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being tackled. Nonetheless, the use of ML in citizen science
has generally been restricted to the replication of amateur
classification skills [3], [4], which does not provide a valid
solution in the long run as the uncertainty is not addressed.

Regardless its potential, citizen science still provokes scep-
ticism across the scientific community [5]. Although it enables
data analysis at a large scale, the practice is not widely
accepted yet [6]. The employment of amateurs tends to
degrade the quality of the data labelling, giving rise to a
wide spread of uncertainties within citizen science results. To
mitigate this, we developed a methodology to enhance the
confidence on amateur classifications, taking expert labels as
ground truth [7]. We provided a set of data transformations
that takes advantage of the lack of consensus amongst amateur
participants as well as the inner uncertainty measured in the
course of the project. Using this information, we refined the
original amateur votes pursuing more accurate results.

In this paper, we aim to make use of our previous approach
to handle uncertainty in citizen science to build fast and
robust automatic classifiers. In particular, this preliminary
work is focused on the Fuzzy k-Nearest Neighbour (Fuzzy-
kNN) [8], which has proven to be a very effective fuzzy-based
classification algorithm [9]. This method is typically composed
of two main phases: (1) a very time-consuming training phase
in which class membership is computed for training instances
based on their distances, and (2) a classification stage in which
the membership degree is used to infer the class of unseen
examples. The reduced scaling up capabilities of the Fuzzy-
kNN algorithm have attracted the attention of researchers when
dealing with big datasets [10] to especially speed up the first
stage. In the context of citizen science, we propose to skip the
first stage and directly apply the transformations provided in
[7]. The main benefit is to accelerate the training phase and
exploit the natural fuzzification of the class instances (in con-
tradistinction to the uncertainty/class memberships computed
by the Fuzzy-kNN algorithm). In addition, the refined citizen
data provide a first-order evidence of the training instances’
quality. Thus, we also investigate the effect of a very simple

Abstract—Citizen science is becoming mainstream in a wide 
variety of real-world applications in astronomy or bioinformatics, 
in which, for example, classification tasks by experts are very time 
consuming. These projects engage amateur volunteers that are 
tasked to manually classify unannotated examples. As a result, 
we obtain a larger volume of labelled data that, however, contains 
a great level of uncertainty due to the wide range of expertise 
of the volunteers. Handling that inherent uncertainty is key to 
building robust and fast machine learning models that maximise 
the outcome of citizen science projects. In this work, we introduce 
a preliminary approach that first transforms the original results 
from a citizen science project to handle the uncertainty, and then 
uses this as input to a fuzzy k-nearest neighbour classifier. We 
leverage citizen science results in such a way that it naturally 
speeds up the learning and classification p hases o f t he fuzzy 
classifier, and improves the c lassification performance. As  a case 
study, we will focus on the Galaxy Zoo project that consisted of 
galaxy image classification. O ur e xperimental r esults s how that 
an appropriate use of citizen science data enables a faster and 
more robust classification u sing t he f uzzy k -nearest neighbour 
classifier.

I. INTRODUCTION

An increasingly number of research fields a re f aced nowa-
days with the automated generation of huge volumes of data.
Taking the form of telescopes or geo-sensors, these modern
facilities are providing professional researchers with tons of
images hardly manageable on their own. In most cases, this
data remains unlabelled and awaiting for experts to manually
label it. Citizen science [1] refers to the engagement of
amateur people in research, leveraging the capacity of the
crowds for data processing at a scale not possible for experts
alone. However, this approach still constitutes a temporary
solution, since upcoming technologies announce the automated
generation of data at rates not even possible to be processed
with the aid of citizen science projects.

The use of Machine Learning (ML) [2] approaches that
exploit citizen science data is expected to create more accurate
models as they are provided with larger sets of annotated
data. These techniques should learn from projects’ outcomes
in conjunction with available expert knowledge on the problem
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data reduction approach [11] that consists of using a threshold
to eliminate examples with low confidence from the training
set. In comparison with applying any state-of-the-art instance
selection techniques [12], the proposed thresholding approach
does not require any extra computation.

