 

osteoconductivity 60, and potential osteoinductivity 288, bioceramics are widely used for bone and 763 

periodontal regeneration 216,191. 764 
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Even though bioceramics possess advantageous characteristics, they are highly brittle, and it is hard 765 

to shape them because of their rigidity, limited flexibility, and poor mouldability 289. Due to their weak 766 

fracture toughness 290 and poor mechanical strength 291, their use in load-bearing applications is 767 

limited. However, their combination with mechanically strong biomaterials, such as synthetic 768 

polymers or metals, overcomes this by reducing brittleness, difficulty in shaping, and weak mechanical 769 

strength 292. 770 

As 60-70% of the bone inorganic matrix is composed of HA, it is the most studied CaP ceramic in bone 771 

tissue engineering research. HA favourably promotes the proliferation and adhesion of osteoblasts 293. 772 

Despite these advantages, crystalline HA takes a long time to break down in vivo, allowing the residual 773 

particles to inhibit full bone formation and raise the risk of infection and exposure in the maxillofacial 774 

and oral areas 294. As a result, crystalline HA is replaced by amorphous HA, which exhibits a faster 775 

degradation rate 295. The degradation rate of HA may also be altered by combining it with other fast-776 

degrading biomaterials 296. 777 

Kutikov et al. reported the fabrication of 3D printed, biodegradable, amphiphilic poly (D, L-lactic acid)-778 

poly (ethylene glycol)-poly (D, L-lactic acid) (PLA-PEG-PLA) (PELA) triblock co-polymer microporous 779 

composite scaffolds both with HA (HA-PELA – bone phase) and without HA (PELA – soft tissue phase) 780 

for use in GBR applications. Changes in hydrophilicity and mechanical properties of the materials were 781 

dependent on the dry or wet state of the material, which may be beneficial for the self-fixation of the 782 

scaffold during surgery. The degree of swelling and increase in the stiffness of the scaffolds were 783 

measured as 55% and 44%, 1.38-fold and 4-fold, for HA-PELA and PELA scaffolds, respectively. HA 784 

inclusion increased both hydrophilicity and the stiffness of the scaffolds, and the presence/absence of 785 

HA in each phase resulted in differing responses of NIH-3T3 fibroblasts and mesenchymal 786 

stem/stromal cells (MSCs), with HA-PELA supporting in vitro MSC osteogenic differentiation 297. 787 

Shoba et al. designed a biphasic membrane based on freeze-dried collagen/sericin and bromelain-788 

conjugated, magnesium-doped HA nanoparticle incorporated electrospun PVA. In addition to in vitro 789 

characterisation and in vivo testing in a Wistar rat model, they also conducted a CAM assay to 790 

investigate the angiogenic potential of the scaffolds. They had four groups: (1) collagen/sericin layer, 791 

(2) bromelain-conjugated magnesium-doped HA nanoparticle/PVA electrospun coated collagen 792 

sericin, (3) positive control [20 ng/ml VEGF], and (4) negative control [200 μg/mL thalidomide]. The 793 

number of blood vessels found was higher in group 2 compared to group 1, likely due to bromelain 794 

released from magnesium-doped HA nanoparticles encouraging vascularisation 22. 795 

𝛽-TCP is another extensively researched CaP ceramic due to its capacity to produce a robust bond 796 

between bone and CaP 216 and its rapid degradation rate 298. Combining TCP and HA to produce BCP 797 



   
 

30 
 

299 provides considerable benefits over alternative CaP ceramics in terms of stability, regulated 798 

bioactivity, and controllable degradation rate 300, with BCP having a faster degradation rate than HA 799 

but slower than 𝛽-TCP 301. 800 

Vaquette et al. fabricated a biphasic scaffold where the bone phase was composed of FDM printed, β-801 

