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Abstract: (1) Objective: Blood glucose forecasting in type 1 diabetes (T1D) management is a
maturing field with numerous algorithms being published and a few of them having reached the
commercialisation stage. However, accurate long-term glucose predictions (e.g., >60 min), which
are usually needed in applications such as precision insulin dosing (e.g., an artificial pancreas),
still remain a challenge. In this paper, we present a novel glucose forecasting algorithm that is
well-suited for long-term prediction horizons. The proposed algorithm is currently being used as
the core component of a modular safety system for an insulin dose recommender developed within
the EU-funded PEPPER (Patient Empowerment through Predictive PERsonalised decision support)
project. (2) Methods: The proposed blood glucose forecasting algorithm is based on a compartmental
composite model of glucose–insulin dynamics, which uses a deconvolution technique applied to
the continuous glucose monitoring (CGM) signal for state estimation. In addition to commonly
employed inputs by glucose forecasting methods (i.e., CGM data, insulin, carbohydrates), the
proposed algorithm allows the optional input of meal absorption information to enhance prediction
accuracy. Clinical data corresponding to 10 adult subjects with T1D were used for evaluation
purposes. In addition, in silico data obtained with a modified version of the UVa-Padova simulator
was used to further evaluate the impact of accounting for meal absorption information on prediction
accuracy. Finally, a comparison with two well-established glucose forecasting algorithms, the
autoregressive exogenous (ARX) model and the latent variable-based statistical (LVX) model, was
carried out. (3) Results: For prediction horizons beyond 60 min, the performance of the proposed
physiological model-based (PM) algorithm is superior to that of the LVX and ARX algorithms.
When comparing the performance of PM against the secondly ranked method (ARX) on a 120 min
prediction horizon, the percentage improvement on prediction accuracy measured with the root
mean square error, A-region of error grid analysis (EGA), and hypoglycaemia prediction calculated
by the Matthews correlation coefficient, was 18.8%, 17.9%, and 80.9%, respectively. Although
showing a trend towards improvement, the addition of meal absorption information did not provide
clinically significant improvements. (4) Conclusion: The proposed glucose forecasting algorithm is
potentially well-suited for T1D management applications which require long-term glucose predictions.
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1. Introduction

Type 1 diabetes (T1D) is an autoimmune condition characterized by elevated blood glucose levels
due to the lack of endogenous insulin production [1]. People with T1D require exogenous insulin
delivery to regulate glucose levels. Current therapies for T1D management require measuring capillary
glucose levels several times per day and the administration of insulin by means of multiple daily
injections (MDI) or continuous subcutaneous insulin infusion (CSII) with pumps. More recently, the
improvement on accuracy of subcutaneous continuous glucose monitoring (CGM) has enabled access to
virtually continuous glucose concentrations measurements (e.g., every 5 min), glucose trends, and their
retrospective analysis. In addition, real-time CGM devices include alerts and alarms for concentrations
outside of specified ranges and/or rapid changes in glucose. Clinical data suggest that CGM can
improve overall glucose control, as measured by glycated haemoglobin (HbA1c) [2], and can reduce the
burden of extreme glucose values (hypo- and hyperglycaemia) [3]. In addition, CGM technology has
opened the door to new technologies for managing glucose levels such as sensor-augmented insulin
pumps with low-glucose insulin suspension [4] and the artificial pancreas [5]. One additional benefit
of the CGM technology is that it facilitates the forecasting of blood glucose levels, and consequently,
enables pre-emptive action to avoid undesired events, such as hypoglycaemia and hyperglycaemia.

Glucose forecasting in T1D is a relatively mature field with several algorithms having been
proposed, and comprehensive and extensive reviews published, which provides a taxonomy of the
different types of existing algorithms [6–8]. In particular, four main types of approaches were identified
depending on the type of model being used: physiological models [9], data-based models [10–12],
hybrid models [13], and control relevant models [14–16]. Another distinction that can be done among
the existing algorithms is based on the type of inputs being considered. A significant proportion of
these algorithms use CGM data as the unique source of information to forecast glucose levels [17],
while other algorithms use additional exogenous inputs such as meal intake and insulin doses [9],
and only a few of them take into account physical exercise [18]. Furthermore, additional information
such as meal absorption information could potentially further improve such accuracy [19]. Regarding
the prediction horizon, most of the algorithms focus on short-term predictions (i.e., <60 min) [20],
with fewer works focusing on longer prediction horizons [9,21,22]. Of note, it has been shown that
for short prediction horizons (e.g., 30 min), differences in the forecasting accuracy among different
algorithms is marginal [23]. Although short-term prediction horizons have been proven to be useful
for applications such as predictive glucose alerts and low-glucose suspension systems [4], they are
usually not sufficient for other applications such as closed-loop insulin delivery [5] and insulin dosing
decision support [24]. Hence, there is a need for further investigation of this topic.

Finally, there has been a recent increase in the use of machine learning techniques for glucose
forecasting [12,22,25]. However, these techniques tend to require a significant amount of data in order
to be trained, which might be a limiting factor in clinical practice. A proof of this interest is the recent
organisation of the Blood Glucose Level Prediction Challenge as part of the 3rd International Workshop
on Knowledge Discovery in Healthcare Data [26], and a recent publication of a literature review [8].

As a result of this research effort, commercial applications have started to appear embedded
within sensor-augmented insulin pumps (e.g., Medtronic MiniMed 640G with Smart Guard; Tandem
t:slim X2TM with Basal-IQ Technology) which have been proven to reduce nocturnal hypoglycaemia
by using predictive glucose alerts and a predictive low-glucose insulin suspension system [27,28].

In this paper, we hypothesise that a glucose prediction algorithm based on a physiological model
of glucose–insulin dynamics and a deconvolution technique using CGM data to estimate the model
states is a good candidate for performing long-term glucose predictions. In addition, we hypothesise
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that adding information about meal absorption can enhance prediction accuracy. The presented
algorithm is currently being clinically evaluated as part of the safety system of a mobile-based decision
support system for T1D management within the framework of the European project PEPPER (Patient
Empowerment through Predictive PERsonalised decision support) [29].

