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Quantum systems can be exploited for disruptive technologies but in practice quantum features are
fragile due to noisy environments. Quantum coherence, a fundamental such feature, is a basis-dependent
property that is known to exhibit a resilience to certain types of Markovian noise. Yet, it is still unclear
whether this resilience can be relevant in practical tasks. Here, we experimentally investigate the resilient
effect of quantum coherence in a photonic Greenberger-Horne-Zeilinger state under Markovian bit-flip
noise, and explore its applications in a noisy metrology scenario. In particular, using up to six-qubit probes,
we demonstrate that the standard quantum limit can be outperformed under a transversal noise strength of
approximately equal magnitude to the signal, providing experimental evidence of metrological advantage
even in the presence of uncorrelated Markovian noise. This work highlights the important role of passive
control in noisy quantum hardware, which can act as a low-overhead complement to more traditional
approaches such as quantum error correction, thus impacting on the deployment of quantum technologies
in real-world settings.
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Introduction.—Harnessing quantum effects holds the
promise of revolutionizing information processing in ways
that greatly surpass current approaches, including quantum
computing, communication, and metrology [1]. However
quantum resources are very fragile and practical realiza-
tions of quantum sensors and processors inevitably interact
with their surroundings, eventually losing their nonclassical
properties. In particular, the process of “decoherence” [2]
stands as one of the major obstacles in realizing scalable
quantum technologies. During the past two decades,
numerous efforts have been invested to devise active noise
control schemes [3–6]. Quantum error correction with
feedback control [3,4] provides the most promising scheme
to combat arbitrary noise; however the excessive resource
overhead keeps it beyond reach of current technology.
A complementary approach is to develop passive noise
control schemes, which are more affordable, by harnessing
the natural resilience of quantum resources to specific
noise. For example, placing a system in a decoherence-free
subspace (DFS) can make it inherently immune to collec-
tive noises [7–9].
Quantum coherence, encapsulating the idea of super-

position of quantum states, is a defining feature of quantum
mechanics and also a crucial resource for quantum infor-
mation processing [10]. Recently, the development of a
rigorous resource framework for coherence [11–13] has

brought it back to the limelight and motivated a number of
studies [14–18]. Coherence is defined with respect to a
particular reference basis, usually specified by the physics
of the system under investigation [11]. As such, one may
intuitively expect its resilience to depend on the direction
along which the noise acts. Surprisingly, it has been
observed that, under suitable conditions, the coherence
in a multiqubit system (with respect to the computational
basis) can remain exactly constant under independent bit-
flip noise acting on each qubit [18–21], in a process known
as “freezing.” This freezing phenomenon takes place
despite the quantum state itself evolving due to the noise,
highlighting a key difference to the DFS scenario.
It is intriguing to explore practical applications of frozen

or more generally resilient coherence, particularly in
quantum parameter estimation [22–24], for which coher-
ence in the eigenbasis of the parameter-imprinting gen-
erator is an essential resource. It is well known that the
precision of noise-free quantum metrology can beat
the standard quantum limit (SQL) and achieve the
Heisenberg limit (HL) by exploiting entangled probes,
e.g., Greenberger-Horne-Zeilinger (GHZ) states. However,
the quantum advantage is much more elusive in realistic
environments in which the noise and the unitary evolution
imprinting the parameter act on the probes simultaneously.
In fact, there are a number of no-go results demonstrating
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that for most types of uncorrelated noise the asymptotic
scaling is constrained to be SQL-like [25–29].
Nevertheless, it has been shown theoretically that, when
the noise is concentrated along a direction perpendicular
to the unitary dynamics (known as transversal noise), even
if the noise is purely Markovian, a superclassical precision
scaling in frequency estimation can be maintained by
optimizing the interrogation time [30,31]. Note that for
parallel Markovian noise, the uncorrelated and GHZ probes
achieve exactly the same precision; thus no quantum
advantage can be achieved [25].
In this Letter, we use a highly controllable photonic

