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1 Introduction

Many non-linear field theories give rise to solitonic solutions, characterized by spatially
localized configurations with intriguing non-perturbative properties. Solitons may be stable for
a variety of reasons. Whereas topological solitons derive their stability from topological charges
and are typically static in time, Q-balls are non-topological solitons stabilized by the presence
of conserved Noether charges, and are time-dependent, although typically periodic [1, 2].
Oscillons are quasi-periodic, non-topological and have no charge, but oscillate with a frequency
lower than the particle mass, and so decay very slowly [3, 4]. Q-balls may arise under quite
general conditions including the case of self-interacting complex scalar field theories, where
the potential grows more slowly than the quadratic mass term away from its minimum so
as to exhibit an attractive force that condenses charges into Q-balls. The properties of
Q-balls have been extensively investigated [5–14], and also in supersymmetric models [15, 16].
They may arise naturally in the early stages of the universe [17–22] and are candidates
for dark matter [23–28]. Q-balls, along with their counterparts in strong gravitational
environments known as boson stars [29–31] can induce superradiance phenomena [32–34]. A
similar phenomenon, more closely linked to parametric resonance, has also been seen in the
emission of fermions in an oscillon background [35]. Experimentally, Q-balls can arise in cold
atom systems [36, 37], and their properties studied in a controlled environment.

When more than one Q-ball is present a variety of interaction phenomena may occur,
including attraction, repulsion, charge transfer, fission and fusion [5, 6, 38–40]. Different
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oscillation phases and overall signs of the charges give rise to complex and diverse outcomes.
For example, two Q-balls with identical charge will attract each other if their scalar condensates
are in phase and repel if they are out of phase, accompanied by charge transfer if the phases
are not completely aligned or anti-aligned. The signs of their charge also affect the directions
of interaction forces. Q-balls can combine to form a series of composite structures, including
charge-swapping Q-balls (CSQs) [8, 41, 42]. In CSQs, positive and negative charge coexist,
with the charges swapping location as the CSQ evolves. While CSQs can have very long
life-times, they eventually decay into oscillons [3, 4, 43–51]. Although most studies focus on
classical Q-balls, quantum dynamical aspects have been considered as well [52, 53].

In this paper, we shall investigate quantum corrections to the dynamics of Q-balls. While
the dynamics of a single Q-ball was considered in [53], we generalise this to a numerical
study of interactions among multiple Q-balls. Due to the time-dependent and spatially
inhomogeneous nature of Q-balls, imaginary time Monte Carlo simulations do not apply, and
we need to perform real-time quantum simulations. For this, we implement the inhomogeneous
Hartree approximation [53–60], which describes the dynamics using the one- and connected
two-point functions only, neglecting all higher-order connected n-point functions of the
quantum fluctuations. In this method, the one-point correlator plays the role of a classical
inhomogeneous background field (the mean-field Q-ball). Such an inhomogeneous mean
field interacts with the quantum field modes, opening up new channels for the Q-balls to
potentially decay through, and also allows for a certain amount of scattering and intermediate-
time quantum thermalisation [57]. The inhomogeneous Hartree approximation allows us to
capture the leading order quantum effects in a loop expansion, taking fully into account the
time-dependence and spatial inhomogeneity of the system.

In a Gaussian approximation, including a free field and the Hartree approximation, the
field operator may be expanded on a set of mode functions to be solved numerically. There is
a time- and space-dependent mode function for each momentum mode k, so that on a discrete
spatial lattice of Nd sites (d being the number of the spatial dimensions), the numerical effort
increases as (Nd)2 (as opposed to a classical field simulation, which scales as Nd only). The
ensemble method [60, 61]1 reduces this issue by introducing an ensemble of configurations
representing the initial quantum state, and evolving these in position space rather than
momentum space. In effect, it allows for trading a non-stochastic simulation of Nd mode
functions (Nd ×Nd) for a simulation of an ensemble of E field configurations (Nd ×E). If the
required statistical precision of the ensemble-averaged observables is achieved for E < Nd,
this amounts to a more efficient procedure. This will be the approach we take in this paper.

The paper is organized as follows. In section 2, we introduce the model and review
some basic properties of classical Q-balls. We then introduce the inhomogeneous Hartree
approximation for the quantum evolution, the stochastic ensemble average method, the
renormalization scheme, and some details of the numerical implementation. In section 3, we
investigate the quantum corrections to the dynamics of a single Q-ball in 2+1D (an early
exploratory work [53] considered 3+1D). Two regimes with substantial differences in quantum
behavior are identified. In section 4, we study the interactions between Q-balls in various
scenarios, including well separated Q-balls, collisions of Q-balls and charge-swapping Q-balls.

1See also [62–65] for a number of applications.
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We identify cases where the quantum simulations closely resemble the corresponding classical
ones, and show examples of how the quantum corrections affect the multi-Q-ball dynamics
for generic cases. We summarize in section 5.

2 Model and setup

In the following, we introduce the complex scalar field model we will be exploring, review the
basic properties of classical Q-balls, and present the inhomogeneous Hartree approximation
for including quantum corrections. We then specify the numerical setup used in the paper.