TCP incorporated PCL, and the other layer was electrospun PCL combined with three layers of PDL cell 802 

sheets. The bone compartment promoted cell proliferation and ECM mineralization in vitro, whilst 803 

the electrospun layer enhanced the stability of the cell sheet layer. In vivo analysis where the scaffold 804 

was mounted to a dentin slice and inserted subcutaneously indicated that the integration of PDL cell 805 

sheets with a biphasic scaffold enables the supply of the cells required for the in vivo regeneration of 806 

periodontal tissues 206. 807 

Bioactive glass (BG), which is calcium-substituted silicon oxide, is yet another biomaterial studied in 808 

bone tissue engineering 302,303. As BG is exposed to body fluids, a coating of CaP develops on its surface 809 

that chemically integrates it into the bone 304. BGs are also incorporated into natural and synthetic 810 

polymers to enhance their hydrophilicity, bioactivity, and regeneration potential of the hard tissues 811 

208. 812 

2.4. Post treatments  813 

As cell attachment, proliferation, and differentiation on 3D constructs are crucial for tissue 814 

regeneration, it is important to understand the cell activity and response on the surface of the scaffold 815 

material in the process of developing effective bioactive 3D structures 41. Surface topography, 816 

chemistry 305, microstructure 253,306, and mechanical properties 307 of 3D constructs are some of the 817 

critical characteristics that influence cellular behaviour. Adjusting these features for a specific tissue 818 

type can be quite challenging, and, in some cases, cell attachment and migration can be limited due 819 

to the properties or morphology of the biomaterials 308. Post-treatments such as surface 820 

modification/functionalisation routes have been used widely to overcome such problems and 821 

enhance the characteristics of the 3D constructs and, consequently, the biological activity of the cells 822 

on designed scaffolds (Table 4) 308–310. 823 

824 

Figure 8: (A-D) Commonly used surface functionalisation techniques/post-treatments to increase the scaffolds' 825 

hydrophilicity and/or biological activity. 826 
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Post-treatments to enhance cell-material interaction include physical modification to create surface 827 

topography (e.g., through surface alkali hydrolysis 311 or physical interpenetrating techniques 312), 828 

chemical modification to manipulate surface chemistry (e.g. plasma treatment 313 and photo-grafting 829 

314) and biological modifications that tether biomolecules to the surface to harness their activity 830 

(Figure 8) 315. 831 

Although PCL is a widely used material in tissue engineering, cell attachment on native PCL-based 832 

surfaces is challenging due to the hydrophobic nature of the material. Park et al. developed a PCL-833 

based scaffold that is oxygen plasma treated and then coated with graphene oxide (GO) to overcome 834 

this. Water contact angle values were measured as 73.14°, 74.94°, 40.52° and 27.8° for PCL, PCL-835 

plasma, PCL-GO, and PCL-plasma-GO, respectively. In vitro, periodontal ligament stem cells (PDLSCs) 836 

culture characterisation results showed that plasma treatment and GO coating increase cell 837 

proliferation and osteogenic differentiation compared with the non-treated group 316. 838 

Pilipchuk et al. developed 3D-printed and micropatterned PCL scaffolds for periodontal regeneration 839 

and tested various surface modification techniques such as amination, hydrolysis, fibronectin coating, 840 

and hydrolysis+fibronectin coating to improve their biological performance. Human PDL cells were 841 

seeded on test groups, and cell seeding efficiency analysis showed that hydrolysis, fibronectin, and a 842 

combination of them showed better cell adherence than both aminated and non-treated PCL (control) 843 

317. 844 

Coating the scaffold with CaP is another surface modification method to support the integration of 845 

the 3D constructs and enhance bone formation 191,210. Costa et al. designed a bi-phasic scaffold 846 

composed of FDM fabricated β-TCP incorporated medical-grade PCL and electrospun medical-grade 847 

PCL. The bone compartment of the bi-phasic scaffold was coated with CaP to improve 848 

osteoconductivity. In vitro osteoblast culture showed increased ALP activity and improved 849 

mineralisation in comparison to non-coated controls 191.  850 

Table 4: Surface functionalisation routes used for multiphasic GBP membranes in the literature. 851 

Modification Material 
(monomer/macromer) 

In vitro/ 
In vivo 

Result Ref 

Air plasma treatment PCL in vitro - hydrophilicity ↑ 
- cell attachment ↑ 
- cell infiltration ↑ 