system as an experimental test bed to investigate the
resilience of quantum coherence and metrology against
transversal noise. We first demonstrate frozen quantum
coherence in a 4-photon GHZ state prepared in both the
computational and σx bases and then subjected toMarkovian
bit-flip noise. We observe that the quantum Fisher informa-
tion for estimating a phase encoded along the σz basis is also
frozen in the GHZ state prepared in the σx basis. We then
consider a frequency estimation task with additional bit-flip
noise, which mimics a scenario of relevance for atomic
magnetometry [32]. We demonstrate that the SQL can be
surpassed using GHZ probes of up to 6 qubits, despite their
exposure to noise of comparable strength to the signal.
Frozen quantum coherence and quantum Fisher

information (QFI).—Coherence is marked by the presence
of off-diagonal elements of a density matrix with respect to
a particular basis. Incoherent states are classical mixtures
with respect to the basis, corresponding to the set of
diagonal density matrices. Given the set of incoherent
states I , the degree of coherence of a state ρ can be
quantified by how distinguishable ρ is from I , where a
distance-based measure can be used to quantify distin-
guishability (see the Supplemental Material (SM. II A) [33]
for further details).
It is important to study the dynamical evolution of

coherence quantifiers given the inevitable interaction
of quantum systems with their environments.
References [18,19] identified dynamical conditions under
which all distance-based coherence monotones can be
frozen in a class of N-qubit states with maximally mixed
marginals (M3

N states). Time-invariant coherence has been
demonstrated under these conditions in a NMR experiment
[21]. Subsequently, it has been found that the relative
entropy measure of coherence plays a special role in
determining freezing conditions, since all coherence
monotones are frozen if and only if the relative entropy
is frozen [20]. Such a criterion can help us to identify other
classes of initial states exhibiting frozen coherence.
GHZ states are widely used as resources for quantum

information processing. This Letter investigates the
dynamical conditions and applications of frozen coherence
in N-qubit GHZ states, forming a complementary set to the
canonical M3

N states for N > 2. We first focus on a 4-qubit

GHZ state, prepared in either the computational σz (0=1)
basis jG4i¼ð1= ffiffiffi

2
p Þðj0i⊗4þj1i⊗4Þ or σx (�) basis jG�

4 i¼
ð1= ffiffiffi

2
p Þðjþi⊗4þj−i⊗4Þ, where j�i¼ðj0i �j1iÞ= ffiffiffi

2
p

. We
see in the following that these states can exhibit both frozen
coherence and frozen QFI.
The GHZ states (preparation part in Fig. 1) are generated

by combining two sandwichlike Einstein-Podolsky-Rosen
(EPR) photon pairs [36] through a polarizing beam splitter
(PBS) [37]. Both photon pairs are prepared in the state
ð1= ffiffiffi

2
p ÞðjHHi þ jVViÞ, where H (V) denotes the horizon-

tal (vertical) polarization of photons and encodes the
qubit values 0 (1). The fidelity of the prepared GHZ state
is as high as 97.5% (see SM. I C [33] for further details).
Hadamard gates, implemented as half-wave plates (HWPs)
at 22.5°, can be used to transform the state jG4i into jG�

4 i.
Then, each photon is fed into a bit-flip noise channel
(evolution part in Fig. 1, see SM. II B [33] for details).
At the output (detection part in Fig. 1), we perform full

state tomography of the evolved states with different noise
strengths, allowing a full analysis of the evolution. For
each state, we calculate the l1 norm of coherence and the
relative entropy of coherence (SM. II A [33]) with respect
to both 0=1 basis and � basis, resulting in four quantities
overall. Figure 2(a) illustrates each case, while Figs. 2(b)
and 2(c) show the corresponding coherence dynamics.

Preparation
Evolution

Detection

PBS

Controller QRNG

QWP

QWP

HWP

PBS1

PBS2
P1

P2

FIG. 1. The experimental setup consists of three main steps:
preparation, evolution and detection. Ultraviolet laser pulses with
a central wavelength of 390 nm, pulse duration of 140 fs, and a
repetition rate of 76 MHz pass through three beamlike type-II
spontaneous parametric down-conversion sources (not shown in
the figure), and generate three EPR photon pairs in the state of
ðjHHi þ jVViÞ= ffiffiffi

2
p

. The three e photons are fed into a multi-
photon interferometer consisting of two PBSs. With postselec-
tion, a 6-photon GHZ state can be projected. By removing PBS2,
the first two sources generate a 4-photon GHZ state, and the 3-
photon GHZ state can be generated by projecting one photon onto
ð1= ffiffiffi