2.1 Classical Q-balls

The simplest action that supports Q-ball solutions involves a single complex scalar field, φ,
with a U(1)-symmetric potential with certain properties. We write

S =
∫

dDx
[
− (∂µφ)∗(∂µφ) − V (|φ|)

]
. (2.1)

We choose the metric convention gµν = diag(−++ . . . ) for a D = d+1 dimensional Minkowski
space-time. The attractive nature can be achieved by a potential that “opens up” away from
the quadratic minimum [2]. For simplicity, we will focus on the sextic polynomial potential

V (|φ|) = m2|φ|2 − λ|φ|4 + 4
3g|φ|6, (2.2)

which could for instance arise as an effective low-energy theory once heavy degrees of freedom
have been integrated out [1]. The factor 4/3 is chosen for convenience at the level of the
equations of motion, which we will simulate both classically and quantum mechanically. The
global U(1) symmetry of the action (2.1), φ → φiθ with θ being a real constant, implies the
conservation of the Noether charge for an isolated system

Q =
∫

ddxj0 =
∫

ddxi(φ∗∂tφ − φ∂tφ
∗) =

∫
ddx(ϕ2∂tϕ1 − ϕ1∂tϕ2), (2.3)

where j0 is the charge density and we have defined the real and imaginary components of φ

φ = 1√
2

(ϕ1 + iϕ2), (2.4)

with ϕ1,2 real-valued. The conserved energy of the system is given by

E =
∫

ddx
(
|∂tφ|2 + |∇φ|2 + V (|φ|)

)
, (2.5)

and the classical equations of motion, in terms of ϕ1 and ϕ2, are

[−∂2
x + m2 − λ(ϕ2

1 + ϕ2
2) + g(ϕ2

1 + ϕ2
2)2]ϕ1(x) = 0, (2.6a)

[−∂2
x + m2 − λ(ϕ2

1 + ϕ2
2) + g(ϕ2

1 + ϕ2
2)2]ϕ2(x) = 0. (2.6b)

A classical Q-ball is a localized, minimum energy configuration for a fixed charge Q, whose
profile has a spherical form with constant internal rotation in field space

φ(x) = 1√
2

f(r)e−iωt, (2.7)
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where r is the radial coordinate from the center of the Q-ball. The profile function f(r)
approaches a constant at r = 0 and decays quickly away from the center. That is, f(r) satisfies
the boundary conditions f ′(0) = f(∞) = 0. For the classical Q-ball, the potential energy of
the field is determined by f(r) only V (f) = m2f2/2− λf4/4 + gf6/6, and the U(1) charge is

Q = ω

∫
ddxf2(r). (2.8)

For a classical Q-ball solution to exist, the absolute value of the frequency |ω| needs to
be within the range ω− ≤ |ω| < ω+, where ω− = (m2 − 3λ2/(16g))1/2 and ω+ = m [2].
When ω < 0, the configuration is dubbed an anti-Q-ball, whose charge is negative. One
may show that in 2+1D, Q-balls within this whole frequency range are stable against small
perturbations, dQ/dω ≤ 0, and satisfy the condition E/Q < m. For 3+1D, only a subset
of this range supports classically stable Q-balls [7].

2.2 The inhomogeneous Hartree approximation

For a physical system where all the relevant momentum modes contain high occupation
numbers, it is frequently argued that ensemble averages of classical field theory solutions
provide reasonable approximations to the quantum dynamics [66]. In this paper, we further
assess this point by incorporating quantum corrections in the Hartree approximation [57].
Because the background mean field is inhomogeneous, also the quantum corrections are
inhomogeneous, as we will describe below.

In the Hartree approximation, we only include information about the one-point and two-
point correlation functions, while all higher order connected correlators are zero. Promoting
ϕ1 and ϕ2 to be operators, we can re-interpret (2.6) as the Heisenberg equations of motion for
quantum operators. They may also be understood as the lowest order of the Schwinger-Dyson
equations. The one-point functions, or mean fields, are defined as

Φ1(x) = ⟨ϕ1(x)⟩, Φ2(x) = ⟨ϕ2(x)⟩, (2.9)

and the connected two-point functions are defined as

G1(x, y) = ⟨(ϕ1(x) − Φ1(x))(ϕ1(y) − Φ1(y))⟩ = ⟨ϕ1(x)ϕ1(y)⟩ − ⟨ϕ1(x)⟩⟨ϕ1(y)⟩, (2.10a)
G2(x, y) = ⟨(ϕ2(x) − Φ2(x))(ϕ2(y) − Φ2(y))⟩ = ⟨ϕ2(x)ϕ2(y)⟩ − ⟨ϕ2(x)⟩⟨ϕ2(y)⟩, (2.10b)
K(x, y) = ⟨(ϕ1(x) − Φ1(x))(ϕ2(y) − Φ2(y))⟩ = ⟨ϕ1(x)ϕ2(y)⟩ − ⟨ϕ1(x)⟩⟨ϕ2(y)⟩, (2.10c)
K̄(x, y) = ⟨(ϕ2(x) − Φ2(x))(ϕ1(y) − Φ1(y))⟩ = ⟨ϕ2(x)ϕ1(y)⟩ − ⟨ϕ2(x)⟩⟨ϕ1(y)⟩. (2.10d)

When the two spacetime points are identical x = y, we write them as

G1,2(x, x) ≡ G1,2, K(x, x) = K̄(x, x) ≡ K = K̄. (2.11)

These correlators at coincidence contain divergences, and these are regularized by the lattice,
as will be discussed later.

Since in the Hartree approximation, high order connected correlators are set to zero

⟨ϕi1(x1)ϕi2(x2) . . . ϕin(xn)⟩C = 0, n ≥ 3, (2.12)
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where the subscript C means the fully connected part. This leaves the disconnected parts,
which can all be expressed in terms of Φ1,2 and G1,2, K, K̄. This approximation clearly misses
some physics, and for homogeneous systems adds only a state-dependent effective mass. Still,
in particular for inhomogeneous systems it has been used to capture the leading quantum
effects of many nonlinear systems [53, 55, 58, 60, 67–69].