In our experiments, we focus on the galaxy image classi-
fication problem, for which the Galaxy Zoo 1 (GZ1) project
represents one of the most successful citizen science imple-
mentations to date [13]. To test the proposed method, we
compare our results with the standard Fuzzy-kNN and the crisp
version of the classification algorithm.

The rest of the paper is organised as follows. In Section
II, we provide some preliminaries about citizen science and
the Fuzzy-kNN algorithm. Section III introduces the pro-
posed approach for the exploitation of citizen science data
in conjunction with the Fuzzy-kNN classifier. In Section IV,
we describe and discuss the experiments carried out. Finally,
Section V concludes the paper and outlines future work
directions.

II. PRELIMINARIES

In this section, we cover the necessary information to un-
derstand the proposed classification approach. Subsection II-A
introduces citizen science and briefly summarises previous
work on that area. Subsection II-B succinctly explains the
Fuzzy-kNN algorithm.

A. Handling uncertainty in citizen science data

As a form of crowd-sourcing, citizen science projects usu-
ally involve a great number of volunteers to help with diverse
tasks that are typically tedious and very time consuming for
experts to be conducted. The Zooniverse1 platform for the
development of citizen science projects currently hosts more
than 80 different projects in areas such as space sciences,
medicine, ecology, or humanities. Many of those projects have
consisted of the classification of large collections of images.
Amateurs are usually asked to classify the images displayed in
the project website by choosing amongst a set of pre-defined
categories. When a project is finalised, all the classifications
performed by amateurs are recorded in the form of a count of
votes for each class label in each image (e.g. image 1 has got
24 votes for class x, and 3 votes for class y).

ML techniques have been used in the context of citizen
science. On-line approaches have recently been designed to
improve amateurs’ experience [14]. These approaches deal
with the training of participants as they gain expertise in the
task and the synergy between amateurs, experts and automated
classifiers [15]. However, most efforts have been focused on
off-line approaches that are focused on analysing the data
resulting from citizen science projects. Various papers have
been devoted to replicating amateur classification skills. This
has been normally achieved by firstly applying a feature
extraction algorithm from the images [3], [16], or using the
image directly by means of a deep learning approach (that

1http://www.zooniverse.org

performs its own feature extraction) [4]. The current literature
has shown that ML classifiers can achieve similar results to
those obtained by amateurs, when these algorithms are trained
using citizen science data [17]. However, those approaches
do not tackle the uncertainty prevalent in the results, which
considering the varied amateurs’ skills may be very diverse.
Thus, they are replicating the biases present in the data.

In [7], we proposed a sequence of fuzzy-based data trans-
formations that take the original amateurs’ count of votes
and mitigate this uncertainty. Through various aggregation
mechanisms, the proposed approach is able to deal with
different types of uncertainty present in citizen science data
(e.g. inherent uncertainty, due to the intrinsic lack of agreement
between participants, measured uncertainty, which is derived
from the clicks on the Don’t Know alternative, etc.). As a
result, we obtained an enriched version of the data that was
evaluated by considering available expert classifications for
the same data sample. However, to the best of our knowledge,
this transformed data has not been used within a ML algorithm
that could take advantage of this refined data for the automated
classification of new examples.

B. Fuzzy k-Nearest Neighbour classification

In this paper, we use the Fuzzy-kNN algorithm [8] as a
simple yet effective fuzzy-based classifier. Future experiments
will involve other fuzzy-based classifiers. The Fuzzy-kNN
algorithm was devised to improve upon the standard k-Nearest
Neighbour algorithm (k-NN) [18]. The main weakness of k-
NN resides in considering all neighbours as equally important
in the classification, making the k-NN algorithm more vul-
nerable to noise at the class boundaries. This algorithm has
shown to perform well in a wide variety of applications, and
more important, it is capable of considering uncertainty when
predicting the class label of a new example.

