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1 INTRODUCTION

How should labor income risk affect the demand for consumption and investment? Standard portfolio

choice models assume complete markets in which labor income is spanned by the financial market so that

an individual can fully diversify her income risk by dynamically trading financial assets. Yet, in reality, the

correlation between labor income and stock market returns is close to zero, i.e., labor income is unspanned

by the stock market.1 Therefore, many individuals face nondiversifiable labor income risk.

In this paper, we develop a new dynamic continuous-time model of optimal consumption and investment

to include independent stochastic labor income. We consider the optimal consumption and investment

strategy when an additional unspanned labor income is available. More specifically, we introduce the extra

Brownian motion in labor income dynamics that is independent of the Brownian motion in the stock market,

which captures the essence of unspanned income. We focus on a risk averse individual who exhibits a

logarithmic utility function, and the individual can invest in one riskless bond and multiple risky stocks in

the financial market.

The value function of the individual is the maximized payoff with two controls consumption and in-

vestment of a stochastic control problem with two states financial wealth and labor income. By standard

invariant embedding arguments of dynamic programming, we can derive the associated Bellman equation

of the value function. The two-dimensional Bellman equation of wealth and income can be reduced to the

one-dimensional Bellman equation of income-to-wealth ratio. With the probabilistic approach, we can show

that the solution of the reduced Bellman equation is the value function of another stochastic control problem

with two controls consumption and investment and one state income-to-wealth ratio.

Even though the nonlinear Bellman equation seems to be almost impossible to be solved analytically,

remarkably we are able to reduce the problem of solving the Bellman equation to a problem of solving an

integral equation. We then explicitly characterize the optimal consumption and investment strategy as a

function of income-to-wealth ratio. We provide some analytical comparative statics associated with the value

function and optimal strategies. We also develop a quite general numerical algorithm for control iteration

and solve the value function as a sequence of solutions to ordinary differential equations. The convergence

of this numerical algorithm is guaranteed by showing that the sequence is monotone increasing and bounded

above. This numerical algorithm can be readily applied to many other optimal consumption and investment

problems especially with extra nondiversifiable Brownian risks, resulting in nonlinear Bellman equations.

Finally, our numerical analysis illustrates how the presence of unspanned income risk affects the optimal
1There is a large body of empirical and anecdotal evidence for supporting this zero correlation (e.g., Campbell et al., 2001;

Cocco et al., 2005; Davis and Willen, 2013; Gomes and Smirnova, 2021). Also, various studies have found that the correlation
is positive in the long run (Storesletten et al., 2007; Benzoni et al., 2007; Lynch and Tan, 2011). In particular, a cointegration
between the stock and labor market affects the optimal asset allocation (Benzoni et al., 2007).
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consumption and investment strategy.

Interestingly, we find a significant discontinuity and dramatic change in the individual’s optimal con-

sumption and portfolio choice with a change in the extent of unspanned income risk. Both the optimal

consumption and the optimal investment fall sharply as the unspanned income risk rises even when the

income risk is quite small. Further, the impact of unspanned income risk on the individual’s optimal choice

is different with respect to levels of income-to-wealth ratio. That is, the individual’s optimal decision is

more likely to be affected negatively by unspanned income risk when the income-to-wealth ratio is high than

when it is low.

The reduced consumption with unspanned income risk is consistent with the impact of the individual’s

precautionary savings motive on the optimal consumption/savings decision. To accumulate enough wealth

that plays an important role in smoothing out unspanned income risk, the individual’s optimal decision

is to consume less with unspanned income risk for precautionary reasons. The decreased investment with

unspanned income risk is consistent with the impact of the individual’s risk diversification motive. Given

that labor income with its unspanned risk should be treated as a risky asset resulting in a nondiversifiable

risk source, the individual would, thus, invest less in the stock market for risk diversification purposes in an

attempt to strike an optimal balance between risk-free and risky assets. The differing effects of unspanned

income risk on the individual’s optimal decision with respect to levels of income-to-wealth ratio are caused by

the inverse relation between the income-to-wealth ratio and wealth. Labor income itself is the staple income

of poor individuals, so they should concern themselves with substantial precautionary savings and risk

diversification motives. Therefore, the individual’s optimal decision is significantly affected by unspanned

income risk when the income-to-wealth ratio is high.

Closely related studies include the literature on continuous-time optimal consumption and portfolio

choice with either constant income or spanned income (e.g., Merton, 1971; Bodie et al., 1992; Koo, 1998;

Farhi and Panageas, 2007; Yang and Koo, 2018). The closest studies to ours include the literature on

continuous-time optimal consumption or portfolio choice with labor income risk: Duffie et al. (1997),

Dybvig and Liu (2010), Jang et al. (2013), Bensoussan et al. (2016), and Wang et al. (2016). Duffie et al.

(1997) study a very similar model to ours in that they consider stochastic income with its unspanned risk,

with different techniques. They develop the so-called viscosity solutions techniques with which the value

function can be approximated by a sequence of smooth functions and the unique limit of the sequence (i.e.,

the unique viscosity solution) becomes the value function. Compared to Duffie et al. (1997) with neither

explicit characterization nor numerical analysis, our innovation is the development of a way of explicitly

characterizing the value function as an integral equation and efficiently computing the value function and

optimal strategies in an incomplete market. Dybvig and Liu (2010) examine the impact of constrained
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borrowing on the optimal consumption and investment strategy. They mostly consider the case in which

labor income is spanned by the stock market and provide numerical results only with the unspanned labor

income case.2 They do not provide theoretical analysis on the value function and optimal decision or

numerical algorithm on the consumption and portfolio choice problem in the presence of unspanned labor

income. Jang et al. (2013) investigate the optimal consumption and investment strategy with the risk of

forced unemployment, resulting in a downward jump of constant labor income. However, they examine

the optimal strategy under complete markets with (private) unemployment insurance so that labor income

risk is diversifiable. Bensoussan et al. (2016) examine the optimal strategy with unemployment risks as

in Jang et al. (2013) but in an incomplete market. However, they do not study the effect of general

nondiversifiable stochastic fluctuations of labor income, which are important features for understanding

the optimal strategy with labor income risk. Thus, our model with independent stochastic labor income

differs from Bensoussan et al. (2016) with constant income subject to forced unemployment risk. The

extra stochastic source of income risk complicates the theoretical and numerical analysis, and the methods

provided by Bensoussan et al. (2016) no longer apply to the problem with independent stochastic labor

income. Wang et al. (2016) explore the model of optimal consumption/savings with stochastic income and

recursive utility. However, they do not consider the individual’s optimal investment decision that is crucial

to understand the interactions between optimal portfolio choice and consumption/savings.

Although the problem studied in this paper is similar to the one studied by Duffie et al. (1997), there

are several major differences. First, contrary to viscosity solutions of Duffie et al. (1997) that are not

explicit, we first solve the Bellman equation explicitly with the PDE-approach taken, without resorting to

the so-called martingale duality approach developed by Cox and Huang (1989), He and Pearson (1991),

and Karatzas et al. (1991).3 Notably, we reduce the problem’s dimension with the income-to-wealth ratio,

whereas Duffie et al. (1997) with the wealth-to-income ratio. As a result of different dimension reduction

approaches taken, the derived Bellman equations are quite different, but having a nonlinear linkage.4 To

our best knowledge, the Bellman equation considered in this paper has not been studied yet analytically

and even numerically. Second, we propose an efficient numerical algorithm for computing the value function

and optimal strategies in an incomplete market, whereas Duffie et al. (1997) do not.5 It has long been
2The verification theorems developed by Dybvig and Liu (2011) are applicable to the spanned labor income case only.
3Our PDE-approach can be also applied to the Bellman equation of Duffie et al. (1997) to obtain explicit characterization

of the value function and optimal strategies, which is the distinct feature of the paper compared to viscosity solutions of Duffie
et al. (1997). For the details, refer to Section 6.1.

4Merely using a reciprocal change of variable from the wealth-to-income ratio of Duffie et al. (1997) to the income-to-wealth
ratio of ours does not directly lead to our Bellman equation. One needs to apply a nonlinear transformation to the Bellman
equation of Duffie et al. (1997) to obtain our Bellman equation. For more details, refer to Section 6.1.

5The fact obtained from Duffie et al. (1997) that the viscosity solution is the unique solution of the Bellman equation
(considered in Duffie et al. (1997)) is particularly useful in ensuring that numerical solutions converge to the correct limit, at
least under conditions.
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known that solving the incomplete-market problems numerically involves some unwanted computational

complexities caused by nonlinear features of the Bellman equation.6 Contrary to Duffie et al. (1997) with

no numerical analysis, we can provide some interesting economic implications based on numerical analysis.

Finally, we specialize the labor income to the independent stochastic income and the utility function to the

logarithmic utility resulting in the different case of logarithmic utility, thus requiring a special treatment.7

Although the logarithmic utility function can be generally regarded as the limiting case of power utility

functions when the coefficient of relative risk aversion approaches one, the logarithmic utility function case

is not straightforward to be treated in Duffie et al. (1997) because it leads to a different derivation of the

Bellman equation and hence, a different characterization of the value function and optimal strategies.8 With

the logarithmic utility function, analysis of the general stochastic income case considered in Duffie et al.

(1997) is therefore an interesting future study.

The rest of this paper is organized as follows. In Section 2, we develop the continuous-time model of

optimal consumption and investment with the additional nondiversifiable Brownian income risk. In Section

3, we provide the solution of the nonlinear Bellman equation, explicitly characterizing the value function

and optimal strategies. In Section 4, we provide analytic comparative statics associated with the value

function and optimal strategies. In Section 5, we conduct numerical analysis with a quite general numerical

algorithm newly developed and illustrate the impact of stochastic labor income on the value function and

optimal strategies. In Section 6, we suggest extensions of our work to further clarify the relation between

this paper and Duffie et al. (1997) and deal with the power utility case. In Section 7, we conclude the paper.

2 MODEL

The financial market is composed of n risky assets whose price Y i(t) evolves as a geometric Brownian motion

(GBM)

dY i(t) = Y i(t)
(
αidt+

n∑
j=1

σijdwj(t)
)
, i = 1, ..., n, (1)

Y i(0) = Y i
0 ,

6Garlappi and Skoulakis (2010), Jin and Zhang (2012), and Jin et al. (2017) have developed numerical methods for solving
the optimal consumption and portfolio choice problems in incomplete markets without both nontradable labor income and its
nondiversifiable risk. Our proposed numerical procedure is therefore the first attempt to provide a convenient and efficient
numerical solution for computing optimal strategies in incomplete markets with unspanned income risk.

7As aforementioned at the very beginning of the paper, the independent stochastic income case still can capture the essence
of nondiversifiable income risk features. Reflecting the reality in the U.S., notice that the aggregate labor income has been
actually extremely stable laying between 59% and 62% of GDP since 1980 over a period of nearly 50 years. Labor income is
extremely stable expect for those who are entrepreneurs or working in finance.

8The difference between the logarithmic utility function and power utility functions results from multi-dimensional problems
in incomplete markets. That is, the approaches taken for dimension reduction are different for the logarithmic utility function
and for power utility functions. Such different dimension reduction results lead to different Bellman equations and optimal
strategies accordingly.
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where αi is the drift coefficient, the volatility matrix σ = (σij) is invertible, and wj(t), j = 1, ..., n, is the

standard Brownian motion. In addition, there is a risk-free asset Y 0(t) defined by

dY 0(t) = rY 0(t)dt, (2)

Y 0(0) = Y 0
0 ,

where r is the risk-free interest rate.

An individual has a source of income y(t) that is external to the market (e.g., a salary) with uncertainties

independent of the market. It also follows a GBM9

dy(t) = y(t)
(
µdt+ ρdwy(t)

)
, (3)

y(0) = y,

where µ and ρ are the drift and volatility coefficient, respectively, and the Brownian motion wy(t) is inde-

pendent of wj(t), j = 1, ..., n. For convenience in the sequel, we assume that10

r > µ.

