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ABSTRACT
Forecasts of demands or prices become increasingly unreliable as the future becomes
more distant. It is, therefore, beneficial to show that optimal decisions during an
initial time interval are either partially or wholly independent of the forecasted data
from some future time onwards. Using a commodity trading model as an example,
we obtain conditions that allow us to make optimal buying and selling decisions for
a commodity in some initial time interval without knowing its price forecast beyond
some future time. Such an initial time interval is called a decision horizon and the
time up to which the forecasted data is required to make the optimal decisions dur-
ing the decision horizon is called a forecast horizon. We use the maximum principle
to solve the example and show that the decision and forecast horizons in the prob-
lem arise from lower and upper bounds imposed on the on-hand inventory of the
commodity.

KEYWORDS
Forecast horizon; decision horizon; wheat trading model; optimal control;
maximum principle

1. Introduction

In some dynamic optimization problems, it can be shown that the optimal decisions
during an initial time interval may have limited or no dependence altogether on the
values of problem parameters beyond a certain time. Specifically, say for e.g., for a
problem over the time t ∈ [0, T ], the optimal decisions in the interval [0, t1] are partially
or completely independent of problem data beyond the time τ, where 0 ≤ t1 ≤ τ ≤ T.
In such cases, a forecast of the future data is required only as far as τ to make optimal
decisions in the initial time interval [0, t1]. In the literature on dynamic optimization
problems, this initial time interval (t1) is termed as the decision horizon, and the time
up to which forecast is needed (τ) to make these optimal decisions during the decision
horizon is termed as forecast horizon. The readers may refer to Bhaskaran and Sethi
(1987), Bes and Sethi (1988), and Chand et al. (1990) for details on these concepts, and
Chand et al. (2002) for a classified bibliography of the literature on horizon research.
The presence of these horizons in a dynamic optimization problem means that such
a problem can then be partitioned into a series of smaller problems, and potentially
making it more tractable. A forecast horizon, say τ, is termed as a strong forecast
horizon if the optimal solution during the decision horizon have no dependence at all
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on the problem parameters (such as for e.g. demand, costs, market price) beyond the
time τ . If on the other hand, the optimality of a solution during the decision horizon
is conditional upon some restrictions on the model parameters beyond this forecast
horizon (τ), then it is termed as a weak forecast horizon.

Chand et al. (2002) presented an extensive review of literature on forecast hori-
zons across different types of problems, different methods used, different sources of
horizons, etc. and given its comprehensive nature we will not cover the literature
prior to that. In more recent times, there have been some articles on research in fore-
cast horizons, but they have focussed predominantly on dynamic lot sizing inventory
problems. The papers which study forecast horizons in dynamic lot sizing problems
include Dawande et al. (2006), Dawande et al. (2007), Chand et al. (2007), Dawande
et al. (2009), Bardhan et al. (2013), Teyarachakul et al. (2016), Jing and Mu (2019),
Jing et al. (2020), and Jing and Chao (2022). A few papers which study forecast
horizons in other problems/applications are as follows. Cheevaprawatdomrong et al.
(2007) consider a non-homogeneous infinite horizon Markov Decision Process and pro-
vide sufficient conditions and an algorithm for determining then. Lortz et al. (2015)
investigate the existence of forecast horizon for a general class of infinite horizon de-
terministic optimization problem under a set of assumptions, and apply it to the case
of production planning. In this paper, our focus is on a commodity trading problem.
Specifically, on the wheat-trading model by Ijiri and Thompson (1970), and the fore-
cast and decision horizons in this classical continuous time optimal control problem.
There are relatively few articles in the literature that focus on forecast horizon in the
wheat trading model, and in general in commodity trading problems. In this context,
some papers that are relevant to us include, Hartl (1986), and Rempala (1989). Hartl
(1986) showed the existence of weak forecast horizon in the wheat trading problem
with no warehouse constraint. Rempala (1989) studied decision and forecast horizons
for a wheat trading problem with no warehousing constraint but with dynamic limits
on the control variable, i.e., where the upper and lower limits on the control variable
are functions of time. In this conceptual note, we demonstrate the concepts of strong
and weak forecast horizons in the context of the wheat trading model proposed by Ijiri
and Thompson (1970). To do that, we will specialize their model to some particular
cases and impose constraints that would give rise to forecast and decision horizons.
Through simple examples, we demonstrate the existence of forecast and decision hori-
zons for problems without a warehousing constraint as well as with a warehousing
constraint on the total stock of wheat. We show the presence of strong horizons in a
constrained problem with warehousing constraint. In the case of no warehouse con-
straint, we highlight the notion of a price shield that gives rise to a weak horizon,
and for a general case of non-zero interest rate on cash provide a simple proof of the
existence and relevance of the shield. We also discuss a simple graphical proof on the
existence of decision horizon and a strong forecast horizon in the case when there is a
warehouse constraint. This paper builds on the wheat trading model studied in Sethi
(2021) and contributes with further analysis and insights. We present new analysis
and insights on the existence of forecast and decision horizons, particularly in the case
of non-zero interest rate. We also present theoretical proofs on the existence of strong
forecast horizons, and the existence and relevance of price shield in the case of weak
forecast horizons.

