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A B S T R A C T   

Being able to assess the amount of uncertainty locally associated to dense point clouds generated by measure-
ment can help investigate the relations between the metrological performance of a chosen measuring technology, 
and the local geometric and surface properties of the measurand geometry. In previous research it was 
demonstrated that spatial statistics based on Gaussian Random Fields and measurement repeats could be used to 
obtain spatial maps capturing both local dispersion and local bias associated to the position of points within 
measured clouds. However, the previous method had scalability limitations when handling very dense point 
clouds, due to it requiring the resolution of a global, increasingly larger, covariance matrix in order to solve the 
random field fitting problem. This work presents a variant to the previous method, where the covariance matrix 
is solved only locally, making the method better scalable to handle denser point clouds. Despite the new method 
not being able to return an equally rich information content in relation to spatial covariance, it still allows to 
obtain almost equally accurate information on local bias and variance, with significant gains in terms of pro-
cessing speed and, importantly, making it now possible to handle very dense clouds which would be unviable to 
process with the original method.   

1. Introduction 

Uncertainty in measurement is defined by the International Vocab-
ulary of Metrology (VIM) as a “non-negative parameter characterising 
the dispersion of the quantity values being attributed to a measurand” 
[1]. As all measurements are prone to errors, both random and sys-
tematic, a measurement result is considered complete when it is 
accompanied by a quantitative statement of its uncertainty. Numerous 
approaches to the estimation of measurement uncertainty have been 
established in the International Standards, including the Guide to the 
Expression of Uncertainty in Measurement (GUM) [2], which defines 
three main methods for measurement uncertainty evaluation: the ag-
gregation of errors assessed from first principles [3,4]; the “substitution 
method” where uncertainty is quantified by comparing the measure-
ment to a similar one performed on a reference object (ISO 15530 part 3 
[5]); and “task-specific” uncertainty simulation, where “virtual” coor-
dinate measuring systems are created (ISO 15530 part 4 [6]). Whereas 
these methods have been mainly applied in tactile measurements for 

decades, as optical sensors become more and more popular in industry, 
researchers in metrology have recently devoted themselves to investi-
gating solutions for uncertainty evaluation in non-contact measurement 
[7]. 

A sizeable portion of scientific literature on measurement uncer-
tainty, however, deals with the problem of evaluating uncertainty 
associated to a scalar measurement result: a temperature, a time interval 
or, in case of dimensional measurement, a length, a distance, a diameter, 
etc. Whilst such an approach is definitely useful to qualify measurement 
performance in the context of their actual application (i.e., inspection), 
it may fall short if the goal of uncertainty evaluation is to act as means to 
gain further insight on how a measuring system interacts with a meas-
urand, and thus to understand why a specific measurement technology 
performs more or less poorly, when paired with a specific measurand 
geometry, or material, or surface. A length, diameter, distance, area or 
volume result – all scalar values to which uncertainty results are 
commonly associated – originate from a complex pipeline of data 
acquisition and processing steps, which – in coordinate metrology – as a 
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minimum imply generation and processing of one or multiple point 
clouds. 

Having point clouds such a central role, even more so for optical 
technologies where much denser clouds are typically generated, it 
makes sense for the literature on measurement uncertainty to invest in 
gaining a better understanding of the mechanisms of point cloud gen-
eration and later, point cloud processing. Mathematical models have 
been developed to describe the measurement systems employed in the 
data acquisition process (virtual instruments - for example for fringe 
projection [8], photogrammetry [9], laser line scanning [10], coherence 
scanning interferometry [11]). The main hurdle of any approach based 
on capturing the measurement system being the challenge of capturing 
the complexity of the physics interaction and obtaining a comprehensive 
view of all the involved error sources. In parallel, other research has 
specifically focused on how to model uncertainty associated to measured 
point clouds. Kortaberria et al. [12] proposed a method based on task- 
specific uncertainty assessment applied to dense point clouds in the 
absence of simulation models for optical systems. Forbes [13] presented 
a method for the estimation of uncertainty in 3D point clouds associated 
with their position, size and shape. As comprehensively reviewed in 
[14], the idea of using random variables to describe the coordinates of 
each point has been widely explored. Extensive work has been carried 
out considering positional uncertainty defined as a 3D error ellipsoid 
around each point in a point cloud [15–19], whereas other works pro-
posed point positional uncertainty expressed as a one-dimensional 
model [20,21]. Li et al. [22] proposed an uncertainty model based on 
the Gaussian Mixture Model (GMM) to represent 3D point clouds and 
tackled registration of real-time measurements by constructing a prob-
abilistic graph assigning each pose to a Gaussian component. 

A further subject of research is studying how uncertainty propagates 
through any point cloud data processing pipeline (involving tasks such 
as point cloud simplification, segmentation, registration, fitting, etc). 
Forbes et al. [23,24] investigated the relationship between measure-
ment uncertainty and fitting. Maken et al. [25] proposed a probabilistic 
iterative closest point (ICP) method able to capture some sources of 
uncertainty in point cloud registration, specifically the uncertainty of 
ICP’s transformation parameters. Bhandary et al. [26] evaluated three 
uncertainty quantification methods for semantic segmentation of 3D 
point clouds using deep learning. Yang et al. [27] investigated 3D point 
cloud registration uncertainty in gap measurements using laser scanning 
in the context of aircraft wing assembly, studying the effects and in-
fluences of the uncertainty component generated by registration on high 
precision assembly and gap measurements. 

