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Building upon recent literature, we combine a novel spatiotemporal variable with spatial 

methods to investigate and quantify the influence of the built environment and jurisdictional 

boundaries on spatial peer-effects (SPEs) in inner-city areas. We focus on the Hartford 

Capital region, using detailed data at block-group and PV system levels for the years 2005-

2013. This region is part of a state, Connecticut, actively engaged in supporting PV system 

at residential level. Adoption of PV systems varies substantially, and state policies are 

mediated by town-level regulations. We initially employ typology analysis to investigate the 

heterogeneity of the block groups with higher adoption rates. We then use panel FE and 

spatial estimations to determine the existence of spill-overs of SPEs beyond town boundaries. 

Our estimations suggest that new PV systems have a more limited spatiotemporal influence 

in inner-cities. We identify spatial spill-overs from neighboring block groups even between 

towns, suggesting that SPEs transcend municipal barriers. We do not find significant results 

for built-environment, although we identify several data limitations. Our results suggest that 

centralized, non-voluntary support policies may have larger effects if implemented beyond 

town-level, and that SPEs change their determination power depending on the underlying 

built environment. 
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1. Introduction & Objectives 

Like many other experiential goods with high upfront capital costs [1], the diffusion of 

residential solar photovoltaic (PV) systems can be decisively driven by information flows 

between peers [2,3,4, 5,6] and through social networks [7], particularly in young markets [8]. As 

the price of PV systems continues to fall, information-based drivers, and the role of non-

monetary barriers may become more important in encouraging households to transition towards 

this low-carbon option [9,10]. Recent literature has attempted to identify non-monetary drivers 

influencing the diffusion of PV systems, often finding that spatial peer effects have a positive 

influence (see e.g. [5,3,11,12]. Similar results have been found even when treated as spill-overs 

between regions, that is, when neighboring regions do influence each other throughout the 

adoption process [13,14,15]. As Mills et al. [16] correctly pointed out, researchers and 

policymakers need to improve their understanding of non-monetary adoption factors in order to 

better incorporate solar systems in to utility planning, thus focusing on potential policy shortfalls 

in supporting the adoption of PV for late-comers.   

As an extension of prior research, this work has four main objectives: i) to typify the 

profile of average adopters across different urban areas using secondary data ; ii) to investigate 

the existence and influence of spatial peer effects (SPEs) within an urban area characterized by 

strict jurisdictional (town) boundaries determining differences in local policies; iii) to understand 

the role of spatial barriers in influencing diffusion; and iv) to improve the models available for 

investigating the existence of SPEs, by combining a previously spatiotemporal peer-effect 

variable as developed by Graziano and Gillingham [3], with spatial models as previously used in 

the context of peer-effects by Dharshing [15[15], and following the methodological 

considerations of LeSage [17]. The introduction of spatial techniques based on Dharshing 
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[15[15], mixed with a previously tested SPEs variable, provides a new, more robust insight in to 

the dynamics of SPEs across a diverse urban spatial setting, thus highlighting the role of space-

time in the diffusion of innovation. To achieve our objectives, we focus on block-group level 

data from four towns within the Greater Hartford area in Connecticut, a state that has 

implemented several monetary and informational policies to support PV system adoption at the 

residential level. 

1.1 Relevant Works  

Our analysis builds upon the works of Bollinger and Gillingham [6], Graziano and 

Gillingham [3], Bronin [18], and, partly, Dharshing [15[15]. In their analysis of the diffusion of 

PV systems in California, [6] identified and quantified the presence of SPEs using zip-code level 

data, as well as an alternative mean to the installed-base level, which was previously used in 

literature. Focusing on Connecticut, and conducting their analysis as block group level, [3] built 

upon Bollinger and Gillingham’s intuition about SPEs, focusing on the spatial and temporal 

degree of influence of these effects, developing a spatiotemporal band of proximity built off of 

different Euclidean distances of proximity (0.5, 1 and 4 miles), and testing it for different time 

lengths since the neighboring installations occurred (30 days to 24 months). The authors not only 

confirmed the presence of SPEs, but found that their effects decayed as time passed and distance 

increased, virtually fading beyond 4 miles. Further, the authors linked these results to suggest 

that the spatiotemporal influence of these effects may vary depending on the underlying social 

and built environment (e.g. use of personal vehicles), differently  [11,21], which instead 

interpreted their similar results as the existence of a cut-off distance beyond which SPEs would 

rapidly disappear. Focusing on the relationship between built environment and the laws 

regulating the operation of diffused renewable energy technologies, [18] found that the adoption 
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of these technologies could have been hampered in urban-city areas in Connecticut, thus 

suggesting that support policies for adoption need to be paired with operational regulations for 

operating these technologies within multiple built landscapes. Finally, [15] has applied spatial 

regressive and error models for investigating the factors influencing the diffusion of PV systems 

in Germany, finding that connected, although not necessarily neighboring, areas influence each 

other’s adoptions.  

2. Study Area  

Despite being quite wealthy on aggregate, CT has widespread income inequality and 

poverty [20]. These differences within the state are intertwined with a highly fragmented 

jurisdictional landscape. A state-wide program subsidizes PV system adoption, and, upon request 

from towns, community programs such as Solarize CT [3]. In recent years, the residential PV 

program has been extended to include multi-family buildings (> 5 owners, see [21]), although 

sub metering is not allowed [18].  

Each of the 169 towns retains wide powers in several regulatory matters, including some 

affecting directly residential PV systems [3]. For example towns may restrict the adoption of 

roof-top solar systems on certain buildings depending on their age, or the zoning (e.g. historic 

neighborhood), thus influencing the possibility of adoption, and creating a varied jurisdictional 

and socioeconomic landscape.  

PV systems in CT have reached grid-parity as of 2014 meaning that the cost of electricity 

is at least the same as the price of electricity purchased from the grid [22], mostly thanks to the 

high electricity prices in the state and the generous state incentives. The incentive programs are 

managed at state-level, with incentive amounts and types (e.g. tax-break, cash-back, etc.) set 

equal for the state as a whole. Among these incentives, homeowners primarily have access to the 
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Residential Solar Investment Program (RSIP). RSIP can be used for either accessing a PV-lease 

program, or a feed-in-tariff based on consumption, and funded through the Smart E-Loan 

program, a zero-interest program available state-wide [23]. Overall, the state is considered as a 

solar ‘friendly’ state by market watch groups, featuring in the top-10 PV states in 2018 [24,25], 

and featuring among the highest states for PV system count, capacity installed, and in the lower 

half for PV system cost [23]. 