2. Methods

The proposed glucose prediction algorithm is based on the composite minimal model of
glucose–insulin regulation in T1D [30] that uses deconvolution of the CGM signal to estimate some of
the model states. In particular, the states of the gastrointestinal model are estimated using the technique
proposed by Herrero et al., which has been proven to be an effective way to estimate the glucose rate of
appearance from mixed meals [31]. Then, meal information (i.e., carbohydrate amount and absorption
type) and insulin boluses are considered as exogenous inputs. Note that, although more complex
models are available in the literature [32], the employed composite minimal model was chosen because
of its trade-off between simplicity, which facilitates the parameter identification task, and ability to
capture the complex glucose–insulin dynamics. The effectiveness of the employed composite model
was evaluated by Gillis et al. for glucose prediction using a Kalman filter technique [33] and by Herrero
and associates for detecting faults in insulin pump therapy [30].

2.1. Composite Minimal Model

The employed composite model of glucose regulation in T1D is composed of the minimal model
of glucose disappearance proposed by Bergman and colleagues [34], and the insulin and carbohydrate
absorption models proposed by Hovorka et al. [35].

2.1.1. Minimal Model of Glucose Disappearance

The minimal model of glucose disappearance [34] is described by the equations:

Ġ(t) = −(SG + X(t))G(t) + SGGb +
Ra(t)
VW

, (1)

Ẋ(t) = −p2X(t) + p2SI I(t), (2)

where G(t) is the glucose concentration at time t; X(·) is the insulin action; Ra(·) is the glucose rate
of appearance from ingested meals; I(·) is the plasma insulin concentration; SG is the fractional
glucose effectiveness; SI is the insulin sensitivity, which models the ratio between endogenous glucose
production and glucose uptake; p2 is the insulin action rate; Gb is the basal glucose; V is the distribution
volume; and W is the subject’s body weight.

2.1.2. Insulin Absorption Model

The plasma insulin concentration is estimated by means of the subcutaneous insulin absorption
model proposed by Hovorka et al. [35], which is described by the following equations.

Ṡ1(t) = uINS(t)−
S1(t)
tmaxI

, (3)

Ṡ2(t) =
S1(t)− S2(t)

tmaxI
, (4)

İ(t) = −ke I(t) +
S2(t)

VitmaxI
, (5)

where S1(·) and S2(·) are the subcutaneous short-acting insulin compartments, I(·) denotes the plasma
insulin concentration, the input uINS(·) represents the subcutaneous insulin infusion, tmaxI is the time
to maximum insulin absorption, Vi is the distribution volume of insulin and ke is the decay rate.
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2.1.3. Glucose Absorption Model

The glucose rate of appearance (Ra) is calculated according to the gastrointestinal absorption
model by Hovorka et al. [35], which is represented by the equations:

Ṙa1(t) = −
Ra1(t)− AguCHO(t)

tmaxG
, (6)

Ṙa(t) = −
Ra(t)− Ra1(t)

tmaxG
, (7)

where Ra1(·) denotes the glucose appearance in the first compartment, Ra(·) represents the rate of
glucose appearance, the model input uCHO(·) denotes the carbohydrate intake amount, tmaxG is the
time to maximum glucose rate of appearance and Ag is the carbohydrate bioavailability.

2.2. Accounting for Meal Absorption

Meal composition has a profound effect on blood glucose levels [19]. Therefore, taking this
information into account can potentially enhance glucose estimation and forecasting accuracy. To
account for this information in a practical way from the user’s perspective, meals were classified
as fast, medium and slow absorption. In particular, fast-absorption meals were considered to have
more than 60% of the area under the curve (AUC) of the rate of glucose appearance (Ra) profile and
appeared within the first two hours after the meal ingestion; slow-absorption meals with less than 80%
of AUC of the Ra profile appeared within four hours, and medium-absorption meals in the middle. To
take meal absorption information into account within the employed glucose absorption model, the
time-to-maximum absorption rate tmaxG is redefined for the duration of each meal as follows:

t̂maxG :=


tmaxG − tl , uABS = fast absorption

tmaxG, uABS = medium absorption

tmaxG + td, uABS = slow absorption

(8)

where t̂maxG is the time-to-maximum absorption rate accounting for the meal absorption; tl and td
represent the time shift on the time-to-maximum absorption rate due to different meal absorption
rates; and uABS is the absorption type of the meal (fast, medium and slow). In particular, tl and td
were fixed to 20 min based on experiments carried out using the UVa-Padova simulator [36]. Figure 1
shows the average Ra profiles corresponding to the fast, slow and medium meals, as per definition
above, from the UVa-Padova simulator for a 60 g intake of carbohydrates.
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Figure 1. Average Ra profiles corresponding to the fast, slow and medium meals from the UVa-Padova
simulator for a 60 g intake of carbohydrates.
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2.3. Glucose Prediction Algorithm

The proposed glucose prediction algorithm uses a discretised version of the presented composite
model (Equations (1)–(7)). For this purpose, a forward Euler’s configuration with 1 min step size is
used to simulate the model.

Let:

x(k) = f(x(k− 1), p, u(k− 1)), (9)

be the system equations representing a discretised version of the described composite model, where
k denotes the sampling instant. Let x =

[
G X S1 S2 I Ra1 Ra

]
represent the model

states; p =
[
ke tmaxI Vi Ag tmaxG SG p2 W V SI

]
represent the model parameters; and u =[

uCHO uINS uABS

]
represent the model inputs, where uCHO denotes the amount of ingested carbohydrates,

uINS denotes the insulin boluses (units), and uABS denotes the meal absorption type (slow, medium, fast).
First, the model states are initialised as x(k− 1) =

[
GCGM(·) 0 0 0 0 0 0

]
, being GCGM(·)

the current CGM measurement. Then, Equation (9) is evaluated M times, M being the number of
minutes elapsed between two consecutive CGM measurements (e.g., 5 min→ five times). In parallel,
the model states of the gastrointestinal model (Equations (6) and (7)) are estimated in real-time by
applying a deconvolution of the CGM signal using the technique proposed by Herrero et al. [31]. In
particular, the glucose rate of appearance (R̂a(·)) in the second compartment is estimated as:

R̂a(k) =
[
G′CGM(k) + (SG + X(k))GCGM(k)− SGGb

]
VW, (10)

where G′CGM(·) is the derivative of the glucose measurements calculated as the slope of the linear
regression of three consecutive glucose values, and X(·) is the insulin action calculated with
Equation (2). In order to reduce the influence of the measurement disturbance, the derivative is
bounded by |Ḡ′(·)| ≤ 1 mg/dL per min. To further reduce the effect of sensor noise on R̂a(·), a moving
average filter is applied to the signal:

R̃a(k) :=
∑i=k−1

i=k−n+1 R̃a(i) + R̂a(k)
n

, (11)

where R̃a(·) is the filtered signal and n is the length of the moving window (n = 3).
Then, the glucose appearance in the first compartment is estimated by:

R̃a1(k) = R̃′a(k)tmaxG + R̃a(k), (12)

where R̃′a(·) is the derivative of R̃a(·) approximated by calculating the slope of the linear regression of
three consecutive values.