The c-number equations of motion for the one-point functions can be obtained by taking
the quantum expectation values of the operator equations of motion and making use of
the Hartree approximation:

[−∂2
x + M2

11(x)]Φ1(x) + M2
12(x)Φ2(x) = 0, (2.13a)

[−∂2
x + M2

22(x)]Φ2(x) + M2
21(x)Φ1(x) = 0, (2.13b)

where

M2
11 = m2 − λ(Φ2

1 + Φ2
2) + g(Φ4

1 + Φ4
2 + 2Φ2

1Φ2
2) − λ(3G1 + G2) + 12gK(K + Φ1Φ2)

+ g(15G2
1 + 3G2

2 + 6G1G2 + 10G1Φ2
1 + 6G1Φ2

2 + 6G2Φ2
2 + 2G2Φ2

1), (2.14a)
M2

12 = −2λK + 4gK(Φ2
2 + 3G1 + 3G2), (2.14b)

and M2
21, M2

22 can be obtained from M2
12, M2

11 by swapping indices between 1 and 2. It is
easy to see that if we only keep the one-point functions, eqs. (2.13) reduce to the classical
field equations. Similarly, the equations of motion of the two-point functions can be obtained
by multiplying the Heisenberg field equations by ϕi(y) and then taking their quantum
expectation values

[−∂2
x + M̄2

11(x)]G1(x, y) + M̄2
12(x)K̄(x, y) = 0, (2.15a)

[−∂2
x + M̄2

11(x)]K(x, y) + M̄2
12(x)G2(x, y) = 0, (2.15b)

[−∂2
x + M̄2

22(x)]G2(x, y) + M̄2
21(x)K(x, y) = 0, (2.15c)

[−∂2
x + M̄2

22(x)]K̄(x, y) + M̄2
21(x)G1(x, y) = 0, (2.15d)

where again the Hartree approximation is used and

M̄2
11 = m2 − λ(3Φ2

1 + Φ2
2) + g(5Φ4

1 + Φ4
2 + 6Φ2

1Φ2
2) − λ(3G1 + G2) + 12gK(K + 2Φ1Φ2)

+ g(15G2
1 + 3G2

2 + 6G1G2 + 30G1Φ2
1 + 6G1Φ2

2 + 6G2Φ2
2 + 6G2Φ2

1), (2.16a)
M̄2

12 = −2λΦ1Φ2 + 4g(Φ3
1Φ2 + Φ1Φ3

2 + 3G1Φ1Φ2 + 3G2Φ1Φ2)
− 2λK + 12gK(Φ2

1 + Φ2
2 + G1 + G2), (2.16b)

with M̄2
21, M̄2

22 obtained by swapping the 1 and 2 indices. As the two-point functions in (2.15)
contain both x and y, it is numerically expensive to evolve these equations with a finite
difference method. In a homogeneous system (with no mean field or when the field is not
space-dependent), Φ1,2(x) = Φ1,2(t) all the M and M̄ are also only time-dependent, and two-
point correlators satisfy G11(x, y) = G1(t, t′, |x − y|) (and similar for the other components
G2, K, . . . ). Homogeneous Hartree systems are straightforward to evolve numerically [70].

We proceed instead by incorporating the inhomogeneous Q-ball solution into the picture.
We have defined the two-point functions G1,2, K, K̄ to be deviations of ϕj(x) from the mean
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field Φj(x), and we shall initially identify Φj(x) to be the Q-ball solution along with the
identification that ϕj(x) − Φj(x) is a Gaussian field

ϕj(x) − Φj(x) = φj(x) =
∫

d̃k
[
aj

kf j
k(x) + aj†

k f j∗
k (x)

]
, j = 1, 2, (2.17)

where d̃k = ddk/((2π)d2ωk) with ωk =
√

k2 + m2
r and mr the renormalized mass to be

defined shortly, and the annihilation and creation operators aj
k and aj†

k satisfy the canonical
commutation relations

[aj1
k , aj2†

l ] = (2π)d2ωkδd(k − l)δj1j2 , [aj1
k , aj2

l ] = [aj1†
k , aj2†

l ] = 0. (2.18)

It can then be shown that the mode functions f j
k satisfy the following homogeneous equations

of motion

[−∂2
x + M̄2

11(x)]f1
k(x) + M̄2

12(x)f2
k(x) = 0, (2.19a)

[−∂2
x + M̄2

22(x)]f2
k(x) + M̄2

21(x)f1
k(x) = 0. (2.19b)

For a quantum state with a vanishing particle number on top of the mean field, we can
express the two-point functions in terms of the mode functions as follows

Gj = Gj(x, x) =
∫

d̃k|f j
k(x)|2, K(x, x) = K̄(x, x) = 0. (2.20)

Therefore, an alternative approach to solve the quantum system is to evolve the mode
functions via (2.19), compute Gi, and then evolve the mean field Φi via (2.13). Because there
are as many mode functions as Fourier modes, this is numerically expensive, and so we further
approximate the system by ensembles of field configurations as outlined in the next section.

2.3 Stochastic ensemble average

Given that the mode functions satisfy linear equations of motion, we can employ a statistical
method to approximate the quantum system [60]. Suppose that we have a stochastic field
φe

j(x) that is expressed in terms of the mode functions above as follows,

φe
j(x) =

∫
d̃k

[
cj,e

k f j
k(x) + cj,e∗

k f j∗
k (x)

]
, (2.21)

where the random variable cj,e
k are drawn from a normal distribution with zero mean and

has the following variance

⟨cj,e∗
k cj,e

l ⟩E = (2π)dωkδd(k − l) (2.22)

with ⟨⟩E denoting the ensemble average. It is easy to show that φe
j(x) satisfies the following

equations

[−∂2
x + M̄2

11(x)]φe
1(x) + M̄2

12(x)φe
2(x) = 0, (2.23a)

[−∂2
x + M̄2

22(x)]φe
2(x) + M̄2

21(x)φe
1(x) = 0. (2.23b)
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Now, the key observation is that the ensemble two-point functions of φe
j(x) are numerically

the same as the quantum two-point functions of φj(x),

⟨φe
1(x)2⟩E − ⟨φe

1(x)⟩2
E = G1, (2.24a)

⟨φe
2(x)2⟩E − ⟨φe

2(x)⟩2
E = G2, (2.24b)

⟨φe
1(x)φe

2(x)⟩E − ⟨φe
1(x)⟩E⟨φe

2(x)⟩E = K = K̄. (2.24c)

That is, the quantum averages over operators can be replaced by the ensemble averages over
some auxiliary stochastic fields. To recapitulate, instead of directly solving the one- and
two-point functions, we now solve the equations of motion for the one-point functions (2.13),
together with running a number of realizations of the equations of motion for the auxiliary
stochastic fields (2.23) and taking the ensemble averages to get the two-point functions that
feed into (2.13). For a d dimensional spatial lattice, if the number of realizations needed to
get satisfactory statistical convergence is much smaller than the number of the lattice points
in the d dimensional spatial lattice, (Nd × E ≪ Nd × Nd) we gain computational speed-up.
As we will see, for the present case the speed-up is rather significant.