Our analysis focuses on four towns in the central area of Connecticut: Hartford, the state 

capital, East Hartford, Glastonbury, and Manchester. All these towns are relatively old by 

standards in the USA, some having being incorporated as early as the 16th century. The towns 

form an interrelated space within the Hartford Metropolitan Statistical Area, and have strong 

economic ties. Nevertheless, each town is administered independently, and, even though they all 

enjoy the same statewide incentives, they regulate the processes through which PV systems can 

be licensed. Further, these towns are part of one of the most income and minority segregated 

regions in the country [26]. 

Residents of smaller towns usually live in single-family houses, whereas those of larger, 

and older, core-municipalities such as Hartford live in multi-family buildings. Due to the 

statewide prohibition of sub-metering and the lack of split-incentives (between landlord and 

renter of among occupants of multi-family buildings) to encourage adoption in these areas, 

diffusion of PV systems might be difficult even when access to the financial resources is not an 

issue [18]. On aggregate, the state has seen a surge of PV systems adoption in recent years. As of 

September 2013, 3,843 residents have adopted rooftop PV systems, equating to an increase of 

36.5% from December 2012 [27]. Within this context, our study area offers a wide range of 
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socioeconomic conditions. Figure 1 shows the extent and location of our four towns and the 

median household income for each town.  

 

Figure 1 – Study Area with Median Household Income at town level, 2012 

 

The four towns play different roles within the Connecticut’s economy. Hartford, the 

capital, hosts several governmental buildings and it is one of the major international centers for 

insurance companies. East Hartford still hosts few large manufacturing plants. Both these towns 

have problems related to poverty and crime. Manchester hosts one of the largest shopping areas 

in the state. Finally, Glastonbury has recently developed as a wealthier, suburban community, 
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although it still has several plots of farmland. Overall, the towns extend for about 300 sq. km of 

land and are home to 268,000 people, or 7.5% of the state population. None of these towns was 

part of the CT Solarize program during the period analyzed.  

2.1 Data Sources  

We conduct our analysis at the (Census) block group level, selecting data at this scale 

when possible. Table 1 provides an overview of the sources used.  

 

Table 1. Summary Statistics and Sources2  

Variable Mean 
Std. 

Dev. 
Min Max Source 

Number of new Adoptions 0.05 0.22 0.00 1.00 [27] 

Cumulative Installed Base 0.16 0.54 0.00 7.00 [27] 

Average Neighbours within 0.5 Mile (6 

months) 0.01 0.11 0.00 3.00 
Calculated from [27] 

Average Neighbours within 0.5 Mile 

(12 months) 
0.02 0.29 0.00 16.00 Calculated from [27] 

Average Neighbours within 1 Mile (6 

months) 
0.01 0.18 0.00 5.50 Calculated from [27] 

Average Neighbours within 1 Mile (12 

months) 
0.03 0.53 0.00 30.00 Calculated from [27] 

Average Neighbours within 1.5 Mile (6 

months) 
0.01 0.08 0.00 2.50 Calculated from [27] 

Average Neighbours within 1.5 Mile 

(12 months) 
0.01 0.26 0.00 14.00 Calculated from [27] 

Average Neighbours within 4 Miles (6 

months) 
0.05 0.61 0.00 19.00 Calculated from [27] 

Average Neighbours within 4 Miles (12 

months) 
0.10 1.74 0.00 102.00 Calculated from [27] 

Number of Housing Units (000s) 0.62 0.40 0.05 3.65 U.S Census 

% of Rent-occupied Houses 51.32 33.76 0.00 100.00 U.S Census 

% of Houses >5 bedrooms 3.49 6.29 0.00 65.86 U.S Census 

Gross Housing Density 1561.32 2230.40 9.50 28908.94 U.S Census 

Number of Housing Units (000s) 0.62 0.40 0.05 3.65 U.S Census 

Median Household Income ($10,000) 5.47 3.62 0.15 25.57 U.S Census 

Dow Jones Level (1,000) 11.66 1.59 8.89 14.87 U.S Census 

% pop who are white 52.07 28.75 0.00 100.00 U.S Census 

% pop who are black 25.82 25.14 0.00 100.00 U.S Census 

% pop who are Asians 5.41 8.00 0.00 73.12 U.S Census 

Median Age 36.62 9.42 11.61 80.00 U.S Census 

                                                           
2 Values based on [7] and interpolated from the U.S. Census 10-year Census 2000 and 2010, and ACS 5-year averages for the 

years starting in 2008.  
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% Registered to minority parties 0.42 0.46 0.00 2.82 [28] 

% Registered to the Democratic Party 53.44 16.36 21.80 75.23 [28] 

Built Environment 

Net Housing Density 886.49 523.23 0.00 2753.67 Calculated 

Share of Single-Family Houses 55.67 35.12 0 100.25 Calculated 

 

We employ a data subset from [3], selecting the block groups belonging to Hartford, East 

Hartford, Glastonbury and Manchester. These data are the result of interpolated values from 

actual observation points derived from the Census 2000 and 2010 and the American Community 

Surveys (ACS) – 5-year averages from 2005 to 2011. The time period covered is January 2005 

through September 2013. In the interpolation process, [3] accounted for the changes in block 

group boundaries using the newer boundaries assigned by the U.S. Census after 2008. The 

interpolation process was necessary to obtain a continuous dataset within the period of interest.  

PV systems location and date of application to the Connecticut Energy Financial and 

Investment Authority (CEFIA)3 incentive program come from the CEFIA Solar Database [27]. 

The dataset contains several information about adopters, including addresses and the day-month-

year of installations. The dataset records each residential installation since 2004. Because of the 

methodology used (i.e. with lagged values), we dropped the (few) observations available for the 

first year. Overall, the period considered runs from January 2005 and September 2013, equal to 

35 quarters. To understand the role of spatial peer effects, we build upon the work of [3], 

introducing the spatiotemporal variable developed by the two authors. This variable aggregates 

at block group level the number of PV installations within 6 and 12 months from each actual PV 

system location at various spatial distances starting 0.5 miles. The advantages of using the 

framework and the spatiotemporal variable developed by [3] are multiple. Their approach 

                                                           
3 As of 2016, the new name of the agency is Connecticut Green Bank.  
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overcomes the issues related with homophily, correlated unobservables, and simultaneity. 

Furthermore, the spatiotemporal band per se allows us to reduce the effects of aggregating data 

at specific areal units, as it is calculated starting from each observation.  

Compared to [3], we allow the search model to account for installations in towns outside 

the study area. Further, we adjust our specifications to account for the different total extent of our 

study area, as explained in the model specifications. Combining the proximity variable 

developed by [3] with the spatial models utilized by [15], we further improve our estimations, 

accounting for spatial effects and the influence of neighboring areal units.  

2.2 Spatial Data and Parcels Data Collection 

The majority of the spatial and boundary data employed assess the role of peer effect and 

for display purposes come from the University of Connecticut Map and Geographic Information 

Center [29]. For understanding the role of the housing composition, we use parcel data created 

by each town. We calculate the net housing density, the density of parcels where adoption of 

residential PV systems can actually occur. 

