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We study a class of spin-1/2 quantum ladder models with generalised plaquette interactions in
the presence of a transverse field. We show that in certain parameter regimes these models have
strong zero modes responsible for the long relaxation times of edge spins. By exploiting an infinite
set of symmetries in these systems, we show how their Hamiltonians can be represented, in each
symmetry sector, by a transverse field Ising chain. Due to the presence of an extensive number of
conserved quantities, even if the original system has no disorder, most of these symmetry sectors
feature a quasi-random transverse field profile. This representation of the ladder system in terms
of a disordered Ising chain allows to explain the features of the edge autocorrelation function of the
original system. Furthermore, we find what appears to be a novel mechanism for slow decorrelation:
even in parameter regimes where the full ladder model does not possess an obvious strong zero
mode, some of the initial information stored in the edge spins can be preserved for long times as a
consequence of the existence of strong zero modes within individual symmetry sectors.

I. INTRODUCTION

Many-body quantum systems can display slow relax-
ation and long correlation times due to collective dynam-
ical effects. Slow dynamics and non-ergodicity in quan-
tum systems is receiving much attention nowadays both
from the experimental and the theoretical side within
physics. From a practical perspective, the existence of
long time-scales in the dynamics is of interest as it can
be related to the possibility of maintaining long coher-
ence times for localised degrees of freedom in many-body
systems, with the technological potential for storing and
processing quantum information encoded in many-body
states [1–6]. On the other hand, the behavior displayed
by these systems is connected with topics of fundamen-
tal interest in physics such as prethermalization [7–10],
phase transitions [11] and the existence of topological
phases of matter [12–14].

Long relaxation time-scales can arise in a variety of
physical scenarios. Concrete examples include many-
body systems in the presence of disorder leading to many-
body localisation [15–25] and metastability in open quan-
tum systems [26–28]. In this paper we focus on another
area where long timescales emerge, quantum systems
with free boundaries with so-called strong zero modes
(SZMs) [1, 7, 11, 13, 14, 29]. Namely, a SZM is an
operator which commutes with the dynamical generator
up to exponentially small corrections in the system size,
the paradigmatic example [29] being the one-dimensional
transverse field Ising model (TFIM) with free boundaries
[30, 31]: in the ferromagnetic phase, one can explicitly
construct the SZM operators in an iterative manner and
express them as a sum of Majorana fermions [29]. The
existence of a SZM operator implies the slow relaxation
of certain boundary modes, for example giving rise of co-
herence times that grow exponentially in system size for
edge spins in the TFIM [14, 29]. SZMs can also be related
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FIG. 1. Quantum M-leg ladder model with plaque-
tte interactions. Spins σµi,k, located at the vertices of an

L ×M lattice (i = 1, . . . , L; k = 1, . . . ,M), are subject to a
transverse field in the x direction. Interactions (along the z
direction) between spins are given by the product of all spin
operators σzi,k in two neighbouring rungs of the ladder. Con-
cretely, each plaquette is associated with 2M spins and the
interaction is given by the product
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such plaquette interactions are shown as the shaded areas in
the sketch.

to a slow logarithmic-in-time growth of the entanglement
entropy [32]. More recently, the possibility of observing
SZMs in open settings has also been discussed [6, 33],
which connects to the more general question of protec-
tion of coherences from dissipation [34–36]. For instance,
it can be shown that properly engineered dissipation can
increase edge coherence times in spin chains with open
boundaries beyond those of the non-dissipative case [37].

Here we consider SZMs in a simple generalisation of
the TFIM. We consider a class of ladder spin systems



2

with plaquette interactions. Figure 1 describes the class
of models we study. The arrangement for an “M -leg
ladder” is that of M parallel chains of length L with
a qubit on each site. The interactions are along the z
direction involving the product of all sites within one
rung of the ladder and the ones on the rung immediately
next to it, see the shaded regions in Fig. 1 (details are
given below). The system is also subject to a magnetic
field on each site in the transverse direction.

Below we show how to explicitly construct the SZMs in
these systems. As we shall see, similarly to what happens
in other models [11, 29], the normalisation of the SZMs
diverges as the strength of the transverse field approaches
a critical value for which the ladder models display a
quantum phase transition. We then tackle the same class
of systems from a different perspective: we identify an
extensive set of symmetries of the ladder Hamiltonian
which allows us to block-diagonalise them, with each
symmetry sector described by a one-dimensional TFIM.
Due to the presence of the symmetries, most sectors in
general will manifest quasi-randomness in the transverse
field. This is another example of how a clean system
can mimic the presence of spatial disorder in the Hamil-
tonian due to a large set of conserved quantities, cf.
Refs. [38, 39]. We exploit this quasi-random picture to
explain the behavior of the autocorrelations of the edge
spins in the infinite temperature state. In addition, the
block structure of the Hamiltonian—together with the
quasi-randomness of the effective transverse field in the
various sectors—makes apparent how it is possible to ob-
serve the existence of SZMs only in certain symmetry
sectors. Interestingly, in certain parameter regimes this
can lead to the long coherence times for the edge spins
even when the full system does not possess a SZM. This
appears to be a novel mechanism for obtaining long cor-
relation times.

II. M-LEG SPIN-1/2 LADDER

In this section we define the class of models we study.
We consider spin systems which consist of a lattice of
M parallel chains of L sites each, arranged in such a way
that the i-th sites of all the chains lie on a segment which
is perpendicular to the chains themselves, cf. Fig. 1. Each
site of this lattice carries a spin-1/2 degree of freedom,
and we use the notation σµi,k for the local Pauli matrix in
the direction µ acting on the i-th site of the k-th chain.