2
p ÞðjHi þ jViÞ (see SM. I B [33] for details). After prepa-

ration, each photon passes through a channel which consists of
three randomly rotated wave plates. All the wave plates are
mounted on motorized rotation stages and controlled by a
quantum random number generator (QRNG). By setting the
parameters controlling the wave plates, various sources of noise
can be simulated. In the measurement part, each photon is passed
through a narrow-band filter and detected by a polarization
analysis system.
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When coherence is measured in the computational basis
(yellow and blue lines), both coherence quantifiers remain
constant for any value of noise strength p. On the other
hand, the coherence measures in the� basis (red and purple
lines) decay monotonically to zero. Note that the computa-
tional basis forms the eigenbasis of σz, which is orthogonal
to the bit-flip noise generated by σx [i.e., Trðσxσ†zÞ ¼ 0].
This leads to the concept of freezing under transversal
noise, which we now develop within the setting of
metrology.
We first consider a simple model for noisy phase

estimation with GHZ states, where bit-flip noise is assumed
to act independently and before the parameter imprinting
unitary. In this setting, the QFI, a figure of merit in quantum
metrology, can be calculated directly through quantum
state tomography using the experimental setup in Fig. 1.
Suppose the unitary imprinting the unknown phase φ to be
expf−iφHg with a N-qubit Hamiltonian H ¼ P

N
k¼1 σ

k
i ,

when i ¼ xðzÞ, the unitary acts in a parallel (transversal)
fashion to the bit-flip noise.
Figure 2(d) shows how the QFI depends on the noise

strength for the noisy 4-qubit GHZ states of Fig. 1 when the
noise is transversal (yellow and blue lines) and parallel (red
and purple lines) relative to the parameter imprinting
unitary. Interestingly, the noise dependence of the QFI is
different from that of coherence. With transversal noise,
the QFI is only constant for the GHZ state prepared in the
� basis (yellow line); however it performs equally to the
SQL corresponding to using an optimal uncorrelated probe
j þ þ þþi. Instead, for the GHZ state prepared in the 0=1
basis, the QFI (blue line) does not remain constant and
decays under noise, yet always exceeds the SQL. We see
from this simple model that the best scenario for quantum
metrology is to use a GHZ state prepared in a basis that

coincides with the eigenbasis of the imprinting unitary, and
moreover such that the noise is in a transversal direction to
guarantee above-SQL performance. It is interesting to point
out that coherence and QFI give a different ordering for such
two initial states, showing that the coherence resource
required for metrology relies on the means of encoding [16].
Noisy metrology.—We now consider a more realistic

scenario in which the noise occurs simultaneously with the
imprinting unitary. In this setting, we focus on estimation of
a frequency ω imprinted as expf−iωtHg with an N-qubit
Hamiltonian H ¼ 1

2

P
N
k¼1 σ

k
z . Following Refs. [30,31], we

consider a dynamical evolution determined by a Lindblad-
type master equation

∂ρðtÞ
∂t ¼ HðρÞ þ LðρÞ; ð1Þ

where HðρÞ ¼ −iω½H; ρ� captures the unitary evolution
and the Liouvillian LðρÞ describes the noise. We restrict
to uncorrelated noise as this is the most likely form in
experiments. Hence, L ¼ P

kL
k with single-qubit terms

LkðρÞ ¼ −
γ

2
ðρ − αxσ

k
xρσ

k
x − αyσ

k
yρσ

k
y − αzσ

k
zρσ

k
zÞ; ð2Þ

where γ is the noise strength (identical for each qubit) and
αi ≥ 0 with αx þ αy þ αz ¼ 1. When αz ¼ 1ðαx ¼ 1Þ, the
noise is parallel (transversal) with respect to the unitary.
The precision in frequency estimation can depend on