The Fuzzy-kNN usually performs a learning phase, in which
the training set is modified to compute the class memberships
of every single training instance. This stage consists of calcu-
lating the k nearest neighbours for each instance of the training
set against the training set (using a leave-one-out scheme), and
selecting those k instances holding the shortest distance. Class
memberships for each training instance x is then calculated
following Equation (1), where nj is the number of examples
of class j within the kmemb nearest neighbours computed.

uj(x) =

 0.51 + (nj/kmemb) · 0.49 if j = i

(nj/kmemb) · 0.49 if j 6= i
(1)

The result of this first stage will be a modified training set
in which the class label ω of each sample is replaced by a
membership vector (ω1, ω2, . . . , ωl), where l is the number of
classes. For each instance of the test set, the classification stage
calculates its k nearest neighbours in the modified training
data (with class memberships). Thus, it obtains the member-
ship vector of each neighbour and aggregates this vector by
applying the Equation (2), where the m parameter modulates
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how heavily the distances are weighted when the contributions
of each neighbour are added up. Finally, the prediction will
be based on the class with the higher membership.

ui(x) =

∑k
j=1 uij(1/||x− xj ||2/(m−1))∑k

j=1(1/||x− xj ||2/(m−1))
(2)

It is well-known that the Fuzzy-kNN algorithm does not
cope well with very large datasets, especially because the
class membership computation involves a training vs. training
comparison, which is very time consuming. Recent approaches
based on big data technologies proposed parallel alternatives
to speed up the fuzzification process [10]. Nevertheless, the
use of citizen science data allows for skipping this fuzzifi-
cation phase, considerably speeding up the total Fuzzy-kNN
execution time, as we detail in the following section.

III. METHODOLOGY

In this section, we explain the main motivations for the ap-
proach proposed here. First, we introduce the data scores that
enable an immediate fuzzification for the training examples
(Subsection III-A). After this, we explain how our method
also leverages the amateur labelling for a faster classification
with the Fuzzy-kNN classifier (Subsection III-B).

A. Human-based fuzzification

In off-line approaches, each example shown to participants
throughout the project holds a particular count of votes once
the project has finished. These votes are then converted to
scores, simply dividing the votes assigned to each category
by the total number of votes received by the example. Let
N = (n1, n2, ..., n|N |) be the vote vector, with |N | the number
of different options offered to participants, we get the score
vector X = (x1, x2, ..., x|N |) by computing xi = ni

M , with
M =

∑
ni and i ∈ {1, 2, ..., |N |}. Hence, the amateur

labelling does not result in final classifications as such. Con-
versely, there is available a set of scores for each example in
the resulting data, as it is shown in Table I. This set of options
for amateurs’ clicks generally involve a set of main classes,
which are actually the target of the classification problem.
Nonetheless, amongst them, one Don’t Know (DK) option is
usually offered, assuring that every time the example is shown
it gets a click from the person deciding at the moment. Unlike
the classification target classes, this DK score provides a direct
quantification of the example level of confidence: the more DK
votes it gets, the higher is the expected noise introduced by
the example to the final data.

Through the set of scores, each one accounts for the
example’s degree of membership to the i−th option displayed
in the web. Here, we propose to exploit these scores as a
human-based fuzzification for the training of the Fuzzy-kNN
classifier. However, the first raw scores directly obtained from
amateur votes does not differentiate between the target classes,
which tend to accumulate the major part of the votes, and the
DK clicks and other minority classes, nor does the variability
in the total number of votes received by the example, M . To

TABLE I
A SAMPLE OF CITIZEN SCIENCE DATA GENERATED IN A PROJECT

INVOLVING IMAGE CLASSIFICATION

Image ID Votes Class 1 Class 2 · · · Don’t Know

0152948451 58 0.310 0.414 · · · 0.052
0152863349 14 0.643 0.214 · · · 0.071
0152878152 33 0.000 1.000 · · · 0.000

...
...

...
...

. . .
...