Then, the estimated model states being used for forecasting purposes are calculated by means
of a weighted average between the calculated states with the discretised model (Ra and Ra1) and the
states estimated by deconvolution (R̃a and R̃a1) as follows:

Řa(k) := Q1R̃a(k) + (1−Q1)Ra(k), (13)

Řa1(k) := Q1R̃a1(k) + (1−Q1)Ra1(k). (14)

where Q1 ∈ [0, 1] is a tuning parameter that allows putting more weight on the model estimation or on
the estimation by the deconvolution technique.

Similarly, the blood glucose state being used for forecasting purposes is calculated as:

Ǧ(k) := Q2GCGM(k) + (1−Q2)G(k), (15)
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where Q2 ∈ [0, 1] is a tuning parameter that allows putting more weight on the model estimation
(G(·)) or on the CGM measurement (GCGM(·)). Note that Q1 and Q2 are constant. In particular, we
used Q1 = Q2 = 0.5 when identifying the model parameters and Q1 = Q2 = 0.7 when testing the
model since these were the values leading to better population results.

Finally, the model states are updated as:

x(k) =
[

Ǧ(k) X(k) S1(k) S2(k) I(k) Řa1(k) Řa(k)
]

, (16)

and the model is valuated over the predefined prediction horizon (PH) to obtain the forecasted states
x(k + PH), where G(k + PH) is the desired forecasted glucose value. Figure 2 shows a graphical
representation of the described glucose forecasting algorithm.

Glucose-Insulin
Minimal Model

(Eq. 1-2)

Glucose Absorption
Model

(Eq.6-8)

Insulin Absorption
Model

(Eq. 3-4)

+

1-Q2 + Q2

𝑡̂#$%&

G(𝑘)

Q1*𝑅$ 𝑘
*𝑅$, 𝑘

G(𝑘 + 𝑃𝐻)

Deconvolution
+

Filtering
(Eq. 10-12)

𝐺1&2(𝑘)
(Eq. 10)

*𝐺(𝑘)

1-Q1

𝒖𝑰𝑵𝑺(𝒌)
(Eq. 3)

𝒖𝑪𝑯𝑶(𝒌)
(Eq. 6)

X(𝑘)I(𝑘)

;𝑅$ 𝑘 , ;𝑅$, 𝑘

*𝑅$ 𝑘

𝒖𝑨𝑩𝑺(𝒌)
(Eq. 8)

Figure 2. Block diagram corresponding to the proposed glucose forecasting algorithm. The whole
diagram is executed every time a glucose value (GCGM) (continuous glucose monitoring (CGM))
is received. Then, the physiological model represented by the green blocks is evaluated over the
prediction horizon (PH) to obtain the forecasted glucose (G(k + PH)).

2.4. Model Parameter Identification

The proposed prediction algorithm can be individualised by identifying some of the model
parameters by using retrospective data. Since identification of all model parameters is difficult due to
identifiability problems, some of the parameters, which are known to have less inter-subject variability,
were fixed to mean populations values (i.e., SG, V, Vi, ke, p2, Ag) [37], while others were set by
using a priori known information from the subjects, such as body weight (W) and basal glucose
(Gb). Finally, parameters SI , tmaxI and tmaxG were identified by using an optimisation technique
that minimises the mean absolute relative difference (MARD) between the predicted glucose (G(k +
PH)) and the corresponding glucose measurements (GCGM(k + PH)). Matlab fmincon constrained
optimisation routine was employed for this purpose. Constraints for the identified parameters were
SI ∈ [0.001, 0.005] min−1 per µU/mL, tmaxI ∈ [50, 140] min and tmaxG ∈ [50, 140] min. Note that
parameters SI , tmaxI and tmaxG were identified for each one of the evaluated prediction horizons.
Table 1 shows the employed values for the model parameters indicating which ones are a priori known
and which ones are identified.
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Table 1. Values of the parameters used in the forecasting algorithm. ∗ indicates parameters that are
identified and ∗∗ indicates parameters that are known from a priori information from the subjects. The
rest of the parameters are fixed to mean population values obtained from the scientific literature [31,35].

Parameter SG SI Gb V Vi W tmaxI

Value 0.02 ∗ ∗∗ 0.9 1.2 ∗∗ ∗
Units min−1 min−1 per µU/mL mg/dL dL/kg2 mL/kg kg min

Parameter tmaxG ke p2 Ag Q1 Q2 PH
Value ∗ 1.5 0.02 0.85 0.5[0.7] 0.5[0.7] 30
Units min min−1 min−1 – – – min

2.5. Baseline Algorithms

In order to compare the performance of the proposed algorithm, validated and commonly
employed glucose forecasting algorithms from the literature were chosen. In particular, a third-order
auto regression with exogenous input (ARX) method was chosen because it has shown good
performance when compared to other algorithms and it is easy to implement [23]. Then, a latent
variable with exogenous input (LVX) method was selected because it has showed superiority when
compared against other existing techniques and its source code is publicly available [38]. Of note, more
recent algorithms, such as [9,21], could have also been chosen, but their complexity of implementation
and difficulty in replicating the reported results was the main reason for not doing so.