As stated in the introduction, the Hamiltonian of the
system is a generalisation of the TFIM Hamiltonian
which we define in the following way

H = −J
L−1∑
i=1

ZiZi+1 − h
L∑
i=1

Sxi , (1)

with

Zi =

M∏
k=1

σzi,k, (2)

and

Sµi =

M∑
k=1

σµi,k, (3)

where the field strength h and coupling strength J are
non-negative. The term proportional to h represents the
uniform transverse magnetic field, while the terms in the
first sum appearing in Eq. (1) represent longitudinal mag-
netic plaquette interactions between neighboring rungs
of the ladder—-as illustrated in Fig. 1. Notice that the
TFIM is recovered when M = 1.

For the whole M -leg ladder model we can define a par-
ity operator

F =

L∏
i=1

M∏
k=1

σxi, k, (4)

which implements a discrete Z2 spin-flip symmetry.
When M > 1, however, one can also decompose such
a parity operator into the product of single chain parity
operators

Fk =

L∏
i=1

σxi, k, (5)

with F =
∏
k Fk.

One can easily check that

[H,Fk] = 0 ∀k, (6)

so that

[H,F ] = 0. (7)

This implies that an eigenstate |ϕ〉 of H can be chosen
to be a simultaneous eigenvector of all the Fk,

Fk|ϕ〉 = βk|ϕ〉 ,withβk = ±1 ,

and we can decompose the Hilbert space into parity sec-

tors P~β , with ~β = (β1, β2, . . . , βM ), which are mapped

onto themselves by the action of the system Hamiltonian.

III. STRONG ZERO MODES IN M-LEG
LADDERS

After having introduced the class of models we con-
sider, we will now proceed to show that they feature, in
certain parameter ranges, SZMs. We first review the defi-
nition of a SZM [11, 14, 29], and then explicitly construct
the SZMs for the M -leg ladders.

A SZM Ψ is an operator which almost commutes with
the Hamiltonian, ‖[H,Ψ]‖ ≈ εL, with a correction term
εL which is exponentially decaying with the size L of the
system. Usually, such an operator is also required to an-
ticommute with a parity operator P , commuting with the
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Hamiltonian [P,H] = 0. When this is the case, the SZM
is an operator that maps an eigenstate of the Hamiltonian
in one of the two parity sectors into an eigenstate in the
other sector. The two mapped states are split in energy
by εL, and since this mapping occurs across the energy
spectrum this guarantees the existence of long coherence
times.

For general M -leg ladder models, however, due to the
presence of a larger number of parity sectors, P~β , the

situation is more subtle. Indeed, as we show below, SZM
operators for this class of systems obey

{Ψ,Fk} = 0 , ∀ k . (8)

In terms of the parity operator for the whole system, F ,
one then has  [Ψ,F ] = 0 M even

{Ψ,F} = 0 M odd .
(9)

While the commutation/anticommutation relations of
the SZM with F are not of help to understand the ac-
tion of the SZM on eigenstates of the Hamiltonian, the
properties expressed in Eq. (8) can be used to show that
it connects eigenstates and eigenvalues of the Hamilto-
nian in the parity sector P~β with those of P−~β . To show

this, lets assume |ϕ〉 to be an eigenvector of the Hamil-
tonian associated to an eigenvalue λϕ belonging to the
parity sector P~β . One then has that the vector Ψ|ϕ〉 is

an eigenvector of the Hamiltonian:

HΨ|ϕ〉 = λϕΨ|ϕ〉+O(εL) , (10)

where we have used the fact that the SZM commutes
with the Hamiltonian up to terms of order εL exponen-
tially small in system size. In addition, exploiting the
anticommutation relations of the SZM with the parities
Fk one has that

FkΨ |ϕ〉 = −βkΨ |ϕ〉 ,∀k ,
showing indeed that Ψ |ϕ〉 ∈ P−~β . Summarizing, this

means that for large system sizes the spectrum of the
Hamiltonian H gets paired up between corresponding
parity sectors P~β ↔ P−~β . For explicit examples we refer

to Appendix A.
After having discussed the consequences of the exis-

tence of the SZM on the spectral properties of the ladder
Hamiltonian we now provide its explicit form, from which
we can recover the properties described in the previous
discussion. As in the case of the TFIM [29], for general
M -leg ladder models the SZM can be written as a sum
of operators

Ψ =

L∑
j=1

ψj , (11)

where the ψj are given by

ψj =

(
h

J

)j−1 j−1∏
i=1

Sxi Zj . (12)

Notice that the terms ψj appearing in the SZM are al-
most Majorana operators for M 6= 1: while they anti-
commute, {ψj , ψi} = 0 for i 6= j, for i = j the anticom-
mutator is not a multiple of the identity (yet commutes
with any other term ψk).

The first and most important property to be shown is
that this operator Ψ almost commutes with the Hamil-
tonian. To do this we note that the Hamiltonian can be
split in two parts: one describing the magnetic interac-
tion between spins around plaquettes, H0 ∝

∑
j ZjZj+1,

and the other describing the effects of the transverse mag-
netic field H1 ∝

∑
j S

x
j . Thus, we can write the commu-

tator of the Hamiltonian with the SZM in the following
way

[H,Ψ] =

L∑
j=1

([H0, ψj ] + [H1, ψj ])

=

L−1∑
j=1

(Aj+1 +Bj) +BL,

(13)

where we introduced the quantities [H0,Ψj ] = Aj and
[H1,Ψj ] = Bj , and used [H0,Ψ1] = A1 = 0. We show
in Appendix B that this is a telescoping series, namely
Aj+1 + Bj = 0,∀j, therefore the only contribution to
the commutator comes from the term BL with norm
‖BL‖ ≈ 2JαL, where α = Mh/J . This thus proves
that the operator defined in Eq. (11) almost commutes
with the Hamiltonian up to a factor that scales as αL.
When α < 1 the correction to the commutator becomes
exponentially small with system size.