2.4 Renormalization

When evaluated at the same spacetime point, the two-point functions are formally divergent
in the continuum limit. The lattice regularization turns the divergences into finite, but
potentially large contributions to the mass and couplings. While we can run the lattice
simulations with the bare quantities, to connect with physical results, or to compare with
the classical results, we need to renormalize our input parameters.

While we start our simulations such that the mean field is the classical Q-ball solution,
the perturbative field φi is set to be initially in the vacuum,

f j
k(x) = eikx, ∂tf

j
k(x) = −iωkeikx. (2.25)

With this condition we have

G
(init)
j (x, x) = A =

∫ ddk

(2π)d2ωk
. (2.26)

This quantity contains quadratic and logarithmic divergences in 3+1D and a linear divergence
in 2+1D. What this means is that if the renormalised physical parameters (the ones used
in a purely classical simulation) are to be mr, λr, gr, we need to simulate the quantum
system with bare parameters defined as

λr = λ − 12gA, (2.27)
m2

r = m2 − 4λA + 24gA2, (2.28)
gr = g. (2.29)

Having found A from (2.26), these equations are solved sequentially, starting with g, then
λ, then m. We will insert the classical Q-ball as the initial conditions. This is not perfectly
matched with a space-independent vacuum state for the modes, and so there will be an initial
adjustment and relaxation as the modes discover the Q-ball background. This is a small effect
which could in principle be reduced further by gradually (adiabatically) dialing in the Q-ball.

– 7 –
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2.5 Numerical setup

In classical numerical simulations, it can be useful to adopt the dimensionless variables

x̃µ = mrxµ, φ̃ = φλ1/2
r /mr, g̃ = grm2

r/λ2
r , (2.30)

with which the action becomes

S = m4−D
r

λr

∫
dDx

(
−

∣∣∣ ∂φ̃

∂x̃µ

∣∣∣2 − |φ̃|2 + |φ̃|4 − 4
3 g̃|φ̃|6

)
. (2.31)

We see that the only free parameter in this action is now g̃. In this paper, the fiducial choice
for g̃ is g̃ = 3/8 allowing us to directly compare with previous classical results in [5, 41]. With
this choice of g̃, the range where the classical Q-ball exists is 1/

√
2 ≤ ω̃ ≡ ω/mr < 1.

In the quantum theory, however, such a rescaling of the field also implies a normalization of
the quantum (vacuum) modes. Hence, while classically eliminating the mr and λr dependence
in the equations of motion is just a reparameterization, in the quantum theory it amounts to
specific choices for those parameters, if we want to leave the quantum vacuum unchanged.
Therefore, we instead adopt the following dimensionless variables (in 2+1D)

x̃µ = mrxµ, φ̃ = φ/m1/2
r , λ̃ = λr/mr, g̃ = gr, (2.32)

where all quantities are cast in units of mr. The action now depends on two free parameters

S =
∫

dDx

(
−

∣∣∣ ∂φ̃

∂x̃µ

∣∣∣2 − |φ̃|2 + λ̃|φ̃|4 − 4
3 g̃|φ̃|6

)
. (2.33)

This allows us to explicitly investigate how the classical limit arises in the limit of large
(in field amplitude) Q-balls. To illustrate the point, we briefly consider a single scalar field
with the potential V (Φ) = m2

rΦ2/2 − λrΦ4/4 + grΦ6/6. The equation of motion in the
Hartree approximation is then

[−∂2
x + m2

r − λrΦ2 + grΦ4]Φ = −3λr(A − G)Φ + 10gr(A − G)Φ3 − 15gr(A − G)2Φ, (2.34)

where G is the correlator (2.20) but for the one real field and A is defined in (2.26). We
can now construct a one-parameter family of models through the following rescaling of the
parameters of the potential and the field amplitude (but not the quantum modes)

λ̃ → αλ̃, g̃ → α2g̃, φ̃ → φ̃/
√

α, (2.35)

where we have in mind that α < 1. It is straightforward to find, that the net result is to
replace the equation of motion by

[−∂2
x + m2

r − λrΦ2 + grΦ4]Φ = − 3λrα(A − G)Φ + 10grα(A − G)Φ3 − 15grα2(A − G)2Φ.

(2.36)

Since the equation of motion is unchanged on the left-hand side, we know that there is a
Q-ball solution with the same properties as the original one, but scaled up by 1/

√
α. And that

in the quantum theory, evolving that scaled-up Q-ball with the original quantum corrections
on the right-hand side, is equivalent to evolving the original Q-ball with quantum corrections
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Figure 1. Q-ball profiles for various internal frequencies (left) and dependence of charge and energy-
to-charge ratio on the internal frequency (right).

scaled down by A−G → α(A−G).2 In this way, we see that for any Q-ball in this potential,
we can straightforwardly generate larger and larger (in the sense of field amplitude) Q-balls,
for which quantum corrections are of less and less importance. For most of our simulations,
we retain the fiducial model λ̃ = 1, g̃ = 3/8.

For simplicity, we focus on 2+1D Q-balls in the numerical simulations. The 2+1D Q-ball
profile functions are shown for different internal frequencies in the left plot of figure 1, and
the charge and charge to energy ratio of the corresponding Q-balls are shown in the right
plot of figure 1. The Q-balls with small frequencies are known as thin-wall Q-balls while
those with large frequencies are known as thick-wall Q-balls, due to the thicknesses of their
surfaces, shown in figure 1. The numerical lattice we use has a spacing of mrdx = 0.4,
which sets the largest momentum to be kmax/mr =

√
dπ/(mrdx) ∼ O(10). The UV cutoff

of the lattice is thus one order of magnitude greater than mr. In figure 2, we show on the
left the running of the bare couplings with A, and on the right how A runs with dx. (A
in principle also depends on the size of the lattice, but the integral is clearly dominated
by the part near the UV cutoff.) In the 3+1D case at mrdx = 0.5, the value of A from
our code is consistent with that of [53]. Other numerical parameters will be mentioned as
we go along when presenting the relevant numerical results. Our code uses the LATfield2
package [71] to implement parallelization. It uses a second order finite difference stencil for
the spatial derivatives and evolves in time with the leapfrog method. The spatial boundaries
are periodic. When necessary, we use a sufficiently large lattice to alleviate the impact from
the returning waves due to the periodic boundaries.