The individual then builds a portfolio

X(t) = π0(t)Y 0(t) +
n∑
i=1

πi(t)Y i(t), (4)

where X(t) represents the individual’s financial wealth, π0(t) and πi(t), i = 1, ..., n, represent the dollar
9Our GBM income model can be thought of as the simplest possible form among widely adopted empirical specifications.

The income process implies that the growth rate of income, dy(t)/y(t), is independently, and identically distributed (i.i.d.). One
may also write the dynamics for logarithmic income, ln y(t), which then follows an arithmetic Brownian motion:

d ln y(t) = µ̃dt+ ρdwy(t), µ̃ = µ− ρ2

2 ,

where µ̃ is the expected change of the logarithmic income. In this baseline model, ln y(t) is then a unit-root process by following
discrete-time specification:

ln{y(t+ 1)} − ln{y(t)} = µ̃+ ρε(t+ 1),
where ε(t + 1) has the time-t standard normal conditional distribution, thus implying that the first difference of ln y(t) is
independently and normally distributed with mean µ̃ and volatility ρ. Such a GBM specification for income dynamics has been
commonly used in the literature (Dybvig and Liu, 2010, 2011; Wang et al., 2016).

10This condition is necessarily required to ensure that the present value of income discounted at the risk-free interest rate (or
human wealth) is finite positively. Indeed, human wealth is

E
[ ∫ ∞

0
e−rty(t)dt

]
= y

r − µ,

so that the drift of income µ should be lower than the interest rate r for positive finiteness of human wealth.
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amount invested in risk-free asset Y0(t) and risky assets Y i(t), i = 1, ..., n, and compose the portfolio.

π1(t), ..., πn(t) are control variables adapted to the n-dimensional standard Brownian motion process w(t) =(
w1(t), ..., wn(t)

)
used in the risky assets dynamics and the Brownian motion wy(t) used in the income

dynamics. The individual’s wealth dynamics are given by

dX(t) = π0(t)dY 0(t) +
n∑
i=1

πi(t)dY i(t)− C(t)X(t)dt+ y(t)dt, (5)

X(0) = x,

where x is the individual’s initial wealth, and C(t) > 0 is a new control variable that represents the rate of

consumption per unit of wealth.

We now perform standard transformations. We first define the vector θ called the market price of risk

as the system of linear equations

αi − r =
n∑
j=1

σijθj , i = 1, ..., n.

We combine (4) and (5) using price dynamics given in (1) and (2) to eliminate π0(t) and define the proportion

of wealth invested in risky assets Y i(t), i = 1, ..., n, as

$i(t) = πi(t)Y i(t)
X(t) , i = 1, ..., n.

We then obtain the evolution of the individual’s wealth as follows

dX(t) = rX(t)dt+X(t)σ∗$(t).
(
θdt+ dw(t)

)
− C(t)X(t)dt+ y(t)dt, (6)

X(0) = x,

where . following $(t) is the inner product for two vectors and the superscript ∗ represents the matrix

transpose.

The pair {X(t), y(t)} represents the state of a stochastic dynamic system, which is controlled by the

pair {C(t), $(t)}. The payoff for the individual to maximize with her logarithmic utility preference over the

infinite horizon is given by

Jx,y
(
C(.), $(.)

)
= E

[∫ +∞

0
e−βt ln {C(t)X(t)}dt

]
, (7)

which is subject to

C(t) > 0, (8)
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where β > 0 is the individual’s subjective discount rate. For any processes C(t) and $(t) adapted to the

filtration F t generated by the Brownian motion processes w(t) and wy(t), the wealth X(t) should be positive.

3 THE SOLUTION

3.1 DYNAMIC PROGRAMMING

The payoff to be maximized given in (7) is a stochastic control problem with two states {X(t), y(t)} and

two adapted controls {C(t), $(t)}. The value function is then defined by

V (x, y) = sup
C(.),$(.)

Jx,y
(
C(.), $(.)

)
. (9)

We first proceed with the value function V (x, y) which is assumed to be sufficiently smooth. By standard

invariant embedding arguments of dynamic programming, we can now write the Bellman equation associated

with the value function as follows

βV (x, y) = ln x+ (rx+ y)∂V
∂x

+ µy
∂V

∂y
+ 1

2ρ
2y2∂

2V

∂y2

+ sup
C

(
lnC − Cx∂V

∂x

)
+ sup

$

(
xσ∗$.θ

∂V

∂x
+ 1

2x
2|σ∗$|2 ∂

2V

∂x2

)
.

(10)

The precise boundary conditions at x = 0, x = +∞, y = 0, and y = +∞ are to be specifically given later.

We impose the following conditions:11

∂V

∂x
> 0, ∂

2V

∂x2 < 0, (11)

which guarantee that the sup in C and $ on the right hand side of equation (10) can be attained at finite

distance. In this case, the sup can be attained at the following optimal controls

Ĉ =
1

x
∂V

∂x

, $̂ = −1
x

(σ∗)−1θ
∂V

∂x

/∂2V

∂x2 . (12)

We see that the condition Ĉ > 0 given in (8) is now satisfied. With substitution of the optimal controls

stated in (12), we can rewrite the Bellman equation (10) as

βV (x, y) = ln x+ (rx+ y)∂V
∂x

+ µy
∂V

∂y
+ 1

2ρ
2y2∂

2V

∂y2 − 1− ln
(
x
∂V

∂x

)
− |θ|

2

2
(∂V
∂x

)2/∂2V

∂x2 . (13)
11With our explicit characterization of the value function provided in Section 3, we can verify that the value function is twice

differentiable. In our Section 4 for analytic comparative statics, we also verify that the value is strictly increasing, bounded,
and concave.
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3.2 DIMENSION REDUCTION OF BELLMAN EQUATION

We first conjecture that a solution of the Bellman equation (13) has the following form:

V (x, y) = ln x
β

+W (z), z = y

x
, (14)

where W (z) is a function to be determined. Notice the formulas as follows:

x
∂V

∂x
= 1
β
− zW ′(z),

x2∂
2V

∂x2 = − 1
β

+ 2zW ′(z) + z2W ′′(z),

y
∂V

∂x
= z

β
− z2W ′(z), y ∂V

∂y
= zW ′(z), y2∂

2V

∂y2 = z2W ′′(z).

Inserting these formulas in the Bellman equation (13), we obtain the new equation for W (z)

βW (z) =r + z

β

(
1− βzW ′(z)

)
+ µzW ′(z) + 1

2ρ
2z2W ′′(z)

+ ln β − 1− ln
(
1− βzW ′(z)

)
+ |θ|

2

2β

(
1− βzW ′(z)

)2
1− 2βzW ′(z)− βz2W ′′(z) .

(15)

The conditions imposed in (11) imply that

1− βzW ′(z) > 0

and

1− 2βzW ′(z)− βz2W ′′(z) > 0.

The optimal controls given in (12) are then rewritten as a function of W (z)

Ĉ(z) = β

1− βzW ′(z) (16)

and

$̂(z) = (σ∗)−1θ
1− βzW ′(z)

1− 2βzW ′(z)− βz2W ′′(z) . (17)

3.3 PROBABILISTIC APPROACH

With the probabilistic approach, we could actually interpret the function W (z) newly introduced in (14) as

the value function of a stochastic control problem. Indeed, turning to the pair {X(t), y(t)} with dynamics
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(3) and (6), we introduce the new process z(t) = y(t)/X(t) representing the income-to-wealth ratio at time

t. Because the Brownian motion processes w(t) and wy(t) are independent, we have

dz(t) = 1
X(t)dy(t) + y(t) d

( 1
X(t)

)
,

d
( 1
X(t)

)
= − 1

X(t)2dX(t) + 1
X(t)3 (dX(t))2.

Performing direct calculations, we obtain the dynamics of process z(t)

dz(t) = z(t)
(
−
(
r − µ+ z(t)

)
dt+

(
− σ∗$(t).θ + |σ∗$(t)|2

)
dt+ C(t)dt− σ∗$(t).dw(t) + ρdwy(t)

)
,

z(0) = y

x
.

The individual’s payoff Jx,y(C(.), $(.)) to be maximized in (7) can be rewritten as

Jx,y(C(.), $(.)) = E
[ ∫ +∞

0
e−βt

(
lnX(t) + lnC(t)

)
dt
]
.

Using Itô’s formula, we know that

d lnX(t) = dX(t)
X(t) −

1
2X(t)2 (dX(t))2.

With (6), we get

d lnX(t) =
(
r + z(t)− C(t) + σ∗$(t).θ − 1

2 |σ
∗$(t)|2

)
dt+ σ∗$(t).dw(t).

Therefore, we obtain

lnX(t) = ln x+
∫ t

0

(
r + z(s)− C(s) + σ∗$(s).θ − 1

2 |σ
∗$(s)|2

)
ds+

∫ t

0
σ∗$(s).dw(s).

The change of integration then results in that

E
[ ∫ +∞

0
e−βt lnX(t)dt

]
= ln x

β
+ 1
β
E
[ ∫ +∞

0
e−βt

(
r + z(t)− C(t) + σ∗$(t).θ − 1

2 |σ
∗$(t)|2

)
dt
]
.
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The value function V (x, y) given in (9) can be, thus, explicitly written as

V (x, y) =ln x
β

+ sup
C(.),$(.)

E

[∫ +∞

0
e−βt

[
lnC(t) + 1

β

(
r + z(t)− C(t) + σ∗$(t).θ − 1

2 |σ
∗$(t)|2

)]
dt

]
.

We now consider a stochastic control problem by

W̃ (z) = sup
C(.),$(.)

Kz(C(.), $(.)) (18)

Kz(C(.), $(.)) = E

[∫ +∞

0
e−βt

[
lnC(t) + 1

β

(
r + z(t)− C(t) + σ∗$(t).θ − 1

2 |σ
∗$(t)|2

)]
dt

]
, (19)

dz(t) = z(t)
(
−
(
r − µ+ z(t)

)
dt+

(
− σ∗$(t).θ + |σ∗$(t)|2

)
dt+ C(t)dt− σ∗$(t).dw(t) + ρdwy(t)

)
. (20)

z(0) = z.

The Bellman equation associated with the problem (18) with (19) and (20) is then given by

βW̃ (z) = r + z

β

(
1− βzW̃ ′(z)

)
+ µzW̃ ′(z) + 1

2ρ
2z2W̃ ′′(z) + sup

C

[
lnC − C

( 1
β
− zW̃ ′(z)

)]
+ 1
β

sup
$

[
σ∗$.θ

(
1− βzW̃ ′(z)

)
− 1

2 |σ
∗$|2

(
1− 2βzW̃ ′(z)− βz2W̃ ′′(z)

)]
.

(21)

The optimal controls turn out to be exactly the same as given in (16) and (17) and the same Bellman

equation (15) can be recovered with substitution of the optimal controls in (21). We therefore verify that

W (z) introduced in (14) is the value function W̃ (z) of the stochastic problem (18), i.e., W (z) = W̃ (z).

3.4 BOUNDARY CONDITIONS

We now address boundary conditions of the Bellman equation (15) at z = 0 and z → +∞.