10 

Air plasma treatment PCL 
PCL/calcium carbonate 

in vitro - hydrophilicity ↑ 104 

Calcium phosphate (CaP) 
coating 

PCL/β-TCP in vitro 
in vivo 

- osteoconductivity ↑ 
- ALP activity ↑ 
- deposition of mineralised ECM 
- mineralisation (micro-CT)↑ 

191 

Calcium phosphate (CaP) 
coating 

Chitosan/gelatin n/a - formation of osseointegrative 
interface 

210 
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Chemical vapour deposition 
(CVD) 

PLGA/PCL 
PCL 

in vitro 
in vivo 

- enables immobilisation of gene 
therapy vector 

318 

Silanol group 
functionalisation 

Starch/PCL in vitro 
 

- cell metabolic activity ↑ 
- osteogenic differentiation↑ 

114 

Oxygen plasma treatment & 
graphene oxide coating 

PCL in vitro 
 

- hydrophilicity ↑ 
- cell proliferation ↑ 
- osteogenic differentiation↑ 

316 

Hydrolysis PCL in vitro - cell adhesion ↑ 317 

Fibronectin coating PCL - cell adhesion ↑ 

Hydrolysis & fibronectin 
coating 

PCL - cell adhesion ↑ 

 852 

2.5. Bioactive cue-releasing scaffolds 853 

In drug delivery systems, the delivery of the therapeutic agents is targeted to a specific organ, tissue, 854 

or cell 319. Drugs can be incorporated into the scaffolds by one of the following routes; - physical 855 

entrapment (blend loading), where the polymer solution and the drug are mixed pre-fabrication and 856 

then the scaffold is fabricated, - physical adsorption (soak loading), where the scaffold is soaked into 857 

the drug solution/suspension post-fabrication,- covalent immobilisation or drug-polymer conjugation, 858 

where the drugs can be immobilised/conjugated into specific groups on scaffold surface post-859 

fabrication, and finally, - using microparticles, where the drug solution is loaded into microparticles, 860 

and these particles are incorporated into the scaffold 320,321,322. 861 

The drug release profile from the scaffold depends on various parameters, such as the fabrication 862 

technique, the material type, degradation rate, drug loading route, and the morphology of the 863 

scaffold, alongside the drug type and concentration 323. There are two different types of release in 864 

controlled drug released systems. In a sustained release, the drug spreads to the living tissue for a 865 

prolonged period of time, while in burst release, a high fraction of the drug is released in a short time 866 

324. Drug delivery systems that include (i) antimicrobial, (ii) anti-inflammatory drugs (Table 5), and (iii) 867 

growth factors (Table 6) are widely used in the systems in periodontal regeneration 325, and these 868 

drug-loaded multiphasic periodontal scaffolds will be reviewed herein. 869 

Through an immunopathogenic mechanism, bacteria play a major role in the start and evolution of 870 

periodontitis, resulting in the creation of the periodontal pocket, connective tissue degradation, and 871 

alveolar bone loss 326. Thus, antibacterial agents are widely used for long or short periods of time in 872 

damaged areas for periodontal infections 327. Antimicrobial drug-loaded scaffolds could be utilised to 873 

avoid post-surgical infections and other disorders over a longer period than traditional administration 874 

methods 328 and would provide a healing environment that promotes regeneration by preventing the 875 

reoccurrence of bacterial infection 329. The most used antibacterial drugs in polymer membranes 876 

include tetracycline hydrochloride, metronidazole (MET), and AMX 330,249. Although the origin of 877 

periodontitis is bacterial, the resulting inflammation and excessive host immune response are key 878 

drivers of the disease progression, and these can be targeted independently of the pathogens 331. 879 
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Following scaffold implantation, inflammation may ensue if good and adequate care is not provided 880 