0152721030 19 0.316 0.263 · · · 0.263

prevent this, we first refine the raw scores by the application of
the data transformations that aggregate information about the
uncertainty in the amateur votes, as it is thoroughly explained
in [7]. Then, we directly use this refined scores obtained
for the target classes as the fuzzy labels needed for the
training phase of the Fuzzy-kNN algorithm. By this, we are
skipping the learning phase that involves the computation of
the fuzzy memberships for the training examples solely based
on the distances rather than actually taking into account the
uncertainty in amateur classifications (Equation 1). Although
here we use the Fuzzy-kNN for carrying out the different
experimental trials, these transformed scores could be used
with any other fuzzy classifier.

B. Instance selection based on confidence

The score vector available for each of the examples in
the data does not only tell us about the example degree of
membership to each class of the classification problem. From
a ML point of view, the target classes’ scores also hold
information about the quality of the instance for the training
of the automated classifier. Uneven score vectors will come
from examples for which there has been a higher consensus
amongst the people who voted that example. Thus, they will
represent valuable examples for the learning algorithm. On
the contrary, examples for which the votes are equally spread
through the classes convey a poor agreement, thus providing
a low confidence.

As part of our proposal, we apply a set of filters over
the training set. This results in a straightforward selection of
instances [12] based on the examples’ level of confidence.
We investigate the application of a set of thresholds over the
target classes scores: examples with scores that do not reach
the threshold are removed from the training set. By this, we
carry out a cleaning of the training data based on the samples
confidence, which is given by the transformed scores that, in
turn, incorporate information about the uncertainty within the
data.

IV. EXPERIMENTS AND ANALYSIS

In this section, we investigate the behaviour of the proposed
approach in one of the most well-known citizen science
projects, the first edition of the Galaxy Zoo (GZ1) project [13].
Subsection IV-A defines the experimental set-up, describing
the main features of the GZ1 data and the methodology
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followed through the experiments. Subsection IV-B presents
and discusses the obtained results.

A. Experimental Set-up

The GZ1 project was concerned with classification of galaxy
images in terms of their morphology. Later editions of this
project were launched, providing more specific information
about the morphological features of the galaxies, but they
involved a considerably reduced number of images [19]. At
the time the project was finished, GZ1 had engaged more
than 100,000 volunteers that completed over 40 million clas-
sifications for a sample of nearly 900,000 galaxy images [20].
The main focus was on the distinction between elliptical and
spiral morphologies, turning it into a true binary classifica-
tion problem. Nonetheless, various aspects complicated the
classification for the amateurs taking part, which explains the
uncertainty encountered within the GZ1 data. These included
the varied quality of the images, depending on the distance to
the galaxy, its physical size and brightness, or the presence of
artifacts that hinder the class identification [13].

Fig. 1. Workflow of the proposed approach for the GZ1 classification
problem.

The main GZ1 dataset2 is composed of 667,944 galaxies
for which there is available the galaxy ID in the Sloan Digital
Sky Survey3 database, total number of votes received, the set
of original scores (referred from now on as raw scores) for all
categories offered to participants in the web, and some more
information (i.e. location in the sky, debiased scores; see [20]
for more details). All images displayed held a common size
of 423×423 pixels in order to provide a similar basis for all
classifications, as described in [20]. However, the Fuzzy-kNN
algorithm does not directly work on the images but on a feature
set extracted from them. As the original images generally
leave the galaxy in the centre of the image surrounded by
a big amount of background pixels, we first crop the images
to the half of their size (112×112 pixels), and then shrink
them to a final size of 52×52 pixels. After some additional
experiments that are outside of the scope of this contribution,
we opted for a feature extraction (FE) based on auto-encoders
(AEs) [21], employing a convolutional AE composed of three

2http://data.galaxyzoo.org
3http://www.sdss.org

consecutive convolutional – pooling pairs of layers, from input
to the encoding. This results in a feature set of 392 features
extracted from the 52×52 images. Acknowledging that some
of these features may be redundant or noisy, we decided to
apply a randomised decision tree feature selection (FS) (50
trees) to choose the most relevant features. Figure 1 shows
the general workflow of the proposed approach for the GZ1
classification problem.