If we first take z = 0 in (15), we then easily obtain that

βW (0) = 1
β

(
r + |θ|

2

2
)

+ ln β − 1. (22)

To ensure the positivity of W (z), we need the assumption

1
β

(
r + |θ|

2

2
)

+ ln β − 1 > 0. (23)

To pick a boundary condition of W (z) at z = +∞, we use the lemma as follows.
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Lemma 3.1. The function

W (z) = 1
β

ln
(
1 + z

r − µ+ ρ2

)
+ 1
β

{ 1
β

(
r + |θ|

2 + ρ2

2
)

+ ln β − 1
}

(24)

satisfies the equation

βW (z)− r + z

β
(1− βzW ′(z))− µzW ′(z)− 1

2ρ
2z2W

′′(z)

− ln β + 1 + ln(1− βzW ′(z))− |θ|
2

2β
(1− βzW ′(z))2

1− 2βzW ′(z)− βz2W
′′(z)

= ρ2

2β

(
r − µ+ ρ2

z + r − µ+ ρ2

)2

.

Therefore, W (z) (W (z) at z = +∞) satisfies the Bellman equation (15).

Proof. By direct calculation. �

Lemma 3.1, thus, motivates the boundary condition of W (z) at z = +∞ as follows

W (z)−W (z)→ 0 as z → +∞. (25)

3.5 EXPLICIT CHARACTERIZATION

Even though the Bellman equation (15) with boundary conditions given in (22) and (24) seems to be almost

impossible to be solved analytically, remarkably we are able to reduce the problem of solving the Bellman

equation to a problem of solving an integral equation. Consequently, we can explicitly characterize the

optimal consumption and investment strategy as a function of income-to-wealth ratio.

Theorem 3.1. We assume that12

|θ| > ρ. (26)

The solution of the Bellman equation (15) with boundary conditions (22) and (24) (i.e., the value function)

is explicitly characterized by

W (z) = 1
β

[ 1
β

(
µ− ρ2

2
)

+ ln Ψ(z)− 1 + r − µ+ ρ2 + z + v(z)
Ψ(z)

]
,

12The classical Merton risky share is (σ∗)−1θ and the ratio of income risk to stock market risk is (σ∗)−1ρ. For the fixed
stock market risk σ∗, the condition would then imply that the demand for risky assets is positive and will be affected by the
magnitude of income risk ρ. More precisely, the risky assets demand naturally decreases with income risk ρ, thus leading the
wedge of the Merton risky share and the ratio of income risk to stock market risk to decrease accordingly. If the condition does
not hold, i.e., when income risk ρ is significantly too large, the individual would not be willing to invest in the stock market. In
light of such investment, the condition reflects the sensitivity of investment to changing income risk conditions.
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where

Ψ(z) = βz

r − µ+ ρ2 exp
( ∫ +∞

z

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)

and v(z) is a solution of the following integral equation:

v(z) = |θ|
2 − ρ2

2

+ β
[
1− z

r − µ+ ρ2 exp
( ∫ +∞

z

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)

−
∫ z

0

1
ζ

{
1− ζ

r − µ+ ρ2 exp
( ∫ +∞

ζ

−v(u) +
√
v(u)2 + ρ2|θ|2
ρ2u

du
)}
dζ
]

−
∫ z

0

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2 dζ

+
∫ z

0

v(ζ) + r − µ+ ρ2

ζ

(
1− −v(ζ) +

√
v(ζ)2 + ρ2|θ|2
ρ2

)
dζ > 0.

(27)

Consequently, the optimal consumption is

Ĉ(z) = Ψ(z)

with

Ĉ(0) = β,

Ĉ(z)− β
(
1 + z

r − µ+ ρ2

)
→ 0 as z → +∞,

and the optimal portfolio is

$̂(z) = (σ∗)−1θ
Ψ(z)

Ψ(z)− zΨ′(z) .

Remark 3.1. The fractions with z on the denominator on the right-hand side of (27) have a numerator that

vanishes at z = 0, so there is no singularity at z = 0 mathematically. However, it may not be the case that

solving the integral equation numerically is straightforward. Instead, we propose the numerical iteration in

Section 5 based on the dynamic programming principle that turns out to be robust and convenient regardless

of such numerical singularities at z = 0.

Our explicit characterization of the value function W (z) in Theorem 3.1 allows us to verify that the

value function is twice differentiable.

We denote the value function W (z) corresponding to ρ = 0 by W 0(z). That is, W 0(z) is the value

function in the absence of unspanned income risk.

12



Corollary 3.1. The value function without unspanned income risk (ρ = 0) is given by

W 0(z) = 1
β

ln
(
1 + z

r − µ

)
+ 1
β

{ 1
β

(
r + |θ|

2

2
)

+ ln β − 1
}
. (28)

Consequently, the optimal consumption is

Ĉ(z) = Ψ(z)

= β
(
1 + z

r − µ

)

with

Ĉ(0) = β,

Ĉ(z)− β
(
1 + z

r − µ

)
→ 0 as z → +∞,

and the optimal portfolio is
$̂(z) = (σ∗)−1θ

Ψ(z)
Ψ(z)− zΨ′(z)

= (σ∗)−1θ
(
1 + z

r − µ

)
.

4 ANALYTIC COMPARATIVE STATICS

Having obtained the explicit characterization of the value function that solves the Bellman equation (15)

with its boundary conditions given in (22) and (24) and the optimal consumption and portfolio choice

accordingly, we now provide some analytical comparative statics associated with the value function and

optimal strategies.

We first obtain that the value function is bounded above.

Proposition 4.1. We assume (23). The value function W (z) that solves the Bellman equation (15) with

its boundary conditions given in (22) and (24) is bounded above as follows

W (z) ≤W (z), (29)

where W (z) given in (24) is the boundary condition of W (z) at z = +∞ as stated in (25).

Proposition 4.1 demonstrates that for the same extent of nondiversifiable labor income risk, i.e., for a

fixed level of ρ, the individual receiving far enough income must have the larger utilityW (z) than the utility

W (z) that the individual receiving less income has.

We second obtain another upper bound of the value function W (z).

13



Proposition 4.2. We assume (23) and

r − µ+ ρ2 < 2β. (30)

The value function W (z) that solves the Bellman equation (15) with its boundary conditions given in (22)

and (24) is bounded above as follows

W (z) ≤W 0(z), (31)

where W 0(z) is the value function without unspanned income risk (ρ = 0) given in (28).

Proposition 4.2 shows that the individual without unspanned income risk must have the greater utility

W 0(z) than W (z) obtained from the optimal choices of the individual with unspanned income risk.

Remark 4.1. Note that when z = 0, W (0)−W 0(0) = ρ2

2β2 > 0. As a result, W (z)−W 0(z) decreases from

ρ2

2β2 to − 1
β

ln
(r − µ+ ρ2

r − µ

)
+ ρ2

2β2 < 0. Notice that a more accurate majoration for W (z) is

W (z) ≤ min
(
W (z),W 0(z)

)
. (32)

We third show the positivity of the value function W (z).

Proposition 4.3. We assume (23) and (30). The value function W (z) that solves the Bellman equation

(15) with its boundary conditions given in (22) and (24) is bounded below from 0 as follows

0 ≤W (z) ≤ min
(
W (z),W 0(z)

)
.

The comparative statics that we have provided with Proposition 4.1, Proposition 4.2, and Proposition 4.3

so far would give useful bounds on the value function especially for the monotonicity of the value function,

which will guarantee the convergence of the iterative numerical scheme suggested in Section 5 for numerical

analysis.

We next provide some analytic comparative statics associated with the optimal consumption choice. We

first show that the optimal consumption is positive and an increasing function of income-to-wealth ratio z.

Proposition 4.4. The optimal consumption Ĉ(z)(=Ψ(z)) is positive and bounded below from β, i.e.,

Ĉ(z) ≥ β

and an increasing function of income-to-wealth ratio z, i.e.,

Ĉ ′(z) ≥ 0. (33)
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By (16), Proposition 4.4 implies that

0 ≤W ′(z) ≤ 1
βz
, (34)

as a result, the value function W (z) is an increasing function of income-to-wealth ratio z. Given the relation

obtained from (14) that

x
∂V

∂x
= 1
β
− zW ′(z),

we can now therefore verify the monotonicity of the value function V (x) imposed by ∂V/∂x > 0 in (11).

We now make a more stringent assumption than (30) as follows.

β > r − µ+ ρ2. (35)

We can then show that the consumption Ĉ(z) is bounded from above. More precisely,

Proposition 4.5. We assume (35). We then state that the optimal consumption Ĉ(z)(=Ψ(z)) is bounded

from above as follows

Ĉ(z) ≤ β
(
1 + z

r − µ+ ρ2

)
. (36)

By (16), Proposition 4.5 implies that

0 ≤W ′(z) ≤ 1
β

1
z + r − µ+ ρ2 ,

which is a more tightened boundedness of W ′(z) than (34).

Lastly, we show that the optimal portfolio is positive.

Proposition 4.6. The optimal portfolio $̂(z) is positive.

Proposition 4.6 verifies the concavity of the value function V (x) imposed by ∂2V/∂x2 < 0 in (11) because

of ∂V/∂x > 0 and the optimal portfolio in (12).

5 NUMERICAL ANALYSIS

For graphical illustration and more detailed discussion of the value function and optimal strategies given in

Theorem 3.1, we provide an extensive numerical analysis. We develop a quite general numerical algorithm for
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control iteration and solve the value function as a sequence of solutions to ordinary differential equations.13

5.1 ALGORITHM FOR POLICY ITERATION

We define a sequence Wn(z), n = 1, 2, ... as follows. If Wn(z) is known, we can define Ĉn(z) and $̂n(z) by

minimizing
sup
C

[
lnC − C

( 1
β
− zW ′

n(z)
)]

and

sup
$

[
σ∗$.θ

(
1− βzW ′

n(z)
)
− 1

2 |σ
∗$|2

(
1− 2βzW ′

n(z)− βz2W
′′
n (z)

)]
,

(37)

respectively. These problems are only meaningful when

1− βzW ′
n(z) > 0,

1− 2βzW ′
n(z)− βz2W

′′
n (z) > 0.

(38)

The solution is then uniquely defined by

Ĉn(z) = β

1− βzW ′n(z) (39)

and

σ∗$̂n(z) = 1− βzW ′n(z)
1− 2βzW ′n(z)− βz2W ′′

n (z)θ. (40)

We also assume that the boundary conditions are given by

βWn(0) = 1
β

(
r + |θ|

2

2
)

+ ln β − 1, Wn(z)−W (z)→ 0, as z → +∞.

In the sequel, we postulate that the properties (38) are satisfied. We then define Wn+1(z) by solving the

differential equation

βWn+1(z) =r + z

β
− zW ′

n+1(z)(z + r − µ) + 1
2ρ

2z2W
′′
n+1(z)

+ ln Ĉn(z)− Ĉn(z)
( 1
β
− zW ′n+1(z)

)
+ σ∗$̂n(z).θ

( 1
β
− zW ′n+1(z)

)
− 1

2 |σ
∗$̂n(z)|2

( 1
β
− 2zW ′n+1(z)− z2W

′′
n+1(z)

) (41)

13The resulting HJB equation (15) can be solved by the standard finite difference method (FDM) that can manage the
nonlinear terms caused by the uncertainty in the model stemming from Brownian motion processes. The numerical algorithm
we offer here, while different, can be thus viewed as complementary to the FDM. In particular, we solve ordinary differential
equations in each iteration based on the FDM. We then emphasize the validity of the iterative approach with the convergence
of this iterative procedure by having the monotonicity of the value function. Notice also the penalty method of Dai and
Zhong (2010) for a convenient and efficient numerical method to solve a wide variety of models with coupled integro-differential
equations having free boundaries.
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with the boundary conditions

βWn+1(0) = 1
β

(
r + |θ|

2

2
)

+ ln β − 1, Wn+1(z)−W (z)→ 0, as z → +∞. (42)

We can initiate the algorithm by taking Ĉ0(z) and $̂0(z) arbitrarily provided that W1(z) satisfies (38). We

will further discuss this point later. We can actually always take

Ĉ0(z) = β, σ∗$̂0(z) = θ.