2.6. Clinical Data Testing

To test the proposed algorithm, a two-week clinical dataset obtained from 10 adult subjects with
T1D undergoing a clinical trial carried out at Imperial College Healthcare NHS Trust, London, UK
evaluating the benefits of an advanced insulin bolus calculator was employed [39]. In particular,
one week worth of data per participant was used for parameter identification purposes (mean ±
std: 1897± 143 data points) (physiological model-based (PM) algorithm), while the other week was
employed for testing purposes (mean ± std: 1909± 124 data points). Since no reliable information
about meal composition was available, the assumption that breakfast and snacks were fast absorption
meals, and lunch and dinner were medium absorption meals, was made. Note that not having such
information might limit the benefits of accounting for meal absorption information. In an ideal scenario,
CGM measurements are received every 5 min. However, it is common to have gaps in the data. In
order to minimise the impact of such gaps in the proposed method, a modified Akima cubic Hermite
interpolation method was employed for data imputation purposes.

2.7. In Silico Testing

In order to evaluate the potential benefit of using meal absorption within the proposed algorithm, a
modified version of the UVa-Padova T1DM simulator (v3.2) [36] was employed. Intra-day variability was
emulated by modifying some of the parameters of the model described in [32]. In particular, meal variability
was emulated by introducing meal-size variability (CV = 10%), meal-time variability (STD = 20) and
uncertainty in the carbohydrate estimation (uniform distribution between −30% and +20%) [40]. Meal
absorption rate (kabs) and carbohydrate bioavailability ( f ) were considered to vary by ±30% and ±10%
respectively. To account for variability in meal composition, the 33 available meals in the simulator were
considered. Note that each cohort (adults, adolescent and children) has 11 different meals. In addition, 16 new
meals obtained by using the technique for estimating the rate of glucose appearance proposed by Herrero et
al. in [31] were included. Details about the mixed meal library are provided in Appendix A. By using the
absorption classification criteria introduced in Section 2.2, of the 49 considered meals, 31 were classified as fast
absorption, 15 as medium absorption and three as slow absorption. Finally, intra-subject variability in insulin
absorption model parameter (kd, ka1, ka2) was assumed as±30% [41,42]. The 10 available adult subjects were
used for this purpose. The open-loop insulin therapy provided by the simulator was employed to generate
the datasets. A two-week scenario with a daily pattern of carbohydrate dose intake of 7 am (±20 min) (70 g),
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13 pm (±20 min) (100 g) and 7 pm (±20 min) (80 g) was chosen. The first week of data was used for the
parameter estimation (2016 data points), while the second week works for testing purposes (2016 data points).

2.8. Evaluation Metrics

To measure the forecasting accuracy of the evaluated algorithms, the root mean square error
(RMSE), and error grid analysis (EGA) [43], were used. RMSE is calculated as:

RMSE =

√
∑N−PH

k=1 (G(k + PH)− GCGM(k + PH))2

N − PH
, (17)

where G(k + PH) is the forecasted glucose value as indicated in Section 2.3, GCGM(k + PH) is the
corresponding CGM measurement, and N is the total number of glucose data pairs.

EGA is employed to represent the clinical significance of the error between the forecasted glucose value
and the actual measurement. In particular, the A region of EGA corresponds to accurate glucose predictions,
meaning that forecasted glucose values deviates less than ±20% from the actual CGM measurements
(i.e., |G(k + PH)− GCGM(k + PH)| ≤ 20% GCGM(k + PH)), or when both the forecasted and the actual
measurements indicate hypoglycaemia (i.e., G(k+ PH) ≤ 70 mg/dL and GCGM(k+ PH) ≤ 70 mg/dL). The
B region corresponds to forecasted values with a deviation from the CGM measurements larger than 20%
(i.e., |G(k+ PH)−GCGM(k+ PH)| ≥ 20 % GCGM(k+ PH)) but would not lead to inappropriate treatment
(see regions C,D,E). The C region represents forecasted glucose values are more than 100 mg/dL below the
actual measurement (i.e., G(k + PH) ≤ GCGM(k + PH)− 100 mg/dL), or forecasted glucose is indicating
hypoglycaemia while the CGM measurements is between 130 and 180 mg/dL (i.e., G(k+ PH) ≤ 70 mg/dL
and 130 mg/dL≤ GCGM(k+ PH) ≥ 180 mg/dL). Finally, the D region represents the zone with forecasted
glucose values in the target range while the actual measurement is out of the target range (i.e., 70 mg/dL
≤ G(k + PH) ≥ 180 mg/dL and GCGM(k + PH) ≤ 70 mg/dL || GCGM(k + PH) ≥ 180 mg/dL). The
E region corresponds to potentially clinically dangerous glucose predictions, meaning forecasted glucose
indicating hypoglycaemia while CGM measurements indicating hyperglycaemia (i.e., G(k + PH) ≤ 70
mg/dL and GCGM(k+ PH) ≥ 180 mg/dL), or when forecasted glucose indicate hyperglycaemia while CGM
measurements indicate hypoglycaemia (i.e., G(k+ PH) ≥ 180 mg/dL and GCGM(k+ PH) ≤ 70 mg/dL).

In addition, the efficiency of the algorithm at predicting hypoglycaemia was evaluated by the
Matthews correlation coefficient (MCC), defined as:

MCC=
TP · TN−FP · FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
, (18)

where TP denotes the number of true positives, i.e., predictions of hypoglycemic events that are confirmed to
be actual episodes of hypoglycemia, with a hypoglycemic event being defined as three consecutive glucose
values below 70 mg/dL; FN denotes the number of false negatives, i.e., missed predictions of hypoglycemic
events; TN denotes the number of true negatives, i.e., correct prediction of glucose values above 70 mg/dL;
and FP denotes the number of false positives, i.e., false predictions of hypoglycemic events.

Assessment of statistical significance for between-method differences was performed, with 0.1%,
1% and 5% confidence levels, using a paired t-test as implemented in Matlab.

Finally, prediction horizons of 30, 60, 90, and 120 min were employed to compare the studied algorithms.