Within the aforementioned state of the literature, in previous work 
[21] we focused on a very specific research task: develop a statistical 
modelling method that, starting from actual measured point clouds ac-
quired from a real measurand geometry, could estimate local bias and/ 
or local dispersion expected to be associated to the coordinates of the 
points belonging to the cloud. 

The method was based on acquiring multiple point clouds with the 
measurement instrument of choice (usually an optical instrument), 
operating in repeatability or reproducibility conditions (the clouds 
being referred to as measurement repeats). After geometric (rigid) 
registration with respect to a nominal copy of the measurand geometry 
(e.g., a CAD model), the clouds would be used to fit a Gaussian random 
field (GRF), spatially wrapped around the geometry, whose local vari-
ance (measured orthogonally to the local measurand surface) would 
then be used as an indication of local dispersion. Local bias would be 
obtained as a subsequent step, by registering the fitted GRF with a 
further Gaussian random field obtained by fitting additional clouds 
belonging to a nominally more accurate instrument (for example, a 
CMM equipped with a traceable touch trigger probe). The final statis-
tical model, featuring both dispersion and bias of the cloud, locally 
mapped to the features of the measurand geometry, would be primarily 
used to investigate the interactions between chosen measurement in-
strument/technology and local measurand shape/material/surface 

characteristics. 
Using Monte Carlo simulation, the method would also optionally 

allow to study how point positional uncertainty (estimated by the GRF) 
would propagate to scalar linear dimensions (lengths, diameters, etc.) 
obtained by processing the point cloud itself. However, clearly, as dis-
cussed in the original article [21], such an estimation could not be 
confused with a comprehensive evaluation of an uncertainty budget, as 
the method would only keep into account specific error-related behav-
iours within the point cloud, whilst neglecting many other error sources 
which should be also included in a comprehensive uncertainty 
evaluation. 

The main limitation of the method proposed in [21] was its scal-
ability to increasingly larger/denser point clouds. In fact, fitting the 
Gaussian random field would require solving an increasingly larger, 
global covariance matrix, a task which would quickly become intrac-
table when processing some of the larger datasets obtainable using op-
tical measurement. For this reason, in this work we document a variant 
of the method proposed in [21], that allows for the covariance matrix to 
be estimated only locally (hence, the name of “regional” GRF, used in 
this work). Although approaches to the local estimation of random fields 
have been presented in the literature, for example based on fitting 
variograms, often in relation to Kriging interpolation [28–30], and in 
general on Gaussian processes [31,32], to our knowledge, this is the first 
example of presenting such an approach in the context of modelling 
measurement error associated to point clouds. Whilst in the original 
method [21] we would need to downsample the measured point clouds 
to approximately 20000–25000 points for the covariance matrix to be 
solvable on a normal desktop computer, with the variant proposed here 
we can process point clouds at their original density (millions of points). 
Despite a small loss in the final resulting statistical model, specifically 
consisting in the lack of covariance information modelling spatial de-
pendencies between points, the new method still guarantees the esti-
mation of all the needed local biases and variances, useful to study the 
interaction of measurement instruments/technologies with specific 
geometric features within the measurand geometry, and is still useful to 
estimate bias and variance associated to any scalar dimension obtained 
by point cloud processing. This latter result, though not representative of 
a full uncertainty budget, still allows to gain significant insight on the 
nature of the error associated to dimensional metrology results. 

2. Methodology 

2.1. Gaussian random fields for point cloud positional uncertainty 

Differently from literature approaches where positional uncertainty 
is defined as a 3D error ellipsoid around each point in a point cloud 
[15–19], in this work we consider point positional uncertainty expressed 
as a one-dimensional displacement directed along the normal vector to 
the local measurand surface [20,21]. As illustrated in Fig. 1, the 
dispersion of each ith point pi (from measurement repeats) is projected 
onto the surface normal ni, where a scalar random variable zi with 
reference origin oi is used to describe the dispersion along the normal 
direction. Assuming zi is from a univariate Gaussian distribution, then 
all the random variables construct a discrete Gaussian Random Field 
(GRF), and the vector field formed by the normal vectors can help to 
map this scalar field to the 3D Cartesian space. The approach proposed 
in [21] builds the GRF on the entire point cloud. It consists of N variables 
{z1, z2,⋯, zN}, where N is the total number of points in the cloud. The 
GRF is fully defined by a multivariate normal joint probability distri-
bution with mean vector μ and covariance matrix K. However, as pre-
viously mentioned, for highly dense point clouds of millions of points, 
the size of the covariance matrix results in millions-by-millions values, 
which heavily affects the time and the computational memory for the 
processing of the data [33]. 

To avoid dealing with estimating a large covariance matrix, this 
work proposes the fitting of GRFs to happen locally, since the subset of a 
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multivariate normal distribution is also Gaussian. Instead of considering 
the covariance of the whole point cloud, the proposed method builds 
local or regional GRFs (identified from this point onwards as rGRFs to 
distinguish them from those of the previous method) that only include 
covariances of the point comprised within the region centred around the 
reference point. This is based on the assumption that spatial de-
pendencies between measured points will only extend up to a predefined 
distance. As a result, the covariances between each point and its 
spatially closer neighbours are significantly larger than those between 
points that are far from the selected centre point. Fig. 2 shows how for 
each point it is possible to build a rGRF. For the ith point pi and its 
neighbouring points, the dimension of random variables is reduced to 
Ni, where Ni is the number of points within the selected region. The rGRF 
model shrinks the scale problem, significantly improving the computa-
tional efficiency. 