The almost commutation of the SZM with the ladder
Hamiltonian can be used to show the slow relaxation of
coherences for the edge spins. Indeed, when α < 1, one
can notice from Eq. (12) that the SZM is highly localised
around the first rung of the ladder. In particular, when
h � J , one has that the SZM is Ψ ≈ Z1 up to correc-
tions of order h: thus exploiting the fact that this SZM
almost commutes with the Hamiltonian one can show (in
the same way as it happens for the TFIM [29]) that the
infinite temperature autocorrelation function

C∞(t) :=
1

2M L
Tr (Z1(t)Z1) ≈ 1 , (14)

up to times of the order τ ≈ α−L. We will discuss the
behaviour of the autocorrelation in detail below.

IV. NORM OF Ψ AND RELATION TO PHASE
TRANSITIONS

An important property for the SZM is that it must be
normalisable. Indeed, if this were not true it would not
be possible to give a meaning to the manipulations de-
scribed in the previous section. In this section we prove
the conditions under which the SZM operator has finite
norm, i.e., the sum in Eq. (11) converges. We will also
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FIG. 2. Phase transition in the ladder model for dif-
ferent values of M . The order parameter is the expectation
value in the ground state of the product of the magnetization
operators along the z direction for the single rungs of the lad-
der, 〈Zi〉. When M = 1 (TFIM case) the transition occurs at
hc = J . For general values of M the transition is shifted to
hc = J/M . We show here results for M = 1, 2, 3 obtained by
means of infinite time-evolving block decimation algorithms
[40–43].

show that the point at which the norm of the SZM be-
comes unbounded, the ground state of the system under-
goes an Ising-type phase transition. This seems to pro-
vide further evidence of the relation between existence of
SZM and the occurrence of phase transitions in quantum
Hamiltonian systems [11].

To compute the norm of the SZM, cf. Eq. (11), we
make use of the anticommutation relations, {ψi, ψj} =
0, ∀i 6= j, and we express the square of the SZM as

Ψ2 =
∑L
i=1 ψ

2
i , with

ψ2
i =

(
h

J

)2(i−1) i−1∏
k=1

(Sxk )2 .

Since all terms in Ψ2 commute among themselves we can
compute the norm as

‖Ψ‖ =
√
‖Ψ2‖ =

(
1− α2L

1− α2

)1/2

. (15)

From the above equation it is clear that the SZM is nor-
malisable for α < 1. On the other hand, one can show
that the ladder model undergoes a quantum phase tran-
sition when the transverse field approaches the critical
value hc = J/M , corresponding to α = 1.

The order parameter for an M -leg ladder system is
the expectation value in the ground state of the product
of operators along the z direction for a rung of the lad-
der, 〈Zi〉 (which generalises the order parameter of the
TFIM). In Fig. 2 we plot the order parameter as a func-
tion of magnetic field for different values of M : we see
that the point at which the eigenstates pairing due to the
SZM disappears is the same value of the transverse field

for which the quantum phase transition in the ground
state of the Hamiltonian takes place [11].

V. QUASI-RANDOM ISING CHAINS FROM
THE LADDER MODEL

In this section we show how the Hamiltonian for the
ladder model can be decomposed into a direct sum of
Ising Hamiltonians with a transverse field that can mimic
the presence of randomness in the chain. In order to
achieve this, in the spirit of [38], we characterize an ex-
tensive set of conserved quantities which we can then
use to decompose the Hamiltonian in the various blocks
identified by the conserved charges.

The first step thus consists in finding the above men-
tioned symmetries of the Hamiltonian. This can be
achieved by directly inspecting the operator S2

i = (Sxi )2+
(Syi )2 + (Szi )2, proportional to the total angular momen-
tum in each rung of the ladder, and also the square of
the magnetization along the x direction (Sxi )2. One can
check that [

S2
i , H

]
= 0 , ∀i ,[

(Sxi )2, H
]

= 0 , ∀i .
(16)

The existence of these conserved quantities allows us to
represent the original ladder Hamiltonian in a simulta-
neous eigenbasis of S2

i and (Sxi )
2

in the various symme-
try sectors identified by the quantum numbers of S2

i and
(Sxi )2.

We thus need to identify these values and to under-
stand the action of the Hamiltonian on their eigenstates.
From the definition of Sxi and S2

i it is clear that we are
dealing with the coupling of M spin-1/2 systems along
each vertical column characterized by the index i. There-
fore, the possible eigenvalues s2i of S2

i are

s2i = 4`(`+ 1), (17)

where the factor 4 comes from the fact that we have
defined S2

i in terms of Pauli matrices and not in terms of
spin operators. Moreover `min ≤ ` ≤ `max, where `max =
M/2, while `min = 0 if M is even and `min = 1/2 if M
is odd. For a fixed irreducible representation of the total
angular momentum where S2

i = 4`(` + 1) one can also
recover the possible quantum numbers of (Sxi )2 noticing
that the eigenvalues of the magnetization along the x
direction, sxi , belong to the set [−2`,−2`+2, . . . 2`−2, 2`].

Thus, in the sector identified by the choice
(
s2i , (s

x
i )2
)

for the conserved quantum numbers, the ith rung of the
ladder can be represented by means of a two-level system
with states |+〉, |−〉 defined such that

S2
i |±〉 = s2i |±〉 , Sxi |±〉 = ±sxi |±〉 , (18)

if sxi 6= 0. In turn, when sxi = 0 (only possible for M
even) the dimension of the irreducible representation of
the angular momentum is one and the rung is described
by a single state |0〉, such that Sxi |0〉 = 0.