both the number of qubitsN of the probe and the interaction
time t. In the noise-free setting (i.e., γ ¼ 0), both quantities
can be increased to improve precision [38]. Increasing t
follows the intuitive notion that a longer interaction
allows more information to be imparted upon the probe.
However, the addition of noise causes the probe state to
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FIG. 2. (a) The schematic diagram of the four cases studied in our experiment: the yellow color (first line) for the case that the GHZ
state is prepared in the� basis and coherence is calculated in the 0=1 basis, denoted f�; 0=1g; red (second line) for f0=1;�g; blue (third
line) for f0=1; 0=1g and purple (fourth line) for f�;�g. We use a Hadamard gate (H) to represent the change between the 0=1 and
� bases. Shown on the right of the diagram are the real part of the reconstructed density matrices in the corresponding basis for p ¼ 0
and p ¼ 1, respectively. The right three panels show the measurement results (dots) of: (b) the l1 norm of coherence, (c) the relative
entropy of coherence, and (d) the QFI, along with theoretical predictions (solid lines) for the GHZ states during the evolution. The error
bars are smaller than the marker size (the measured l1-norm coherence is always larger than the theoretical value, due to the
accumulation of the statistical errors for all off-diagonal elements of the density matrix).
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also deteriorate with time. This trade-off can result in an
intermediate-time interaction being optimal for metrology.
We provide here an experimental verification that quan-

tum probes can maintain superclassical performance in
metrology despite the presence of noise, focusing on
frequency estimation with transversal noise and interrog-
ation-time optimization [30,31]. Our experimental setup
remains as in Fig. 1. We use the N-qubit GHZ state jGNi ¼
ð1= ffiffiffi

2
p Þðj0i⊗N þ j1i⊗NÞ in the computational basis as a

probe and perform the metrological procedure forN ¼ 1, 2,
3, 4, 6 qubits. Significant effort was made to prepare
high fidelity probes: for the 2-, 4-, and 6-photon GHZ
states, the fidelities were measured to be 0.9961� 0.0002,
0.9746� 0.0027, and 0.9059� 0.0078, respectively (see
SM. I C [33] for more detail).
Transversal (bit-flip) noise corresponds to αx ¼ 1 in

Eq. (2). To enact this noise experimentally, one can
explicitly solve the master equation in Eq. (1) and obtain
a single-qubit map expressed by a set of Kraus operators
EωðρÞ ¼

P
4
i¼1 piKiρK

†
i , where all Ki are single-qubit

unitary operations (see SM. III A [33] for detail). We can
simulate the composite channel E⊗N

ω by letting each photon
pass through a HWP sandwiched by two QWPs. This
combination can realize an arbitrary single-qubit unitary
operation [39]. By randomly switching among the angle
settings of the wave plates, we can realize each Kraus
operator with desired probability (see SM. III B [33] for
detail). Note that the random nature guarantees the Markov
property of the simulated noise channel. In the experiment,
we chose an identical noise and signal strength ω ¼ γ ¼ 1.
Note that when the value γ=ω becomes larger, we require
higher preparation fidelity of the GHZ probes to beat the
SQL. To characterize the channel, we perform single-qubit
process tomography with different evolution times (see
SM. III B [33] for detail). The average process fidelity is
measured to be 0.9952� 0.0001, confirming the reliable
simulation of the channel.
The frequency ω is estimated based on the average of

measuring a parity operator Px ¼⊗N
k¼1 σ

k
x, which is optimal

for GHZ probes in the noiseless case. The mean-squared
error of ω can be deduced from error propagation,
Δ2ω ¼ ½ðΔ2PxÞρ=j∂hPxiρ=∂ωj2�. Since P2

x ¼ 1, it follows
that Δ2Px ¼ 1 − hPxi2. If the measurement is repeated ν
times within a total time T ¼ νt, the mean-squared error is
reduced, as Δ2ω is inversely proportional to ν. We consider
the performance of frequency estimation with respect to the
total time T, and can hence write

Δ2ωT ¼ t
1 − hPxi2t

j∂hPxit=∂ωj2 ; ð3Þ

which is valid for the T ≫ t regime. As discussed above,
there exists an optimized interrogation time topt to minimize

such a quantity, which we determine by theoretical
calculation.
It is challenging to measure the partial derivative

