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INTRODUCTION 
This work addresses the development of 
intelligent and adaptive optical form 
measurement systems for quality inspection of 
additively manufactured complex parts. The 
ultimate objective is to obtain smart optical 
measurement systems capable of automatically 
reconfiguring themselves while inspecting new 
geometries, and capable of assessing whether 
completed measurements are sufficient, or 
further measurements should be performed. 
Intelligent behaviour is achieved through 
automated self-assessment of measurement 
performance, while the measurement itself is 
being executed [1]. The decisional process is 
supported by multiple sources of information [2], 
namely: knowledge of part specifications (CAD 
model, dimensional and geometric tolerances, 
materials); knowledge of the manufacturing 
process and the material, leading to predictability 
of likely types of form error; knowledge of the 
measurement instrument itself (metrological 
performance and behaviour), and how it is 
expected to interact with any specific material and 
part geometry. The optical measurement 
technologies covered by the project produce 
point clouds: the work presented in this paper 
focuses on algorithmic processing of point 
clouds, and deals with the following, specific 
challenges: a) automated point cloud localisation 
within the part geometry, i.e. identifying what 
surfaces have been captured by any given point 
cloud, acquired from a part of unknown position 
and orientation; b) automated assessment of 
coverage and sampling density for the exposed 
surfaces, including recognition of critical regions 
(i.e. poorly represented by the point cloud), in 
order to support automated planning for further 
measurements. 
 
 

TEST SET UP 
The experimental set-up is based on a 
combination of a commercial measurement fringe 
projection system (blue-light technology GOM 
Atos Core 300), shown in Figure 1, and the point 
cloud processing commercial software Polyworks 
Inspector by Innovmetric. Automation is achieved 
by interfacing Polyworks with MATLAB, via 
scripting. 
 

 
 
FIGURE 1. The optical measurement system 
while measuring one of the test parts. 
 
Test cases 
The selected test measurement parts are shown 
in Figure 2. Sample A (Figure 2a) was fabricated 
by selective laser sintering (SLS) using Nylon 12, 
with size of a rectangular enclosing envelope (50 
× 50 × 28) mm; sample B (Figure 2b) was 
fabricated by laser powder bed fusion (LPBF) 
using stainless steel 316L, with dimensions of 
(125 × 45 × 8) mm. 



 
FIGURE 2. Test parts; a) Nylon 12 pyramid 
sample (50 × 50 × 28) mm fabricated by SLS; b) 
stainless steel 316L automotive sample (125 × 45 
× 8) mm fabricated by LPBF. 

 
The nominal geometries of the test parts are 
available as triangle meshes. Example results of 
single measurements on the test parts with 
unknown pose are shown in Figure 3a for sample 
A and Figure 3b for sample B. 
 

 
 

FIGURE 3. Example measurements: a) sample 
A; b) sample B. 
 
As sample A has four nominally identical sides, 
pose estimation only pertains to the accurate 
identification of the angular orientation of the 
visible corner in the point cloud. 
 
 
 
 

DATA PROCESSING METHOD 
The first data processing step consists of 
detecting the pose by identification and best-
matching of landmark features present on both 
the measured point cloud and the nominal 
reference geometry (triangle mesh). In the 
second step, once the point cloud has been 
aligned to the mesh, the degree of coverage can 
be assessed by identifying the surfaces that have 
not been reached by the measurement 
instrument. For the covered surfaces, the density 
and spatial distribution of the measured points 
can be computed by inspecting the positions of 
the points falling within each triangle of the mesh. 
 
STEP 1: ALIGNMENT 
Alignment, also referred to as registration, 
consists of a coarse phase and a fine phase. 
 
Coarse registration 
Coarse registration is based on the identification 
and matching of common landmarks both in the 
measured point cloud and in the triangle mesh. 
Landmarks can be identified through computation 
of local feature descriptors [3-5]. In this work, 
local curvatures are used. 
Surface normal vectors are identified both on the 
point cloud and in the triangle mesh, by using 
principal component analysis [6] on local subsets 
of neighbouring points selected via the k-nearest 
neighbour algorithm [7]. The principal curvatures 
𝑘1 and 𝑘2 are then computed [8]. From the 
principal curvatures, the Gaussian curvature K 
and mean curvature H are computed as follows:  
 

 𝐾 =  𝑘1 ∙ 𝑘2, 
 

(1) 

 
𝐻 =  

(𝑘1 +  𝑘2)

2
. 

(2) 

 
Example results for curvature are shown in 
Figures 4 to 7.  
The next step involves the identification of 
clusters of points with similar curvature values: a 
first k-means clustering process [9] was used to 
identify k-classes of curvature values (k = 5). The 
highest-curvature class was then isolated; the 
resulting points were subjected to another 
clustering process, this time aimed at isolating 
spatially distant subsets of points with high-
curvature values. The second clustering was, 
therefore, hierarchical and based on Euclidean 
distances between points (Figures 8 to 11). 
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FIGURE 4. Gaussian curvature K estimation on 
extracted vertices of the triangle mesh (sample 
B). 
 