3. Results

3.1. Clinical Data Results

Baseline characteristics of the 10 selected participants (one male and nine female) had a median
(interquartile range (IQR)) age of 29.5.5 (25.0–42.7) years, duration of diabetes 16.0 (9.2–24.7) years,
BMI 26.0 (24.4–31.0) Kg/m2, and HbA1c 53.0 (51.0–59.7) mmol/mol.
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The distribution of the identified model parameters for the selected 10-adult cohort is SI =

0.0033± 0.0015 min−1 per µU/mL, tmaxI = 78.36± 16.52 min and tmaxG = 85.23± 24.86 min.
Table 2 shows the results corresponding to the 10 adult cohort for baseline algorithms (LVX

and ARX) and the proposed method, without accounting for meal absorption information (PM) and
accounting for it (PMMA). In order to show the consistency of the results at the individual level, the
RMSE results for each of the evaluated subjects are presented in Appendix B (Table A4). The normality
of the reported data distributions was evaluated by means of the Shapiro–Wilk test and, in all cases,
the null hypothesis for an α = 0.05 was not rejected.

Table 2. Results corresponding to the 10-adult population expressed as Mean± STD for the studies
algorithms and different PH in minutes. Assessment of statistical significance between adjacent rows is
indicated with ∗ for p < 0.001, + for p < 0.01, and ‡ for p < 0.05.

Config- PH = 30

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 20.74 85.56 13.25 0.08 + 1.08 + 0.03 0.71 ∗

±2.51 ±4.55 ±4.02 ±0.06 ±0.71 ±0.02 ±0.12

ARX 20.74 ∗ 85.34 13.22 + 0.06 ‡ 1.36 0.02 ‡ 0.67
±2.65 ±4.49 ±3.80 ±0.05 ±0.93 ±0.02 ±0.12

PM 19.03 ∗ 86.21 ∗ 12.65 ∗ 0.03 ‡ 1.10 + 0.01 0.72 ∗

±2.28 ±5.07 ±3.73 ±0.03 ±0.94 ±0.01 ±0.12

PMMA
17.67 87.94 11.11 0.02 0.92 0.01 0.74
±2.12 ±4.61 ±3.39 ±0.02 0.77 ±0.01 ±0.11

Config- PH = 60

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 34.93 67.62 29.26 0.45 2.47 ‡ 0.20 ∗ 0.42 ‡

±4.85 ±6.30 ±5.08 ±0.27 ±1.53 ±0.13 ±0.14

ARX 34.52 ‡ 67.11 29.39 0.34 ‡ 3.00 0.16 ‡ 0.39
±4.82 ±6.35 ±4.76 ±0.22 ±2.15 ±0.12 ±0.15

PM 32.69 ∗ 68.10 ∗ 28.70 ∗ 0.20 + 2.90 ∗ 0.10 + 0.43 +

±4.17 ±8.14 ±5.64 ±0.15 ±2.58 ±0.08 ±0.12

PMMA
30.36 70.80 26.32 0.12 2.70 0.06 0.44
±3.88 ±8.05 ±5.59 ±0.10 ±2.48 ±0.06 ±0.12

Config- PH = 90

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 44.56 56.36 38.57 1.04 3.49 0.54 0.30 ‡

±7.76 ±6.68 ±4.66 ±0.65 ±2.06 ±0.46 ±0.14

ARX 43.65 ‡ 56.45 38.25 0.87 4.00 0.43 ‡ 0.27 +

±7.24 ±6.74 ±4.54 ±0.65 ±2.77 ±0.33 ±0.14

PM 41.07 ∗ 58.17 ∗ 37.09 ∗ 0.53 ∗ 3.91 ‡ 0.30 + 0.38 ∗

±5.65 ±7.63 ±4.96 ±0.25 ±2.94 ±0.21 ±0.10

PMMA
38.14 61.05 34.73 0.33 3.70 0.19 0.42
±5.25 ±7.69 ±4.94 ±0.18 ±3.91 ±0.13 ±0.11

Config- PH = 120

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 51.30 48.99 44.22 1.53 4.23 1.03 0.22 ‡

±10.26 ±6.83 ±4.31 ±1.05 ±2.35 ±0.97 ±0.12

ARX 49.85 ∗ 49.34 ∗ 43.89 ∗ 1.31 ∗ 4.70 ‡ 0.76 + 0.21 ∗

±9.33 ±6.72 ±4.32 ±1.07 ±2.95 ±0.60 ±0.12

PM 43.57 ∗ 55.25 ∗ 39.45 ∗ 0.69 ∗ 4.23 ‡ 0.38 + 0.35 ∗

±6.53 ±7.46 ±4.69 ±0.35 ±3.04 ±0.27 ±0.09

PMMA
40.46 58.19 37.08 0.45 4.04 0.24 0.38
±6.06 ±7.58 ±4.78 ±0.25 ±3.01 ±0.17 ±0.10
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Figure 3 depicts the percentage of improvement, for each of the prediction horizons, of three of
the evaluated metrics (RMSE, A-region of EGA, and MCC) when comparing the proposed method
versus the ARX model, which ranks second in terms of prediction accuracy.

Figure 3. Average percentage of improvement against prediction horizon for three of the evaluated
metrics (RMSE, A-region of EGA, and MCC) when comparing the proposed method PMMA versus the
ARX model on the 10-adult real cohort.

Figure 4 shows a 24 h period close up for a selected individual showing the prediction results for
the three evaluated forecasting methods (LVX, ARX, and PM) with a prediction horizon of 120 min.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

50

100

150

200

250
CGM
ARX
LVX
PM
Meal
Insulin

Figure 4. Example of 24 h period close up for a representative real individual showing the prediction
results for the three evaluated forecasting methods with a prediction horizon of 120 min. The continuous
glucose measurements is represented by the dashed black line, the prediction by the proposed PM
method is displayed in solid-red line, results for the LVX and ARX methods are showed in dotted green
line and dash-dotted blue line respectively. Vertical pink bars indicate carbohydrate intakes (grams)
and vertical light blue bars indicate insulin boluses (units).
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3.2. In Silico Results

The distributions of the identified model parameters for the selected in silico cohort of 10 adults
with T1D, expressed as Mean± STD, are: SI = 0.00275± 0.0014 min−1 per µU/mL, tmaxI = 114.6±
21.6 min and tmaxG = 68.9± 6.8 min.

Table 3 presents the results corresponding to the 10-adult cohort for each one of the selected
baseline algorithms (LVX and ARX) and the proposed method, without accounting for meal absorption
information (PM), and accounting for it (PMMA).