5.2 CONVERGENCE

We now show the convergence of the proposed numerical algorithm. We show that the sequence Wn(z) is

monotone increasing and bounded above.

Proposition 5.1. We assume (35) and postulate (38). We then have that

Wn(z) ≤Wn+1(z) ≤ min(W (z),W 0(z)). (43)

Proposition 5.1 then implies that the sequence Wn(z) converges pointwise to W (z). The convergence

is uniform on compact subsets of the interior of z ≥ 0 (refer to Theorem 10.8 in Rockafellar, 1970). The

limiting value function W (z) is differentiable on a dense set of z ≥ 0, which can be restated as the union

of open convex cones (refer to Theorem 25.5 in Rockafellar, 1970). The derivatives of the sequence Wn(z)

will then converge to those of the limiting value function W (z) on this union (refer to Theorem 25.7 in

Rockafellar, 1970). We can observe in numerical analysis that the derivatives W ′n(z) and W ′′
n (z) converge

pointwise to W ′(z) and W ′′(z), respectively. From (39), (40), (41), (42), the limit is therefore the solution

of the Bellman equation (15) with boundary conditions (22), (25). The sequence Wn(z) therefore provides

an approximation of the value function W (z).

5.3 IMPLEMENTATION

The iteration (41) is written as follows

βWn+1(z) =r + z

β
+ zW

′
n+1(z)

(
Ĉn(z)− σ∗$̂n(z).θ + |σ∗$̂n(z)|2 − (z + r − µ)

)
+ ρ2 + |σ∗$̂n(z)|2

2 z2W
′′
n+1(z) + ln Ĉn(z)− Ĉn(z)

β
− |σ

∗$̂n(z)|2

2β + σ∗$̂n(z).θ
β

(44)
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with the boundary conditions

βWn+1(0) =
r + |θ|2

2
β

+ ln β − 1, Wn+1(z)−W (z)→ 0 as z → +∞.

5.3.1 FIRST STEP APPROXIMATION

For n = 1, we can start with arbitrarily chosen Ĉ0(z) and σ∗$̂0(z). In order to speed up the convergence,

it is natural to choose that

Ĉ0(z) = C(z) = β

1− βzW ′(z)
,

σ∗$̂0(z) = σ∗$(z) = 1− βzW ′(z)
1− 2βzW ′(z)− βz2W

′′(z)
θ,

where W (z) is given in (24), which means that

C(z) = β
(
1 + z

r − µ+ ρ2

)
,

σ∗$(z) =
(
1 + z

r − µ+ ρ2

)
θ.

The first step approximation W1(z) is thus the solution of the equation (see (44) with n = 0)

βW1(z)− r + z

β
− zW ′

1(z)
[(

1 + z

r − µ+ ρ2

)(
β + |θ|2z

r − µ+ ρ2

)
− (z + r − µ)

]
−
ρ2 + |θ|2

(
1 + z

r−µ+ρ2
)2

2 z2W
′′
1 (z)− ln β + 1− ln

(
1 + z

r − µ+ ρ2

)
+ z

r − µ+ ρ2

− |θ|
2

2β
{

1−
( z

r − µ+ ρ2

)2}
= 0

with the boundary conditions

βW1(0) =
r + |θ|2

2
β

+ ln β − 1, W1(z)−W (z)→ 0 as z → +∞.

Note that W (z) given in Lemma 3.1 satisfies

βW (z)− r + z

β
− zW ′(z)

[(
1 + z

r − µ+ ρ2

)(
β + |θ|2z

r − µ+ ρ2

)
− (z + r − µ)

]
−
ρ2 + |θ|2

(
1 + z

r−µ+ρ2
)2

2 z2W
′′(z)− ln β + 1− ln

(
1 + z

r − µ+ ρ2

)
+ z

r − µ+ ρ2

− |θ|
2

2β
{

1−
( z

r − µ+ ρ2

)2}
= ρ2

2β

(
r − µ+ ρ2

z + r − µ+ ρ2

)2

.
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Hence,

βW (z) = ln
(
1 + z

r − µ+ ρ2

)
+ 1
β

(
r + |θ|

2 + ρ2

2
)

+ ln β − 1,

which serves as the boundary condition of W1(z) at z = +∞.

5.3.2 FIRST STEP APPROXIMATION ERROR

The approximation error is defined by

En(z) = W (z)−Wn(z) > 0.

We can majorize E1(z) by E1(z) = W (z) −W1(z), which is the first step approximation error. It is the

solution of the differential equation

βE1(z)− zE
′

1(z)
[(

1 + z

r − µ+ ρ2

)(
β + |θ|2z

r − µ+ ρ2

)
− (z + r − µ)

]
−
ρ2 + |θ|2

(
1 + z

r−µ+ρ2
)2

2 z2E
′′

1(z) = ρ2

2β

(
r − µ+ ρ2

z + r − µ+ ρ2

)2 (45)

with the boundary conditions

βE1(0) = ρ2

2β , E1(z)→ 0 as z → +∞. (46)

5.4 NUMERICAL RESULTS

We set the following baseline parameter values to obtain numerical results:

β = 0.01, r = 0.06, α = 0.1, σ = 0.25, µ = 0.05, ρ = 0.02,

which satisfy parameter conditions given in (23) and (30).

Under the baseline parameter values, the theoretical first step approximation error E1(z) that is the

solution of the differential equation (45) is now numerically illustrated in Figure 1. Notice that the numeri-

cally calculated first step error E1(z) at z = 0 is 2.0961, which is exactly the same with the theoretical first

step error ρ2/(2β2) = 2.0961 at z = 0 given in (46), and the first step error turns out to be a decreasing

function of income-to-wealth ratio z and approaches zero as z increases as consistent with the boundary

condition E1(z) as z → +∞ given in (46).

For n ≥ 2, taking the maximum of Wn(z)−Wn−1(z) as tolerance, the sequence Wn(z) converges when

n = 6 with tolerance 0.0000471083. We can numerically confirm that the value functionW (z) is an increasing

19



Figure 1: First step approximation error.

concave function of income-to-wealth ratio z (Figure 2), thus satisfying the analytic properties of the value

function stated in Proposition 4.1, Proposition 4.2, and Proposition 4.3.

The presence of unspanned income risk (ρ > 0) negatively affects the value function W (z) and the value

function decreases with respect to an increase in the unspanned income risk ρ.

Figure 2: Value function.

We numerically demonstrate that the optimal consumption Ĉ(z) is positive and an increasing function

of income-to-wealth ratio z (Figure 3 Left Panel) as we have theoretically verified in Proposition 4.4. We

also numerically confirm that the optimal portfolio $̂(z) is positive (Figure 3 Right Panel) as we have

theoretically proved in Proposition 4.6.

More interestingly, the effects of unspanned income risk (ρ > 0) show a significant discontinuity and

dramatic change in the optimal consumption and portfolio choice with a change in the unspanned income

risk ρ. Both the optimal consumption and the optimal investment fall sharply as the unspanned income

risk rises (i.e., as ρ increases) even when the income risk is quite small so that the income volatility is less

than just 6% (Figure 3). Further, the impact of unspanned income risk on the individual’s optimal choice
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Figure 3: Optimal consumption and portfolio choice.

is different with respect to levels of income-to-wealth ratio z. That is, the individual’s optimal decision is

more likely to be affected negatively by unspanned income risk when the income-to-wealth ratio is high than

when it is low.

The reduced consumption with unspanned income risk is consistent with the impact of the individual’s

precautionary savings motive on the optimal consumption/savings decision. The additional unspanned

income risk results in an increase in background risk (Bodie et al., 1992; Heaton and Lucas, 1997; Koo,

1998).14 More precisely, the increased background risk gives rise to the individual’s precaution that causes

her to become increasingly conservative, whilst the riskiness of the individual’s unspanned labor income rises.

Therefore, the individual’s optimal choice is to consume less with unspanned income risk for precautionary

reasons.

The decreased investment with unspanned income risk is consistent with the impact of the individual’s

risk diversification motive. In the absence of unspanned income risk, labor income has been traditionally

regarded as a substitute for risk-free bonds so that receiving labor income increases the demand for risky

assets in the individual’s optimal portfolio. In the presence of unspanned income risk, however, labor

income should be treated as a risky asset so that obtaining labor income rather exposes the individual to a

nondiversifiable income risk source. In an attempt to strike an optimal balance between risk-free and risky

assets, the individual would, thus, invest less in the stock market for risk diversification purposes.

The differing effects of unspanned income risk on the individual’s optimal consumption and portfolio

decision with respect to levels of income-to-wealth ratio are caused by the inverse relation between the

income-to-wealth ratio and wealth. Labor income itself is the staple income of poor individuals, so they

should concern themselves with substantial precautionary savings and risk diversification motives. Therefore,

the individual’s optimal decision is significantly affected by unspanned income risk when the income-to-
14The background risk results from an undiversifiable risk source affecting the individual’s consumption and portfolio choice

(e.g., income risk, house ownership risk, etc.).
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wealth ratio is high. In contrast, labor income is a relatively smaller income source of the wealthy, so they

have greater tolerance for unspanned income risk than the wealth poor do. In other words, the far enough

wealth they already accumulate serves as a buffer to smooth out unspanned income risk. Hence, there are

only minor quantitative differences between the rich with unspanned income risk and the rich without.

One way that is helpful for analyzing the impact of unspanned income risk on the individual’s optimal

strategies is to compute the utility cost (measured in certainty equivalent units) associated with suboptimal

strategies. We compute the utility loss incurred by individuals who neglect the presence of unspanned

income risk as follows:

W 0(z −∆(z)
)

= W (z),

where W 0(z) is the value function corresponding to the absence of unspanned income risk (ρ = 0), W (z) is

the value function corresponding to the presence of unspanned income risk (ρ > 0), and ∆(z) is the utility

cost (or loss) measured in certainty equivalent.

The utility loss increases with the income-to-wealth ratio z and the extent ρ to which the individual

is exposed to unspanned income risk (Figure 4). Intuitively, the ability to self-insure against the income

risk improves as wealth increases or equivalently, as z decreases, because the enough wealth the individual

accumulates serves as a buffer to smooth out an adverse shock in the market caused by the income risk, thus

resulting in small utility losses. Also, the large extent with a high ρ to which the individual is faced with

unspanned income risk leads the individual’s optimal consumption and portfolio choice to substantially de-

viate from the individual’s suboptimal choice in the absence of unspanned income risk. Such large deviations

between the individual’s optimal decision with and without unspanned income risk amount to a significant

increase in the utility costs the individual is likely to incur. Therefore, ignoring the presence of unspanned

income risk or misestimating the magnitude of unspanned income risk can be costly to individuals who aim

to make the optimal consumption and portfolio decision.

Figure 4: Utility cost.
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6 EXTENSIONS

6.1 THE RELATION BETWEEN THIS PAPER AND DUFFIE ET AL. (1997)

Duffie et al. (1997) have studied a very similar model to this paper, so that it is worth investigating

their relation to the paper. Applying a transformation suggested by Dai and Yi (2009) to the Bellman

equation (13) allows us to obtain the Bellman equation of Duffie et al. (1997) when specializing the setting

to logarithmic preferences. In particular, one could use the following transformation for a solution of the

Bellman equation (13) instead of (14):

V (x, y) = ln y
β

+ u(ξ), ξ = x

y
, (47)

where the wealth-to-income ratio ξ is the state variable instead of the income-to-wealth ratio z given in (14).

Notice the formulas as follows:

x
∂V

∂x
= ξu′(ξ), x2∂

2V

∂x2 = ξ2u′′(ξ),

y
∂V

∂x
= u′(ξ), y

∂V

∂y
= 1
β
− ξu′(ξ), y2∂

2V

∂y2 = − 1
β

+ 2ξu′(ξ) + ξ2u′′(ξ),

xy
∂2V

∂x∂y
= −ξu′(ξ)− ξ2u′′(ξ).