This density is expressed as: 

 

𝑁𝑒𝑡𝐻𝑜𝑢𝑠𝑒𝐷𝑒𝑛𝑠 =  
# 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑎𝑟𝑐𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐻𝑜𝑢𝑠𝑖𝑛𝑔 𝑃𝑎𝑟𝑐𝑒𝑙𝑠 (𝑠𝑞. 𝑘𝑚)
 

 

Many of the parcels within these four towns have been developed pre-1970, and 

dwellings tend to occupy almost the entirety of each parcel, with little space for yards. Because 

of the data limitation, we adopt a gross housing density in our panel models. This can be written 

as: 

𝐺𝑟𝑜𝑠𝑠𝐻𝑜𝑢𝑠𝑒𝐷𝑒𝑛𝑠 =  
# 𝑜𝑓 𝐻𝑜𝑢𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑏𝑙𝑜𝑐𝑘 𝑔𝑟𝑜𝑢𝑝
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A third measure controlling for the urban setting is the share of single-family houses 

within each block group. We define this variable as follows: 

𝑆ℎ𝑆𝑖𝑛𝑔𝑙𝑒𝐹𝑎𝑚 =  
# 𝑜𝑓 𝑆𝑖𝑛𝑔𝑙𝑒 𝑓𝑎𝑚𝑖𝑙𝑦 𝑃𝑎𝑟𝑐𝑒𝑙𝑠

# 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑎𝑟𝑐𝑒𝑙𝑠
 

The study does not include a single source for the parcels data. Indeed, Connecticut does 

not have a statewide or a region-wide depository of such data. Each of the 169 towns is 

responsible for collecting, storing and sharing its own parcel data, without standardization across 

municipalities, and none has multiple years of parcel data to use as a comparison. As a result, we 

are forced to introduce these variables into an OLS model.  

 

3. Methods: Typology Analysis and Modelling Strategies 

Following the suggestion that underlying human and physical geographies influence peer 

effects and diffusion [3][3], and giving the data limitations presented above, to capture the 

differences of users within the study area, we use three methodologies, two of which are 

presented in this section. First, we employ hierarchical clustering to assess the number of block 

group clusters within each town, and the major drivers behind this clusterization [30, 31, 32]. 

Through hierarchical cluster analysis, we produce a unique set of nested categories by 

sequentially pairing variables. Then select that pair (or cluster and variable) producing the 

highest average inter-correlation within the trial cluster, and deem it to be the new cluster [30, 

30].  Following this first analysis, we proceed with a spatial inference of the distribution of 

adopters in relation to spatial barriers. We display the results of hierarchical clustering in 

dendograms (appendix A). From this analysis, we infer that the optimal number of clusters is 

four, with income being the major element determining the dataset partition. In the following 

section, we will use these results to create and compare adopters’ profiles across the four towns.  
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Figure 2a provides an overview of the number of PV systems within each block group 

across the study area. In Figure 2a, we show the four towns, highlighting the residential parcels 

in 2013 over all other town parcels. It appears quite clear that the four towns differ in terms of 

PV system diffusion, and of residential distribution within their boundaries.   

 

 
Figure 2 – A. Number of residential PV system adopters (as of October 1, 2013) within Hartford, West Hartford, East Hartford, 

Glastonbury, and Manchester (Connecticut). B. Spatial barriers and residential parcels in Hartford, West Hartford, East Hartford, 

Glastonbury, and Manchester (Connecticut), composite of last available years. 

 

Overall, the towns have several spatial gaps in their residential patterns. For example, 

parks and green spaces can be easily accessed and can provide places of aggregation for people, 

but also operate as ‘disaggreagators’ in terms of social interaction with the built environment 

[33]. Effectively, spatial peer effects appear to be concentrated within neighborhoods, depending 

on the layout of each town. Consequently, programs partly based on community incentives will 
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have to target several neighborhoods within each town, rather than treating these towns as 

uniform entities, building business models capable of fulfilling utility needs [34,33], and 

leveraging further on social networks [34]. 

  

3.1 Modelling Strategy 1: Panel and OLS to identify SPEs and the Role of Spatial 

Barriers 

The analysis of block groups’ characteristics provided us with two main results. First, we 

identify the general profile of PV adopters, or, more precisely, the profile of an adopter’s block 

group. Second, we establish that this profile changes across towns, and, given the jurisdictional 

and socioeconomic fragmentation, current statewide policies not capable of capturing these local 

nuances may result in an overall lower efficiency or bias towards specific regions. Building on 

[3] and [6] we use panel fixed-effect4 and OLS models to identify the drivers of PV diffusion, 

and the role of the built-in environment.  

Starting from the panel data analysis, our specification can be parsimoniously stated as 

follows: 

PVcounti,t = α + Ni,t β + Bi,t γ + Di,t θ + μi + ψt + εi,t                                        (EQ : 1) 

where PVcounti,t  is the number of new adoptions in block group i at time t; Ni,t is the 

vector of spatiotemporal variables built by [3] and Bi,t  is the vector of built environment 

variables. Di,t  is a vector of socioeconomic and demographic variables also containing controls 

for median income, racial and age profile for each block group similar to those of [3][3], and 

commonly used in previous works. We further add a dummy variable, Income100k, to control for 

those block groups with median household income greater than $100,000 to investigate if there is 

                                                           
4 We use a fixed effects approach, as a Hausman test results allow us to reject the orthogonality assumption of the 

random effects model at 99% confidence level. 
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a break-point above which adoption is more likely. ψt is a time dummy variable; and εi,t is a zero-

mean error term. 

In line with previous research [2,3,37] we use a series of fixed-effects (FE) to assess the 

drivers of the PV adoption. In particular, we are interested in two sets of FEs: those addressing 

personal characteristics of the decision maker (e.g. age and ethnic group) and those addressing 

the spatial peer effects. With respect to the latter we define a set of proxy as the number of new 

adoptions respectively within 0.5, 1, 1.5 and 4 miles from each block-group center, and 

excluding adoptions occurring in the same quarter to account for simultaneity. These proxy 

variables allow us to investigate the role of geography in generating spatial spillovers which we 

specifically address with the spatial analysis. The values of the spatiotemporal variable are then 

aggregated and averaged at block group level. Given the physical nature of the spatial 

interactions, our analysis can easily overcome the major issues raised in [38] such as those 

regarding identification, computational matters, measurement errors, misspecification and the 

presence of endogenous networks (i.e. unobserved features of the decision makers influencing 

their behavior). Conversely, spatial effects can still suffer from a time and context dependence 

and this is why we also add the time dimension defining a set of SPEs for two time periods: six 

months and twelve months, as suggested by [3].  