To examine how the quantum corrections differ from the classical dynamics, we mainly
monitor the Noether charge and the correlation functions. For the expectation value of
the charge operator, since the cross terms vanish, it is natural to split it into a mean field

2Since the amplitude of the quantum modes is set by ℏ, this may be thought of as dialing down ℏ, thereby
achieving the classical limit. In fact, it is a scaling up of the Q-ball field amplitude to larger and larger
occupation numbers, which is indeed the standard classical limit. We note that large occupation numbers
does not necessarily imply large charge Q.
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part QΦ and a perturbation part QG

Q = ⟨Q̂⟩ = QΦ(t) + QG(t) (2.37)

with

QΦ(t) =
∫

ddx(Φ2∂tΦ1 − Φ1∂tΦ2), (2.38)

QG(t) =
∫

ddx⟨φ2∂tφ1 − φ1∂tφ2⟩. (2.39)

The quantum average of operators φj in eq. (2.39) can further be replaced by the ensemble
average of stochastic fields φe

j . Similarly, we can also separate the charge density into the
mean field part and the quantum perturbations part

j0 = j0
Φ + j0

G. (2.40)

3 Single Q-ball

In this section, we investigate the quantum dynamics of a single Q-ball. The Hartree
ensemble approximation has been used to study the quantum stability of Q-balls previously
in 3+1D [53]. Here we instead focus on a 2+1D Q-ball in detail, and we will see that
some properties of Q-balls do depend on the spacetime dimensions, as is the case classically.
Generically, we find that the inhomogeneous Hartree approximation leads to less corrections
in 2+1D than in 3+1D.

In section 3.1, we explore scenarios where the classical approximation closely aligns with
the quantum corrected dynamics, while in section 3.2 we delve into scenarios where the
quantum corrections significantly influence Q-ball dynamics. The former is when the relevant
modes in the problem contain high occupation numbers such as in the case of thin-wall
Q-balls, while the latter is exemplified in the case of thick-wall Q-balls.

In this section, we generally set the number of lattice sites per direction to be N = 256
and the number of the ensemble realizations to be E = 20, 000. The time step is given by
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Figure 3. Quantum evolution of various (global) charges for a thin-wall Q-ball. The total charge
over the whole simulation box is Q = QΦ + QG, with QΦ being the mean field part and QG being the
“quantum” part, as defined in (2.37), while Q(r < R) = QΦ(r < R) + QG(r < R) is the charge inside
a disk of radius R̃ = 17 from the Q-ball center. QΦ is matched to the pure classical charge at t = 0.
The internal frequency of the Q-ball is ω̃ = 0.78, and the Q-ball is centered at the origin.

dt̃/dx̃ = 0.05, which is sufficient to ensure convergence. We have varied all these numerical
parameters by 50% and found no significant impact on the results. Empirically, an ensemble
of size E = 5, 000 is sufficient to capture statistical quantities.

3.1 Classical regime

One may expect that when the occupation numbers for all the relevant momentum modes
are high, the classical field will be a good approximation for a given problem [72, 73]. For
the case of a Q-ball, from figure 1, we see that for a thin-wall Q-ball the charge density
within the whole ball is very large, which indicates high occupation numbers for the relevant
wave numbers, as reflected in its Fourier transform. We will see that the classical solution
is indeed a good approximation for a thin-wall Q-ball.

Let us first examine some global properties of a quantum thin-wall Q-ball. In figure 3,
the evolution of various charges are plotted, with the solid lines representing the charges
in the entire lattice volume. As defined in eq. (2.37), there are two sources for the total
charge Q = QΦ + QG, the charge from the mean fields QΦ and the charge from the quantum
perturbations QG. For the thin-wall case, although both of QΦ and QG oscillate slightly with
time, the quantum perturbations are mostly un-excited, making QΦ a good approximation in
this case. The conservation of the total charge Q indicates that the simulation has achieved
a good accuracy. Q also approaches the charge of the corresponding classical Q-ball as the
ensemble size approaches infinity, because initially QG vanishes in this limit. To further
verify that what is plotted really are the charges of the Q-ball, we also plot the charges
inside a disk of a reasonably large radius R around the Q-ball. Once again, we see that
the quantum perturbations are effectively un-excited, and the quantum noise outside the
Q-ball is under control.

Figure 4 shows the snapshots of various fields at time t̃ = 80. First, we see that K and
⟨φ2⟩E vanish across the whole space, as expected. For the thin-wall Q-ball, we see that G2
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Figure 4. Snapshots of various quantities at t̃ = 80, using the same setup as in figure 3.

and j0
G, which represent quantum effects and are rather homogeneous outside the Q-ball,

are suppressed compared to the mean-field quantities such as Φ2 and j0
Φ. The behavior of

the mean field Φ2 closely resembles that of the classical Q-ball.
Next, let us examine some local behaviour within the quantum Q-ball. In figure 5, we

present the evolution of one- and two-point functions at two distinct points: one near the
Q-ball center and another near its surface. At both points, the one-point functions Φj closely
resemble the corresponding classical fields. We also plot the absolute value of the complex
field |Φ| = |Φ1 + iΦ2|, and find that the absolute value |Φ|, which corresponds to the profile
function in the classical case, remains constant during the evolution. In our simulations,
G1 and G2 oscillate slightly, so does K.