We then obtain by inserting the above formulas in the Bellman equation (13) the following equation for

u(ξ):

βu(ξ) = {(r − µ+ ρ2)ξ + 1}u′(ξ) + µ

β
− 1− ρ2

2β − ln u′(ξ) + 1
2ρ

2ξ2u′′(ξ)− |θ|
2

2
u′(ξ)2

u′′(ξ) ,
(48)

which is the Bellman equation of Duffie et al. (1997) with logarithmic preferences.

Notice the difference between our Bellman equation (15) and the Bellman equation (48) of Duffie et

al. (1997). The difference is that the income-to-wealth ratio z is the state variable of (15), whereas the

wealth-to-income ratio ξ is the variable of (48). Interestingly, the two Bellman equations are quite different,

but having a linkage. Using a reciprocal change of variable from ξ to z in (48) does not directly lead to our

Bellman equation (15). Instead, we need to use the following relation between W (z) of (15) and u(ξ) of (48)

by

W (z) = − ln ξ
β

+ u(ξ), (49)

which results from a straightforward comparison between transformations in (14) and (47). Our solution

W (z) of the Bellman equation (15) leads to the solution u(ξ) of the Bellman equation (48) of Duffie et al.

(1997) by the relation (49). One can therefore obtain the solution by either this paper (W (z) of (15)) or
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Duffie et al. (1997) (u(ξ) of (48)).

Notice also that without W (z) of the Bellman equation (15) in the paper, we can solve the Bellman

equation (48) of Duffie et al. (1997) explicitly. Different from viscosity solutions by Duffie et al. (1997) that

are not explicit, the following theorem explicitly characterizes the value function and optimal strategies as

a function of wealth-to-income ratio.

Theorem 6.1. With the standing assumption (26), the solution of the Bellman equation (48) (i.e., the

value function) is explicitly characterized by

u(ξ) = 1
β

[µ
β
− 1− ρ2

2β + ln
(
ξH(ξ)

)
+ r − µ+ ρ2 + 1/ξ +m(ξ)

H(ξ)
]
,

where

H(ξ) = β
(
1 + 1

ξ(r − µ+ ρ2)
)

exp
( ∫ ξ

0

−m(ζ) +
√
m(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)

and m(ξ) is a solution of the following integral equation:

ξm(ξ) = |θ|
2

2
1

r − µ+ ρ2

+ βξ −
∫ ξ

0

(−m(η) +
√
m(η)2 + ρ2|θ|2
ρ2

){
β
(

1 + 1
η(r − µ+ ρ2)

)
exp

(∫ η

0

−m(ζ) +
√
m(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)
− 1
η

}
dη

+
∫ ξ

0
m(η)

(−m(η) +
√
m(η)2 + ρ2|θ|2
ρ2

)
dη.

Consequently, the optimal consumption is

Ĉ(ξ) = H(ξ)

with

Ĉ(ξ)− β
(
1 + 1

ξ(r − µ+ ρ2)
)
→ 0 as ξ → 0,

Ĉ(ξ)− β → 0 as ξ → +∞,

and the optimal portfolio is

$̂(z) = (σ∗)−1θ
H(ξ)

H(ξ) + ξH ′(ξ) .

6.2 POWER UTILITY CASE

The optimal consumption and investment problem we have considered so far is restrictive by specializing

the setting to logarithmic preferences. Provided that the individual’s optimal strategies would vary over the

levels of risk aversion, it is therefore more realistic to consider the power utility case to consider different

levels of risk aversion.

We consider the power utility C(t)γ/γ over intermediate consumption C(t), where 1 − γ > 0 (γ 6= 0)
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is the constant coefficient of the individual’s relative risk aversion. This power utility satisfies the usual

conditions that are twice continuously differentiable, strictly increasing, and strictly concave.

The payoff for the individual to maximize with the power utility over the infinite horizon is given by

Jx,y
(
C(.), $(.)

)
= E

[∫ +∞

0
e−βt
{C(t)X(t)}γ − 1

γ
dt

]
,

which is subject to

C(t) > 0.

The specification for the power utility case allows us to obtain the logarithmic utility case by letting γ

approach 0. For any adapted processes C(t) and $(t), the wealth X(t) should be positive.

The value function is the maximized payoff with two states {X(t), y(t)} and two controls {C(t), $(t)}

that are adapted to the filtration F t generated by the Brownian motion processes w(t) and wy(t). The value

function is then defined by

V (x, y) = sup
C(.),$(.)

Jx,y
(
C(.), $(.)

)
. (50)

6.2.1 BELLMAN EQUATION

We can obtain the Bellman equation associated with the value function (50) as follows

βV (x, y) =(rx+ y)∂V
∂x

+ µy
∂V

∂y
+ 1

2ρ
2y2∂

2V

∂y2

+ sup
C

({Cx}γ − 1
γ

− Cx∂V
∂x

)
+ sup

$

(
xσ∗$.θ

∂V

∂x
+ 1

2x
2|σ∗$|2 ∂

2V

∂x2

)
.

(51)

The sup can be attained at the following optimal controls

Ĉ =
(∂V
∂x

) 1
γ−1
/
x, $̂ = −1

x
(σ∗)−1∂V

∂x

/∂2V

∂x2 .

We can now rewrite the Bellman equation (51) with the optimal controls stated above as

βV (x, y) =(rx+ y)∂V
∂x

+ µy
∂V

∂y
+ 1

2ρ
2y2∂

2V

∂y2

+ 1− γ
γ

(∂V
∂x

) γ
γ−1 − 1

γ
− |θ|

2

2
(∂V
∂x

)2/∂2V

∂x2 .

(52)

Following Dai and Yi (2009), we now perform the following transformation to reduce the dimension of

the Bellman equation (52):

V (x, y) = yγv(ξ)− 1
βγ
, ξ = x

y
.
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Notice the formulas as follows:

∂V

∂x
= yγ−1v′(ξ), ∂2V

∂x2 = yγ−2v′′(ξ),

∂V

∂y
= γyγ−1v(ξ)− yγ−1ξv′(ξ),

∂2V

∂y2 = γ(γ − 1)yγ−2v(ξ)− 2(γ − 1)yγ−2ξv′(ξ) + yγ−2ξ2v′′(ξ).

Inserting these formulas in the Bellman equation (52), we obtain the new equation for v(z)

1
2ρ

2ξ2v′′(ξ) + {(r − µ+ ρ2)ξ + 1}v′(ξ)−
(
β − γµ− 1

2γ(γ − 1)ρ2
)
v(ξ) + 1− γ

γ
v′(ξ)

γ
γ−1 − |θ|

2

2
v′(ξ)2

v′′(ξ) .
(53)

6.2.2 CONVEX-DUALITY APPROACH

We now adopt the convex-duality approach of Bensoussan et al. (2016). We first introduce the dual variable

λ(ξ) as the first derivative of v(ξ):

λ(ξ) = v′(ξ). (54)

We then introduce the convex-dual function G(λ(ξ)) as

G(λ(ξ)) = ξ + 1
r − µ+ ρ2 , (55)

implying that

yG(λ(ξ)) = x+ y

r − µ+ ρ2 , (56)

which is the total wealth that is the sum of financial wealth x and present value y/(r − µ + ρ2) of future

income. The dual function G(λ(ξ)) satisfies the following relations:

G′(λ(ξ))λ′(ξ) = 1, G′′(λ(ξ))λ′(ξ)2 +G′(λ(ξ))λ′′(ξ) = 0. (57)

We simply write G(λ(ξ)) as G(λ) and λ(ξ) as λ unless there is any confusion. Differentiating the both sides

of the Bellman equation (53) with respect to ξ and using the dual function G(λ) in (55) with the relations

(54) and (57), we obtain the new equation for G(λ): for any λ > 0,

−1
2 |θ|

2λ2G′′(λ)− (|θ|2 + r2 − r1)λG′(λ) + r1G(λ)− λ
1

γ−1 + 1
2ρ

2 d

dλ

((G(λ)− 1/r1
)2

G′(λ)
)

= 0, (58)

where

r1 = r − µ+ ρ2, r2 = β − γµ− 1
2γ(γ − 1)ρ2.
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We address the boundary conditions associated with the Bellman equation (58). We first impose the

following boundary condition of G(λ) at λ = +∞:

G(∞) = 0, (59)

which implies that the dual variable λ goes up infinity as the financial wealth x goes down to its lower bound

−y/(r − µ+ ρ2) so that the boundary condition (59) is obtained by (56). We then add one more condition

of G(λ) at λ = 0 as

G(λ) = 1
K
λ

1
γ−1 , (60)

where

K = γ

γ − 1
(
r + |θ|2

2(1− γ)
)

+ β

1− γ ,

which is known as the Merton constant. The boundary condition (60) is naturally obtained. Notice that

the financial wealth x goes up infinity as the dual variable λ goes down to zero so that unspanned income

risk can be safely ignored. Therefore, when λ = 0 (or equivalently, when x = +∞), the problem is to solve

the Bellman (58) ρ = 0, thus leading to the boundary condition (60).

6.2.3 NUMERICAL RESULTS

Applying the numerical algorithm developed in Section 5 to the Bellman equation (58), we obtain under

the same baseline parameter values considered in Section 5 numerical results for optimal consumption and

portfolio choice with two different levels of relative risk aversion (1-γ=2 and 1-γ=3) in Figure 5 and Figure 6.

Changes in relative risk aversion 1− γ affect the optimal consumption and portfolio decision. Increased risk

aversion leads the individual to reduce both consumption and risky portfolio, regardless of the extent ρ of

unspanned income risk. We can confirm that the effects of unspanned income risk on the optimal strategies

are not altered with levels of risk aversion. That is, an increase in unspanned income risk still negatively

affects both consumption and risky investment of risk averse individuals with substantial reductions.

7 CONCLUSION

In this paper, we have developed a new dynamic programming approach for solving the optimal consump-

tion and investment problem especially with independent stochastic labor income. The challenge with the

additional nondiversifiable Brownian risk source of labor income is to solve the derived two-dimensional non-

linear Bellman equation. Remarkably, we address the challenge by reducing the two-dimensional equation

of wealth and income to the one-dimensional equation of income-to-wealth ratio. We are able to explic-
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Figure 5: Optimal consumption choice. Left (1-γ=2), Right (1-γ=3).

Figure 6: Optimal portfolio choice. Left (1-γ=2), Right (1-γ=3).

itly characterize the value function and the optimal consumption and investment strategy as a function

of income-to-wealth ratio. We provide the useful analytic comparative statics associated with the value

function and optimal strategies.

Importantly, we have developed a quite general numerical algorithm for control iteration and solve the

Bellman equation as a sequence of solutions to ordinary differential equations. This numerical algorithm

can be readily applied to many other optimal stochastic control problems especially with additional nondi-

versifiable Brownian risks, giving rise to nonlinear Bellman equations. Finally, our numerical analysis offers

new insights on the individual’s optimal consumption and portfolio choice with stochastic labor income.

The several interesting extensions to this model should prove relatively straightforward. A first important

extension on the model would be to investigate the general case of stochastic labor income in which labor

income and stock market returns are partially correlated (not independent only as we have assumed in

the paper). Not only the extent of unspanned income risk itself, but interestingly, also the extent of the

correlation between labor income and stock market returns would alter quantitative and qualitative features

of the model result. Further, incorporating a cointegration between labor income and stock price into the

model can reflect the fact in reality that the correlation is actually positive in the long run, not in the short
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run (Benzoni et al., 2007). We hope our paper will serve as a stepping stone for such a future work on the

general correlation case.

A second important extension on the model would be to consider for individual preference the more

general recursive utility than the present logarithmic utility. The individual’s optimal decisions would

change a lot with a change in the levels of elasticity of intertemporal substitution.