The limited number of observations makes town-level partition of little use; therefore, we 

focus on the study area as a whole, at the U.S. Census block-group level. 

Due to the availability of more granular (parcel) data describing the built environment for 

the year 2013 only we further proceed with a set of cross-sectional models. We specify three 

OLS regressions adopting the same specification we use for panel data as (EQ.:1). Time variable 

is fixed to 2013 and the vector Bi,t is changed according to the more granular information 
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available. In panel data, Bi,t includes the ‘Gross Housing Density’, presented above, to control 

for housing densities and, to a certain extent, housing type. In cross section, we replace this 

control with the ‘Net Housing Density’. Further, we introduce the share of single-family parcels 

to control for housing type. As a whole, these variables investigate the relationship between the 

built environment and current regulations on sub-metering and split incentives would increase 

adoption of PV systems, as suggested by Bronin [18]. Because of the effect of town policies on 

PV adoptions, we cluster standard errors in both panel data and cross section analysis at a city 

level.  

 

3.2 Modelling Strategy 2: Introducing Spatial Models and Cross-Jurisdictional SPEs 

spill-overs 

The importance of spatial aggregations of PV systems, quite evident from Figure 1, and 

Moran’s I test performed in ArcMap (at the block group level) reporting the existence of non-

random clustering5, suggest further work is needed. In order to address the issue of spatial 

spillovers, we use the standard empirical methods of spatial econometrics as suggested by the 

literature (e.g. [15]). Given the nature and scope of our analysis, we adopt a Spatial 

Autoregression Model (SAR) as our best specification. Following [17], SAR is among the most 

suitable specifications to address local spillover effects without postulating a spatial 

autocorrelation of the error term (see [36] for further references about alternative specifications) 

and it is a special case of the more general Spatial Durbin model (SDM). The general 

specification for the SDM is the following: 

𝑦 =  𝜌𝑊𝑦 + α𝑖𝑛 + 𝑋𝛽 + 𝑊𝑋𝛽2 + 𝜀     (EQ : 2) 

                                                           
5 P-value: 0.00069, Z-value: 3.39. 
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Where W is the matrix of spatial lags, α𝑖𝑛 and 𝜀 error terms and X the matrix of 

characteristics of the regions. The model collapses to a SAR when 𝛽2 = 0, thus allowing a major 

focus on the autoregressive nature of the dependent variable. SDM (and SAR, as its special case) 

is particularly useful when there is a reason to assume (and test) that the dependent variable 

shows a path dependence, thus focusing on this specific type of spillover effects neglecting the 

spatial effects of the other characteristics of the regions. Given the nature and scope of our 

analysis, focused on local spillovers, and the problems highlighted by [17] in estimating the other 

specifications, we consider SAR model the best option to capture the underlying dynamics of the 

PV adoption. Therefore, our specification can be parsimoniously stated as: : 

PVcounti,t = ρW PVcounti,t + Ni,t β + ai+ γi + εt  (EQ : 3) 

 

where ρ is the spatial coefficient, W is a queen matrix of spatial lags, Ni,t  a reduced 

vector of regressors, ai the individual fixed effect, γi the time effect and εt  the error term. In terms 

of weight matrix, in line with the objective of this section, we chose a contiguity (rather than a 

distance) approach. Following the most recent and advanced techniques we developed a queen 

contiguity matrix which defines as ‘neighbors’ those regions sharing an edge of a node, thus 

accounting for those block groups with common boundaries. This approach is consistent with 

[15] and the queen weight matrix has proven to generate at least as many links as the alternative 

ones. Moreover, given the explicit focus on jurisdictional boundaries between neighboring block 

groups, the choice of a queen weight matrix seems to suit best the coexistence of administrative 

and geographical interactions.  

As a robustness check, together with our benchmark model (SAR) we chose to run a 

Spatial Error model and a Spatial Autocorrelation model (SAC, see Appendix). Our main 
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hypothesis is that when it comes to choose whether or not to adopt a PV, the contiguity with a 

block group with at least one PV system has a positive effect in enhancing the propensity to 

follow through.  

4. Results 

4.1 Profiling Adopters: Social Status and Built Environment 

Following the hierarchical clustering results, we employ two scales for comparing the 

profile of adopters. First, we focus on the characteristics, both socioeconomic and related to the 

built environment, of the block groups within these towns. Second, we seek to understand 

whether or not these characteristics are common across the study area. Table 2 presents 

summarizes the profile of the adopters for each town and the one for the region as a whole.  

 

 

Table 2. Adopters’ Profile, Towns and Study Area 

Characteristic  East Hartford Glastonbury Hartford Manchester Study Area 

Income High income Middle income Middle-lower income High income High income 

Race White Diverse White Diverse White 

Home 

Ownership 
Homeowner Homeowner Homeowner Non-homeowner Homeowner 

House Size  Large houses Smaller houses Large houses Large houses Large houses 

Housing Age Recent houses Old houses Recent houses Old houses Recent houses 

Residents Age Relatively old Relatively young Relatively old Relatively old Relatively old 

Housing Density  
In sparsely populated 

neighborhood 

In sparsely 

populated 

neighborhood 

In densely populated 

neighborhood 

In sparsely 

populated 

neighborhood 

In sparsely populated 

neighborhood 

Housing Type Single family Single family Mixed  Single family Single Family 

Note: “Recent houses” are built post 2000; “Old houses” are built pre-1900. Large houses have more than 5bedrooms. 

 

The description of the average adopter within the study reads like the following: “a high-

income, white home-owner, around 45 years of age living in a newly built, large house in the 

outskirt of the towns”. For each of these characteristics we can find an exception when looking at 

the profiles in Table 2. In particular, income and race appear to vary across the towns. In Table 3, 

we present the same data in a different way: each characteristic is compared to the average for 
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the study area. In brackets the actual value is displayed together with ranking within each town 

expressed in roman numbers or category-score such as highest/youngest and the like.   