2.2. Resampling of repeated measurements with ray casting 

The first step to build the rGRF model {z1, z2,⋯, zN} is to retrieve the 
observations of the random variable zi(i ∈ {1,⋯,N]) for each point. 
Assuming that there are R repeated measurements, for the ith random 
variable zi, samples {zi1, zi2⋯, ziR} computed from the real measure-
ments are needed for the construction of the rGRF. Since point clouds are 
unstructured (i.e. the points are stored with no information concerning 
their potential topological connectivity [14]), and points belonging to 
the individual clouds are not necessarily aligned with each other, we 
first need to make sure the R repeated clouds are co-localised (i.e., 

expressed within the same coordinate system), and then resampled at 
predefined locations (so that we have R observations for reach random 
variable zi). To achieve this, the measurement repeats are firstly regis-
tered to the computer-aided design (CAD) model using the ICP algorithm 
[34,35]; then, one of the repeated measurements is arbitrarily chosen as 
resampling reference that defines the local coordinates of the univariate 
random variables. The only effect of choosing one repeat over the others 
as a resampling reference is in the determination of the surface locations 
at which the variables of the GRF model will be located. Previous ex-
perimentations [21] indicated that the influence of choosing one repeat 
as reference versus another is negligible, except for sharp corners where 
a change of location may affect the selection of the local normal used for 
resampling in the GRF. In the proposed procedure, the choice of one of 
the clouds as localisation and orientation reference introduces an 
element of arbitrariness, although as seen in our previous work the effect 
is often minimal. Resampling and interpolation are performed using a 
fast ray (normal vector)-triangle (mesh) intersection algorithm [36] also 
known as ray-casting as illustrated in Fig. 3(a). The CAD model is con-
verted into a triangulated mesh where each triangle facet is used to 
determine the local unit normal vector at each point in the reference 
point cloud. In this work, the first point cloud is selected as the refer-
ence, and the other repeats are resampled based on the same point 
density and interpolated along the normal vectors to the points of the 
reference. For each point, the reference origins can be set as the inter-
section of the normal vector at the query point in the reference point 
cloud and the closest facet on the CAD model. The resulting intersections 
define the origin points to which the local values of each random 

Fig. 1. The ith measured point pi is associated with its positional uncertainty. The positional dispersion in 3D Cartesian space can be projected to its normal vector, 
and described by a scalar random variable zi relative to a reference origin oi. Assuming the distribution of all random variables is Gaussian, then the discrete GRF is 
Gaussian. . 
Adapted from [21] 

Fig. 2. The rGRF only includes the ith measured point pi (in orange) and its neighbours (in blue). The dimension of random variables Ni is reduced to the number of 
points within this region. 
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variable are referred. For a given point pik in the kth repeat (where k is 
equal to 1 for the first repeat used as reference in this work), a bidi-
rectional ray defined by its surface normal is used to find the closest 
facet and its intersection. The intersection point is the interpolation 
point. The same procedure can be also performed to find the reference 
origin oi using the CAD mesh. Given that the normal ni is a unit vector, 
then the scalar zik can be calculated as 

zik = oipik • ni, k ∈ {1,⋯,R}, i ∈ {1,⋯,N} (1)  

where R is the number of repeats, N is the number of points in the 
reference point cloud. The sample mean of the ith random variable is 
calculated as 

zi =

∑R
k=1zik

R
(2)  

which is then used as the estimator for the population mean μi in the 
vector μ. 

It should be noted that bidirectional ray-triangle intersection is 
necessary because the repeated measured point can either be located 
above the reference measurement or below. However, for some cases, 
the ray casted from the reference point (i.e., observation viewpoint) 
along the direction of the normal vector intersects the surface multiple 
times. In this case as shown in Fig. 3(b), two intersections might be 
found and only the closest intersection to the viewpoint must be kept. If 
no intersection is found, the reference point will be eliminated. This case 
will happen when the ray-triangle intersection algorithm fails. 

2.3. Fitting of regional GRFs 

For fitting the rGRF at each point, the closest neighbouring points, 
that are laying on the same measurand surface, must be retrieved in 
order to perform the computation of the local covariance matrix. 
However, unlike in two-dimensional images, or any other dataset where 
topological information is maintained, neighbouring information is not 
stored in point clouds (as they are unstructured sets), so neighbours 
must be retrieved by solely relying on Euclidean distance, although 
there is the underlying risk to end up including points measured from 
different surfaces. Here we adopt the k-nearest neighbour (kNN) algo-
rithm to locate the neighbouring points needed for the covariance esti-
mation [37]. The kNN algorithm finds the k closest neighbouring points 
to a query point based on Euclidean distance. To partially reduce the risk 
of including unwanted points belonging to nearby surfaces, we imple-
ment two additional filters:  

- the first filter eliminates points located beyond a predefined distance 
threshold from the reference point (Fig. 4(a)). This step is needed 
because the k-NN, instructed to retrieve k points, may end up 
including unwanted points located too far away if there are not 
enough points in the surrounding of the reference point. This filter is 
controlled by the threshold parameter THdist ;  

- the second filter eliminates points whose local normal is oriented too 
differently from the normal associated to the reference point (an 
example is shown in Fig. 4(b)). This is needed to avoid points to be 
considered neighbours of the current one, if they belong to different 
surfaces. This filter is controlled by the threshold parameter THangle 
(maximum angle allowed between two surface normals). 