½∂hPxit=∂ω�jω¼1 experimentally. Here we use the five-
point stencil method [40], to approximate the derivative
(see SM. III C [33] for detail). For each N, we measured the
average values of Px for five perturbations around ω ¼ 1
with a spacing step of 0.1 or 0.2; the results are summarized
in Fig. 3(a).
The mean-squared error of ω can then be calculated

according to Eq. (3). Figure 3(b) shows the log-log plot of
the mean-squared error as a function of the probe size N,
from which we can see that a superclassical precision is
demonstrated with GHZ probes of up to six qubits. Note
that for parallel noise, there is no benefit in using a highly
entangled GHZ state (see SM. III A [33] for detail).
Figure 3(c) shows a plot of the Fisher information per
photon/qubit [defined as SN ¼ ðNΔ2ωTÞ−1] as a function
of N, from which we can see for high quality GHZ probes
(N ¼ 1–4, fidelity > 0.97) that the quantity increases with
the entangled probe size. Instead, the Fisher information
per qubit remains constant for unentangled probes. Note
that the 2-photon Bell state performs equivalently to
unentangled probes due to suboptimality of the parity
measurement under bit-flip noise. For N ¼ 6, the results
do not show that S6 is larger than S4 when taking into
account uncertainties, mainly due to the relatively low
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FIG. 3. (a) The measured average values of the parity operator
Px for different probe size N ¼ f1; 2; 3; 4; 6g. The optimal
evolution times are topt ¼ f1.5490; 0.7745; 0.5684; 0.4650;
0.3508g, respectively. The solid lines show theoretical calcula-
tions using ideal probes and channels. Note that the red line
(N ¼ 1) is overlapped with the blue line (N ¼ 2). The error bars
are smaller than marker size. (b) The log-log plot of the mean-
squared error of ω determined by Eq. (3) as a function of the
probe size. The results (red dots) are all sandwiched by the SQL
and HL bounds, indicating an intermediate scaling. The red
dashed line shows the theoretical predictions with ideal probes
and channels. (c) Fisher information per photon as a function
of N (additional bars are drawn to aid illustration). (d) Fisher
information per photon after adding 7% white noise in the
N ¼ 1–4 GHZ probes.
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fidelity of the initial 6-photon GHZ state. To compare them
with similar fidelity, we added further state preparation
noise (SPN) in the N ¼ 1–4 GHZ probes. We consider
white noise for simplicity, as it commutes with the
incoherent channels. Our procedure was inspired by the
effect of white noise on the observed statistics;
we randomly flipped the measurement results of the
parity operator with probability p ¼ ð1 − vaddÞ=2 to sim-
ulate adding further white noise ρadd ¼ vaddρþ ð1 −
vaddÞðI=2NÞ [41]. According to the fidelity difference
between jG4i and jG6i, we set vadd ¼ 0.93 for N ¼ 1–4.
After adding SPN, we observe the expected increasing
with N of the Fisher information per qubit [Fig. 3(d)]. In
SM. III D [33], we give a numerical analysis showing that a
fixed amount of noise in the initial probes does not impact
how the metrological precision scales, while preparation
noise that increases with N can prevent superclassical
scaling; if we treat such scaling preparation noise as a
deviation from perfectly transversal noise in the channel,
the result is similar to that discussed in Ref. [30]. In the
SM. III E [33], we also determine the mean-squared error of
ω by using the QFI of the evolved state F ðρωÞ (N ¼ 1–4),
which also shows a superclassical precision scaling.
In conclusion, we have experimentally investigated the

resilient effect of quantum coherence and QFI under
transversal noise. In particular, we demonstrated that both
quantities can be fully protected during the evolution in a 4-
photon GHZ state. We also investigated such resilience in a
realistic metrology task where noise and parameter imprint-
ing occur simultaneously. By configuring the signal
Hamiltonian perpendicular to the noise, we demonstrated
that our prepared GHZ probes can beat the SQL with up to
6-photon probes. For very pure probes (up to 4-photon),
our results show that a quantum advantage in metrological
scaling can survive even in the presence of uncorrelated
Markovian noise, paving the way for scalable noisy
metrology with only passive noise control. Future perspec-
tives can be to combine our analysis with active error
correction in metrology [42,43]. It would also be extremely
attractive to find other applications which can harness the
natural resilient effect of quantum resources against
decoherence, especially in quantum computation.
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Note added.—Recently, we became aware of a related work
[44], which demonstrates that local encoding provides
a practical advantage for phase estimation in noisy
environments.
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