5

In order to complete the mapping from the ladder to
the chain, we need to understand the action of Zi in the
reduced space for the rung i identified by a choice of the
conserved numbers. From the fact that Zi anticommutes
with Sxi , one easily gets

Zi|±〉 = |∓〉 ,
while, if sxi = 0 then Zi|0〉 = ±|0〉, where the sign de-
pends on the symmetric/antisymmetric property of the
singlet |0〉. These considerations thus point to the fact
that for a choice of the conserved quantum numbers(
s2i , (s

x
i )2
)

the single rung operators are mapped onto

Sxi = sxi τ
x
i , Zi = τzi if sxi 6= 0 ;

Sxi = 0, Zi = ±1 if sxi = 0 ,
(19)

where τµi are auxiliary Pauli matrices.
The last thing that one needs to clarify in order to show

how the ladder Hamiltonian can be reduced to an Ising
model one with quasirandom potential, is the multiplicity
of the different values of the Hamiltonian quantum num-
bers. Such an information can be recovered from the
Clebsch−Gordan decomposition series [44]. Indeed, we
need to iteratively compose M spin-1/2 systems and to
consider all the irreducible representations arising from
this procedure; the above mentioned series takes into
account the fact that, each time a spin-1/2 system is
added to an irreducible representation, we obtain two ir-
reducible representations, one with dimension increased
by one and the other with dimension decreased by one
with respect to the original representation.

The Clebsch−Gordan series is the following

222⊗M =

bM
2 c⊕

k=0

(
M + 1− 2k

M + 1

(
M + 1

k

))
(M + 1− 2kM + 1− 2kM + 1− 2k) ,

where
⌊
M
2

⌋
is the integer floor function and

(
x
y

)
is the

binomial coefficient; it shows the dimension of the ir-
reducible representations in the Clebsch−Gordan reduc-
tion of S2

i (boldface factor on the right side of the above
equation) together with their multiplicity given by the
first factor in the direct sum.

The dimension of the representation and the value s2i =
4`(` + 1) are connected through the relation ` = (M −
2k)/2; therefore we can say that the eigenvalue s2i =
4`(`+ 1) of S2

i appears with a multiplicity κ`

κ` =
2`+ 1

M + 1

(
M + 1
M−2`

2

)
.

We can also recover all possible values of |sxi |: these
are in the form |sxi | = M − 2k, with 0 ≤ k ≤

⌊
M
2

⌋
and

can appear with a multiplicity νM−2k that can be derived
from the multiplicity of the irreducible representations in
the following way

νM−2k =

k∑
m=0

M + 1− 2m

M + 1

(
M + 1

m

)
; (20)

namely, to find how many times the value M − 2k can
appear for |sxi |, we need to count all possible irreducible
representations containing that specific value. An ex-
plicit example is provided in the Appendix C.

In the next subsections we use these findings to map
the Hamiltonian of the system into an Ising-like Hamilto-
nian for a generic symmetry sector identified by fixing the
quantum numbers s2i and (sxi )2 for all rungs in the ladder.
The two cases, M odd and M even, present a substantial
difference so that we will treat them separately.

A. Block decomposition of the ladder Hamiltonian
for M odd

When the number of spins on each rung M is odd,
for any choice of the conserved quantities S2

i and (Sxi )2,
columns in the ladder behave like two-level systems, cf.
Eq. (19). Therefore, by fixing for each rung i a choice
of the values (s2i , (s

x
i )2), the ladder Hamiltonian can be

mapped onto an Ising-like Hamiltonian

H̃ = −J
L−1∑
i=1

τzi τ
z
i+1 −

L∑
i=1

hiτ
x
i , (21)

where τµi are the Pauli matrices at site i, and hi is a trans-
verse magnetic field that has now become site dependent,
according to the choice made for (sxi )2. Specifically, one
has hi = h |sxi |.

This means that if one randomly selects the values of
the conserved quantities for the whole ladder (out of the
available possibilities), the resulting Hamiltonian will be
an Ising one with uniform coupling constant J and with
a transverse magnetic field that in general looks random.
The values of hi are distributed independently on each
site, and the probabilities follow from the multiplicities
of the different values

P [hi = h (M − 2k)] =
νM−2k∑bM
2 c

k=0 νM−2k

. (22)

For an explicit example we refer to Appendix D.

B. Block decomposition of the ladder Hamiltonian
for M even

When the number of spins M on each rung is even,
the situation is slightly more complicated than the one
for M odd. While also for this case, fixing for each rung
the values (s2i , (s

x
i )2), the ladder Hamiltonian is formally

mapped onto an Ising Hamiltonian [cf. Eq. (21)], unlike
the M odd case, now the site dependent transverse mag-
netic field hi can assume also the value 0, when sxi = 0.
Moreover, also Zi needs to be treated with some extra
care: this operator can be mapped onto a Pauli matrix
at site i, τzi , when sxi 6= 0, whereas it is mapped into ±1
when sxi = 0; the sign must be consistent with the sym-
metric or antisymmetric property of the state of the rung
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FIG. 3. Mapping of the ladder model for even M with
(Sxi )2 = 0 in one rung. The representative operators, ap-
pearing in the Hamiltonian, for each rung are Zi and Sxi ;
when (Sxi )2 6= 0 (red color) these operators are mapped into
operators proportional to Pauli matrices τzi and τxi . On the
other hand, when (Sxi )2 = 0 (blue color) then one has the
mapping Sxi → 0 and Zi → ±1. The Hamiltonian in this sec-
tor is simply recovered by substituting the operators Zi and
Sxi with the appropriate quantities, see Eq. (23).

with zero magnetization along the x direction. Apart
from this, the probability of obtaining a given value of
(sxi )2 when randomly choosing a sector for the ith rung
is still described by Eq. (22).