Table 3. Results corresponding to the 10-adult virtual population expressed as Mean± STD for the
studies algorithms and different PH in minutes. Assessment of statistical significance between adjacent
rows is indicated with ∗ for p < 0.001, + for p < 0.01 and ‡ for p < 0.05.

Config- PH = 30

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 12.85 94.93 ∗ 4.62 ∗ 0 0.45 ∗ 0 0.94
±1.47 ±0.90 ±0.81 ±0 ±0.31 ±0 ±0.03

ARX 12.84 ∗ 93.80 + 5.39 ∗ 0.01 0.80 ∗ 0 0.952

±1.31 ±1.08 ±0.96 ±0.02 ±0.34 ±0 ±0.02

PM 10.90 ∗ 94.82 ∗ 4.61 ∗ 0 0.57 ∗ 0 0.98 ∗

±1.23 ±1.19 ±0.79 ±0 ±0.15 ±0 ±0.06

PMMA 10.06 95.70 3.92 0 0.38 0 0.99
±1.14 ±1.16 ±0.82 ±0 ±0.21 ±0 ±0.06

Config- PH = 60

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 28.00 ‡ 74.07 24.26 ‡ 0.25 1.41 ∗ 0.01 0.79 +

±3.62 ±4.87 ±5.19 ±0.37 ±0.70 ±0.02 ±0.08

ARX 26.38 + 75.91 20.58 0.07 3.43 0.01 0.69 ∗

±3.32 ±3.84 ±3.54 ±0.11 ±1.02 ±0.02 ±0.12

PM 24.44 ∗ 76.46 ∗ 20.29 ∗ 0 3.25 ∗ 0 0.83 ∗

±2.61 ±4.24 ±3.37 ±0 ±0.61 ±0 ±0.12

PMMA 22.56 79.13 18.02 0 2.85 0 0.87
±2.41 ±4.00 ±3.17 ±0 ±0.49 ±0 ±0.12

Config- PH = 90

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 41.04 ‡ 55.42 ‡ 40.92 + 1.34 + 2.20 ∗ 0.12 0.53 ∗

±6.21 ±11.35 ±11.93 ±0.75 ±1.05 ±0.10 ±0.13

ARX 36.10 + 64.24 29.85 0.34 ‡ 5.35 0.22 0.47 ∗

±4.92 ±5.15 ±4.83 ±0.33 ±1.50 ±0.30 ±0.15

PM 33.50 ∗ 64.86 ∗ 29.97 ∗ 0.10 4.99 ∗ 0.08 ‡ 0.55 ∗

±3.51 ±5.49 ±5.38 ±0.16 ±0.98 ±0.08 ±0.16

PMMA 30.93 67.75 27.39 0.05 4.79 0.02 0.58
±3.51 ±5.36 ±5.17 ±0.10 ±0.87 ±0.05 ±0.16

Config- PH = 120

uration RMSE EGA-regions (%) MCC(mg/dL) A B C D E

LVX 48.50 46.61 48.63 ‡ 2.00 ∗ 2.41 ∗ 0.35 0.38 ∗

±8.97 ±14.29 ±14.69 ±0.82 ±1.37 ±0.33 ±0.16

ARX 43.03 ∗ 55.67 + 36.13 ‡ 0.75 + 6.80 + 0.65 ‡ 0.29 ∗

±6.06 ±6.07 ±5.34 ±0.46 ±1.97 ±0.62 ±0.15

PM 37.63 ∗ 60.72 ∗ 33.09 ∗ 0.17 ‡ 5.87 0.15 ‡ 0.45 ∗

±4.70 ±6.62 54.01 ∗ 54.01 ∗ 54.01 ∗ 54.01 ∗ ±0.15

PMMA 34.74 63.64 30.52 0.07 5.69 0.07 0.51
±4.34 ±5.52 ±5.42 ±0.16 ±1.02 ±0.10 ±0.17
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4. Discussion

Results obtained with both clinical data (Table 2) and in silico data (Table 3) are consistent at
showing that, when compared to commonly employed glucose forecasting algorithms (LVX and ARX),
the proposed PM algorithm is superior on all evaluated prediction horizons. As observed in Figure 3,
such superiority is more evident at longer prediction horizons, and in particular, when looking at the
MCC. In the context of predictive glucose alarms, this improvement would be translated into a system
with less false alarms and missed alarms, while in an automatic insulin delivering system, it could be
translated into better glucose control.

This improvement in forecasting accuracy at longer horizons might be attributable to the use of a
physiological model, which is able to better account for the long-term glucose–insulin dynamics when
compared to purely data-driven based approaches.

As observed in Tables 2 and 3, the inclusion of meal absorption information into the PMMA
method did not yield significant improvements in the forecasting accuracy. Although additional meals
were included into the UVA-Padova simulator to increase its inter-meal variability, such variability
might still not be enough to show the benefits of the proposed approach. Note that the presented
mixed-meal model library in Appendix A is per se a scientific outcome that can be used in other
applications [44].

It is worth noting that, when comparing against the baseline algorithms, the proposed method
shows better performance on the real cohort than on the in silico. Our hypothesis to explain this fact is
that our method is better at capturing the complexity of the real world glucose–insulin dynamics as a
result of using a deconvolution technique for state estimation.

Although the proposed approach has been proven to be superior to some of existing forecasting
algorithms, there are still some scenarios were there is a significant mismatch between the predicted
glucose and the actual glucose, e.g., Figure 4 around 15:00 h. This might be explained by the presence
of an unaccounted perturbation such as physical exercise. Note that for this particular scenario, a
closed-loop control algorithm, such as Model Predictive Control, could lead to sub-optimal results, but
this is a limitation inherent to this type of feedback controller.

Finally, unlike recently proposed machine learning methods, which require a significant amount
of data to be trained, the proposed methods requires a relatively small dataset (e.g., one week), which
makes it practical for clinical applications.