3,332,333. To overcome this problem, anti-inflammatory steroids such as dexamethasone (DEX) and non-881 

steroidal anti-inflammatory drugs such as ibuprofen, diclofenac, and rolipram can be incorporated 882 

into periodontal scaffolds 334–338. 883 

Lian et al. reported the development of an anti-inflammatory and antimicrobial drug-incorporated 884 

biphasic scaffold where one layer was composed of DEX-loaded mesoporous silica nanoparticle 885 

incorporated (DEX@MSNs) PLGA/gelatine nanofibers and the other layer of the broad-spectrum 886 

antibiotic doxycycline hyclate (DCH) loaded PLGA electrospun nanofibers. In vitro analysis showed 887 

sustained release of DEX, with the total released from DEX@MSNs and DEX@MSNs/PLGA/Gel-PLGA 888 

bi-layered membranes being 57.6% and 38.8% after 21 days, respectively. DCH initially underwent 889 

burst release and then subsequent persistent release. Bacterial inhibition experiments showed that 890 

DCH has an antimicrobial effect on both E. coli (gram-negative) and S. aureus (gram-positive). As well 891 

as being an anti-inflammatory, DEX is also used to induce osteogenic differentiation of MSCs by acting 892 

as a Runx2 promoter 339. Here, it was observed that DEX incorporation increased ALP activity and 893 

calcium deposition and upregulated osteocalcin (OCN) expression of rat bone marrow stem cells 894 

(BMSCs) in vitro 340. 895 

Santos et al. developed a biphasic membrane loaded with curcumin as a natural anti-inflammatory 896 

agent and tetracycline hydrochloride (TH) as a broad-spectrum antibiotic against periodontitis. One 897 

phase was made of 3D printed zein/curcumin doped PLA, and the other layer was created using coaxial 898 

electrospinning, where fibres were composed of PEO/curcumin/TH and zein/PCL/β-glycerolphosphate 899 

(β-GP) at the core and sheath of the scaffolds, respectively (Figure 7E). They showed the 900 

cytocompatibility of the scaffolds using human oral keratinocytes, demonstrating sustained release of 901 

the active agents for up to 8 days. The antibacterial activity of the scaffolds was demonstrated against 902 

the bacteria Porphyromonas gingivalis and Treponema denticola, common instigators of periodontitis 903 

189.  904 

An important part of ensuring the regeneration of the periodontal structure is creating an 905 

environment that supports the differentiation of progenitor cells. Growth factors 341–345, and cytokines 906 

346 are some of the molecules that facilitate periodontal regeneration (maxillary/mandibular bone, 907 

salivary glands, dentin-pulp). These signalling molecules stimulate cells throughout development, and 908 

controlling the delivery of those factors can promote cell proliferation, differentiation, and tissue 909 

regeneration 347,328,348. Platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), FGF-2, 910 

transforming growth factor beta (TGF-β) 207,349, bone morphogenetic proteins (BMPs), and vascular 911 
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endothelial growth factor (VEGF) 347 have been some of the most researched growth factors for 912 

periodontal regeneration 350. 913 

BMPs have a role predominantly in bone and cartilage development and are widely used in bone tissue 914 

engineering applications due to osteoinductive properties. There are many members of the BMP 915 

family, from BMP-2 to BMP-18 351,352. BMP-2 is one of the most widely used growth factors in bone 916 

and periodontal tissue engineering 353,165,177 and provides bone formation 354 by differentiation and 917 

migration of osteoblasts 347. There are also clinical and pre-clinical studies showing the potential of 918 

BMP-7 178,318,355, BMP-12 350 and BMP-6 84 in periodontal regeneration. 919 

Tevlek et al. fabricated a bilayer scaffold made of a β-TCP and poly(glycerol-sebacate) (PGS) phase, 920 

and a ceramic phase was doped with BMP-2 and/or TGF-β1. MC3T3-E1 cells cultured on BMP-2 doped 921 

scaffolds resulted in higher proliferation and exhibited a more osteoblastic phenotype than cells 922 

cultured on TGF-β1 doped scaffolds. The use of both growth factors showed better performance in 923 

terms of bone cell morphology and bone ECM production when compared to the use of BMP-2 or TGF-924 

β1 alone 353. 925 

Lee et al. fabricated triphasic 3D-printed PCL/HA-based scaffolds with varying microchannel sizes, 926 

where each phase was doped with different bioactive cues. Cementum, PDL, and alveolar bone 927 

mimicking layers were enriched with recombinant human amelogenin, the protein that contributes to 928 

the formation of mineralised dentin or cement structure 356, connective tissue growth factor, and 929 