To better understand how the mapping works in this
case we now discuss a simple example: let us consider the
case where the value (sxi )2 is zero only at one site, namely
sxi = 0, and sxj 6= 0 ∀j 6= i. The ladder Hamiltonian is
thus mapped onto the following Hamiltonian, see Fig. 3,

H̃ =− J
i−2∑
j=1

τzj τ
z
j+1 − J

L−1∑
j=i+1

τzj τ
z
j+1 −

i−1∑
j=1

hjτ
x
j

−
L∑

j=i+1

hjτ
x
j ±

(
Jτzi−1 + Jτzi+1

)
. (23)

It is clear here that the transverse field for the site i is
turned off, and the sign in front of the last term in the
above equation is determined by the symmetry property
of the state associated to the zero eigenvalue of Sxi : an
antisymmetric state will result in a minus sign while a
symmetric one will lead to a plus. Eq. (23) also shows
that, in this sector, the ladder system is broken up into
two separate chains that are disconnected by the i-th site.

Notice that, contrary to the odd case where all sectors
have the same dimension 2L (corresponding indeed to the
dimension of a TFIM) in the M even case, the dimension
of each sector varies. This can be understood by looking
at relations (19): whenever one has (sxi )2 = 0 on a rung
then the dimension of the sector is reduced of a factor 2.
As an example in a sector with exactly n rungs assuming
a zero value of the magnetization along the x direction,
the dimension is 2L−n.

VI. LONG COHERENCE TIMES OF
BOUNDARY SPINS

In the previous section we have shown how the ladder
Hamiltonian assumes a block diagonal form and how, in
each of these blocks, it can be represented as an Ising-
like Hamiltonian with values of the transverse field that
depend on the conserved quantum numbers identifying
the chosen sector. In addition, we have characterized the
probabilities associated with these different values of the
transverse field in the case in which a set of conserved
quantities for each rung of the chain is randomly picked;
practically speaking a random selection of a set of these
conserved quantum numbers can mimic the presence of
disorder in the transverse field profile of an open bound-
ary Ising model, with probabilities for the single site fields
hi given by relation (22).

Even in the case of inhomogeneous transverse field,
as for ordered Ising models, it is possible to construct
a SZM operator Ψ̃; one way to proceed is to apply the
usual iterative procedure [11, 14, 29]. On the other hand
it is also possible to obtain the representation of SZM
for the chosen set of conserved quantities directly from
Eq. (11) exploiting the same relations in Eq. (19) used
to obtain the Hamiltonian.

Collecting all fixed choices for the quantum numbers
(s2i , (s

x
i )2) into a vector ~ω which now uniquely identifies

the symmetry sector of the Hamiltonian, we can write
the SZM Ψ~ω in the sector as

Ψ~ω =

L∑
j=1

τzj

j−1∏
k=1

hk
J
τxk . (24)

We can now make two interesting observations: first, we
notice that the condition for the existence of this SZM is
less restrictive than the condition implied by Eq. (15) for
the existence of the SZM in the ladder. Indeed, in this
sector one just needs

N 2
~ω =

∞∑
j=1

j−1∏
k=1

(
hk
J

)2

<∞

which can be true even if α = Mh/J ≥ 1, namely, the
norm of the SZM Ψ~ω in the sector is finite even if the
norm of the SZM of Eq. (11) diverges. One can thus have
sectors where a SZM can be defined even if the full system
cannot support one. This is illustrated in Fig. 2: the
region labelled I corresponds to α < 1 where the overall
system has a SZM; the region labelled II corresponds to
α > 1 but where some sectors have normalisable SZM
operators (24); region III is where no sector has SZMs.

The second observation concerns only M even. In this
case, the value of (sxi )2 can be zero for some rungs of
the ladder and this results in the presence of a SZM even
in a finite system, i.e., the operator strictly commutes
with the Hamiltonian without taking the thermodynamic
limit. For instance, if the the first rung of the ladder



7

C
∞

(t
)

C
∞

(t
)

t
( 1

J

)

t
( 1

J

)
t
( 1

J

)

(a)

(b) (c)

M = 3

I

II III

FIG. 4. Infinite temperature edge autocorrelation
from exact diagonalization for M odd. (a) Here we
have taken J = 1 and h = 0.2 and compared the behavior
of the infinite temperature time correlation functions for the
edge spin operator Z1 [cf. Eq. (14)] in the ladder model with
M = 3 for different system sizes. Increasing the length L
of the ladder we see how the correlation time increases ex-
ponentially. At later times we expect these to approach a
zero value with chaotic oscillations that should be damped
for larger and larger system sizes. (b) For J = 1, h = 0.5 and
same L as in (a) the infinite temperature time correlators de-
cay at earlier times compared with those in (a) since in this
regime only some sectors of the ladder Hamiltonian possess
a SZM [cf. Fig. 2]. (c) When J = 1 and h = 1.1 there is
no sector featuring the presence of a SZM and this results in
an almost immediate decay of the correlation functions (data
shown for the same values of L as in (a)). Sectors I, II, III,
correspond to those of Fig. 2. In the plot time is represented
on a log-scale.

with (sxi )2 = 0 is the m-th one, then, since Sxm → 0 in
this sector, the exact SZM is still given by relation (24),
but with the sum over the rungs that runs only up to
the m-th term. In addition, looking at the term BL of
equation (13) the substitution Sxm → 0 also indicates that
the SZM must exactly commute with the Hamiltonian,
see Appendix B.