In many dynamic optimization problems, rolling-horizon decision making is often an
effective approach to obtain near-optimal solutions. In a typical rolling-horizon proce-
dure, in the beginning of the first period, an initial T1 period problem is solved based
on the current state and forecast information. Then at the beginning of the second
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period, the state and future forecasts are updated, and then again a subsequent prob-
lem over some time periods T2 is solved. This procedure repeats every period where
the ‘horizon’, i.e. the time periods over which the problem is solved, effectively gets
‘rolled over’ each period. For further details, the readers may refer to Sethi and Sorger
(1991) for a theoretical framework on rolling-horizon decision making, and Chand et
al. (2002) for a classified bibliography of the literature in the area of forecast, solution,
and rolling horizons. While this approach leads to effective solutions in many settings,
it is difficult to prove its optimality in practical problems. However, the existence of
forecast horizons in a dynamic optimization problem, by its very definition, provides a
basis for implementing the rolling-horizon solutions. For e.g., a rolling horizon solution
over an initial time period T1 will be optimal if the problem has an initial forecast
horizon of time length greater than or equal to T1. As Chand et al. (2002) argue:“in
a way, the rolling-horizon practice is a heuristic for implementing the forecast horizon
theory.” Furthermore, they also state that:“Any rolling-horizon procedure may lead
to sub-optimal decisions if the study horizon chosen in the rolling-horizon procedure
is smaller than the forecast horizon. . . ”. In this regard, this conceptual study on the
existence of forecast horizons in a commodity trading model, contributes to the theo-
retical background literature on implementation of such rolling-horizon procedures in
commodity trading problems. It is to be noted that there aren’t too many studies that
investigate existence of forecast horizons in wheat trading models, or even commodity
trading problems in general.

Our paper also has practical implications. The wheat trading model in this paper
is closely related to commodity trading models used in the literature for other appli-
cations, particularly for commodities such as natural gas and electricity. These papers
include: Lai et al. (2010), Wu et al. (2012), Secomandi (2015), and Nadarajah and
Secomandi (2018), all of which consider discrete time stochastic commodity trading
models. All these papers consider rolling-horizon optimization of appropriate deter-
ministic representations as an approach to solve these problems and conduct numerical
analysis using real data pertaining to natural gas commodity market in US. These pa-
pers however do not investigate the issue of forecast horizons in these problems. In this
context, a study that is more relevant to us is Cruise et al. (2019). Cruise et al. (2019)
consider a variation of the wheat trading model, a discrete time dynamic electricity
storage and trading problem where the electricity prices are stochastic in nature. In
their model they do not consider the holding cost of the commodity (energy) but
consider leakage and convex costs. They present an algorithm to obtain initial fore-
cast and decision horizon for the problem and the optimal control policy of buying
and selling the commodity. They use actual historical spot-market wholesale electric-
ity price data in Great Britain along with the total demand data to illustrate their
results. For the half-hourly time interval spot price data, they find that the forecast
horizons vary between 1 and 15 days. Given the practical applications of these similar
commodity trading models as highlighted above, particularly with the computation of
forecast horizons in Cruise et al. (2019), we can argue that our model can be used as
a theoretical basis to motivate similar practical analysis using available data in other
commodity markets.