The bottom right plot of figure 5 displays the Fourier transforms of the mean fields’ and
the correlators’ evolution for the two points. We can see that the dominant frequencies of
Φj are 0.78mr, essentially at the same frequency as the classical Q-ball, while the dominant
frequencies of Gj and K are twice that. The Fourier transforms of the mean fields on the
Q-ball surface are similar but with less power in the peak frequency.

3.2 Quantum regime

For a smaller/lower density Q-ball that is not of the thin-wall type, we will see that the
quantum effects are more prominent for the fiducial model. In this subsection, we look at
how a Q-ball with ω̃ = 0.86 evolves under the influence of quantum corrections. For such a
Q-ball, a fascinating feature is that charges are exchanged between the mean fields and the
perturbation fields, as shown in the left hand side of figure 6. A similar phenomenon has been
observed previously in 3+1D [53]. At the initial time, almost all the charge is stored in the

– 12 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
5

0 10 20 30 40
~t

-2

-1

0

1

2
~ )
(0

:2
;0

:2
)

j)(cl)j
)

(cl)
1

)
(cl)
2

j)j
)1

)2

0 10 20 30 40
~t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

~ )
(4

:2
;0

:2
)

j)(cl)j
)

(cl)
1

)
(cl)
2

j)j
)1

)2

0 25 50 75 100
~t

-0.2

0

0.2

0.4

0.6

0.8

1

~ G

G2(0:2; 0:2)
K(0:2; 0:2)
G2(4:2; 0:2)
K(4:2; 0:2)

0 0.5 1 1.5 2 2.5
~8

0

1

2

3

4

5

6

j~ F
(f

)j

)1(0:2; 0:2)=20
G2(0:2; 0:2)
K(0:2; 0:2)
)1(4:2; 0:2)=20
G2(4:2; 0:2)
K(4:2; 0:2)

Figure 5. Evolution of one- and two-point functions at point x̃ = (0.2, 0.2) (left) and x̃ = (4.2, 0.2)
(right). The corresponding classical solutions, labeled with cl, are also plotted for comparison. The
setup is the same as in figure 3.

mean fields, up to some small ensemble fluctuations. During the time evolution, about half of
the charge is exchanged between the mean fields and the quantum modes. When the Q-ball
frequency ω becomes greater, the classical Q-ball will become smaller, and the mean field and
mode charges will swap with a greater frequency. Even though the classical approximation
breaks down in this case, most of the charge still condenses to a localized region, exhibiting
the existence of a quantum version of the soliton, as shown by the curves with r < R.

The right-hand side of figure 6 shows the evolution following a rescaling of the form (2.35),
with α = 0.1. For comparison, we in practice display a simulation with a scaled down G as
in (2.36). We see that indeed for this larger Q-ball, the effect of quantum interactions is much
smaller. We may continue to do this (see also figure 18), until the Q-ball is so large that
quantum effects are negligible and classical simulations are exact. Figure 7 shows the spatial
distribution of the charge density j0

G field at the time t̃ = 0 and 128. We see a localized
charge density in the quantum modes, excited within the Q-ball.

In figure 8, we show the evolution of one- and two-point functions at the same points as
in figure 5. While the frequencies and phases of the one-point functions still match those
of the classical solution well, the amplitudes change periodically, especially at the points
within the Q-ball. The changes in the one-point functions’ amplitudes are matched by the
modulations in the two-point functions, as they should. In figure 9, we see that the period
of the charge exchange between the mean fields and the quantum modes, Tex, increases as
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G at t̃ = 0 and 128, using the same setup as in figure 6.

the frequency of Q-ball decreases, until the Q-ball enters the classical regime. Because the
exchange period varies slightly with time, what is plotted in figure 9 is the average period of
the first dozen or so oscillations. Additionally, a greater proportion of the charge is exchanged
as the Q-ball frequency decreases, at the frequency ω̃ = 0.81, the whole charge is exchanged
between the mean field and the quantum modes.

In ref. [53], it was shown that in 3+1D the Q-ball becomes unstable for a big portion of
the frequency range where the classical Q-ball is stable. In contrast, we find that in 2+1D
a classically stable Q-ball is usually also stable in the quantum theory, despite the charge
exchange between the one- and two-point functions. However, we have only investigated
a relatively small number of Q-ball frequencies. We leave a more comprehensive survey of
the frequency space for future work.

4 Interactions between multiple Q-balls

In this section, we investigate the interactions among multiple Q-balls. While there has been
a lot of work studying the classical dynamics of such systems [5, 6, 38–40], including quantum
corrections to these scenarios has so far been left unexplored.
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Figure 10. The evolution of two well separated Q-balls with frequency ω̃ = 0.78 and phase difference
∆θ = π/2, placed at (±5, 0)/mr initially. The two Q-balls repel each other. The left plot shows the
evolution of the charges of the two Q-balls, and the right plot shows the evolution of their positions.
(cl) denotes the corresponding classical simulation. The number of sites per dimension is N = 180, the
ensemble counts E = 20, 000 realizations and dt̃/dx̃ = 0.05.

4.1 Well separated Q-balls

Ref. [5] has thoroughly investigated the interactions between two well-separated Q-balls with
the same charge in the classical theory. If the two Q-balls with the same charge are in phase,
they attract each other and coalesce into a larger Q-ball. If they are out of phase, they repel
each other. In some cases, charge can be transferred from one Q-ball to the other. We will see
that these findings are largely still valid with quantum corrections included. For simplicity,
we will only present the results for the case of two Q-balls with phase difference ∆θ being
π/2. Figure 10 shows the evolution of two thin-wall Q-balls with phase difference π/2 placed
at (±5, 0)/mr initially. In both the classical and the quantum case, the two Q-balls repel
each other. So the total charge in the x > 0 region represents the charge of one Q-ball, and
that in the x < 0 region represents the other Q-ball. We can see that the Q-ball placed on
the positive x-axis extracts charge from the one on the negative x-axis. The quantum effects
do not affect the transfer rate in this process or the end states. The right plot shows the
positions of the two Q-balls, which is obtained by locating the maxima of the charge density.