These considerations also suggest the general behavior
that should be displayed by the infinite temperature au-
tocorrelation function (14). Indeed, we can think of the
autocorrelator as given by the sum of contributions from

t
( 1

J

)

C
∞

(t
)

M = 2

h < hc

h > hc

FIG. 5. Infinite temperature edge autocorrelation
from exact diagonalization for M even. In this case
we have considered J = 1 and h = 0.05 and compared the be-
havior of the infinite temperature time correlation functions
for the edge spin operator Z1 [cf. Eq. (14)] in the ladder model
with M = 2 for different system sizes. The value of the au-
tocorrelator is not decaying to zero but actually saturates to
a finite value. For the chosen parameters (α < 1), the re-
maining oscillations around this value decrease for increasing
system sizes. In the inset we display the behavior of the in-
finite temperature time correlation functions when J = 0.05,
h = 0.05 (resulting in α = 2) and L as in the main figure. In
this case, the autocorrelator saturates to a smaller value than
in the previous case and the oscillations around this value are
not affected by increasing the size of the system. In the plot
time is represented on a log-scale.

all different sectors:

C∞(t) =
1

η

∑
∀~ω

1

dim~ω
Tr
(
eitH̃~ωτz1 e

−itH̃~ωτz1

)
, (25)

where η = (
∑bM

2 c
k=0 νM−2k)L is the total number of sym-

metry sectors in which the ladder Hamiltonian can be
represented as an Ising-like Hamiltonian, while dim~ω is
the dimension of the sector.

Exploiting a perturbative argument where one consid-
ers α � 1, similarly to what is done in [37], we can
observe that in each sector the expected behavior of the
autocorrelator is given by

1

dim~ω
Tr
(
eitH̃~ωτz1 e

−itH̃~ωτz1

)
≈ cos (tΩ~ω) , (26)

where

Ω~ω = 2J

L∏
k=1

(hk/J) (27)

is a frequency (exponentially small in the system size)
that depends on the profile of the transverse field. In
the M odd case, this frequency is never zero for finite
systems, and the sum of all possible sectors can be un-
derstood as an average over the possible realizations of
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the transverse field profile. One therefore expects a flat
behavior of the total autocorrelator up to time-scales of
the order α−L followed by a decay due to the average over
all sectors. Indeed, after this time scale, one expects the
oscillations due to the different frequencies of all the sec-
tors to eventually become dephased. This trend is shown
in Fig. 4(a): even if the considered system sizes are small,
we see how the edge spins correlation times increase with
the system size. After staying almost constant for times
of order α−L, the autocorrelator, rather than displaying
stable oscillations as in the TFIM, decays to zero.

In Fig. 4(b) we display the same curves for a different
value of the ladder transverse field h. In particular, we
choose a value of h for which there is no SZM Ψ for the
whole ladder system, i.e., the sum in Eq. (11) diverges.
However, we consider a h small enough such that it is
possible to obtain, in some symmetry sector, the SZMs
Ψ~ω (24). This has non-trivial consequences: while the
absence of the SZM Ψ would imply that the full informa-
tion stored in the boundary spins is rapidly lost, Ψ~ω has
the capability of preserving some of this information—
namely the amount assigned to its sector—for long times.
In some parameter regimes this can lead to long coher-
ence times arising from the contribution to the full au-
tocorrelator in Eq. (25) of the sectors manifesting SZMs
Ψ~ω. Given that not all sectors contribute, the correla-
tor C∞(t) stabilizes for long times around values smaller
than those of the case α < 1, and then eventually decays
for finite systems. Also in this regime, decay times show
an exponential dependence on the number of rungs L in
the ladder. On the other hand Fig. 4(c) shows that, for
values of the ladder transverse field h for which none of
the sectors can sustain a SZM, the edge spins coherence
time has no dependence on the system size and decay is
fast.

A different behavior is observed when M is even. In
this case, the fact that in many sectors Ω~ω = 0 prevents
the autocorrelator to fully decay to zero and converging
instead to a finite value. When α � 1, the SZM has a
large overlap with the edge operator Z1 and the satura-
tion value of the autocorrelator to be very close to 1, as
shown in Fig. 5. Furthermore, even when α > 1, because
of the presence of exactly conserved SZMs in several sec-
tors, the autocorrelator does not decay to zero either, but
in contrast to α < 1 the decay to the asymptotic value is
fast and size independent. Compare also the amplitude of
the oscillations around the asymptotic value which seem
to decrease with size for α < 1, cf. Fig. 5 and its Inset.

The mapping of Eq. (19) can be used to investigate
the features of the correlation functions for larger system
sizes than those shown in Figs. 4 and 5 obtained by exact
diagonalization. Figure 6 shows the correlation functions
of the boundary spin operator τz1 {cf. Eq. (17) in [29]}
from sampling Ising models with random transverse fields
compatible with the distribution of M = 3, cf. (22). In
Fig. 6(a) one can observe - in addition to the features
already discussed in Fig. 4 - what appears to be plateaus
due to the distinct lifetimes of the SZMs in the various

C
∞

(t
)

C
∞

(t
)

t
( 1

J

)

t
( 1

J

)
t
( 1

J

)

(a)

(b) (c)