The rest of the paper is organized as follows. Section 2 presents the wheat trading
model with no short-selling allowed and obtains its solution using the maximum prin-
ciple. We identify a decision horizon for this problem which is also a weak forecast
horizon. Then in Section 3, we modify the wheat trading model by adding a ware-
house constraint that gives rise to a decision horizon and a strong forecast horizon.
We identify decision and forecast horizons by illustrating them with two examples in-
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volving markedly different forecast data beyond the forecast horizon. We present some
insights and concluding remarks in Section 4. Finally, we end the note in Section 5 by
dedicating it to the memory of Professor Jean-Marie Proth.

2. Wheat Trading Model

Consider a firm that buys and sells wheat in response to the fluctuations in the market
price of wheat. We assume that the price of wheat over time is exogenous in nature
and is known with certainty. The firm’s assets are its cash balance and the wheat it
holds. The firm earns interest on its cash balance and incurs a holding cost for wheat
stored in inventory at any time t. The firm’s objective is to maximize the total value of
its assets at the end of the horizon T. To meet this objective, it determines its optimal
buying and selling policy of wheat over time. More specifically, its decision variables
are the quantity of wheat it needs to buy or sell at every time t.

We use the following notation in our model.

T = time horizon

x(t) = cash balance in dollars at time t

y(t) = the stock of wheat held by the firm at time t

v(t) = the rate of purchase of wheat at time t, a negative value implies
sale of wheat

p(t) = per unit price of wheat at time t

r = the fixed interest rate earned on the cash balance

h(y) = the cost of holding y units of wheat in inventory per unit time

hy(υ) =
∂h(y)

∂y

∣∣∣∣
y=υ

This is an optimal control problem where the two assets, i.e., x(t), and y(t), are state
variables. The rate of sale/purchase of wheat v(t) is the control (decision) variable. We
now write the state equations denoting the dynamics of the state variables, as follows.

ẋ =
dx

dt
= rx(t)− h(y(t))− p(t)v(t), x(0) = x0, (1)

ẏ =
dy

dt
= v(t), y(0) = y0. (2)

Equation (1) denotes that at any time t, the firm’s cash balance grows with the interest
earned on the cash, depletes with the holding cost incurred on the inventory of wheat,
and rises (or falls) as the wheat is sold (or purchased) based on the per unit price
at time t. Equation (2) simply states that the stock of wheat at any time increases
(decreases) at the rate of purchase (sale) of wheat at time t. We assume limits on
the rate of purchase and sale of wheat any time, and accordingly write the following
constraint on the control variable.

−V2 ≤ v(t) ≤ V1. (3)

Here V1 and V2 are non-negative constants with V1 as the maximum rate of purchase
and V2 being the maximum rate of sale of wheat at any time t. We will disallow
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short-selling of wheat, implying

y(t) ≥ 0. (4)

We now write the firm’s objective function, which is to maximize the total value of its
assets at the end of the horizon.

max
v(t)∈[−V2,V1]

{J = x(T ) + p(T )y(T )} (5)

subject to (1)–(4). We solve the optimal control problem using the maximum principle.
For complete details on the application of the maximum principle, including solving
optimal control problems with state constraints, we refer the readers to Sethi (2021).
We denote λ1(t), and λ2(t), as the two adjoint variables corresponding to the state
equations of x(t), and y(t), respectively, and write the Hamiltonian function as follows.1

H(x(t), y(t), v(t), λ1(t), λ2(t), t) = λ1(t)[rx(t)− h(y)− p(t)v(t)] + λ2(t)v(t). (6)

The two adjoint equations for λ1(t) and λ2(t) are written below.