Similarly to [7], we first make use of a subset of GZ1
composed of 41,424 galaxies (16,375 elliptical, 25,049 spiral)
defined for the availability of expert classifications for these
examples. In our experiments, we train the different k-NN
variations on this sample, due to the high runtime required to
handle the entire data. We refer to this sample as the GZ1
Validation (GZ1-V) subset. Nonetheless, the best performing
approach is also tested on the whole GZ1 dataset. To test
the adequacy of the data transformations, we make use of
the transformation sequence that performed best in [7] (a
combination of Normalisation, DK votes shift, and Votes boost,
in this order). To assess how well the uncertainty is managed
within an automatic classification process, we carry out all
experimental trials using both raw and transformed scores,
pursuing a first comparison amongst the unmodified data and
the transformed data that incorporates the information about
the uncertainty.

For the comparative study, we analyse the performance of
the proposed approach using the raw and transformed scores
as the fuzzy labels needed for completing the Fuzzy-kNN
training, which we will refer from now on as Citizen Science
Fuzzy-kNN (CSF-kNN). We compare the CSF-kNN approach
against the Crisp k-NN (Crisp-kNN) algorithm and the original
Fuzzy-kNN (i.e. using the algorithm’s original fuzzification
phase [8]). Therefore, for either the Fuzzy-kNN and the Crisp-
kNN, we need to turn the scores into crisp labels. This is
accomplished by a simply majority criterion: the class holding
a greater score is assigned the positive label (1), whereas the
other is labelled as negative (0). When a draw is encountered,
which occurs for only 225 and 37 examples with raw and
transformed scores, respectively, the labels are assigned at
random.

We also analyse the impact of removing low confidence
examples from the training set before running the algorithms
detailed above. For this, we apply a set of thresholds (Thconf )
over both score types: raw and transformed. The mechanism is
simple: examples with both elliptical and spiral scores strictly
less than the selected threshold are removed.

The most well-known parameter for the Fuzzy-kNN is the
number of neighbours (k) to be considered in order to take the
final classification decision (Equation 2). We take k = 3 and m
= 2.0 in our experiments. For the learning of the Fuzzy-kNN,
we also take kmemb = 3 (Equation 1). The whole experimental
setting specs are summarised in Table II. The final dataset is
partitioned using a 5 fold cross-validation scheme to test all
algorithms’ performance with raw and transformed scores. As
result metrics, we measure the accuracy and runtime required
in each case.
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TABLE II
PARAMETER SETTINGS OF THE ALGORITHMS INVOLVED

Algorithm Parameters

Convolutional AE 3 × conv. – pooling layers
ReLU activation function

Decision Tree FS ntrees = 50

Crisp-kNN k = 3 , m = 2.0
Fuzzy-kNN k = kmemb = 3, m = 2.0
CSF-kNN k = 3, m = 2.0, Thconf = {0.8, 0.9, 1.0}

All the experiments have been carried out in a single node
with an Intel(R) Xeon(R) CPU E5-1650 v4 processor (12
cores) at 3.60GHz, and 64 GB of RAM. In terms of software,
the Keras Python package was used for the training of the
AE, and the Scikit-learn library4 was used for the FS and the
different experiments involving the training and testing of the
different k-NN versions explained above.

B. Results and analysis

In this section, we present the results of all experimental
trials performed to test the proposed approach. As detailed
above, we first carry out a comparison between the algorithms
using both raw and transformed scores for the two classes of
the problem, elliptical and spiral. After this, we extend the
testing of the CSF-kNN algorithm applying three thresholds
that filter the training set. Finally, we complete the testing
of the CSF-kNN on the GZ1 whole dataset after applying a
stringent 1.0 threshold to both score types. This filter allows
for selecting, between the whole dataset, the examples holding
a perfect consensus amongst the amateurs who voted them.