Due to the application of the two filters based on THdist and THangle, 
the number of valid neighbours Ni may be smaller than k. The spatial 
extent of the rGRF is determined by the number of its valid neighbours. 
It should be mentioned that the number of neighbours k, thresholds 
THdist and THangle are three hyper parameters needed to be set in 
advance. The proper parameters can be determined considering the 
physical size of the rGRF coverage, for example using average point-to- 
point spacing. For instance, threshold THdist can be set as the radius of a 
predefined searching sphere allowing at least k neighbours can be found 
within the sphere for each point, while threshold THangle is determined 
according to the sharpest point which ensures it has enough neighbours 
and does not incorporate points from other surfaces. 

After the valid neighbouring points are found for each reference 
point, the rGRF fitting process traverses every reference point running 
like a “sliding window”. The random variables are computed for each 
reference point and the rGRF is fitted point-by-point. Then, the local 
covariance matrix and mean vector are found. For each point pi, its rGRF 
(μi,Ki) is fitted after finding the correct neighbours. For the ith reference 
point and its rGRF, the local mean vector μi = {μi1, μi2,⋯, μiNi

} is esti-
mated using the sample mean zi(i = 1,⋯,Ni) computed as explained in 
Section 2.2. For the estimation of local covariance matrix Ki, the sample 
covariance matrix Si is firstly calculated, where each element is 

sm,n =

∑R
k=1(zmk − zm)(znk − zn)

R
,m, n ∈ {1, 2,⋯,Ni} (3) 

However, because the sample covariance is not a good estimator of 
the population covariance, oracle shrinkage [38] is applied to regularise 
it. Hence, the local covariance matrix Ki is estimated as 

Ki = (1 − ρ)Si + ρ Tr(Si)

Ni
I (4)  

where I is the unit matrix, Tr() is the trace and factor ρ is 

                           (a)                                             (b) 

Fig. 3. The interpolation is done using a fast ray (normal vector)-triangle (mesh) intersection algorithm (ray casting). (a) All the repeats are firstly aligned with the 
CAD model (in green) and triangulated. For a given reference point pi1 (in blue) and surface normal ni, the interpolation point (in red) is the intersection with the ray 
defined by its normal and the closest facet. (b) The ray casting is bidirectional, therefore only the closest is kept whereas the other interpolation is deleted (identified 
with a black cross). 
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, 0 < ρ ≤ 1 (5)  

2.4. Regional GRFs for variance and bias 

The diagonal elements of the estimated local covariance matrices 
identify the variance of the points within the selected region. From this 
information, it is possible to create spatial models of local dispersion in 
the direction of the local normal (overlaid to the mean point cloud 
generated from the rGRF, as shown in Fig. 5). Local bias information can 
be also added if a more accurate reference from a traceable instrument 
(for example point clouds obtained from a tactile coordinate measuring 
machine – CMM) of stated uncertainty or a mathematical model with 
associated bias is available. Following the first route that using CMM 
data, a set of more accurate repeated measurements go through the same 
rGRF process, and the mean point clouds registered with the same 
reference CAD mesh are obtained. Then the bias is defined as the dis-
tance from the mean point cloud of the evaluated instrument to the high 
accuracy CMM mean point cloud (Fig. 5). 

After estimating the local covariance matrix, for the ith point (i ∈ {1,
2,⋯,N}), a vector of standard deviations σi is extracted as 

σi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
diag(Ki)

√
, (6)  

where diag() is the operation to extract the diagonal elements from a 
matrix. The mean z value of each reference point (zi) is computed using 
the sample mean. For the ith reference point, the coordinates of the mean 
point pi are determined by 

pi = oi + zi•ni (7) 

After the rGRF fitting is complete, the obtained model can be used to 
generate new virtual (local) point clouds. This step is done by first using 

Cholesky decomposition on the local covariance matrix Ki, so that a 
lower triangular matrix Li is obtained. Hence, 

Ki = LiLT
i (8) 

Then, a new observation vector of the current region zi,new is gener-
ated using 

zi,new = μi +N(0, 1)Li (9)  

where μi is the mean vector of the current local region, N(0, 1) is a vector 
where each element is drawn from the standard normal distribution. For 
the ith point, let zi,new be the new sample of the reference point extracted 
from the observation vector zi,new, the new point is recovered as 

pi,new = oi + zi,new • ni (10) 

The new virtual repeats can be used in data processing for error 
estimation in linear dimensions, as illustrated in Fig. 6. Unlike the GRF 
approach presented in [21], the rGRF method does not require the 
covariance of the whole point cloud, and it can be performed on 
segmented regions of interest. The initial real repeated measurements 
are fed as input data. New point clouds are then generated and, for each 
new repeat, key linear dimensions are extracted using feature fitting. 
The probability distributions can be retrieved. To incorporate the bias, 
high accuracy traceable measurements are required, and the same pro-
cedure is performed. The bias is estimated by comparing the two ob-
tained distributions. 

3. Results 

3.1. Experiment setup and artefact 

A reference polymer artefact first proposed in [39] and manufac-
tured using a HP Fusion 3D high-speed sintering (HSS) system was 
selected as test case. The artefact consists of a hollow, four-walled cube 
(edges of 40 mm) with spheres of 5 mm radius at each vertex (Fig. 7(a)). 
In our experimental setup, the artefact was placed at the centre of a 
turntable, with markers sticked onto the surface of the object to aid for 
automated registration of scans from different viewpoints. A fringe 
projection optical measuring system was used, mounted on a tripod, as 
shown in Fig. 7(b). Five measurements of the entire surface of the 
selected object were obtained using the fringe projection instrument. 
Three additional, repeated measurements were obtained using a tactile 
instrument. 