λ̇1(t) =
dλ1
dt

= −λ1(t)r, λ1(T ) = 1, (7)

λ̇2(t) =
dλ2
dt

= hy(y(t))λ1(t), λ2(T ) = p(T ). (8)

We solve (7) as

λ1(t) = er(T−t) (9)

and (8) as

λ2(t) = p(T )−
∫ T

t
hy(y(z))er(T−z)dz. (10)

The adjoint variables λ1(t) and λ2(t), also sometimes termed as the shadow prices, can
be understood as marginal changes in the value of the optimized objective function
with respect to the two state variables. Thus, λ1(t) can be interpreted as the future
value at time T of one dollar of cash held from time t to T. On similar arguments
λ2(t) can be understood as the change in the objective function due to an additional
unit of wheat at time t, which is equal to the price at time T of a unit of wheat minus
the total future value at time T of the cumulative holding cost incurred to store this
unit of wheat from t to T. We maximize the Hamiltonian in (6) in the control variable
v(t), and from (6) and (3)-(4), we can see that the optimal control is of the bang-bang
form, written as follows.

v∗(t) = bang[−V2, V1;λ2(t)− λ1(t)p(t)] when y(t) > 0, (11)

1For ease of writing and readability, we occasionally suppress the arguments of variables and functions in
some places. E.g., we write λ2(t) as λ2, and H(x, y, v, λ1, λ2, t) as H.
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and when y(t) = 0, we impose the condition ẏ = v ≥ 0 to ensure that no short-selling
occurs. Consequently, we get

v∗(t) = bang[0, V1;λ2(t)− λ1(t)p(t)] when y(t) = 0. (12)

Equation (11) means that when y(t) > 0, the optimal policy v∗(t) at any time t is
v∗(t) = V1, i.e., to buy at the maximum rate if λ2(t)−λ1(t)p(t) > 0; and is v∗(t) = −V2,
i.e., to sell at the maximum rate if λ2(t) − λ1(t)p(t) < 0. Similarly, equation (12)
means that whenever y = 0, it is optimal to buy at the maximum rate (v∗(t) = V1) if
λ2(t)− λ1(t)p(t) > 0 and to do nothing (v∗(t) = 0) if λ2(t)− λ1(t)p(t) < 0.

For simplicity in demonstrating the solution to this problem and the concept of
decision and forecast horizons, we consider the following particular case with h(y) =
y/2, r = 0, x(0) = 10, y(0) = 1, V1 = V2 = 1, T = 3, and

p(t) =

{
7− 2t for 0 ≤ t < 2,
1 + t for 2 ≤ t ≤ 3.

(13)

The problem can be written as:
max {J = x(3) + p(3)y(3) = x(3) + 4y(3)}
subject to
ẋ = −1

2y − pv, x(0) = 10,
ẏ = v, y(0) = 1,
−1 ≤ v ≤ 1, y ≥ 0.

(14)

We can write the Hamiltonian as

H = λ1(t)(−y(t)/2− p(t)v(t)) + λ2(t)v(t). (15)

Again, maximizing the Hamiltonian w.r.t. the control v, we can obtain the optimal
control as

v∗(t) = bang[−1, 1;λ2(t)− λ1(t)p(t)] when y(t) > 0, (16)

and

v∗(t) = bang[0, 1;λ2(t)− λ1(t)p(t)] when y(t) = 0. (17)

Next, given the constraints on the state variable and the control variable, we write the
Lagrangian as follows (see Sethi (2021) for further details).

L = H + µ1(t)(v + 1) + µ2(t)(1− v) + η(t)v(t), (18)

where µ1(t), µ2(t), and η(t) characterize the optimal solution and satisfy the comple-
mentary slackness and non-negativity conditions:

µ1(t) ≥ 0, µ1(t)(v(t) + 1) = 0, (19)

µ2(t) ≥ 0, µ2(t)(1− v(t)) = 0, (20)

η(t) ≥ 0, η(t)y(t) = 0. (21)
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Furthermore, the optimal control must satisfy

∂L

∂v
= λ2(t)− p(t)λ1(t) + µ1(t)− µ2(t) + η(t) = 0, ∀t ∈ [0, T ]. (22)