 

Table 3. Adopters’ Characteristics – Relative Rankings 

Characteristic*  East Hartford Glastonbury Hartford Manchester 

Overall Adoption (PV 

Rate) 
Higher (0.0026) Highest (3.79) Lowest (0.004) Higher (0.028) 

Income (Mean) Average ($110,000; II) Highest ($110,000; III) Lowest ($36,000; III) Higher ($245,000; I) 

Diversity (% white) Diverse (60%; I) Uniform (79%, III) Diverse (35%; I) 
Moderately Uniform 

(61%; IV) 

Home Ownership (% 

owners) 
Higher (78%, I) Highest (80%, I) Lowest (32%; III) Higher (98%; I) 

House Size (% homes > 5 

bedrooms) 
Lowest (22%; I) Highest (2%, IV) Average (5%, II) Lower (12%; I) 

Housing Age (max) 
Relatively old (1950; II 

recent) 

Relatively recent (1970; 

oldest) 

Most Recent (1976, II 

recent) 

Oldest (1860; 

oldest) 

Residents Age (median 

age) 
Average (45; oldest) Highest (46; II youngest) 

Lowest (37; II 

youngest) 
Lower (47; oldest) 

Housing Density (max 

residential/sq.km) 

Below average (636; II 

lowest) 
Lowest (258; lowest) Highest (2325, highest) Lower (354; lowest) 

Housing Type (% single 

family houses) 

Single Family (91%; 

lowest) 

Single Family (81%, II 

lowest) 

Mixed (40%; II 

highest) 

Mixed-Single 

Family (97%; 

Highest) 
  *Notes: Description is relative to whole area. Level and ranking of highest adopting group are shown in parentheses.  

 

Towns show differences in the profile and distribution of PV systems.  Overall, the rate 

of adoption6 (PV rate) is far higher in Glastonbury than in all other towns. However, most of 

these installations are contained within one block group, which displays a value several times 

higher than the average for the whole region. The consequence of this difference is that while in 

Glastonbury adoption appears more advanced, East Hartford is at a different stage of PV systems 

penetration. Income is another characteristic changing its relative value across the towns. 

Although levels above $100,000 are displayed in three of the towns, adopters in Hartford appear 

to reside in medium-low income areas. Further, the same income level places adopters at 

                                                           
6 PV systems installed as of September 2013/Residential Parcels in 2013. 
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different levels within each town. In Glastonbury, the same top-income level of East Hartford 

belongs only to the second highest income brackets, whereas in Manchester, the top earners 

make twice as much as East Hartford. Overall, a household income of around $100,000 is 

expected to characterize the block groups where adopters reside. Additional differences are 

evident in the racial profile of adopters. In Glastonbury, the adopters tend to be described as 

residents of diverse neighborhood. In Hartford, the larger number of adopters is in areas with the 

highest percentage of white people. However, the ‘diverse’ neighborhood in Glastonbury has 

twice the share of white people than the one in Hartford. These results are in line with those of 

[18] and of [3], as support policies in Connecticut over this period were used mainly in single-

family, owner-occupied areas.  

Finally, the socioeconomic profile of adopters across these towns appears to be quite 

different from the overall profile across the study area, although partly in line with the findings 

of [11]. However, with the partial exception of the capital, the area geography characterizing the 

presence of adopters is consistent with the findings of [3].  

 4.2 Empirical Analysis: Panel and Cross-section Models 

Looking at EQ.: (1) of the panel approach in the present work, we are interested in: (i) 

the parameter β, which controls for spatial peer effects; (ii) the parameter γ, which would link 

the effect of current polices with area geography and the adopter’s profile (as the coefficient of 

the built-in environment); and (iii) the parameter θ associated with Income100k, that is, a 

measure of higher income earners. Table 4 presents the results of our econometric analysis where 

Column (1) shows the outcome of the benchmark specification in which there is no proxy for 

SPEs, but rather the cumulative number of adoption is used. Column (2) addresses the role of 

new adoptions in the previous 6 months within a range of 0.5 miles and Column (3) broadens the 
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time frame to 12 months. We use the installed-base because as this is the more common control 

in works on PV diffusion (e.g. [19]), and provides a comparison with the other spatiotemporal 

estimates. 

 

Table 4. Panel Specifications  

  
Cumulative Base, 

Block FE 

(1) 

 0.5 mile, 6 Months, 

Block FE 

(2) 

0.5 mile, 12 Months, Block 

FE 

(3)   

Installed base 
0.716*** 

(0.154) 
  

Spatial Peer Effect         
4.125** 

(1.221) 

    1.082** 

 (0.241) 

Median Household Income 
-0.015 

(0.013) 

-0.015 

(0.011) 

    -0.021** 

  (0.009) 

Median Age of the Population 
0.000 

(0.002) 

0.006* 

(0.003) 

    -0.005* 

   (0.003) 

Number of Housing Units 
0.098 

(0.074) 

0.163* 

(0.092) 

    -0.152* 

   (0.087) 

Share of Houses with more than 5 bedrooms 
-0.006* 

(0.004) 

-0.004 

(0.003) 

    -0.002 

     (0.003) 

Share of Black Resident 
-0.000 

(0.001) 

-0.002 

(0.001) 

    -0.002* 

     (0.001) 

If income >$100,000 
-0.007 

(0.091) 

-0.051 

(0.129) 

    -0.043 

     (0.129) 

 

Minority* Proximity (0.5 miles) 

-0.083 

(0.059) 

   -0.161** 

(0.035) 

-0.072 

(0.040) 

Minority*Proximity (1.0 miles) 
     0.150** 

(0.060) 

0.139 

(0.065) 

0.140* 

(0.052) 

Minority* Proximity (4 miles) 
0.012 

(0.015) 

0.012 

(0.015) 

0.014 

(0.014) 

Median HH Income * Proximity (0.5 miles) 
0.141 

(0.103) 

-0.127 

(0.113) 

0.120* 

(0.040) 

Median HH Income * Proximity (1.0 miles) 
-0.128* 

(0.074) 

-0.038 

(0.066) 

-0.135** 

(0.034) 

Median HH Income * Proximity (4 miles) 
    0.072** 

(0.034) 

0.083* 

(0.034) 

0.077* 

(0.029) 

Built Environment Y Y Y 

Socio-Demographics  Y Y Y 
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Political Affiliation Y Y Y 

Quarter dummies Y Y Y 

Constant 
-0.302 

(0.239) 

-0.317 

(0.506) 

-0.141 

(0.481) 

R-squared 0.450 0.419 0.481 

Observations 7,175 7,175 7,175 

Notes: Dependent variable is the number of installations in a block group (BG) in a year-quarter. An observation is a BG-year-quarter. 

Standard errors clustered on BG in parentheses. * denotes p<0.10, ** p<0.05, and *** p<0.010.  

 

Our estimations (columns (2) and (3)) suggest a positive value for the coefficient 𝛽, i.e. 

the existence of positive SPES at a block level. Comparing the estimations (2) and (3) the peer 

effect is proven to be stronger in the shorter spatial range and rapidly diminishing as time 

passes7.  

In our results, the medium range, 1 mile, is the distance at which the interaction effects of 

the adopters’ personal characteristics displays the highest influence on neighborhood’s choices. 