The fringe projection system selected for this study was a GOM ATOS 
Core 300 commercial instrument. The field of view is (300 × 230) mm 
with measuring point distance at 0.12 mm, as provided by the manu-
facturer. The parameters used for the GOM are defined in the GOM 
Acceptance Test with reference to the Guideline VDI/VDE 2634 Part 3 
[40] given by the manufacturer: 

(a)                                                                                                        (b) 

Fig. 4. Neighbour selection for rGRF fitting. (a) A very distant point (marked by a black cross) is originally included within the k-nearest neighbours of the reference 
point pi (orange) but is filtered out by the distance threshold THdist . (b) A set of points originally included in the k-nearest neighbours of reference point pi are filtered 
out by the angle threshold THangle, as they indeed belong to a close, but differently oriented, surface. 

Fig. 5. In blue the mean point cloud of the assessed instrument, generated 
using the rGRF approach. In green the mean point cloud from the high accuracy 
traceable instrument, such as tactile CMM. The bias is defined as the distance 
between the mean point clouds extracted from the rGRFs. 
Adapted from [21] 
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Probing error form (sigma) 0.006 mm 
Probing error size 0.027 mm 
Sphere spacing error 0.020 mm 
Length measurement error 0.047 mm 

The tactile CMM instrument was a Mitutoyo Crysta Apex S7106 with 
a 21 mm long, 5 mm diameter ball tipped stylus. The instruments are 
both available in the temperature-controlled at (20 ± 0.5) ℃ 
Manufacturing Metrology Team laboratory at the University of 
Nottingham. 

The optical measurements with the fringe projection system resulted 
in five-point clouds of 4,000,000 points each. The first test was per-
formed by application of the rGRF and original fitting [21] methods to 
downsampled versions of the original point clouds. Downsampling was 
performed using the grid average method [41], to achieve target spacing 
of 0.5 mm between neighbouring points. The parameter of 0.5 mm for 
downsampling of point clouds was chosen based on previous tests [21] 
to ensure a meaningful comparison between the global method and the 
one presented in this work, as the global fitting approach could not be 
applied on point clouds with very high densities as measured by the 
optical instrument. In this experiment, downsampling brought each 
cloud from 4 million to approximately 25,000 points. 

Finally, to compare the performance of the new and previous 
methods in local bias estimation, further GRFs were obtained by fitting 
the CMM point cloud repeats (3 repeats). As the point clouds obtained by 
CMM measurement consisted of approx. 6000 points each, these point 
clouds were not downsampled, but instead directly used to fit the 

random field using both the rGRF and the original method [21]. Note 
that the CMM measurements covered only some selected surfaces of the 
artefact. Therefore, the bias maps were only obtained for those surfaces. 

A second test was performed to demonstrate the computational 
robustness of the new method (regional GRF, referred to as rGRF in this 
work) by applying the method to fit a regional GRF to the original full- 
density measured point clouds (using an available triangle mesh of the 
object as reference, and adopting the hyperparametersk = 25, THdist =

3.98mm and THangle = 45◦ for the kNN method needed to compute the 
contents of the local moving window. Furthermore, the rGRF model was 
fitted to specific surfaces of the test artefact, aimed at estimating bias 
and dispersion associated to selected regions of interest. 

3.2. Analysis of the results 

We start by commenting the results obtained on the downsampled 
point clouds. Fig. 8 shows the maps of the standard deviations extracted 
from the GRF and the rGRF for visual comparison. In Fig. 9 the frequency 
histograms of the same local standard deviations are shown. Finally, in 
Fig. 10 the local biases are compared. Note that in Fig. 10 the local bias 
maps were only computed for the surfaces we had CMM data for. As it 
can be observed in Fig. 8 the standard deviations estimated with both 
methods share some visual similarities. For example, the standard de-
viations are larger in correspondence of sharp edges for both methods, a 
known modelling artefact due to possible errors in local estimation of 
the z reference coordinate in correspondence to sharp edges. Despite the 
above similarities, the standard deviation map of the rGRF appears more 

Fig. 6. Error estimation in linear dimensions extracted from segmented regions of interest in the point cloud. . 
Adapted from [21] 

)b()a(

Fig. 7. Artefact and experimental setup. (a) Additively manufactured part (artefact) with sticked markers for registration of multiple measurements. (b) Artefact 
placed on a turntable and fringe projection system mounted on a tripod. 
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(a) 

(b)            

Fig. 8. Standard deviation maps. (a) GRF method proposed in [21] and (b) rGRF method proposed in this work.  

(a)                        (b) 

Fig. 9. Distribution of local standard deviation. (a) GRF method, (b) rGRF method.  
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homogeneously distributed compared to the GRF one (Fig. 8), and shows 
higher mean and standard deviation (Fig. 9). These differences might be 
caused by the local estimation of covariance performed in the rGRP (as 
opposed to the original method which considers the covariance of the 
entire point cloud). The discrepancy may also be caused by the thresh-
olds chosen to select the points that fall within each moving window, a 
parameter missing in the original GRF approach. For the local bias maps 
(Fig. 10), the measurements appear as positively biased in correspon-
dence of the sphere features and negatively biased for the majority of the 
planar features, except the one containing the cylindrical extrusion 
which appears as positively biased. 