BMP-2, respectively. Agents were incorporated into PLGA microspheres and delivered to the 930 

microchannels of the scaffold. Through this work, they proposed a system that enables the release of 931 

multiple drugs from the same system to stimulate the differentiation of dental stem/progenitor cells 932 

177. 933 

Whilst the efficiencies of the antimicrobial agents are tested using zone inhibition tests and diffusion 934 

assays, as most of the incorporated growth factors are bone-related factors, their efficiency is 935 

assessed by quantifying osteogenic differentiation markers, bone ECM deposition, and osteogenesis-936 

related gene expression in drug-releasing constructs. However, some of the studies incorporated 937 

drugs as model agents to test the suitability of their system as a drug-releasing system, and they did 938 

not test the performance and the efficiency of the final intended drug. More detailed analyses are 939 

needed to test the performance of these systems as drug-releasing scaffolds.940 
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Table 5: Antimicrobial and anti-inflammatory drugs used in multiphasic constructs developed for periodontal tissue engineering. 941 

 942 

 943 

 944 

 945 

Category Material Fabrication route Agent Incorporation route Results Ref 

A
n

ti
m

ic
ro

b
ia

l 

PLA/gelatin Electrospinning Metronidazole (MET) Mixing with polymer solution 
before fabrication 

Experiment N/A to show the antimicrobial activity. 357 

Collagen Coaxial 
electrospinning 

Amoxicillin (AMX) Mixing with polymer solution 
before fabrication 

Experiment N/A to show the antimicrobial activity. 250 

PLGA Electrospinning Doxycycline Hyclate 
(DCH) 

Mixing with polymer solution 
before fabrication 

Antimicrobial activity was observed against both E. coli 
(gram-negative) and S. aureus (gram-positive) in the zone 
inhibition test. 

34020

4 

PEO/curcumin Coaxial 
electrospinning 

Tetracycline 
hydrochloride (TH) 

Mixing with polymer solution 
before fabrication 

Antibacterial activity was observed in disc diffusion assay 
(against bacterial strains isolated from periodontal 
subgingival plaques of human patients suffering from 
chronic periodontitis). 

189 

PLGA/HA Solvent casting & 
solvent leaching 

Lauric Acid Mixing with polymer solution 
before fabrication 

Experiment N/A to show the antimicrobial activity. 120 

Mg-doped HA/PVA Electrospinning Bromelain Conjugation to Mg-doped HA and 
mixing with polymer solution 
before fabrication 

Antibacterial activity was observed in the disc diffusion 
assay (against S. aureus). 

22 

Collagen type I Commercial 
scaffold 
(Collatape®) 

Antimicrobial peptide (LL-
37) 

Absorbed into the scaffold Experiment N/A to show the antimicrobial activity. 209 

PHB/β-TCP/vitamin D3 Electrospinning Ciprofloxacin Mixing with polymer solution 
before fabrication 

Experiment N/A to show the antimicrobial activity. 358 

A
n

ti
-

in
fl

am
m

at
o

ry
 PEO/TH 

and 
PLA/zein/curcumin 

Coaxial 
electrospinning 
and 
3D printing 

Curcumin Incorporation Into the 
Composition 

Experiment N/A to show the anti-inflammatory activity. 189 
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Table 6: Growth factors used in multiphasic constructs developed for periodontal tissue engineering. 946 

947 
Material Fabrication route Agent Incorporation route Results Ref 

Type-1 Collagen Freeze-drying Concentrated growth 
factor (CGF) 

Mixing with polymer solution before 
fabrication 

Transforming growth factor-beta 1 (TGF-β1) and vascular 
endothelial growth factor (VEGF) release from CGF-incorporated 
scaffolds. Expression of genes responsible for osteogenesis and 
angiogenesis. 

207 

PGS/β-TCP Casting and crosslinking BMP-2 and TGF-β1 Delivery of the drug solution on the ceramic 
surface and drying 

Closer osteoblast morphology and more bone extracellular matrix 
deposition compared to the control. 