Interestingly, the median household income exerts a statistically significant effect on the 

adoption, even though limited to the short range. This is consistent with the previous literature 

signaling a weak relationship between PV adoptions and environmental concerns [3, 13,39]. The 

result is further confirmed by the significant negative effect of the share of houses with more 

than 5 bedrooms, usually associated with larger and more expensive dwellings. Even though 

personal and contextual factor, in fact, are weakly statistically significant when taken 

individually, their effect becomes stronger when interacting with a proximity variable. As shown 

in table 4, being part of a non-white race minority generally increases the effect of proximity 

(except for the short distance, i.e. 0.5 miles, where it seems to reduce it. We interpret this result 

as smoothing the already strong effect of 4.125 registered at this level). Similarly, the median 

                                                           
7 We performed several additional runs, including quarter-level specifications and town-year FE. Results are 

available upon request. 
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household income seems to generally boost the proximity effect in the short and long ranges (0.5 

and 4 miles), and it curbs it in medium range (1 mile). Our interpretation is the following: 

income plays a role in driving the spatial peer effects of PVs adoption and it has two distance-

related dimensions. In the short range (0.5 miles) it may capture a ‘Keeping up with the Joneses’ 

effect, whereas in the long haul (4 miles) it displays a more standard income effect, though 

spatially mediated (it is an interaction effect not a purely income one).  Where neither of the two 

effects are in place, i.e. in the medium range of 1 mile, it negatively affects the choice of 

adopting PVs, even though it is not statistically significant. 

These results highlight the sensitivity of spatial peer effects to the underlying human-

urban geography of the study area. In densely populated, although fragmented, urbanized areas, 

spatial and social interaction require shorter distances than in suburban towns, showing 

consistency with previous works (e.g. [6]). Additionally, the built environment of urban areas is 

more complex, and new installations possibly become easily part of what agents perceive as 

‘familiar’, and influenced by the layout of the built environment [33]. The results from the 

variables on the built environment are less conclusive. In our panel models, none of the variables 

controlling for housing density or tenure are significant. Of all other socioeconomic and 

demographic controls, specifications (2) and (3) are consistent with the negative impact 

associated with higher share of self-defined black residents. This result needs to be interpreted in 

light of the disproportionate number of low-income, non-white population in Connecticut [20], 

and in the USA [40]. Finally, median household income and the control for income above 

$100,000 are not significant, as well as the indicator for the Dow Jones Industrial Average. This 

last result is particularly important since this variable has the advantage of capturing the global 

influence the economic cycle exerts over the adoption decision, which seems not to influence the 
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adoption of PVs. Finally, it is important to focus on the time dynamics of peer effect. Comparing 

results in columns (2) and (3) it is evident how the pure peer effect remains positive and 

statistically significant, but decreases hugely through time from 4.125 (6 months) to 1.082 (12 

months), once again signaling that the PV installation becomes part of the potential adopters’ 

surroundings as time passes. This result is consistent with that of [3], although it is interesting, 

for the effect is far bigger in size, but not in extent (results using SPEs above 1 mile are non-

significant), thus confirming that changes in the underlying area geography (including the 

location on the adoption curve) change the relative influence of SPEs. Because of collinearity 

issues, we are forced to introduce our refined density and housing typology in cross section 

specifications. Table 5 shows the results of the cross section analysis where Column (1) provides 

the outcome of the benchmark OLS with the installed and no proxy for SPEs, Column (2) tests 

the significance of new adoptions in the previous 6 months within a 0.5 miles range and Column 

(3) extends this time frame to 12 months.   

 
Table 5. OLS specifications 

  Installed Base 
(1) 

 0.5 mile, 6 
Months, Block FE 

(2) 

0.5 mile, 12 
Months, Block FE 

(3)   

 
   

Installed base 
0.4425*** 

(0.0348) 
  

Spatial Peer Effect        6.8583*** 
(0.8446) 

    0.4057** 
(0.0837) 

Number of Housing Units (1,000s) 
-0.0600 
(0.0934) 

-0.0043 
(0.0622) 

-0.0265 
(0.04449) 

If income >$100,000 
-0.1105 
(0.3056) 

0.2059 
(0.4952) 

0.4839 
(0.2990) 

% of Renter-occupied Houses 
0.0016 

(0.0016) 
   -0.0038** 

(0.0011) 
   -0.0035** 

(0.0008) 

% of Single-family parcels 
0.0015 

(0.0021) 
0.0002 

(0.0016) 
-0.0004 
(0.0008) 

Net Housing Density (# residential parcels/sq.km of 
residential parcels) 

0.0004 
(0.0002) 

0.0001 
(0.0001) 

    0.0001** 
(0.0000) 



23 
 

Socio-Demographics Controls Y Y Y 

Built Environment Y Y Y 

Socio-Demographics  Y Y Y 

Political Affiliation Y Y Y 

Constant 
-1.525 
(0.653) 

-0.897* 
(0.290) 

-0.553* 
(0.192) 

R-squared 0.2872 0.2046 0.4988 

Observations 205 205 205 

Notes: Dependent variable is the number of installations in a block group (BG) in a year-quarter. An observation is a BG-year- 
quarter. Standard errors in parentheses. * denotes p<0.10, ** p<0.05, and *** p<0.010. 

 

The cross section specifications confirm the existence of spatial peer effects at 0.5 miles 

and in general few variables are statistically significant parameters. This is relatively 

disappointing, but the very low numbers of non-zero values in the count variable may have 

contributed to this outcome, in spite of the zero-inflated values. We find that the share of rented-

occupied houses affects negatively the adoption. Our interpretation is that the high average estate 

values may increase the share of rent-occupied houses and the renters have a lower incentive to 

adopt PVs. On the other hand, net housing density has a weak positive effect, confirming our 

assumption that also spatial gaps, at least in a cross section framework, play a role in driving the 

choice of adopting PVs. 

4.3 Empirical Analysis: Spatial Insights 

Table 6 shows the results for our SEM, SAR, and SAC models. Both SEM and SAR 

assess a positive and statistically significant effect of the neighborhood in both the variable 

summing the 6-month average of the neighborhood adoption within 0.5 miles and the specific 

spatial coefficient peculiar to each model, i.e. lambda and rho, indicating an improvement from 

the panel specifications. 
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Table 6. Spatial regression models 

  SEM 
(1) 

SAR  
(2) 

SAC  
(3) 

Average Neighbors within 0.5 Miles (6 months Average)       0.57424*** 
(0.07432) 

      0.57522*** 
(0.07460) 

      0.57764*** 
(0.07804) 

% of Renter-occupied houses -0.00025 
(0.00021) 

-0.00026 
(0.00021) 

   -0.00022** 
(0.00011) 

Built environment Controls Y Y Y 

Socio Demographic Controls  Y Y Y 

Race Controls Y Y Y 

Political Affiliation Y Y Y 

 

Lambda     0.05146** 
(0.02022) 

N/A 
-0.06670 
(0.14950) 

Rho N/A 
      0.06106*** 

(0.00770) 
0.14215 

(0.11921) 

Variance   0.01153* 
(0.00648) 

  0.01152* 
(0.00647) 

  0.01197* 
(0.00651) 

R-squared 0.26060 0.26056 0.27338 

Observations 7,175 7,175 7,175 

Notes: Dependent variable is the number of installations in a block group (BG) in a year-quarter. An observation is a BG- 
year-quarter. Standard errors in parentheses. * denotes p<0.10, ** p<0.05, and *** p<0.010. 