A third extension of the model would be to consider retirement flexibility in the baseline consump-

tion/savings and investment model with stochastic labor income. The extension suggested can be viewed as

a crucial complement to our current understanding of retirement models without stochastic labor income.

A fourth extension of the model is to study its general equilibrium asset pricing implications. It would

be of particular interest how the features of returns are likely to change according to the differing consump-

tion/savings and investment decisions with stochastic labor income.
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APPENDIX

A The Proof of Theorem 3.1

Recall from (16) that the optimal consumption is given by

Ĉ(z) = β

1− βzW ′(z) .

For notational simplicity, we define

Ψ(z) = β

1− βzW ′(z) . (A-1)

We can rewrite (A-1) as

W ′(z) = 1
z

( 1
β
− 1

Ψ(z)

)
and hence,

W ′′(z) = − 1
z2

( 1
β
− 1

Ψ(z) −
zΨ′(z)
Ψ2(z)

)
.

Therefore,

1− βzW ′(z) = β

Ψ(z) (A-2)

and

1− 2βzW ′(z)− βz2W ′′(z) = β

Ψ2(z)

(
Ψ(z)− zΨ′(z)

)
. (A-3)

Thus,
(1− βzW ′(z))2

1− 2βzW ′(z)− βz2W ′′(z) = β

Ψ(z)− zΨ′(z) . (A-4)

We can then rewrite the Bellman equation (15) as

βW (z) = 1
β

(
µ− ρ2

2

)
+
r − µ+ z + ρ2

2
Ψ(z)

+ ρ2

2
zΨ′(z)
Ψ2(z) + ln Ψ(z)− 1 + |θ|

2

2
1

Ψ(z)− zΨ′(z)

(A-5)

or equivalently,

βW (z) = 1
β

(
µ− ρ2

2

)
+ ln Ψ(z)− 1 + r − µ+ ρ2 + z

Ψ(z)

+ 1
Ψ(z)

[ |θ|2
2

1
1− zΨ′(z)

Ψ(z)

− ρ2

2

(
1− zΨ′(z)

Ψ(z)

)]
with the boundary conditions

Ψ(0) = β, Ψ(z)− β
(

1 + z

r − µ+ ρ2

)
→ 0, as z → +∞. (A-6)
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We claim the following property:

0 < 1− zΨ′(z)
Ψ(z) < 1. (A-7)

Notice that 1− zΨ′(z)
Ψ(z) = 1 at z = 0 and 1− zΨ′(z)

Ψ(z) = 0 as z → +∞. Because

1− zΨ′(z)
Ψ(z) = z

d

dz

(
ln z

Ψ(z)

)
,

the property (A-7) is, thus, a consequence that z

Ψ(z) is an increasing function of z as stated in the following proposition:

Proposition A.1. We assume (35). We then have

z → z

Ψ(z) is increasing.

We introduce the function

v(z) = |θ|
2

2
1

1− zΨ′(z)
Ψ(z)

− ρ2

2

(
1− zΨ′(z)

Ψ(z)

)
. (A-8)

We know from (A-6) that

v(0) = |θ|
2 − ρ2

2 , v(z)− |θ|
2

2

(
1 + z

r − µ+ ρ2

)
→ 0 as z → +∞.

v(z) is therefore positive at z = 0 and at z = +∞. We claim that

v(z) > 0.

If v(z) becomes negative for z > 0, there then exists a point z∗ such that v(z∗) = 0. In this case, however, by (A-8)

we obtain with (A-7) that
|θ|2

2 = ρ2

2

(
1− zΨ′(z)

Ψ(z)

)2
≤ ρ2

2 ,

which contradicts to the assumption (26) in the theorem.

Notice that the rewritten Bellman equation (A-5) can be restated as

βW (z) = 1
β

(
µ− ρ2

2

)
+ ln Ψ(z)− 1 + r − µ+ ρ2 + z + v(z)

Ψ(z) ,

which is the value function as stated in the theorem.

We will then explicitly characterize Ψ(z) and v(z). By (A-8), we clearly see that 1− zΨ′(z)
Ψ(z) satisfies the following

second order equation:
ρ2

2

(
1− zΨ′(z)

Ψ(z)

)2
+ v(z)

(
1− zΨ′(z)

Ψ(z)

)
− |θ|

2

2 = 0. (A-9)
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Due to the property (A-7), 1− zΨ′(z)
Ψ(z) is the positive root of the equation (A-9) and hence,

1− zΨ′(z)
Ψ(z) =

−v(z) +
√
v(z)2 + ρ2|θ|2
ρ2 . (A-10)

We have from (A-10) that
1
z
− Ψ′(z)

Ψ(z) =
−v(z) +

√
v(z)2 + ρ2|θ|2
ρ2z

,

which implies that

− d

dz
ln
(Ψ(z)

z

)
=
−v(z) +

√
v(z)2 + ρ2|θ|2
ρ2z

.

By (A-6), we know that Ψ(z)
z
→ β

r − µ+ ρ2 as z → +∞. By integrating between z and +∞, we now obtain the

analytic expression of function Ψ(z) as follows:

Ψ(z) = βz

r − µ+ ρ2 exp
(∫ +∞

z

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)
. (A-11)

It remains to obtain the analytic expression of function v(z). The following proposition shows that v(z) is actually

a solution of the differential equation.

Proposition A.2. The function v(z) is a solution of the differential equation

−v′(z) = β

r − µ+ ρ2
d

dz

{
z exp

(∫ +∞

z

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)}

+ β

z

{
1− z

r − µ+ ρ2 exp
(∫ +∞

z

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)}

+
−v(z) +

√
v(z)2 + ρ2|θ|2
ρ2 + v(z) + r − µ+ ρ2

z

(−v(z) +
√
v(z)2 + ρ2|θ|2
ρ2 − 1

)
.

(A-12)

We can finally derive an integral equation for v(z) with v(0) = |θ|
2 − ρ2

2 as follows

v(z) = |θ|
2 − ρ2

2

+ β
[
1− z

r − µ+ ρ2 exp
(∫ +∞

z

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)

−
∫ z

0

1
ζ

{
1− ζ

r − µ+ ρ2 exp
(∫ +∞

ζ

−v(u) +
√
v(u)2 + ρ2|θ|2
ρ2u

du
)}
dζ
]

−
∫ z

0

−v(ζ) +
√
v(ζ)2 + ρ2|θ|2
ρ2 dζ

+
∫ z

0

v(ζ) + r − µ+ ρ2

ζ

(
1−
−v(ζ) +

√
v(ζ)2 + ρ2|θ|2
ρ2

)
dζ. �

B The Proof of Proposition A.1

We set Γ(z) = z

Ψ(z) . We know that Γ(0) = 0 and Γ(z)→ r − µ+ ρ2

β
as z → +∞.
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We will find a differential equation for Γ(z). We have that

Ψ(z) = z

Γ(z) , Ψ′(z) = 1
Γ(z) −

zΓ′(z)
Γ2(z) ,

Ψ′′(z) = −zΓ
′′(z)

Γ2(z) + 2z (Γ′(z))2

Γ3(z) − 2 Γ′(z)
Γ2(z) .

As a result,

1− zΨ′(z)
Ψ(z) = z

Γ′(z)
Γ(z) ,

z2 Ψ′′(z)
Ψ(z) = −z2 Γ′′(z)

Γ(z) + 2
(
z

Γ′(z)
Γ(z)

)2
− 2zΓ′(z)

Γ(z) .

Differentiating the equation (A-5) with respect to z allows us to obtain that

βW ′(z) =−
(
r − µ+ z

)Ψ′(z)
Ψ2(z) + 1

Ψ(z) + Ψ′(z)
Ψ(z) − ρ

2z
(Ψ′(z))2

Ψ3(z)

+ 1
2zΨ

′′(z)
( ρ2

Ψ2(z) + |θ|2

(Ψ(z)− zΨ′(z))2

)
.

Using (A-2), we obtain the equation

β =(Ψ(z)− z)
(

1− zΨ′(z)
Ψ(z)

)
+ (r − µ)zΨ

′(z)
Ψ(z) + ρ2

(zΨ′(z)
Ψ(z)

)2

− z2

2
Ψ′′(z)
Ψ(z)

{
ρ2 + |θ|2

/(
1− zΨ′(z)

Ψ(z)

)2}
.

(A-13)

Therefore, the equation (A-13) becomes

β =z
( 1

Γ(z) − 1
)
z

Γ′(z)
Γ(z)

+ (r − µ)
(

1− zΓ′(z)
Γ(z)

)
+ ρ2

(
1− zΓ′(z)

Γ(z)

)2

+ 1
2

[
z2 Γ′′(z)

Γ(z) − 2
(
z

Γ′(z)
Γ(z)

)2
+ 2zΓ′(z)

Γ(z)

](
ρ2 + |θ|2

/(
z

Γ′(z)
Γ(z)

)2)
.

(A-14)

Because Γ(z) > 0 and Γ(0) = 0, the function Γ(z) increases for z > 0. Otherwise, there exists a local minimum of

Γ(z) at z = z∗ with Γ′(z∗) = 0 and Γ′′(z∗) < 0. In this case, however, by the equation (A-14) we obtain that

β = r − µ+ ρ2 + 1
2(z∗)2 Γ′′(z∗)

Γ(z∗) < r − µ+ ρ2,

which contradicts to the assumption (35). Therefore, Γ(z) is an increasing function of z > 0 and the proof is now

complete. �
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C The Proof of Proposition A.2

By differentiating (A-8) with respect to z with rearrangements, we obtain that

−zv′(z) =− z2 Ψ′′(z)
Ψ(z)

(ρ2

2 + |θ|2

2(1− zΨ′(z)
Ψ(z) )2

)

+ ρ2

2

(
z

Ψ′(z)
Ψ(z)

)2
− ρ2

2 z
Ψ′(z)
Ψ(z) −

|θ|2

2
zΨ′(z)

Ψ(z)

1− zΨ′(z)
Ψ(z)

.

We can then easily get that

−zv′(z) + v(z)zΨ′(z)
Ψ(z) =− z2 Ψ′′(z)

Ψ(z)

(ρ2

2 + |θ|2

2(1− zΨ′(z)
Ψ(z) )2

)
+ ρ2

(
z

Ψ′(z)
Ψ(z)

)2
− ρ2z

Ψ′(z)
Ψ(z) .

It follows from (A-13) that

β =(Ψ(z)− z)
(

1− zΨ′(z)
Ψ(z)

)
+ (r − µ)zΨ

′(z)
Ψ(z)

− zv′(z) + v(z)zΨ′(z)
Ψ(z) + ρ2z

Ψ′(z)
Ψ(z) .

Hence,
β −

(
r − µ+ ρ2 + v(z)

)
z

=− v′(z)

+
(

1− zΨ′(z)
Ψ(z)

)(Ψ(z)−
(
r − µ+ z + ρ2 + v(z)

)
z

)
or equivalently,

−v′(z) =Ψ′(z) + β −Ψ(z)
z

+ 1− zΨ′(z)
Ψ(z)

− v(z) + r − µ+ ρ2

z
z

Ψ′(z)
Ψ(z) .

Using (A-10) and (A-11), we finally obtain (A-12). �

D The Proof of Corollary 3.1

When ρ = 0, the integral equation for v(z) given in (27) in Theorem 3.1 reduces to

v(z) = |θ|
2

2

+ β
[
1− z

r − µ
exp

(∫ +∞

z

|θ|2

2ζv(ζ)dζ
)

−
∫ z

0

1
ζ

{
1− ζ

r − µ
exp

(∫ +∞

ζ

|θ|2

2uv(u)du
)}
dζ
]

−
∫ z

0

|θ|2

2v(ζ)dζ +
∫ z

0

v(ζ) + r − µ
ζ

(
1− |θ|2

2v(ζ)

)
dζ.