353 

PCL/HA 3D printing Connective tissue growth 
factor (CTGF) 

Encapsulated in PLGA microspheres Provided a stimulus for periodontal ligament formation. 177 

PCL/HA 3D printing BMP-2 Encapsulated in PLGA microspheres Enabled the differentiation of dental pulp stem/progenitor cells 
(DPSCs) and supported the formation of mineralized tissue. 

177 

PCL/HA 3D printing Recombinant 
human amelogenin 

Encapsulated in PLGA microspheres Supported the formation of mineralized tissue by stimulation of 
DPSCs. 

177 

Gelatin and 
 

Freeze-drying BMP-2 Infused into the scaffold Promotion of osteogenesis in vivo. 165 

PCL/collagen Electrospinning BMP-7 Mixing with polymer solution before 
fabrication 

Enhanced osteogenic differentiation. 223 

PCL/HA Selective 
laser sintering 

Recombinant Human 
Platelet-Derived 
Growth Factor BB 
(rhPDGF-BB) 

Immersion in rhPDGF-BB solution for 15 
minutes 

Control scaffold group without rhPDGF-BB n/a. 359 

Chitin/PLGA/nano 
bioactive glass-ceramic 

Freeze-drying Recombinant human 
cementum protein 1 
(rhCEMP1) 

Loading after scaffold fabrication and 
lyophilisation 

Provided cementogenic differentiation. 208 

Chitin/PLGA Freeze-drying Recombinant human 
fibroblast growth factor 2 
(rhFGF2) 

Loading after scaffold fabrication and 
lyophilisation 

Provided fibrogenic differentiation/fibrogenesis. 208 

Chitin/PLGA/nBGC Freeze-drying Platelet-rich 
Plasma (PRP) 

Loading after scaffold fabrication and 
lyophilisation 

Provided osteogenic differentiation. 208 

CaP coated chitosan Solvent casting-particulate 
leaching 

BMP-6 BMP-6 solution was pipetted onto the scaffold Enhanced the formation of ECM of MC3T3-E1 cells. 84 

PCL Fused deposition modelling 
and 
melt electrospinning 

BMP-2 Encapsulated into three thiolated hyaluronic 
acid-heparin, thiolated gelatine and 
polyethyleneglycol diacrylate hydrogel and 
injected into the biphasic scaffold 

Increase in the expression of osteogenesis-related genes. 
 

360 

PCL 
 
 

Fused deposition modelling 
and 
melt electrospinning 

BMP-2 Encapsulated into heparinized hyaluronic 
acid/gelatin hydrogel and injected into the 
biphasic scaffold 

Enhanced bone regeneration in vivo. 110 
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3. Conclusions 948 

Interface tissue engineering concentrates on regenerating the anatomical interface between different 949 

types of tissues and has the potential to develop integrated scaffolds that will accelerate the adoption 950 

of tissue-engineered technologies in clinical settings. Multi-layer scaffolds are promising constructs 951 

for this application that better mimic interface tissue due to the individually tuneable layers. These 952 

types of scaffolds can have different characteristics in each layer, with modulation of mechanical 953 

properties, material type, porosity, pore size, morphological properties, degradation properties, and 954 

drug-releasing profiles possible. However, it is imperative that good integration between layers is 955 

achieved to avoid delamination during and post-implantation.  956 

In this review, we discussed the major actors in the design of multiphasic constructs: biomaterials, the 957 

types of fabrication methods, the use of drugs/growth factors, and post-treatment processes, 958 

summarising the current status of multiphasic constructs for dental interface tissue. Most of the 959 

studies discussed in this review concluded that according to material characterisation and the in 960 

vitro/in vivo results, multilayer designs not only more closely mimic the native periodontal interface, 961 

but they also provide better and faster regeneration of both hard and soft tissues. Following more 962 

detailed characterisations of the developed membranes in comparison with the commercial 963 

counterparts, more in-depth in vivo tests are needed to have a better understanding of cell 964 

differentiation, in vivo degradation, new tissue formation, and vascularisation for the clinical 965 

translation of these designs.  966 
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