M = 3

I

II III

FIG. 6. Infinite temperature edge autocorrelation
from sampling from sector sampling for M = 3. (a)
Also in this case we have taken J = 1 and h = 0.2 (hi =
h|sxi |) and compared the behavior of the infinite temperature
time correlation functions for the edge spin operator τz1 [cf.
Eq. (19)] for different system sizes. For this choice of the
parameters, where all the Ising models with random magnetic
field over which the sampling is carried out have a SZM, by
increasing system size it becomes more and more apparent
the formation of a staircase like function. (b) For J = 1,
h = 0.5 and same L as in (a), a logarithmic decay of the
infinite temperature time correlators can be observed which
might be due to the fact that the above staircase like function
shrinks. (c) When J = 1, h = 1.1 and L as in (a) none of the
Ising models with random magnetic field has SZM and the
correlation functions which decay almost immediately do not
display any size dependence. Sectors I, II, III, correspond to
those of Fig. 2. In the plot time is represented on a log-scale.

symmetry sectors. Figure 6(b) shows that for a larger
value of h (hi = h|sxi |), the infinite temperature time
correlation functions still have a system size dependence.
In this case rather than via plateaus they appear to decay
logarithmically: this would correspond to the fact that
in this regime not all sectors have SZMs (24) and their
lifetimes are shorter than those in the regime of Fig. 6(a).
Lastly, Fig. 6(c) shows the autocorrelation in a regime
similar to that of Fig. 4(c). Here none of the sectors have
SZMs and decay to zero is fast and size independent, as
expected.
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VII. CONCLUSIONS

We have studied strong zero modes in a class of spin
ladders with plaquette interactions. Like in other mod-
els, the presence of SZM implies long coherence times for
boundary degrees of freedom, and thus provide a general
mechanism for long timescales in quantum many-body
systems. Our results here are an addition to the growing
list of findings in this area [6, 7, 11, 13, 14, 29, 32, 33, 37].
We were able to obtain the explicit form of the SZM oper-
ators - and understand the behaviour of edge correlators
- because the models we consider, while appearing com-
plex superficially, can be brought to simple and (almost)
solvable forms by exploiting the large number of sym-
metries they possess. An interesting direction for future
study would be to explore the existence of SZMs or re-
lated slow operators in more complex quantum plaquette
models, in particular those closer to systems with frac-
tons [45].
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Appendix A: Pairing due to the SZM

In this appendix we provide some examples regarding
the pairing of the spectrum due to the existence of SZMs.
For M = 1 we recover the usual one dimensional TFIM,
where the SZM Ψ anticommutes with the parity operator
F (4) and it maps the spectrum in the odd sector to
that in the even sector up to corrections exponentially
small in system size [29]. If |ϕ+〉 is an eigenvector of the
Hamiltonian associated with the eigenvalue λ+ belonging
to the parity sector P+ then one can show that Ψ|ϕ+〉
is an eigenvector of the Hamiltonian associated with an
eigenvalue λ−, exponentially close in system size to λ+,
belonging to the parity sector P−

H |ϕ+〉 = λ+ |ϕ+〉 , HΨ |ϕ+〉 ≈ λ+Ψ |ϕ+〉 ,

F |ϕ+〉 = |ϕ+〉 , FΨ |ϕ+〉 = −Ψ |ϕ+〉 .

For M = 2 the Hamiltonian commutes with the
single chain parity operators F1 and F2 meaning
that we can organize its eigenstates in four sectors
P++,P+−,P−+,P−−. Given an eigenstate of the Hamil-
tonian |ϕβ1,β2

〉 belonging to a parity sector Pβ1,β2
with

βi = ±, and corresponding to an eigenvalue λβ1,β2
, one

can show that the SZM Ψ is mapping this vector onto
an eigenstate of the Hamiltonian belonging to the parity

sector P−β1,−β2
. Indeed, exploiting the anticommutation

relations of the SZM with Fi we have that

F1Ψ |ϕβ1,β2
〉 = −β1Ψ |ϕβ1,β2

〉 ,
F2Ψ |ϕβ1,β2〉 = −β2Ψ |ϕβ1,β2〉 ,

(A1)

and because of the almost commutation relation of the
SZM with the Hamiltonian we have that HΨ |ϕβ1,β2〉 ≈
λβ1,β2

Ψ |ϕβ1,β2
〉. The latter relation shows that λβ1,β2

is
exponentially close to an eigenvalue in the parity sector
P−β1,−β2

.
When M > 2 the number of parity sectors increases

as 2M but with the same steps illustrated above one can
show that the SZM pairs the spectrum of H in the sector
P~β with that in P−~β .

Appendix B: Derivation of the SZM for the ladder
system

In this appendix we first derive the compact expression
of the SZM for the ladder model following the iterative
procedure used in [11, 29] and then we show that the
correction term to the commutator of the SZM with the
system Hamiltonian is exponentially small in system size.
In order to obtain a compact expression for the SZM we
start by noticing that the Hamiltonian can be split in two
parts

H0 = −J
L−1∑
i=1

M∏
k=1

σzi, k σ
z
i+1, k , (B1)

and

H1 = −h
L∑
i=1

M∑
k=1

σxi, k , (B2)

such thatH = H0+H1. We set the zeroth order contribu-
tion to the SZM to be Ψ1 =

∏M
k=1 σ

z
1,k since it commutes

with H0, [H0,Ψ1] = 0. Ψ1 does not commute with H1

though

[H1,Ψ1] = 2ih

(
σy1,1

M∏
k=2

σz1,k + σy1,2

M∏
k=1,k 6=2

σz1,k

+ σy1,3

M∏
k=1,k 6=3

σz1,k

)
,

therefore we need to find a correction of order h to the
SZM that cancels [H1,Ψ1] when commuted with H0;

Ψ2 = (h/J)
(∑M

k=1 σ
x
1,k

)∏M
k=1 σ

z
2,k works fine since

[H0,Ψ2] = − [H1,Ψ1] .