 
 
FIGURE 5. Mean curvature H estimation on 
extracted vertices of the triangle mesh (sample 
B). 
 
 

 
 
FIGURE 6. Gaussian curvature K estimation on 
point cloud dataset (sample B). 
 
 

 
 
FIGURE 7. Mean curvature H estimation on point 
cloud dataset (sample B). 
 
 
 



 
 
FIGURE 8. k-means clustering on K curvature. 
Cluster 2 refers to the extracted vertices of the 
triangle mesh with the highest curvature values 
(sample B). 
 

 
 
FIGURE 9. Hierarchical clustering and centroids 
computation of clustered extracted vertices of the 
triangle mesh (sample B). The points taken into 
account are the ones with the highest curvature 
values. 
 
 

 
 
FIGURE 10. k-means clustering on K curvature. 
Cluster 2 refers to the points with the highest 
curvature values (sample B). 
 
 

 
 
FIGURE 11. Hierarchical clustering and centroids 
computation of clustered point cloud (sample B). 
The points taken into account are the ones with 
the highest curvature values. 
 
 
 
 
 
 



The identified common landmarks in both 
datasets, described by high curvature values, are 
then best-matched, using Random sample 
consensus (RANSAC) [10,11]: at each iteration, 
good matches were considered those resulting in 
a spatial alignment which minimises the sum of 
squared distances between matched points, 
using the Procrustes algorithm [12]. 
 
Fine registration 
Fine registration is based on a best-fit algorithm 
[15], which iteratively minimises the distances 
from the measured dataset to the reference 
entity, revising the transformation based on a 
rigid transformation (translation and rotation) until 
the variation of the squared error is minimised. 
The “registration error function” is defined as the 
sum of squared Euclidean distances between 
each point in the cloud and its closest neighbour 
located on the triangular facets [13]. 
 
COVERAGE ASSESSMENT 
After the fine registration process is completed, 
each triangular facet belonging to the original 
mesh will have a certain number of measured 
points associated with it. Coverage expresses 
how comprehensively each triangle is 
represented by the associated measured points. 
To assess coverage, the number of points falling 
within each triangle is considered in relation to the 
area of the triangle with the purpose to obtain a 
measure of spatial sampling density, i.e. number 
of points per unit area. Sampling density is 
computed on all the triangles (Figure 12). Then, a 
percentage of the maximum density is set as 
threshold to discriminate between adequately 
and inadequately covered triangles (simply 
referred to as "uncovered"). Finally, a coverage 
ratio can be defined as the percentage of 
triangles with adequate coverage over the total 
number of triangles in the mesh. Additionally, the 
ratio between the total area occupied by triangles 
classified as covered, and the total area of all the 
triangles in the mesh, can be computed, and is 
referred to as "covered area ratio". 
Example results of coverage computation are 
shown in Figures 13 to 14, where the threshold 
has been set to 75% of the maximum sampling 
density per triangle. The areal coverage is either 
estimated based on the number of triangular 
facets associated with measured points over the 
total number of triangles, and the sum of the 
covered area over the total area of the object 
(Table 1). 
 

 
 
FIGURE 12. Triangle facets; colouring 
proportional to sampling density (sample B). 
 

 
 
FIGURE 13. Covered and uncovered triangles for 
sample A (threshold on sampling density at 75%). 
 

 
 
FIGURE 14. Covered and uncovered triangles for 
sample B (threshold on sampling density at 75%). 
 
 
 
 
 
 
 
 



TABLE 1. Coverage ratio results. 
 

 

No. of 
triangles 

in the 
mesh 

Coverage 
ratio (% 
covered 
triangles) 

Covered 
area ratio 

(% 
covered 

area) 

Sample 
A 

1344 22% 32% 

Sample 
B 

1785 39% 42% 

 
CONCLUSIONS AND FUTURE WORK 
In this paper, preliminary results from the early 
stage development of an intelligent system for 
complex shape measuring have been presented. 
Methods and algorithms for the automatic 
assessment of part pose and measurement 
coverage have been introduced and discussed 
with the support of two test cases. The prototype 
implementation is realised using a combination of 
commercial measurement hardware and 
software, and custom software modules 
developed in-house. 
Future work will address: 1) the estimation of 
uncertainty associated with alignment and 
assessment of coverage. Alignment in particular 
may be affected by problems of geometric 
stability (e.g. see [14] for ICP); 2) the 
differentiation of part surfaces depending on 
functional relevance, so that assessment of 
coverage quality can be weighed; 3) the 
implementation of feedback mechanisms based 
on the results of pose and coverage estimation, 
to automate planning for further measurement 
actions. 
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