 

Interestingly enough, the spatial dimension seems to be the only significant driver of the 

choice, something which is consistent with our general econometric results in Section 5 where 

we found a general significance of the geographical variables, both individually and interacting 

with other controls such as minority and median income. 

To better understand the nature and dynamics of the spatial spillovers we provide a 

decomposition of their direct and indirect effects, building upon the procedure suggested by 

[41].. Table 7 shows the direct and indirect effect, that is, the effect exercised from within the 

block group (direct), and the one from neighboring (contiguous) block groups.  

 

Table 7. Spatial decomposition of SAR model 

  SAR Model 
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Main 

Average Neighbours within 0.5 Miles (6 months Av.) 
      0.57899*** 

(0.07591) 

Spatial Effects 

Rho 
      0.06147*** 

(0.00988) 

Variance   0.01159* 

σ2 (0.00654) 

Direct 

Average Neighbours within 0.5 Miles (6 months Av.) 

  

      0.28987*** 

(0.06139) 

Indirect 

Average Neighbours within 0.5 Miles (6 months Av.) 

  

      0.03798*** 

(0.00804) 

Total 

0.5 miles, 6 months 

  

      0.61618*** 

(0.06885) 

R-squared 0.27042 

Observations 7,175 

Note: New installation in block group/quarter as d.v. See full table in Appendix. * p<0.10, ** p<0.05, 

*** p<0.010 

 

As shown by Table 7 the spatial effect of adopting a PV is not limited to the block. Even 

though the direct effect represents by far the principal component of the spatial driver also 

spillovers play a role. As expected, we found an indirect effect statistically significant and 

positive thus confirming that the adoption of PVs generates neighborhood effects which should 

be accounted for together with the other geographical dimensions of the problem. 

 

5.  Conclusions and Future Research: defining the right policies, choosing the right 

scale.  

We investigated different drivers and profiles associated with PV systems adopters in 

four Connecticut towns. Comparing the results of the town and area profiles with those of the 

econometric models, we find that the role of income and the built environment are greatly 

reduced in the latter, possibly because of the way income has become dissociated from wealth 
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(see e.g. [42]). The differences in the adopters’ neighborhood profiles among the towns, and 

between each town and the study area as a whole, suggests that policies promoting the adoption 

of PV systems should expand their degree of flexibility to account for multi-family housing 

units, possibly through solar cooperatives or community organizations, which have been found to 

promote the diffusion of PV systems [7]. In addition, towns with large spatial gaps between 

residential areas, group-based programs like Solarize CT should be replicated within each 

neighborhood, rather than at town level, thus aggregating adopters from within the same spatial 

region. Spatial peer effects last for a shorter time and within a lower distance in urban 

environments than what was previously found for Connecticut as a whole, suggesting that PV 

systems are absorbed faster within urban environments than in suburban areas [3]. Besides 

confirming the spatial peer effect within 0.5 miles, our spatial models show that the within-block 

group effects are stronger than those from neighboring block groups.  The results related to SPEs 

result was expected, for other specifications with larger spatial buffers show decreasing 

influence. However, it also suggests that, even in a state jurisdictional boundaries (i.e. with 

towns with strong regulatory powers influencing PV adoption) such as Connecticut, spatial peer 

effect can be used as way to accelerate the adoption of PV systems across town boundaries, at 

least at the early stages. As the SPE fades, other variables come in to play to influence adoption, 

mainly in relation to race and age, which, once again, drive back to an issue of income 

measurement. Finally, one interesting result is the lack of influence of the controls for the 

general state of the economy (in our specification by the Dow Jones Annual Average Index), or 

of any other control used (Consumer Confidence Index; unemployment rate), which suggest a 

strong, yet independent resilience of PV diffusion in relation to the macroeconomic fluctuations 
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of the general economy. Potentially, this result strengthens the indication that subsidies can 

hedge against more than other shortcomings, as suggested by [43]. 

Comparing our findings with those of other studies on spatial peer effects and 

socioeconomic profile of PV adopters (e.g. [15]), we persistently find differences related to the 

urban geography, the jurisdictional fragmentation, and socioeconomic levels, affecting the 

dynamic of diffusion. To account for these local characteristics we are not suggesting a return to 

a strong regionalism, where no region is similar to another, and generalizations are impossible to 

be made [44]. For instance, several works have found sets of socioeconomic demographic and 

spatial elements that encourage or reduce adoption of PV and other energy systems across 

various countries (e.g. [2,12,21]). We argue that the interaction among these elements does not 

always follow the same patterns because mediated by institutional and social factors [45,20]. In 

the case of PV systems in CT, recent efforts are being made to target more densely populated 

areas, multi-family buildings, and lower-income areas, and proposals exist to introduce 

legislation on solar community gardens and other share-ownership initiatives [46].  We see these 

policies as correct in their effort to expand the base of adopters, overcoming the distortions 

generated by interaction of policies and the human geography of adoption, and they can further 

ease concerns about financing and maintenance, which are determining factors in the mode of 

adoption, especially as the market matures [47]. 

Finally, our methodologies provide a better understanding of profile adopters and 

adoption patterns within areas at the bottom of their adoption curve [16]. These results are 

important for making it easier for utilities and policymakers to address potential needs within the 

power grid system, especially as community solar is bound to expand further, and social 
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interactions increase in importance [34] for successfully transitioning towards a low-carbon 

electricity generation.  
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Appendix A: Dendograms for each town 

 

A1. East Hartford  
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A2. Glastonbury 

 

 
 

 

A3. Hartford 
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A4. Manchester 
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Appendix B: Full list of results 

 

 

B1. Panel models – complete table  
  BASE FE BLOCK FE (6 Months) BLOCK FE (12 Months) 

# PV installed        0.716*** . .  
(0.154) . . 

Average Neighbours within 0.5 Miles (6 months) . 4.125** .  
. (1.221) . 