(A-15)
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The integral equation (A-15) has a closed-form solution as follows

v(z) = |θ|
2

2

(
1 + z

r − µ

)

because of

exp
(∫ +∞

z

|θ|2

2ζv(ζ)dζ
)

= z + r − µ
z

.

When ρ = 0, the function Ψ(z) given in (A-11) in Theorem 3.1 then reduces to

Ψ(z) = βz

r − µ
exp

(∫ +∞

z

|θ|2

2ζv(ζ)dζ
)

= βz

r − µ
z + r − µ

z

= β
(

1 + z

r − µ

)
.

By Theorem 3.1, the value function when ρ = 0 is given by

W 0(z) = 1
β

[µ
β

+ ln Ψ(z)− 1 + r − µ+ z + v(z)
Ψ(z)

]
= 1
β

[µ
β

+ ln
{
β
(

1 + z

r − µ

)}
− 1 +

{
r − µ+ z + |θ|

2

2

(
1 + z

r − µ

)}/{
β
(

1 + z

r − µ

)}]
= 1
β

ln
(

1 + z

r − µ

)
+ 1
β

{ 1
β

(
r + |θ|

2

2

)
+ ln β − 1

}
,

which is the value function as stated in the corollary.

Alternatively, we can solve the Bellman equation (15) directly. With substitution of the value function W 0(z) in

the Bellman equation (15), we have that

βW 0(z)− r + z

β

(
1− βzW 0′

(z)
)
− µzW 0′

(z)− 1
2ρ

2z2W 0′′
(z)

− ln β + 1 + ln
(
1− βzW 0′

(z)
)
− |θ|

2

2β

(
1− βzW 0′(z)

)2
1− 2βzW 0′(z)− βz2W 0′′(z)

= −1
2ρ

2z2W 0′′
(z)

= ρ2

2β
z2

(z + r − µ)2 > 0

(A-16)

with the boundary conditions

W (0) =

r + |θ|2
2

β
+ ln β − 1

β

and

W (z)− 1
β

ln
(

1 + z

r − µ

)
+ 1
β

{ 1
β

(
r + |θ|

2

2

)
+ ln β − 1

}
→ 0, as z → +∞.

The Bellman equation (15) is now solved when ρ = 0 with W 0(z) . �
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E The Proof of Proposition 4.1

The relation (29) is true at the boundaries z = 0 and z = +∞. Next, we can rewrite (21) at z = +∞ as

βW (z) =r + z

β

(
1− βzW ′(z)

)
+ µzW

′(z) + 1
2ρ

2z2W
′′(z) + ln β

+ sup
C

[
lnC − C

(
1− βzW ′(z)

)]
+ 1
β

sup
$

[
σ∗$.θ

(
1− βzW ′(z)

)
− 1

2 |σ
∗$|2

(
1− 2βzW ′(z)− βz2W

′′(z)
)]

+ ρ2

2β

( r − µ+ ρ2

z + r − µ+ ρ2

)2
.

(A-17)

Comparing (A-17) and (21), we obtain that

β
(
W (z)−W (z)

)
≥ −(r − µ+ z)z(W ′(z)−W ′(z)) + 1

2ρ
2z2(W ′′(z)−W ′′(z))

+ sup
C

[
lnC − C

(
1− βzW ′(z)

)]
− sup

C

[
lnC − C

(
1− βzW ′(z)

)]
+ 1
β

sup
$

[
σ∗$.θ

(
1− βzW ′(z)

)
− 1

2 |σ
∗$|2

(
1− 2βzW ′(z)− βz2W

′′(z)
)]

− 1
β

sup
$

[
σ∗$.θ

(
1− βzW ′(z)

)
− 1

2 |σ
∗$|2

(
1− 2βzW ′(z)− βz2W ′′(z)

)]
.

The optimal controls Ĉ(z) and $̂(z) given in (16) and (17), respectively, then imply that

β
(
W (z)−W (z)

)
≥ −(r − µ+ z)z

(
W
′(z)−W ′(z)

)
+ 1

2ρ
2z2(W ′′(z)−W ′′(z))

+ βĈ(z)z
(
W
′(z)−W ′(z)

)
− σ∗$̂(z).θz

(
W
′(z)−W ′(z)

)
+ |σ∗$̂(z)|2z

(
W
′(z)−W ′(z)

)
+ 1

2 |σ
∗$̂(z)|2z2(W ′′(z)−W ′′(z)).

Suppose that W (z) − W (z) < 0. At z = 0 or z = +∞, W (z) − W (z) cannot be negative. Also, any negative

local minimum of W (z) −W (z) at z = z∗ that satisfies W ′(z∗) −W ′(z∗) = 0 and W
′′(z∗) −W ′′(z∗) > 0 leads to

W (z)−W (z) ≥ 0, which is contradict toW (z)−W (z) < 0. Further, W (z)−W (z) cannot have an infimum at z = +∞

because W (z)−W (z) is strictly negative at z = +∞. Therefore, W (z)−W (z) ≥ 0, thus obtaining (29). �

F The Proof of Proposition 4.2

Because W (0) = 1
β

(r + |θ|2
2

β
+ ln β − 1

)
= W 0(0), the relation (31) is true at z = 0. By formulas (24) and (28), we

know that

W (z)−W 0(z) = 1
β

ln
(r − µ+ ρ2 + z

r − µ+ z

)
− 1
β

ln
(r − µ+ ρ2

r − µ

)
+ ρ2

2β2 .

A-7



Therefore,

lim
z→+∞

{
W (z)−W 0(z)

}
= − 1

β
ln
(r − µ+ ρ2

r − µ

)
+ ρ2

2β2 < 0

due to the assumption (30). Because of (25),

lim
z→+∞

{
W (z)−W 0(z)

}
< 0.

Hence, the relation (31) is also true at z = +∞. With similar arguments in the proof of Proposition (4.1), we can

conclude that the relation (31) is true for any z. �

G The Proof of Proposition 4.3

It suffice to prove that 0 ≤W (z). 0 ≤W (z) is true at z = 0 and z → +∞. Next, using (21) we can obtain by taking

C = 1 and σ∗$ = θ that
βW (z)

≥ 1
β

(
r + |θ|

2

2 + z
)

+ ln β − 1

+
(
β − (r − µ)− z

)
zW ′(z) + ρ2 + |θ|2

2 z2W ′′(z)

>
(
β − (r − µ)− z

)
zW ′(z) + ρ2 + |θ|2

2 z2W ′′(z).

If W (z) < 0, the negative values of W (z) cannot be obtained at z = 0 and z = +∞. There then must be a local

minimum ofW (z) at some point z∗ such thatW (z∗) < 0 withW ′(z∗) = 0 andW ′′(z∗) > 0, which results inW (z) > 0

that contradicts to W (z) < 0. Therefore, 0 ≤W (z). �

H The Proof of Proposition 4.4

The property Ψ(z) ≥ β is true at z = 0 and as z → +∞. If we have points whose value is below β, there is a local

minimum of Ψ(z) at z = z∗ such that Ψ(z∗) < β with Ψ′(z∗) = 0 and Ψ′′(z∗) > 0. In this case, however, by the

equation (A-13) we can obtain that Ψ(z∗) > β, which is a contradiction. Hence, Ψ(z) ≥ β.

We now prove (33). Because Ψ(z) ≥ β, the boundary condition Ψ(0) = β given in (A-6) shows that a minimum

of Ψ(z) can be attained at z = 0. So, Ψ(z) increases as z increases. Otherwise, the result (33) follows immediately.

Suppose that Ψ(z) decreases as z increases. There then exists a local maximum of Ψ(z) at z = z∗ with Ψ′(z∗) = 0

and Ψ′′(z∗) < 0. We then have from the equation (A-13) that

β ≥ Ψ(z∗)− z∗. (A-18)

Notice that Ψ(z)(≥ β) cannot keep decreasing after z∗ because Ψ(z) approaches β
(

1 + z

r − µ+ ρ2

)
(≥ β) as z → +∞.

There then exists a local minimum of Ψ(z) at z = z∗∗ > z∗ with Ψ′(z∗∗) = 0 and Ψ′′(z∗∗) > 0. In this case, however,
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by the equation (A-13) we can obtain that

β ≤ Ψ(z∗∗)− z∗∗ < Ψ(z∗)− z∗,

which contradicts to (A-18). Hence, (33) is now proven. �

I The Proof of Proposition 4.5

We first begin by computing Ψ′(0). We can rewrite (A-13) when z is close to 0 as

β ∼ β + Ψ′(0)z − z + r − µ
β

Ψ′(0)z,

so necessarily

Ψ′(0) = β

β + r − µ
.

By (35) with r > µ, we have in particular β > ρ2. Therefore, the tangent of Ψ(z) at z = 0 is below the upper bound

β
(

1 + z

r − µ+ ρ2

)
given in (36).

If the function Ψ(z) crosses the upper bound, the function cannot decrease any more because Ψ′(z) ≥ 0 given in

(33) but should approach the upper bound as z → +∞ due to the boundary condition given in (A-6). There then

exists a local maximum of Ψ(z) at z = z∗ such that

Ψ(z∗) > β
(

1 + z∗

r − µ+ ρ2

)

with Ψ′(z∗) = 0 and Ψ′′(z∗) < 0. In this case, by the equation (A-13) we can obtain that

β ≥ Ψ(z∗)− z∗,

as a result,

β ≥ β + βz∗

r − µ+ ρ2 − z
∗,

or equivalently,

β ≤ r − µ+ ρ2,

which is contradict to the assumption (35). Therefore, Ψ(z) cannot cross the upper bound and the proof is complete.

�
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J The Proof of Proposition 4.6

Recall from (17) that the optimal portfolio is given by

$̂(z) = (σ∗)−1θ
1− βzW ′(z)

1− 2βzW ′(z)− βz2W ′′(z) .

With the relations given in (A-3) and (A-4), the optimal portfolio can be rewritten as a function of consumption Ψ(z)

as follows
$̂(z) = (σ∗)−1θ

Ψ(z)
Ψ(z)− zΨ′(z)

= (σ∗)−1θ
1

1− zΨ′(z)
Ψ(z)

.

Due to the property (A-7) with

1− zΨ′(z)
Ψ(z) = 1 at z = 0

and

1− zΨ′(z)
Ψ(z) = 0 as z → +∞,

the optimal portfolio $̂(z) is, thus, positive. �

K The Proof of Proposition 5.1

We can rewrite (41) as follows

βWn+1(z) =r + z

β
− zW

′

n+1(z)(z + r − µ) + 1
2ρ

2z2W
′′

n+1(z)

+
(
Ĉn(z)− σ∗$̂n(z).θ + |σ∗$̂n(z)|2

)
z
(
W

′

n+1(z)−W ′n(z)
)

+ 1
2 |σ
∗$̂n(z)|2z2

(
W

′′

n+1(z)−W
′′

n (z)
)

+ ln Ĉn(z)− Ĉn(z)
( 1
β
− zW

′

n(z)
)

+ σ∗$̂n(z).θ
( 1
β
− zW ′n(z)

)
− 1

2 |σ
∗$̂n(z)|2

( 1
β
− 2zW

′

n(z)− z2W
′′

n (z)
)
.

From the definition (37) of Ĉn(z) and $̂n(z), we always obtain that

βWn+1(z) ≥r + z

β
− zW

′

n+1(z)(z + r − µ) + 1
2ρ

2z2W
′′

n+1(z)

+
(
Ĉn(z)− σ∗$̂n(z).θ + |σ∗$̂n(z)|2

)
z
(
W

′

n+1(z)−W ′n(z)
)

+ 1
2 |σ
∗$̂n(z)|2z2

(
W

′′

n+1(z)−W
′′

n (z)
)

+ ln Ĉn(z)− Ĉn(z)
( 1
β
− zW

′

n(z)
)

+ σ∗$̂n(z).θ
( 1
β
− zW ′n(z)

)
− 1

2 |σ
∗$̂n(z)|2

( 1
β
− 2zW

′

n(z)− z2W
′′

n (z)
)
.