Now the commutator of Ψ2 with H1 will generate a con-
tribution of order h2 which can be canceled by a third
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correction to the SZM of order h2. Following this pat-
tern it is easy to show that if the SZM has the following
compact form

Ψ =

L∑
j=1

(
h

J

)j−1 j−1∏
i=1

(
M∑
k=1

σxi,k

)
M∏
k=1

σzj,k , (B3)

then the norm of the error term to the commutator de-
cays exponentially with system size, namely ‖ [H,Ψ] ‖ ≈
αL where α = Mh/J .
In order to prove this last statement and the form of
Eq. (B3) we write the commutator, as mentioned in the
main text, as a telescoping series

[H,Ψ] =

L−1∑
j=1

(Aj+1 +Bj) +BL , (B4)

and we now show that Aj+1 = −Bj ,∀j, meaning that
the only contribution to the commutator comes from the
term BL. We start by evaluating the term Bj = [H1,Ψj ].
Using the fact that Pauli matrices on different sites act
on different spin states we can see that the only non zero
contribute to this commutator is the one when σxi,k and
σzj,n act on the same site, that is i = j

Bj = [H1,Ψj ] = −J
(
h

J

)j j−1∏
l=1

(
M∑
n=1

σxl,n

)

×
[
M∑
k=1

σxj, k ,

M∏
n=1

σzj,n

]
.

On the other hand when we evaluate the term Aj+1 =
[H0,Ψj+1], we observe that all the plaquette terms of H0

commute with Ψj+1 except the j−th plaquette

Aj+1 = [H0,Ψj+1] = −J
(
h

J

)j [ M∏
k=1

σzj, k,

j∏
l=1

M∑
n=1

σxl,n

]

= −J
(
h

J

)j j−1∏
l=1

(
M∑
n=1

σxl,n

)

×
[
M∏
k=1

σzj, k,

M∑
n=1

σxj,n

]

therefore

Aj+1 +Bj = 0, ∀j.

To show that the norm of BL decays exponentially with
system size we note that, from all the terms of H1, only
the one at site (j, k) gives non zero contribute

[H1,Ψj ] =

[
−h

M∑
k=1

σxj, k,Ψj

]

and knowing that ‖ [A,B] ‖ ≤ 2‖A‖‖B‖ and ‖Ψj‖ ≤
(h/J)

j−1
M j−1 we get

‖BL‖ = ‖ [H,Ψ] ‖ = ‖ [H1,ΨL] ‖ ≈ 2JαL ,

with α = Mh/J .

Appendix C: Examples for the Clebsch−Gordan
decomposition series

In this appendix we present two explicit examples, one
for M odd and one for M even, for the Clebsch−Gordan
decomposition series.
For M = 3 spin-1/2 systems the series is

222⊗3 =

b1c⊕
k=0

(
4− 2k

4

(
4

k

))
(4− 2k4− 2k4− 2k)

= 1 (444) + 2 (222) ,

which means that by composing three spins 1/2 we will
obtain one irreducible representation of dimension 4 (i.e.,
s2i = 4`(` + 1) where ` = 3/2 and sxi = −3,−1, 1, 3)
and one irreducible representation of dimension 2 (i.e.,
` = 1/2, sxi = −1, 1) with multiplicity 2. In terms of the
quantum numbers

(
s2i , (s

x
i )2
)

associated to the conserved
quantities we will obtain 4 doublets.

When composing M = 4 spins 1/2 the decomposition
series gives

222⊗4 =

b2c⊕
k=0

(
5− 2k

5

(
5

k

))
(5− 2k5− 2k5− 2k)

= 1(555) + 3 (333) + 2 (111),

one irreducible representation of dimension 5 (i.e., s2i =
4`(` + 1) where l = 2 and sxi = −4,−2, 0, 2, 4 ), one ir-
reducible representation of dimension 3 (i.e., ` = 1, sxi =
−2, 0, 2 ) with multiplicity 3 and one irreducible repre-
sentation of dimension 1 (i.e., l = 0, sxi = 0) with multi-
plicity 2. In terms of the quantum numbers

(
s2i , (s

x
i )2
)

associated with the conserved quantities we will obtain 5
doublets and 6 singlets.

Appendix D: Probability for the random transverse
field

In Appendix C we provided the multiplicities and di-
mension of all irreducible representations one can obtain
when combining M spin 1/2 systems for both M even
and M odd cases. Here we want to explicitly write all
possible values of |sxi | = M − 2k and their multiplicities
νM−2k [cf. Eq. (20)] for M = 3 and M = 4.
When composing M = 3 spins 1/2 the values that
|sxi | = M − 2k can assume are |sxi | = 3 with multiplicity
ν3 = 1 and |sxi | = 1 with multiplicity ν1 = 3.
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For M = 4 the values assumed by |sxi | = M − 2k with
their multiplicities are |sxi | = 4 with ν4 = 1, |sxi | = 2
with ν2 = 4 and |sxi | = 0 with ν0 = 6. This information
allows one to calculate the probability for the random
transverse magnetic field. For instance for M = 3 [cf.
Eq. (22)]

P [hi = 3h] =
1

4
, P [hi = h] =

3

4
,

there is probability 1/4 to have the value 3h and proba-
bility 3/4 to have the value h while for M = 4

P [hi = 4h] =
1

11
, P [hi = 2h] =

4

11
,

P [hi = 0] =
6

11
,

there is probability 1/11 to have the value 4h, 4/11 to
have the value 2h and 6/11 to have the value 0 for hi.
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