Fig. 11 shows the results of the standard deviation and local bias 
maps on highly dense measurements that global GRF approach [21] 
cannot process, while Fig. 12 shows the distribution of local standard 
deviations. For local bias, a similar behaviour to what achieved on 
dowsampled point clouds can be observed. For the standard deviation 
map, lower dispersion values can be seen in correspondence with the 
edges and corners compared to the subsampled results, reinforcing the 
interpretation of the error being mostly due to how the reference z co-
ordinate is computed for each point of the Gaussian field, an issue 
common to both rGRF and GRF approaches, as they use the same 
method. 

As stated earlier, the regional GRF method allows to separately fit 
individual surfaces, in order to target the study of measurement 
behaviour in correspondence of specific surfaces. This is possible due to 
the nature of the regional fitting, which takes place within a moving 

window whose range of allowed positions can be defined in advance. In 
this type of usage of the rGRF method (i.e., targeting a specific subset of 
surfaces), the allowed locations for the moving window can be deter-
mined by segmenting the point cloud in order to isolate the targeted 
surfaces. The high density point clouds can be segmented using the di-
rection of the local normal vectors at each point computed by principal 
component analysis (PCA) in combination with k-means clustering [14]. 
The typical use of fitting rGRF to specific subsets of surfaces is to esti-
mate bias and dispersion of dimensional results computed on such 
surfaces. 

In Fig. 13, an example of local standard deviation maps obtained 
from rGRF models fitted to specific surfaces of the test artefact are 
shown (for example a sphere, the cylindrical inner surface of a through 
hole, and two planar parallel surfaces). The selection of surfaces is aimed 
at estimating bias and dispersion associated to the sphere diameter, 
cylinder diameter, and linear distance between the two planes, 
respectively. 

3.3. Standard and expanded uncertainty on dimensions 

Selected dimensions (specifically the diameter of a sphere, the 
diameter of an inner cylinder and the distance between two parallel 
planes) were computed as follows: i) the point cloud regions supporting 
each dimension were extracted from the original clouds using the seg-
mentation method previously illustrated in Section 3.2; ii) these regions 
were individually fit to GRFs (using both the global [21] and the 

(a)                             

(b)            

Fig. 10. Local bias maps. (a) GRF method proposed by [21] and (b) rGRF method proposed in this work.  
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regional method); iii) (Monte Carlo simulation) 30 new clouds were 
generated from each GRF or rGRF, each being a new observation 
extracted from the random field (using the procedure illustrated in 
Section 2.4); iv) each new cloud was fit to an appropriate datum, needed 
to define the feature of size (sphere and cylinder for the diameters, 
planes for the linear distance (see also [21]); v) the final value for the 
dimension was extracted from the datum, leading to the construction of 
a frequency histogram of dimension values (30 values per dimension). 
This entire process was applied to: the original clouds, the downsampled 
ones, and the CMM point clouds (the latter to establish a baseline for 
comparing the frequency distributions). 

For an unbiased measurement resulting in a scalar value and repre-
sented as a random variable X, described by n observations xi, the 
standard uncertainty [42] is defined as the standard error of the mean. 

Given n new observations extracted from the GRF and rGRF (where n is 
equal to 30 and M indicates fringe projection measurements in this 
work), and n results for the dimensional feature x1, x2,⋯, xn computed 
from such point clouds generated from the GRF and rGRF, the standard 
uncertainty uM is defined as 

uM = Sμx =
s
̅̅̅
n

√ (11)  

where μx is the population mean, Sμx is the standard error of the mean 
and s is the sample standard deviation computed on the n point clouds 
generated from the field, i.e. 

s =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n − 1

∑
(xi − x)2

√

(12) 

The expanded uncertainty UM is obtained by multiplying the stan-
dard uncertainty by a coverage factor k 

UM = k • uM (13) 

In this work, k was set to 2. in order to provide a level of confidence 
of approximately 95% under the assumption of X (i.e., either the sphere 
diameter, the cylinder diameter or the linear distance) being normally 
distributed. 

To include the bias term, the CMM measurements (three repeats) 
were considered as the more accurate reference, thus: 

biasX:(CMM− M) = (xCMM ± uCMM) − (xM ± uM) (14)  

where biasX:(CMM− M) is the bias on the dimension X measured with 
measurement system M extracted from the point clouds generated from 
the field with respect to the reference CMM value (xCMM is the mean of 
three CMM repeats). As regulated by the BS ISO 22514 part 7 [43], it is 
possible to rely on the maximum permissible error (MPE) specified by 
the manufacturer to compute the standard uncertainty uCMM = MPE/

̅̅̅
3

√

of the CMM, or alternatively to the manufacturer’s MPE, the error E0 
reported in a recent calibration certificate can be used instead. For the 
CMM, we chose to use the data from our most recent calibration cer-
tificate: E0 = (1.7 + 3L/1000)μm (where L is the test length in milli-
metres). The mean value of the linear features extracted from the CMM 
measurements are given in Table 1, as well as the uCMM. 

The values for the selected dimensions, computed from the new 
observations extracted from the GRF and rGRF fields fitted on the 
downsampled point clouds, are reported in Table 2 and summarised in 
Fig. 14. The bias values are reported in Table 3. In the table, the label 
“(dense)” refers to results obtained from Gaussian fields fitted to the 
original high-density point clouds. 

ANOVA tests for equal means performed separately on each dimen-
sion resulted in the null hypothesis (GRF, rGRF and rGRF (dense) having 
equal means) not being rejected at the 0.05 significance level for Ø 
sphere and Ø cylinder. It is possible that the observed differences in bias 
may become statistically significant with larger sample sizes. 
Conversely, for the linear distance between two planes, the ANOVA test 
resulted in the null hypothesis being rejected with p-value equal to 1.28 
× 10-30, meaning that the difference of biases can be considered as 
statistically significant (assuming a common CMM value as reference). 