In section 3, we have seen that a Q-ball with sufficiently large charge is well approximated
by the classical approximation and the charge in the quantum modes is negligible, while
for a small Q-ball the charges in the mean fields and in the quantum modes are exchanged
periodically. In figure 11, we see that the end state of the process in figure 10 is one large
classical Q-ball and one small “quantum” Q-ball, which indeed starts to exchange its charges
with the quantum modes.

Figure 12 depicts the evolution of two small thick-wall Q-balls. In this case, differences are
visible between the classical and quantum case. The Q-balls repel each other, and again some
amount of charge is transferred from one Q-ball to the other. The quantum corrections do not
affect the transfer rate, but they do affect the force between the two Q-balls. Particularly, the
one that loses charge gets repelled further away, compared to that in the classical simulation,
as can be seen in the right plot of figure 12. In figure 13, we also separately plot the evolution
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Figure 11. Various charges in different regions of the system. The setup is the same as figure 10.
After the initial charge transfer, the smaller Q-ball exhibits significant charge exchange between the
mean fields and the quantum modes.
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Figure 12. The setup is similar to that in figure 10, except that the initial Q-balls are smaller, with
ω̃ = 0.86.
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Figure 13. Various charges in different regions of the system. The setup is the same as in figure 12.
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Figure 14. Two small Q-balls attract and collide. The periodic exchange of charge between the mean
and perturbation fields are quenched by the collision. The two Q-balls, with ω̃ = ±0.86, are placed at
(±3.4, 0)/mr initially. The classical and quantum case are plotted for comparison. The number of site
per dimension is N = 256, the number of ensemble realizations is E = 10, 000 and dt̃/dx̃ = 0.1.

of the mean field charge and the mode charge. We again find that although the total charge
of the quantum evolution is close to the classical one, there is significant exchange of the
charge between the mean field and the quantum modes. For small Q-balls, both the period
of the charge exchange and the percentage of charges being exchanged are smaller.

4.2 Collision of Q-balls

We now turn to the case where the Q-balls will attract and then collide. We consider small
thick-wall Q-balls which, as we have seen previously, by themselves will only have charge
exchange between the mean fields and the quantum modes. As we will see here, interestingly,
the collision quenches the charge exchange between the mean fields and the perturbation fields.

In order to have the Q-balls automatically attracting each other, we prepare two thick-
wall Q-balls with opposite charges. We place them on the x-axis relatively far away from
each other, without initial velocities. They will attract and then pass through each other
before escaping to infinity, as shown in figure 14. The classical simulation with the same
initial conditions is plotted for comparison, which is significantly different from the quantum
simulation starting from the time of the collision and afterwards. We see that after the
collision the charge resides almost exclusively in the mean field. This means that the quantum
modes are un-excited in this case, and the charge exchange between the mean field and the
quantum modes within a small Q-ball (see figure 6) is quenched by the collision. It also
appears that the charge exchange with the modes does not resume after the collision. This
may be related to the resulting charge lumps having charges below the limit of true Q-balls.

4.3 Charge-swapping Q-balls

It has been previously pointed out in the classical theory that when Q-balls with opposite
charges are placed close to each other, a tower of metastable nonlinear structures or composite
Q-balls, dubbed charge-swapping Q-balls (CSQs), can be formed [8, 41]. Within a CSQ,
positive and negative charges in opposite spatial regions swap with each other periodically,
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Figure 15. The evolution of various charges for a dipole Charge-Swapping Q-ball (CSQ) with
|ω̃| = 0.86 and the initial coordinates of two Q-balls being (±1.4, 0)/mr (left) and (±3, 0)/mr (right).
(cl) denotes the corresponding classical simulation. The number of sites per dimension is N = 180, the
number of the ensemble realizations is E = 20, 000 and dt̃/dx̃ = 0.05. We only show the charge within
a radius of R̃ = 17 from the origin.

and in 2+1D these structures are very stable [42]. In this section, we investigate how the CSQs
behave when including quantum corrections. For simplicity, we will focus on the dipole CSQ
where there is only one positive charge and one negative charge in the opposite direction.

A dipole CSQ can be prepared by relaxing a system of two superimposed Q-balls placed
tightly together such that their nonlinear cores overlap. In figure 15, we compare the evolution
of a dipole CSQ in the classical and quantum simulation, from the point view of the charge
within a radius of R̃ = 17 from the origin. The initial Q-balls are placed on the x-axis
symmetrically about the origin. To calculate the charge of the CSQ, we integrate the charges
in a half disk centered at the origin for both x > 0 and x < 0. The classical simulation
reveals a consistent charge-swapping pattern in the steady state, and the system experiences
a gradual dissipation of energy. When the quantum effects are included, the evolution pattern
is quite different. If the Q-balls are placed in the same positions as the classical case, the
composite structure dissipates much faster than the classical case, and we see that the mean
field fails to be a good approximation of the total field after the first swap of charges. That
is, the quantum mode two-point functions pick up a significant fraction of the charge after
the two Q-balls strongly interact several times.

In the quantum case, to produce a more stable CSQ, we need to increase the initial
distance between the two constituent Q-balls, as shown for the case of an initial separation of
(±3, 0)/mr in figure 15. In this case, the two oscillating lumps have greater velocities when
their cores overlap and interact strongly. This is somewhat similar to the collision case in
the last subsection where the quantum corrections can be effectively quenched. However, in
this case, the swapping period of the CSQ is greater than the classical counterpart. As it is
computationally much more expensive to perform the quantum simulations, we are only able
to evolve the quantum CSQ to a fraction of time of the classical simulations. To simulate
the system more reliably for a longer time, we need to avoid the unphysical waves from the
periodic boundaries. To this end, we use a larger simulation box with a length of 251.2/mr,
keeping the same lattice spacing. For this box, the light crossing time, which is the least time
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Figure 16. Quantum corrected charge-swapping Q-balls with two large constituent Q-balls (ω̃ =
±0.78), initially placed at (±3, 0)/mr. The other numerical setup is the same as in figure 15.