Since r = 0, using (9), it is clear that λ1(t) = 1,∀t, and

λ̇2 = −∂L
∂y

= 1/2, lim
t→3−

λ2(t) = λ2(3
−) = 4 + γ, (23)

with

γ ≥ 0, γy(3) = 0. (24)

Furthermore, the optimal solution must satisfy the jump conditions, accounting for
discontinuous marginal valuations of the state variables and hence jumps in the adjoint
variables at any entry/contact time τ (i.e. the when state trajectory ‘hits’ or ‘touches’
the state constraint). In this case, the state constraint is the non-negativity constraint
in (4). In this specific example, the jump conditions at any entry/contact time τ, where
λ2(t) is discontinuous, are

λ2(τ
−) = λ2(τ

+) + ζ(τ) (25)

and

H[x∗(τ), y∗(τ), v∗(τ−), λ1(τ
−), λ2(τ

−), τ ] = H[x∗(τ), y∗(τ), v∗(τ+), λ1(τ
+), λ2(τ

+), τ ],
(26)

along with

ζ(τ) ≥ 0, ζ(τ)y∗(τ) = 0. (27)

We obtain the optimal policy by using (16)-(27) and graph it in Fig. 1, along with
the trajectory of the adjoint variable λ2(t). Since the price is relatively high in the
beginning and is decreasing, the optimal policy calls for selling at the highest rate
(v∗ = −1) until the wheat stock becomes zero at t = 1. The wheat stock becomes 0
at t = 1, where λ2 becomes discontinuous and the jump conditions (25)-(27) apply.
After that, it is optimal to do nothing (v∗ = 0) till t = 1.8 and buy at the maximum
rate (v∗ = 1) till the end of the horizon to maximize the total value of assets at t = 3.

2.1. Decision Horizon, Weak Forecast Horizon, and Price Shield

For the problem in this section we argue here that t = 1 is a decision horizon and
a weak forecast horizon. To demonstrate the existence of this decision and forecast
horizon at t = 1, we present an illustration in Fig. 2 in which we consider a general
price trajectory for t > 1. Furthermore, in Fig. 2 we also highlight an extended curve
of the initial λ2(t) trajectory, which we term as a price shield. We argue that as long
as the price p(t) stays below this price shield for t ≥ 1 , then the optimal policy for
t ∈ [0, 1] stays the same, i.e., sell at the maximum rate. Fig. 2 shows an illustration of
how this optimality is maintained. Given this condition that for t ∈ [1, 3], p(t) must be
less than the price shield, t = 1 is in effect a weak forecast horizon. Since the the slope
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of λ2(t) trajectory has to be 1/2 (from equation (23)), for a general price trajectory
p(t) for t > 1 as shown in Fig. 2, one can use the boundary condition of λ2(3

−) in
(23)-(24) to sketch the λ2(t) trajectory in the interval t ∈ [1, 3], as shown in Fig. 2.
This will remain as the optimal trajectory of λ2(t) in t ∈ [1, 3] and will yield the
optimal control using equations (16)-(17), as long as the non-negativity constraint of
inventory y(t) ≥ 0 is not violated. The λ2(t) trajectory will have a jump in the interval
t ∈ (1, 3) as well if the inventory constraint is violated, which will happen if the sell
interval in Fig. 2 at the end is greater than the buy interval. Even then, t = 1 will
remain the decision horizon and a weak forecast horizon. Furthermore, we can extend
this argument for any finite problem horizon T, where T > 1. Specifically, we can say
that as long as we have p(t) in t ∈ [1, T ] less than the price shield curve of Fig. 2
extended to T, it is optimal to sell at the maximum rate in t ∈ [0, 1]. In other words,
t = 1 will remain decision and weak forecast horizon for any general problem horizon
T > 1. Another simple intuition to interpret the price shield and weak forecast horizon
can be explained as follows. In the optimal solution we sell at the maximum rate till
t = 1 and have y∗(1) = 0. If we were to suppose consider not selling a small amount of
wheat between t = 0 and t = 1 (thereby making y∗(1) > 0), then we can argue that it
is sub-optimal to do so if the price trajectory stays below the price shield. Specifically,
we can argue that the potential marginal benefit of holding a small positive quantity
of wheat at t = 1 (which might be earned by selling this quantity at a later time or
by holding it till the end of horizon), does not justify the additional holding cost that
will be incurred. This can be seen by observing the fact that the slope of the shield
trajectory is equal to the marginal value of holding cost w.r.t. quantity, i.e, hy(y)
(equation (8) with λ1 = 1), and that the future price at any time does not exceed the
shield. In Section 2.2 we present this argument slightly more formally for a general
value of interest rate r, for general limits on the control variable (V1, V2), and linear
holding cost function h(y).