5. Conclusions and Future Work

The proposed glucose forecasting algorithm based on a physiological model and a state estimation
deconvolution technique is a potential solution for diabetes technology solutions that require long-term
glucose predictions (e.g., 120 min), such as closed-loop insulin delivery and insulin dosing decision
support. Future work to further improve the accuracy of the proposed algorithm includes accounting
for circadian variations on insulin sensitivity [45] and the short- and long-term effect of exercise
on insulin requirements [46]. Finally, online parameter estimation is another potential avenue
for investigation.
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Appendix A. Mixed-Meal Model Library

To build the employed mixed-meal model library within the UVa-Padova T1DM simulator [36],
the scientific literature was reviewed for clinical trials studying the effect of meal composition
on non-diabetic subjects, which included mean population plasma glucose and plasma insulin
concentration data, meal composition, and body weight. In addition, the duration of the trial needs to
be long enough to allow glucose and insulin levels at the end of the trial to return to basal conditions
and the sampling rate needs to be high enough to capture glucose and insulin dynamics. Data from
16 mixed meals fulfilling the above criteria were found in scientific publications for healthy subjects.
Table A1 shows the information for each of the selected mixed meals, average weight of the studied
subjects and the corresponding bibliographic reference.

Table A1. Mixed meals information and bibliographic references.

Meal Ingredients Weight CHO CHO; Prot.; Fat Reference
# (Kg) (g) (% energy)

1 Scrambled eggs, Canadian bacon, gelatin (Jell-O) 77 77 45; 15; 40 [37]

2 White bread, low-fat cheese, sucrose, oil, butter 82.3 111 55; 15; 30 [47]

3 Fat milk, white rice, low-fat cheese, fructose, pear,
bran-cookies, oil

82.3 112.3 55; 15; 30 [47]

4 Pasta, oil (low fat) 57 75 80; 15.4; 4.6 [48]

5 Pasta, oil (medium fat) 57 75 56; 10.8; 33.2 [48]

6 Pasta, oil (high fat) 57 75 37.4; 7.2; 55.4 [48]

7 Rice, pudding, sugar and cinnamon 65? 50.5 74.6; 14.2; 11.2 [49]

8 Toast, honey, ham, curd cheese, orange juice 65? 50.2 26.2; 16.5; 56.7 [49]

9 Pear barley 59.8 50 79; 15; 5 [50]

10 Instant mashed potato 59.8 50 78; 5.5; 4.5 [50]

11 2 slices of bread, 1 and 1
2 eggs, 1 tea spoon of

margarine and orange juice
65 50 49; 22.3; 28.7 [51]

12 Cereal, coconut, chocolate, fruit and whipping
cream

76? 93 18; 16; 66 [52]

13 Oats, coconut, almonds, raisins, honey, sunflower
oil, banana, double cream and milk

61.9 121.1 48.6; 6.9; 48 [53]

14 Same as meal 13 61.9 70.3 28.2; 6.6; 65.2 [53]

15 Same as meal 13 61.9 50 20; 6.1; 73.9 [53]

16 Oat loop cereal, milk, white bread, margarine,
strawberry jam, orange juice

67? 68.8 57; 19; 24 [54]

? Estimated from Body Mass Index (BMI); CHO denotes Carbohydrates; Prot. denotes Protein.

To estimate the rate of glucose appearance (Ra) corresponding to the chosen meals, a simple
technique for estimating Ra proposed and validated by Herrero and colleagues was employed [31].
The employed technique, which is based on the glucose–insulin minimal model, only requires the
identification of the insulin sensitivity from the minimal model, since it is based on the hypothesis that
the rest of the model parameters can be considered to vary in relatively small ranges. This hypothesis
originates from the experimental evidence that inter-subject variability of these parameters is not very
large [37]. Figure A1 shows the estimated Ra profiles.
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Figure A1. Gastrointestinal model fitting of the 16 estimated Ra profiles. Green solid line represents
the reference Ra and the red dashed line the model fitting.

Then, the estimated Ra profiles were fitted to the the gastrointestinal model of the UVa-Padova
T1DM simulator [55], which equations are described below.

q̇sto1(t) = −k21qsto1(t) + Dδ(t), (A1)

q̇sto2(t) = −kempt(t)qsto2(t) + kabsqsto1(t), (A2)

q̇gut(t) = −kabs(t)qgut(t) + kempt(t)qsto2(t), (A3)

Ṙa(t) = − f kabs(t)qgut(t), (A4)

where, qsto1 and qsto2 are the amounts of glucose in the stomach (solid and liquid phase, respectively),
k21 is the rate of grinding in the stomach, δ is the impulse function, D is the amount of ingested glucose,
qgut is the glucose mass in the intestine, kabs is the rate constant of intestinal absorption, Ra is the
glucose rate of appearance in plasma, f is the fraction of the intestinal absorption which actually
appears in plasma and kempt is the rate of gastric emptying, which is represented by a nonlinear
function describing a slow down of glucose emptying rate and later recovery, based on available
physiological knowledge and which depends on the total amount of glucose in the stomach as follows:

k̇empt(t) = kmin +
kmax − kmin

2
{tanh[α(qsto(t)− bD)]

− tanh[β(qsto(t)− cD)] + 2} , (A5)

q̇sto(t) = qsto1(t) + qsto2(t), (A6)

α =
5

2D(1− b)
, (A7)

β =
5

2Dc
, (A8)

where kmin and kmax are the minimal and maximal absorption rates respectively, b is the percentage of
the dose qsto for which kempt decreases at (kmax − kmin)/2 and c is the percentage of the dose qsto for
which kempt is back to (kmax − kmin)/2.
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Table A2 shows the identified gastrointestinal model parameters corresponding to the 16 mixed
meals presented in TableA1. Finally, Figure A1 shows the curve fitting of 16 estimated Ra profiles to
the selected gastrointestinal model.

Table A2. Gastrointestinal model parameters corresponding to the 16 selected mixed meals. Coefficient
of variation (%) provided by the Matlab lsqnonlin optimization routine is reported in brackets.