The first experiment presents the comparative study amongst
the Crisp-kNN, the Fuzzy-kNN, and the proposed CSF-kNN
algorithms. The averaged accuracy and runtime are sum-
marised in Table III.

TABLE III
ACCURACY AND RUNTIME VALUES FOR THE COMPARATIVE STUDY

Algorithm Raw scores Transformed scores
Accuracy Runtime (s) Accuracy Runtime (s)

Fuzzy-kNN 0.8971 23,184 0.9166 23,192

Crisp-kNN 0.8958 5,607 0.9183 5,597

CSF-kNN 0.9004 3,617 0.9188 3,758

The second experiment introduces the instance selection on
the training set before carrying out the training of the different
algorithms. In each case, the selection is carried out applying
the threshold either over raw or transformed scores, in such
a way that if the example does not reach the threshold value
in either of the elliptical or spiral class, it is rejected. Table
IV presents the results when applying the thresholds Thconf

4https://scikit-learn.org

= {0.8, 0.9, 1.0}. At this respect, we reflect the proportion of
the sample that is removed from the training set in Figure 2.
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Fig. 2. Number of instances removed by the thresholds (Th). Percent-
ages are shown on top of the bars.

TABLE IV
ACCURACY AND RUNTIME VALUES OF CSF-KNN WITH INSTANCE

SELECTION

Thconf Raw scores Transformed scores
Accuracy Runtime (s) Accuracy Runtime (s)

0.8 0.9032 2,354 0.9177 3,168

0.9 0.8997 1,497 0.9186 2,671

1.0 0.8820 476 0.9173 906

For a graphical comparison of the execution times, we
represent the values corresponding to the first comparative
study along with the CSF-kNN with Thconf = 1.0 threshold
in a bar chart. It is shown in Figure 3.

Finally, we present the values obtained when the CSF-kNN
algorithm with 1.0 threshold instance selection is trained using
the entire GZ1 dataset. The threshold is applied in order to
speed up the execution up to a manageable runtime for this
big dataset (∼893k examples). Table V presents the accuracy
and execution times recorded for this last experiment.

TABLE V
RESULTS OF CSF-KNN WITH 1.0 THRESHOLD OVER THE WHOLE GZ1

DATASET

Thconf Raw scores Transformed scores
Accuracy Runtime (s) Accuracy Runtime (s)

1.0 0.7616 23,254 0.8291 68,253

According to the results shown above, we can draw the
following conclusions:
• In first place, the use of either raw or transformed scores

is able to equalise the performance obtained by the
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Fig. 3. Comparison of algorithms’ runtime.

fuzzy and crisp implementations of the k-NN algorithm.
However, the execution times are highly improved, as
Figure 3 shows. The transformed scores also improve the
accuracy in around two points with respect to the raw
scores, confirming the utility of the data transformations
presented in [7].

• The selection of instances across the training set by the
application of thresholds provides a great reduction of
the training times (Table IV), which is greater for the
raw scores. This happens because the transformations
tend to boost the raw scores for the major part of the
GZ1-V examples. Nevertheless, the accuracy is not much
affected.

• When the CSF-kNN algorithm is tested against the whole
GZ1 dataset, we can observe that it generalises well. The
transformed scores provide a better classification, making
bigger the difference in accuracy with the raw scores.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we have proposed an innovative use of the
data recorded in the course of a citizen science project to
build robust and fast classifiers. The main novelty lies in
the introduction of the classifications performed by amateur
participants in both raw and refined forms as the fuzzy labels
needed for the training of a Fuzzy k-Nearest Neighbours
classifier. Throughout two sets of experiments on a real-
world application, the proposed methodology has shown that
a correct exploitation of citizen science results may lead to not
only a good classification accuracy but also to a natural filter
of noisy/imprecise training data. As future work, we consider
the use of big data approaches to complete further experiments
on larger datasets, and the use of other fuzzy-based classifiers
that could take advantage of the methodology proposed here.
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