(A-19)
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Applying (41) with n− 1, we have that

βWn(z) =r + z

β
− zW

′

n(z)(z + r − µ) + 1
2ρ

2z2W
′′

n (z)

+ ln Ĉn−1(z)− Ĉn−1(z)
( 1
β
− zW ′n(z)

)
+ σ∗$̂n−1(z).θ

( 1
β
− zW ′n(z)

)
− 1

2 |σ
∗$̂n−1(z)|2

( 1
β
− 2zW ′n(z)− z2W

′′

n (z)
)
.

(A-20)

Subtracting (A-20) from (A-19), we obtain that

β
(
Wn+1(z)−Wn(z)

)
≥
(
Ĉn(z)− σ∗$̂n(z).θ + |σ∗$̂n(z)|2 − (z + r − µ)

)
z
(
W

′

n+1(z)−W ′n(z)
)

+ 1
2

(
ρ2 + |σ∗$̂n(z)|2

)
z2
(
W

′′

n+1(z)−W
′′

n (z)
)
.

(A-21)

On the boundary we have that

Wn+1(0)−Wn(0) = 0, Wn+1(z)−Wn(z)→ 0 as z → +∞. (A-22)

We claim thatWn+1(z)−Wn(z) ≥ 0. IfWn+1(z)−Wn(z) < 0, there then exists a local minimum ofWn+1(z)−Wn(z) at

z = z∗ due to the boundary conditions given in (A-22) such thatW ′n+1(z∗)−W ′n(z∗) = 0 andW ′′n+1(z∗)−W ′′n (z∗) > 0.

In this case, however, (A-21) results in that

β
(
Wn+1(z∗)−Wn(z∗)

)
≥ 1

2

(
ρ2 + |σ∗$̂n(z)|2

)
z2
(
W ′′n+1(z∗)−W ′′n (z∗)

)
> 0,

as a result, Wn+1(z∗) −Wn(z∗) > 0, which is a contradiction. We, thus, obtain the first inequality of (43) in the

proposition.

We turn to the second inequality of (43). We first rewrite (A-17) as

βW (z) =r + z

β
− zW ′(z)(z + r − µ) + 1

2ρ
2z2W

′′(z)

+ sup
C

[
lnC − C

( 1
β
− zW ′(z)

)]
+ ρ2

2β

(
r − µ+ ρ2

z + r − µ+ ρ2

)2

+ sup
$

[
σ∗$.θ

( 1
β
− zW ′(z)

)
− 1

2 |σ
∗$|2

( 1
β
− 2zW ′(z)− z2W

′′(z)
)]
.

Therefore,
βW (z) ≥r + z

β
− zW ′(z)(z + r − µ) + 1

2ρ
2z2W

′′(z)

+ ln Ĉn(z)− Ĉn(z)
( 1
β
− zW ′(z)

)
+ σ∗$̂n(z).θ

( 1
β
− zW ′(z)

)
− 1

2 |σ
∗$̂n(z)|2

( 1
β
− 2zW ′(z)− z2W

′′(z)
)
.

(A-23)
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Next, comparing (A-23) with (41), we obtain that

β(W (z)−Wn+1(z))

≥
(
Ĉn(z)− σ∗$̂n(z).θ + |σ∗$̂n(z)|2 − (z + r − µ)

)
z
(
W
′(z)−W

′

n+1(z)
)

+ 1
2

(
ρ2 + |σ∗$̂n(z)|2

)
z2
(
W
′′(z)−W

′′

n+1(z)
)
.

On the boundary we have that

W (0)−Wn+1(0) = ρ2

2β2 , W (z)−Wn+1(z)→ 0 as z → +∞.

This, thus, proves that

W (z)−Wn+1(z) > 0.

A similar proof holds for W 0(z). From (A-16), we also have that

βW 0(z) ≥r + z

β
− z(W 0)′(z)(z + r − µ) + 1

2ρ
2z2(W 0)′′(z)

+ sup
C

[
lnC − C

( 1
β
− z(W 0)′(z)

)]
+ sup

$

[
σ∗$.θ

( 1
β
− z(W 0)′(z)

)
− 1

2 |σ
∗$|2

( 1
β
− 2z(W 0)′(z)− z2(W 0)′′(z)

)]
.

We note also that at the boundaries we have that

W 0(0)−Wn+1(0) = 0,

lim
z→+∞

W 0(z)−Wn+1(z) = 1
β

ln r − µ+ ρ2

r − µ
− ρ2

2β2 > 0.

This, therefore, proves that

W 0(z)−Wn+1(z) > 0,

and the proof has been completed. �

L Proof of Theorem 6.1

Recall from (12) that the optimal consumption is given by

Ĉ = 1

x
∂V

∂x

,

which can be rewritten with the transformation (47) as

Ĉ = 1
ξu′(ξ) .
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For notational simplicity, we define

H(ξ) = 1
ξu′(ξ) . (A-24)

We can rewrite (A-24) as

u′(ξ) = 1
ξH(ξ)

and thus,

u′′(ξ) = −H(ξ) + ξH ′(ξ)(
ξH(ξ)

)2 .

We can now rewrite the Bellman equation (48) as

βu(ξ) =µ

β
− 1− ρ2

2β + ln
(
ξH(ξ)

)
+ r − µ+ ρ2 + 1/ξ

H(ξ)

+ 1
H(ξ)

[ |θ|2
2

1
1 + ξH

′(ξ)
H(ξ)

− ρ2

2

(
1 + ξ

H ′(ξ)
H(ξ)

)] (A-25)

with boundary conditions

H(ξ)− β
(

1 + 1
ξ(r − µ+ ρ2)

)
→ 0 as ξ → 0 (A-26)

and

H(ξ)− β → 0 as ξ → +∞.

Notice that

1 + ξ
H ′(ξ)
H(ξ) → 0 as ξ → 0

and

1 + ξ
H ′(ξ)
H(ξ) → 1 as ξ → +∞.

Because

1 + ξ
H ′(ξ)
H(ξ) = ξ

d

dξ
ln
(
ξH(ξ)

)
and ξH(ξ) is an increasing function similar to Proposition A.1, we therefore obtain that

0 < 1 + ξ
H ′(ξ)
H(ξ) < 1. (A-27)

We then introduce the function

m(ξ) = |θ|
2

2
1

1 + ξH
′(ξ)

H(ξ)

− ρ2

2

(
1 + ξ

H ′(ξ)
H(ξ)

)
. (A-28)

We know from (A-26) that

m(ξ)− |θ|
2

2

(
1 + 1

ξ(r − µ+ ρ2)

)
→ 0 as ξ → 0
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and

m(ξ)− |θ|
2 − ρ2

2 → 0 as ξ → +∞.

m(ξ) is thus positive at ξ = 0 and at ξ = +∞. We claim that

m(ξ) > 0.

Otherwise, there exists a point ξ∗ such that m(ξ∗) = 0. In this case, however, by (A-28) with (A-27) that

|θ|2

2 = ρ2

2

(
1 + ξ

H ′(ξ)
H(ξ)

)2
≤ ρ2

2 ,

which contradicts to the standing assumption (26).

We now restate the Bellman equation (A-26) as

βu(ξ) = µ

β
− 1− ρ2

2β + ln
(
ξH(ξ)

)
+ r − µ+ ρ2 + 1/ξ +m(ξ)

H(ξ) ,

which results in the value function as stated in the theorem.

It remains to explicitly characterize Γ(ξ) and m(ξ). By (A-28), we clearly see that 1 + ξH
′(ξ)

H(ξ) satisfies the follower

second order equation:
ρ2

2

(
1 + ξ

H ′(ξ)
H(ξ)

)2
+m(ξ)

(
1 + ξ

H ′(ξ)
H(ξ)

)
− |θ|

2

2 = 0. (A-29)

Due to the property (A-27), 1 + ξH
′(ξ)

H(ξ) is the positive root of the equation (A-29) and thus,

1 + ξ
H ′(ξ)
H(ξ) =

−m(ξ) +
√
m(ξ)2 + ρ2|θ|2
ρ2 (A-30)

or equivalently,
d

dξ
ln
(
ξH(ξ)

)
=
−m(ξ) +

√
m(ξ)2 + ρ2|θ|2
ρ2ξ

.

By integrating between 0 and z with (A-26), we now obtain the analytic expression of function H(ξ) as follows:

H(ξ) = β
(

1 + 1
ξ(r − µ+ ρ2)

)
exp

(∫ ξ

0

−m(ζ) +
√
m(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)
, (A-31)

which is the same as given in the theorem.

By differentiating (A-28) with respect to ξ with rearrangements, we obtain that

ξm′(ξ) =− ξ2H
′′(ξ)

H(ξ)

(ρ2

2 + |θ|2

2
(
1 + ξH

′(ξ)
H(ξ)

)2)

+ ρ2

2

(
ξ
H ′(ξ)
H(ξ)

)2
− ρ2

2 ξ
H ′(ξ)
H(ξ) −

|θ|2

2
H ′(ξ)
H(ξ)

1− ξH
′(ξ)

H(ξ)(
1 + ξH

′(ξ)
H(ξ)

)2 .
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We can then easily get that

ξm′(ξ)−m(ξ)ξH
′(ξ)

H(ξ) =− ξ2H
′′(ξ)

H(ξ)

(ρ2

2 + |θ|2

2
(
1 + ξH

′(ξ)
H(ξ)

)2)
+ ρ2

(
ξ
H ′(ξ)
H(ξ)

)2
− |θ|2ξH

′(ξ)
H(ξ)

1(
1 + ξH

′(ξ)
H(ξ)

)2 .
Differentiating the equation (A-25) with respect to ξ therefore allows us to obtain that

β =
(
H(ξ)− 1

ξ

)(
1 + ξH ′(ξ)

H(ξ)

)
+ ξm′(ξ)−m(ξ)ξH

′(ξ)
H(ξ) .

Hence,

ξm′(ξ) = β −
(
H(ξ)− 1

ξ

)(
1 + ξH ′(ξ)

H(ξ)

)
+m(ξ)ξH

′(ξ)
H(ξ) .

Using (A-30) and (A-31), we obtain the following differential equation

m(ξ) + ξm′(ξ)

= β −
(−m(ξ) +

√
m(ξ)2 + ρ2|θ|2
ρ2

){
β
(

1 + 1
ξ(r − µ+ ρ2)

)
exp

(∫ ξ

0

−m(ζ) +
√
m(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)
− 1
ξ

}
+m(ξ)

(−m(ξ) +
√
m(ξ)2 + ρ2|θ|2
ρ2

)
.

Because

m(ξ) + ξm′(ξ) = d

dξ

(
ξm(ξ)

)
,

we therefore obtain the analytic expression of function m(ξ) as follows:

ξm(ξ) = |θ|
2

2
1

r − µ+ ρ2

+ βξ −
∫ ξ

0

(−m(η) +
√
m(η)2 + ρ2|θ|2
ρ2

){
β
(

1 + 1
η(r − µ+ ρ2)

)
exp

(∫ η

0

−m(ζ) +
√
m(ζ)2 + ρ2|θ|2
ρ2ζ

dζ
)
− 1
η

}
dη

+
∫ ξ

0
m(η)

(−m(η) +
√
m(η)2 + ρ2|θ|2
ρ2

)
dη

with

ξm(ξ)− |θ|
2

2
1

r − µ+ ρ2 → 0 as ξ → 0.
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