Meal # kmin kmax kabs b d

1 0.0123 (1.0) 0.0575 (2.7) 0.0388 (4.5) 0.6947 (1.0) 0.0145 (5.3)
2 0.0128 (1.0) 0.0176 (1.1) 1.4807 (4.8) 0.9905 (0.2) 0.4388 (3.2)
3 0.0110 (1.5) 0.0207 (4.8) 0.0779 (13.2) 0.9593 (0.7) 0.1633 (4.4)
4 0.0096 (1.3) 0.0155 (1.5) 0.0719 (6.0) 0.7834 (0.9) 0.3303 (3.2)
5 0.0025 (44.5) 0.0128 (0.9) 0.1276 (8.7) 0.7729 (0.5) 0.6081 (4.7)
6 0.0675 (14.3) 0.0256 (13.5) 0.0332 (25.4) 0.3917 (4.6) 0.7238 (3.5)
7 0.2000 (28.5) 0.0396 (2.2) 0.0104 (1.8) 0.4048 (7.1) 0.4955 (2.4)
8 0.0129 (3.9) 0.0224 (22.2) 0.0273 (45.7) 0.7375 (8.5) 0.1964 (27.8)
9 0.0098 (1.7) 0.0335 (5.9) 0.0509 (11.8) 0.8031 (0.9) 0.1979 (3.2)

10 0.0326 (2.8) 0.1422 (6.5) 0.0355 (3.8) 0.9003 (1.1) 0.0547 (7.5)
11 0.0199 (1.8) 0.0896 (7.6) 0.0374 (5.5) 0.9224 (0.6) 0.0939 (5.7)
12 0.0115 (0.2) 0.0200 (0.6) 1.6872 (1.5) 0.8578 (0.4) 0.3289 (1.5)
13 0.0138 (0.7) 0.0201 (0.9) 0.0946 (3.6) 0.8443 (0.5) 0.3668 (2.3)
14 0.0102 (0.4) 0.0211 (0.6) 1.6260 (1.6) 0.9939 (0.04) 0.3283 (0.6)
15 0.0110 (0.8) 0.0196 (0.5) 0.1563 (4.8) 0.9982 (0.02) 0.4613 (1.0)
16 0.0104 (2.3) 0.0215 (1.0) 2.9750 (3.9) 0.9028 (0.4) 0.5045 (2.3)

To consider the model parameters identification satisfactory, the following conditions were
required to hold, where the operator 4 denotes the absolute difference between the reference and
predicted Ra profiles for the corresponding metric:

• Peak value: 4Rapeak ≤ 0.3 mg ·min−1· kg−1

• Peak time: 4Tpeak ≤ 20 min
• Area-under-the-curve: 4AUC ≤ 30%
• RMSE: RMSE ≤ 0.5 mg ·min−1· kg−1

Furthermore, the coefficient of variation (CV) provided by the Matlab lsqnonlin optimization
routine was required to be CV < 50% and the coefficient of determination (R2) to be above 0.8. Table A3
shows defined metrics for the evaluated Ra profiles.

Table A3. Metrics to evaluate the Ra model fitting to reference Ra profiles.

Meal 4Rapeak 4Tpeak 4AUC RMSE R2

mg ·min−1· kg−1 min % mg ·min−1· kg−1 -

1 0.16 1 2 0.1521 0.995
2 0.27 7 1.6 0.31623 0.978
3 0.20 12 1.6 0.3458 0.952
4 0.14 10 1.2 0.17675 0.979
5 0.04 12 3.4 0.2535 0.964
6 0.20 10 12.5 0.37702 0.818
7 0.22 6 3.6 0.230776 0.970
8 0.25 16 4.3 0.17117 0.972
9 0.22 5 5.1 0.26335 0.918

10 0.17 5 1.1 0.2928 0.991
11 0.01 3 4.0 0.25221 0.987
12 0.21 2 2.0 0.28166 0.984
13 0.21 9 0.5 0.27094 0.993
14 0.19 8 1.3 0.11685 0.995
15 0.12 6 2.5 0.09367 0.995
16 0.07 1 0.02 0.3495 0.969
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Appendix B. Individual Results

Table A4 presents the RMSE results for each of the 10 adults in the clinical cohort corresponding
to the baseline algorithms (LVX and ARX) and the proposed method, without accounting for meal
absorption information (PM) and accounting for it (PMMA).

Table A4. Individual RMSE results (in mg/dL) corresponding to the 10-adult clinical cohort for the
studied algorithms and different PH in minutes.

Config- PH = 30
uration # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Mean STD

LVX 19.69 16.14 22.91 21.80 18.34 22.50 20.19 23.95 23.06 18.81 20.74 2.51

ARX 20.11 16.02 22.96 21.66 18.08 22.75 20.10 24.39 22.90 18.48 20.74 2.65

PM 17.80 14.92 20.88 20.02 16.67 21.06 19.95 20.40 21.72 16.90 19.03 2.28

PMMA 16.52 13.85 19.39 18.59 15.48 19.56 18.52 18.94 20.17 15.69 17.67 2.12

Config- PH = 60
uration # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Mean STD

LVX 35.70 27.61 35.83 36.73 29.08 39.58 33.11 38.77 42.57 30.35 34.93 4.85

ARX 36.46 27.11 35.34 35.96 28.55 39.42 32.71 39.70 40.31 29.61 34.52 4.82

PM 32.15 25.87 34.99 32.28 28.52 37.49 33.93 34.79 38.77 28.07 32.69 4.17

PMMA 29.86 24.03 32.49 29.98 26.48 34.81 31.51 32.30 36.01 26.07 30.36 3.88

Config- PH = 90
uration # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Mean STD

LVX 48.43 35.51 40.26 45.55 34.00 52.17 43.48 51.07 57.44 37.69 44.56 7.76

ARX 48.83 34.77 41.20 44.43 33.15 50.57 42.55 51.84 52.70 36.49 43.65 7.24

PM 42.24 34.24 38.85 39.88 34.23 47.22 43.22 45.29 50.54 35.00 41.07 5.65

PMMA 39.22 31.80 36.08 37.03 31.79 43.85 40.14 42.06 46.94 32.50 38.14 5.25

Config- PH = 120
uration # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Mean STD

LVX 58.161 41.06 42.03 49.92 37.62 60.52 52.11 60.86 67.83 42.91 51.30 10.26

ARX 58.07 40.27 43.99 48.88 35.99 57.53 50.61 61.14 61.18 40.87 49.85 9.33

PM 45.94 36.53 38.90 42.32 35.22 50.20 46.14 49.04 54.22 37.18 43.57 6.53

PMMA 42.67 33.92 36.12 39.30 32.71 46.62 42.85 45.55 50.35 34.53 40.46 6.06
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