-1 0 1
~)1(0:2; 0)

-0.4
-0.2

0
0.2
0.4

~ )
2
(0

:2
;0

)

-1 0 1
~)1(2:2; 0)

-0.4
-0.2

0
0.2
0.4

~ )
2
(2

:2
;0

)

0 0.5 1 1.5 2
~8

0

20

40

60

80

100

120

~ F
[)

](
2
:2

;0
)
)1

)2

Figure 17. Phase portraits in the Φ1-Φ2 plane for two representative points for the time duration
t = (166 ∼ 355)/mr. The right plot shows the Fourier transforms of the one-point fields Φj(t) at
point (2.2, 0)/mr during t = (166 ∼ 500)/mr. The initial two opposite Q-balls with ω̃ = ±0.86 has a
distance of 5/mr. The number of sites per dimension is N = 628, the number of fields in the ensemble
realization is E = 5, 000 and dt̃/dx̃ = 0.1.

for a site to have a causal connection with itself, is equal to the box length, during which
time the system in the center will not be affected by the unphysical propagating waves. For
these slightly longer simulations, the results turn out to be similar.

The situation is again similar when the initial constituent Q-balls are of the thin-wall
type, as can be seen in figure 16. In this case, although the mean fields provide the dominant
contributions, one still needs to initially have a larger separation for the constituent Q-balls
for a more stable CSQ to form, and the initial oscillating lump typically sheds away more
energy in the initial relaxation process.

Let us consider the evolution of a couple of representative points of the CSQ in the
quantum simulations. In figure 17, we plot the phase portraits of the mean field at two
spatial points in the Φ1-Φ2 plane, using the data of about 5 charge-swapping periods after the
CSQ is properly formed. The results are very similar to the classical simulations: the orbit
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Figure 18. Comparison of CSQ charge evolution from simulations with different rescalings α. The
two Q-balls, with ω̃ = ±0.86, are placed at (±1.4, 0)/mr initially. We only show the charge within a
radius of R̃ = 17 from the origin. The opposite lines with the same color are for the region of x < 0
and x > 0 respectively. The number of sites per dimension is N = 180 and dt̃/dx̃ = 0.1. The number
of fields in the ensemble realization is E = 20, 000 for quantum cases.

is an approximate ellipse that rotates ever so slightly in each oscillation, filling a rectangle
area that becomes more square-like as the point moves away from the center of the CSQ. As
in the classical case, the charge-swapping period can be very precisely estimated from the
difference between the dominant frequencies [41]. For figure 17, the dominant frequencies are
respectively ω̃1 = 0.86 and ω̃2 = 0.96, which gives a swapping period of 67/mr.

Finally, the results in this subsection involve the fiducial values for the potential, where
the Q-ball is fairly small or conversely the quantum corrections are relatively large. Again
applying the rescaling procedure leading to figure 6, we can recover the classical results for
the CSQs. In figure 18, we show how the CSQs including quantum corrections reduces to the
corresponding classical CSQs, as the rescaling parameter α is decreased. Similar conclusions
apply for well-separated Q-balls and collisions of Q-balls.

5 Summary and conclusions

In this work, we investigate the dynamics of Q-balls including quantum corrections in a
U(1) scalar field theory with a φ6 potential. The quantum evolution is implemented using
the inhomogeneous Hartree approximation, improved by the statistical ensemble method
to enhance simulation speed.

We find that there are two evolution patterns for a single Q-ball in 2+1D. For large Q-balls
(large charge), the mean field evolution closely resembles the purely classical simulations and
the quantum modes remain largely un-excited. This aligns with the consensus that classical
dynamics is a good approximations to the fully quantum dynamics when the occupation
numbers of the relevant momentum modes are high. For small Q-balls (small charge), the
quantum modes are excited and swap a large fraction of the total charge periodically with the
mean fields. This is also expected as when the occupation numbers are low the quantum effects
should be significant. However, the exact manifestation can only be attained via numerical
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simulation. In contrast to Q-balls in 3+1D, which for the fiducial O(1) parameters are
unstable under quantum corrections for a big portion of the classically stable frequency range,
we find that Q-balls in 2+1D remain stable at all frequencies. Through a simple rescaling, we
can find larger-amplitude Q-balls, for which the quantum corrections are arbitrarily small.

We also make first attempts at exploring the quantum corrections to the dynamics
between multiple Q-balls and study three scenarios, focusing on the differences from purely
classical dynamics. For two identical, well-separated Q-balls with a phase difference being
π/2, the quantum effects do not modify the charge transfer rate between the two Q-balls but
have some influence on the end states. Small Q-balls exhibit slightly larger velocities, which
are produced by the forces between the Q-balls, while large Q-balls basically keep the same
velocities. When two well-separated Q-balls with opposite charges and no initial charge in
the quantum modes undergo a fast collision and escape, we find the charge exchange between
the mean fields and the perturbations may be quenched. We have also considered dipole
CSQs, bound states formed from two Q-balls with opposite charges. These highly non-linear
and composite structures persist under quantum corrections, in which case the main features
of CSQs are retained, but they decay faster and the two original Q-balls being further apart
initially can make the CSQ more stable after the relaxation process. On the other hand,
scaling up the CSQs again makes the quantum corrections negligible.

Our findings indicate that, within the inhomogeneous Hartree approximation, the dy-
namics of a system featuring multiple Q-balls is qualitatively similar to the classical system.
While the Hartree approximation is in a sense only the lowest order truncation of the Dyson-
Schwinger hierarchy, for inhomogeneous systems it can provide information on quantum
decay channels and transient thermalisation [55, 57]. Further exploring not only where the
charge, but also the energy, goes in Q-ball collisions and decay processes would be of great
interest. Another intriguing (and highly ambitious) avenue for future exploration involves
going to NLO order in a 2PI expansion [66, 74–78]. For inhomogeneous systems, this has to
our knowledge not been done in 2+1D or 3+1D, and represents a further level of numerical
complexity as it involves memory integrals over the past history of the system.
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