2.2. The case of positive interest rate on cash (r > 0)

We now extend the problem in section 2 (equation (14)) to consider a more general
scenario with positive interest rate r on cash balance. We solved two examples, one
with r = 0.1 and one with r = 0.2. Thus, the two problem statements are written
below.
Example 2.1: Consider Problem in section 2 (equation 14) with r = 0.1
Example 2.2: Consider Problem in section 2 (equation 14) with r = 0.2

Using insights similar to the solution of problem (14) in Section 2, we obtain solu-
tions to these problems that satisfy optimality conditions in equations (15)-(27). We
note that for both these problems, in the optimal solution, the adjoint variables take
the following form:

λ1(t) = er(3−t), for t ∈ [0, 3]

λ2(t) =

{
e2r(1−er(1−t)+10r)

2r for t ∈ [0, 1),

4 + 1−er(3−t)

2r for t ∈ [1, 3].

However, given different values of r in these two examples, the exact trajectories of
adjoint variables are different in these two examples and therefore, from (16)-(17)
yield different optimal policies. The solutions to Example 2.1 and Example 2.2 are
summarized below and are shown in Fig. 3, and Fig. 4, respectively.
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Example 2.1 Solution: The optimal solution when r = 0.1 is summarized below,
and is shown in Figure 3.

Interval [0, 1) :λ2 = 5e0.2(2− e0.1(1−t)), µ1 = pλ1 − λ2 > 0, µ2 = 0, η = 0;

v∗ = −1, 0 < y∗(t) ≤ 1

Interval [1, 1.95) :λ2 = 4 + 5(1− e0.1(3−t)), µ1 = µ2 = 0, η = pλ1 − λ2 > 0, η̇ < 0;

v∗ = 0, y∗(t) = 0

Interval [1.95, 3] :λ2 = 4 + 5(1− e0.1(3−t)), µ1 = 0, µ2 = λ2 − pλ1 > 0, η = 0;

v∗ = 1, y∗(t) ≥ 0

γ(3) = 0

Example 2.2 Solution: The optimal solution for r = 0.2 is summarized below and
shown in Figure 4.

Interval [0, 1) :λ2 = (5/2)e0.4(3− e0.2(1−t)), µ1 = pλ1 − λ2 > 0, µ2 = 0, η = 0;

v∗ = −1, 0 < y∗(t) ≤ 1

Interval [1, 3] :λ2 = 4 + (5/2)(1− e0.2(3−t)), µ1 = µ2 = 0, η = pλ1 − λ2 > 0, η̇ < 0;

v∗ = 0, y∗(t) = 0

γ(3) = 0.

Comparing the optimal solutions in Examples 2.1 and 2.2, we see that a when
r = 0.1 the optimal trajectory is to first sell at the maximum rate till t = 1 when the
wheat inventory becomes zero. Then it is optimal to do nothing till t = 1.95 followed
by purchase of wheat from t = 1.95 till the end of the horizon t = 3 to take advantage
of increase in price towards the end. When r = 0.2, the optimal solution stays the
same between t ∈ [0, 1] where it is optimal to sell at maximum rate. However, for
t > 1, it is then optimal to do nothing and not buy any wheat.