Average Neighbours within 0.5 Miles (12 months) . .     1.082**  
. . (0.241) 

Minority* Proximity (0.5 miles ) -0.083    -0.161** -0.072  
(0.059) (0.035) (0.040) 

Minority*Proximity (1.0 miles)      0.150** 0.139 0.140*  
(0.060) (0.065) (0.052) 

Minority* Proximity (4 miles) 0.012 0.012 0.014  
(0.015) (0.015) (0.014) 

Median HH Income * Proximity (0.5 miles) 0.141 -0.127 0.120*  
(0.103) (0.113) (0.040) 

Median HH Income * Proximity (1.0 miles) -0.128* -0.038 -0.135**  
(0.074) (0.066) (0.034) 

Median HH Income * Proximity (4 miles)     0.072** 0.083* 0.077*  
(0.034) (0.034) (0.029) 

If income >$100,000 -0.007 -0.051 -0.043  
(0.091) (0.076) (0.046) 

% of Renter-occupied houses -0.001 -0.002 -0.002  
(0.001) (0.002) (0.002) 

% pop who are white     0.003** 0.001 0.001 
 (0.001) (0.001) (0.001) 

% pop who are black -0.000 -0.002 -0.002 
 (0.001) (0.002) (0.002) 

% pop who are Asians 0.001 0.003 0.003  
(0.002) (0.003) (0.002) 

Median Pop Age 0.000 0.006 0.005  
(0.002) (0.004) (0.004) 

If Median Age in Highest 5% 0.066 -0.027 -0.009  
(0.088) (0.081) (0.064) 

% of houses with >5 bedrooms -0.006* -0.004 -0.002  
(0.004) (0.005) (0.004) 

DJIA (Thousands) 0.010 0.034 0.046  
(0.018) (0.036) (0.052) 

% registered Democrats 0.001 -0.001 -0.004  
(0.003) (0.006) (0.007) 

% Registered Minority parties -0.012 0.075 -0.015  
(0.069) (0.054) (0.049) 

House Density* Proximity (0.5 miles) 0.001 0.001 0.001  
(0.001) (0.001) (0.001) 

House Density * Proximity (1.0 miles) 0.000 0.001 0.000  
(0.001) (0.001) (0.001) 

House Density * Proximity (4 miles) -0.000 -0.000 -0.000  
(0.001) (0.001) (0.001) 

Number of Housing Units (1,000s) -0.098 -0.163 -0.152 
 (0.074) (0.144) (0.145) 

Gross Housing Density 0.000 0.000 0.000  
(0.000) (0.000) (0.000) 

Median Household Income ($10,000) -0.015 -0.015 -0.021 
 (0.013) (0.013) (0.016) 

Quarter dummies Y Y Y 

Constant Y Y Y 
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R-squared 0.450 0.419 0.481 

Observations 7175 7175 7175 

* p<0.10, ** p<0.05, *** p<0.010 
 

 

 

 

B2. Cross section – complete table  

  BASE 6 Months 12 Months 

# PV installed        0.4425***   
 

(0.0348)   

Average Neighbours within 0.5 Miles (6 months)         6.8583***  
 

 (0.8446)  

Average Neighbours within 0.5 Miles (12 months)          0.4057** 
 

  (0.0837) 

Number of Housing Units (1,000s) -0.0600 -0.0043 0.0265 

 (0.0934) (0.0622) (0.0449) 

If income >$100,000 -0.1105 0.2059 0.4839 
 

(0.3056) (0.4952) (0.2990) 

% of Renter-occupied Houses 0.0016    -0.0038**    -0.0035** 

 (0.0016) (0.0011) (0.0008) 

% of Single-family parcels 0.0015 0.0002 -0.0004 

 (0.0021) (0.0016) (0.0008) 

Net Housing Density (# residential parcels/sq.km of residential parcels) 0.0004 0.0001 0.0001** 

 (0.0002) (0.0001) (0.0000) 

Median Household Income ($10,000) 0.0210 -0.0051 -0.0293 

 (0.0391) (0.0473) (0.0294) 

% pop who are white -0.0004 0.0027 -0.0007 

 (0.0014) (0.0020) (0.0024) 

% pop who are black 0.0020 0.0015 0.0000 

 (0.0017) (0.0019) (0.0015) 

% pop who are Asians 0.0084 0.0085 0.0109 

 (0.0064) (0.0070) (0.0074) 

Median age of the pop 0.0188 0.0225 0.0173 

 (0.0090) (0.0098) (0.0091) 

If Median Age in Highest 5% -0.2159 -0.4135 -0.2794 

 (0.2810) (0.1970) (0.2367) 

% of Houses >5 bedrooms -0.0097 -0.0116 0.0001 

 (0.0095) (0.0075) (0.0043) 

    

Constant -1.5250 -0.8970* -0.5531* 

 (0.6533) (0.2902) (0.1922) 

R-squared 0.2872 0.2046 0.4988 

Observations 205 205 205 

* p<0.10  ** p<0.05  *** p<0.01 
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B3. Spatial regression models – complete table  

  SEM SAR SAC 

Average Neighbours within 0.5 Miles (6 months Av.)       0.57424***       0.57522***       0.57764*** 

 (0.07432) (0.07460) (0.07804) 

% of Renter-occupied houses -0.00025 -0.00026   -0.00022** 

 (0.00021) (0.00021) (0.00011) 

Number of Housing Units (1,000s) -0.01925 -0.01995 -0.00738 

 (0.01979) (0.01984) (0.01243) 

Gross Housing Density 0.00000 0.00000 0.00000 

 (0.00000) (0.00000) (0.00000) 

Median Household Income ($10,000) -0.00076 -0.00083 -0.00050 

 (0.00090) (0.00090) (0.00051) 

If income >$100,000 -0.00454 -0.00430 -0.00383 

 (0.01664) (0.01635) (0.01621) 

% pop who are White 0.00001 0.00001 0.00002 

 (0.00018) (0.00017) (0.00018) 

% pop who are Black -0.00026 -0.00028 -0.00013 

 (0.00023) (0.00023) (0.00018) 

% pop who are Asian 0.00055 0.00056 0.00087 

 (0.00047) (0.00046) (0.00078) 

Median Pop Age 0.00087 0.00086 0.00078 

 (0.00055) (0.00053) (0.00056) 

If Median Age in Highest 5% -0.00281 -0.00295       0.00655*** 

 (0.00686) (0.00694) (0.00192) 

% of houses with >5 bedrooms -0.00072 -0.00070 -0.00032 

 (0.00085) (0.00086) (0.00047) 

% registered Democrats -0.00044 -0.00039 -0.00011 

 (0.00108) (0.00102) (0.00033) 

% Registered Minority parties 0.00516 0.00470       0.02251*** 

 (0.01247) (0.01203) (0.00457) 

Spatial variables 

lambda 0.05146**  -0.06670 

 (0.02022)  (0.14950) 

rho  0.06106*** 0.14215 

  (0.00770) (0.11921) 

    

Variance 0.01153* 0.01152* 0.01197* 

sigma2_e (0.00648) (0.00647) (0.00651) 

R-squared 0.26060 0.26056 0.27338 

Observations 7175 7175 7175 

* p<0.10, ** p<0.05, *** p<0.010 

 