It is important to point out that what shown in this section is only an 
example to demonstrate how the GRF can be used to study the propa-
gation of measurement error to scalar dimensions computed form the 
point cloud. Clearly, more accurate and comprehensive means to model 
the uncertainty associated to the CMM measurements could be used in 
our model, and these would lead to a more accurate evaluation of un-
certainty in the final results. However, this would not change the proof 
of concept in relation to how the proposed method can be used to study 
error propagation. The main strength of this method is that it gives us 
the possibility to study “local” error (bias and dispersion) associated to 
the point cloud, and to study how it propagates to scalar dimensions, if 
desired. If the final goal is to obtain an accurate uncertainty estimation 

(a)          

(b)          

Fig. 11. Maps of the original highly dense point clouds and application of the 
rGRF approach. (a) Standard deviation map and (b) local bias map. The global 
GRF results could not be presented because the GRF method [21] cannot pro-
cess a point cloud of this size. 

Fig. 12. Distribution of local standard deviation (original highly dense point 
clouds using the rGRF approach). The global GRF result could not be plotted 
because the GRF method [21] cannot process a point cloud of this size. 
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for measured dimensions, other approaches presented in the literature 
[10] and in the international standards may be more comprehensive. 

4. Discussion 

The use of both global GRF fitting [21] and local fitting (rGRF) 
presented in this work can depict the random error components of points 
positional uncertainty and have the flexibility to further incorporate a 
bias term with the help of a more accurate instrument. Using Monte 
Carlo simulation, both approaches can generate new observations from 
the fitted field. However, differently from the GRF approach shown in 
[21], the method presented in this work shows clear advantages in 
scalability when processing highly dense point clouds, allowing mea-
surement analysis without information loss induced by cloud down-
sampling, necessary in the previous method [21]. In addition, due to the 
capability of fitting locally the rGRFs, point positional uncertainty in-
formation can be captured in correspondence to selected regions of in-
terest in the measured part. 

A direct comparison of the performances of the new rGRF method 
and original one was only possible when operating on downsampled 
point clouds. In such case, the standard deviation maps of the random 
fields generated by the two methods shows a similar trend in corre-
spondence to sharp edges, estimating locally higher dispersions 
(compared to estimates on other geometric features). The local standard 
deviation estimates of the rGRF method appear spatially more 

homogeneous, compared to the GRF, but also feature almost doubled 
values. Local bias value estimates are also approximately doubled for the 
rGRF, although both methods generate bias maps with similar trends 
(paired to the same CMM contact measurement). The trend of the bias 
map features positive bias values for the most part in correspondence of 
the sphere features, and negative bias values for the majority of the 
planar features except for the one containing the cylindrical extrusion 
showing partially positive bias values. This latter exception could be 
caused by warping or collapsing of the printed material during or after 
the manufacturing process, or be the result of a registration error. 

As a comparison of the GRF and rGRF methods on the point clouds at 
native density was not possible, our analysis consisted of verifying if the 
rGRF results on the lower-density point clouds would be at least 
approximately confirmed/replicated on the native densities. The simi-
larities are confirmed both on the estimated bias and standard deviation 
maps. 

As shown in the results, the confidence intervals estimated by the 
GRF and rGRF on the selected dimensional feature show differences, 
both in terms of central tendency (bias) and dispersion (standard devi-
ation), albeit being obtained using the same reference clouds from 
contact measurement. The only exception is the sphere diameter 
showing only a few micrometres difference in standard deviation and a 
good consistency in bias between all the methods. For all methods, the 
plane-to-plane distance shows the smallest dispersion but low accuracy 
compared to the CMM measurements, whereas the cylindrical inner 
surface shows higher dispersion values in all cases but is closer to the 
CMM results. 

For the downsampled cases, both rGRF and GRF methods present 
similar uncertainty estimations for the spherical surface and inner cy-
lindrical surface cases, but the rGRF method shows the smallest bias in 
the latter. The expanded uncertainty of plane-to-plane distance calcu-
lated on the rGRF results is nearly one magnitude smaller than that 
obtained applying the GRF method. However, the calculated bias is 

(a)                                                       (b)       (c)    

Fig. 13. The local standard deviation maps obtained on surface subsets, extracted directly from the high-density point clouds; (a) spherical surface, (b) inner cy-
lindrical surface of a through hole, and (c) two parallel planes. 

Table 1 
Dimensions estimated on CMM data/mm.  

Feature Nominal value Mean value xCMM uCMM 

Ø sphere  10.000  9.880  0.001 
Ø cylinder  10.000  10.109  0.001 
d plane to plane  30.000  30.180  0.001  

Table 2 
Dimensions estimated from fringe projection measurements/mm.  

Method Feature Nominal value Mean value xM uM UM(k = 2) 

GRF Ø sphere 10.000  9.861  0.009  0.019 
rGRF  9.863  0.010  0.020 
rGRF (dense)  9.865  0.011  0.022  

GRF Ø cylinder 10.000  10.067  0.042  0.085 
rGRF  10.095  0.038  0.076 
rGRF (dense)  10.067  0.077  0.155  

GRF d plane to plane 30.000  30.223  0.002  0.003 
rGRF  30.252  0.0003  0.0005 
rGRF (dense)  30.233  0.0001  0.0003  
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almost double compared to the original GRF approach. 
Similarities are not observed when applying the rGRF method to the 

feature segmentations with different density (downsampled case and 
native case). Although the sphere diameter again shows consistency 
both in terms of central tendency and dispersion, the behaviour of inner 
cylindrical diameter and plane-to-plane distance are different. This time, 
the diameter extracted from the highly dense inner cylindrical surface 
shows higher bias and standard deviation compared with the down-
sampled case. However, the plane-to-plane distance shows similar 
dispersion in both cases but better central tendency from the dense one. 

For the inner cylindrical surface case, one possible explanation could 
be that the inner surfaces of the through hole and the sharp external 
edges are challenging to measure, especially when using optical in-
struments. The inner surfaces have generally lower signal-to-noise ratio 
(SNR) due to the presence of occlusions and shadowing, while the sharp 
edges may induce large interpolation error. Another consideration can 
be made regarding the fitting error. The measurement of the inner 

(a)                                                                                                       (b)  

         (c)

Fig. 14. Mean values and standard uncertainties for the selected dimensions ((a) sphere diameter, (b) cylinder diameter and (c) linear distance) after sampling 30 
new observations from Gaussian fields (global fitting and regional fitting on full density and downsampled point clouds). The interval computed on the CMM 
measurements is uCMM reported in Table 1. 

Table 3 
Bias values/mm.  

Method Feature biasx:(CMM− M)

GRF Ø sphere (9.880 ± 0.001) − (9.861 ± 0.009) 
rGRF (9.880 ± 0.001) − (9.863 ± 0.010) 
rGRF (dense) (9.880 ± 0.001) − (9.865 ± 0.011)  

GRF Ø cylinder (10.109 ± 0.001) − (10.067 ± 0.042) 
rGRF (10.109 ± 0.001) − (10.095 ± 0.038) 
rGRF (dense) (10.109 ± 0.001) − (10.067 ± 0.077)  

GRF d plane to plane (30.180 ± 0.001) − (30.223 ± 0.002) 
rGRF (30.180 ± 0.001) − (30.252 ± 0.0003) 
rGRF (dense) (30.180 ± 0.001) − (30.233 ± 0.0001)  
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cylindrical surface is incomplete due to occlusions, which can poten-
tially affect the fitting algorithm and the consequent diameter extrac-
tion. In contrast, the sphere fitting on far more complete measurements 
shows higher robustness with small variations in the diameter values. A 
different consideration can be made for the plane-to-plane distance: the 
Euclidean distance from the centroid of plane 1 perpendicular to plane 2 
is considered as the final result for the linear dimension. This result is 
surely influenced by the fitting of the two datums, especially in the case 
of rGRF (dense): if the points are many, the generation of new point 
clouds result in variances that behave as balanced noise, which added to 
the robustness of the fitting, leads to small dispersions. 

5. Conclusions 

This research proposes a computationally efficient method to fit 
point clouds to Gaussian random fields, useful to investigate the local 
effects of measurement error on acquired point clouds, regardless of the 
optical measurement system used and its specifications. The method 
(referred here as rGRF – regional Gaussian random field) builds upon 
previous work on fitting entire point clouds to a Gaussian random field 
(GRF) [21]. As opposed to the previous method, in this work we estimate 
the covariance matrix (needed to fit the random field) locally on moving 
windows that encompass a finite number of neighbouring points. As the 
window size is limited, the covariance matrix is easier to compute due to 
the reduced number of points to consider within the window. The 
advantage of the proposed rGRF method is that point clouds of any size 
(i.e., various densities) can be fitted as long as the hardware is able to 
support the large number of iterations needed to build the model and 
extract the matrix of covariance. On the contrary, the original method 
was not scalable to high density clouds because the covariance matrix 
would become too large to estimate, and cloud downsampling would 
become necessary. The disadvantage of the rGRF method is that, for 
each position of the moving window, although the entire covariance 
matrix is computed, only the variance of the central (reference) point in 
the window is kept, ultimately resulting in a Gaussian random field for 
the entire cloud that only captures point variances, and not covariances. 
Another known issue for both original and proposed method is that if the 
part to be measured presents very complex features, the resampling 
process might be affected, and the wrong interpolation and large fitting 
errors might cause significantly large variances. Despite the limitation, 
we have shown that, when the GRF and rGRF methods are compared on 
downsampled point clouds (so that the GRF is still applicable), the re-
sults are comparable, both in terms of describing local variance and bias 
of the entire field, and in terms of generating individual biases and 
variances for selected dimensions, needed to estimate measurement 
uncertainty. Additionally, we show that the rGRF can be applied to 
entire, high-density point clouds (where the original GRF would not be 
applicable), obtaining results that, despite not being confrontable with 
those obtained from the original method, still show consistency with the 
estimates on the downsampled clouds. 

The developed method has the capability of processing highly dense 
point clouds and it is a preliminary attempt to evaluate uncertainty of 
dense point clouds, which is still an area of open research. Further work 
will involve a more thorough investigation of the factors that contribute 
to some of the discrepancies nevertheless observed between the new 
rGRF and the original GRF method in cases where direct comparison is 
possible (i.e., downsampled point clouds). More importantly, future 
investigations will look into the development of a method to retain co-
variances between points as the moving window -used for regional 
fitting- moves across the point cloud. Advanced computing techniques 
such as distributed computing [44] can be used to overcome memory 
shortage when retaining the covariances of large-scale point clouds. 
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