By comparing the solutions in Section 2 (Figure 2) and Examples 2.1 and 2.2 (Fig-
ures 3, 4), one can see that while it is optimal to sell all wheat initially given high
prices in the beginning, the change in interest rate earned on cash impacts when (if
at all) the firm should start purchasing wheat after all the initial stock has been sold
(t = 1). Since high interest rate favours keeping more cash, tt is intuitive that as
interest rate increases it is optimal to spend less cash on buying wheat after t = 1, or
in other words, to delay the purchase of wheat after t = 1. For a high interst rate of
r = 0.2, it is then optimal to not spend cash on wheat purchase at all.

2.2.1. Weak forecast horizon and shield when r > 0

In Figures 3 and 4, we extend the initial λ2(t) trajectory beyond t = 1 and term it as
shield. Suppose we denote the shield trajectory as λ̄2(t), ∀t ∈ [1, 3]. Its interpretation
is similar to the price shield in Figure 2 when r = 0, with a slight difference. Note the
slight difference in naming this extended trajectory as ‘shield’ instead of ‘price shield’
as done in section 2.1. Using similar arguments as in section 2.1, we can conclude that
t = 1 is a decision horizon as well as a weak forecast horizon. Specifically, we argue
that as long as λ1(t) ∗ p(t) ≤ λ̄2(t), ∀t ∈ [1, 3], the optimal solution in t ∈ [0, 1] stays
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the same, i.e., sell at the maximum rate =⇒ v∗(t) = −1. This condition on the price
in (1, 3] means that t = 1 is a weak forecast horizon. We can easily see that when
r = 0, we have λ1(t) = 1∀t from (9), and therefore the above condition reduces to the
price shield condition highlighted in section 2.1 and Figure 2. In a more general setup,
the existence of decision horizon, weak forecast horizon and the shield can be argued
using a simple intuitive approach as described below.

Consider the wheat trading model in section 2 (equations (1)-(5)) with the holding
cost of wheat linear in stock, i.e., h(y) = c ∗ y. Suppose the problem parameters,
including price forecast p(t), are such that it is optimal to sell of all initial stock of
wheat y0 at the maximum rate starting t = 0, as in Figures 1 - 4. Suppose t = t0 is
the first instant at which the stock becomes zero (for e.g. t0 = 1 in problem Figures
1 - 4. Clearly from (11)-(12) we have λ2(t) < λ1(t) ∗ p(t) ∀t ∈ [0, t0), and λ2(t0) =
λ1(t0) ∗ p(t0). We extend this initial λ2(t) trajectory beyond t = t0, term it as shield,
and denote it as λ̄2(t), ∀t ∈ [t0, T ]. We now argue that as long as λ1(t) ∗ p(t) ≤ λ̄2(t)
∀t ∈ [t0, T ], we will always have v∗(t) = −V2 ∀t ∈ [0, t0).

To prove the above claim we argue that, when λ1(t) ∗ p(t) ≤ λ̄2(t) ∀t ∈ [t0, T ], it
is sub-optimal to have any marginal deviation from the optimal policy of selling at
the maximum rate in t ∈ [0, t0). Let’s assume we deviate slightly from this optimal
policy at a time t = t̂, where t̂ ∈ [0, t0), such that v∗(t̂) > −V2. This will result in
a small incremental quantity, denoted by δ, that is not sold and gets carried over.
Consequently we will have y(t0) = δ > 0. This small incremental quantity of wheat
(δ) will be either sold at a later time, say t1, where t0 ≤ t1 ≤ T, or will be held until
the end of horizon T. Note that it cannot be sold in t ∈ (t̂, t0) as we already have
wheat being sold at maximum rate in this window. If it sold at t1, the cash earned
will be δ ∗ p(t1), at time t1, and given the interest rate on cash, its future value at T
will be δ ∗ p(t1) ∗ er(T−t1). If δ is held in stock till end of horizon, its value at T will
be δ ∗ p(T ). One can see that from the point of view of its impact on the objective
function, holding δ in inventory till T is equivalent to a sale at t1 = T.

The expression below shows the net change to the overall objective function as a
result of this small additional quantity of wheat not sold at t = t̂, t̂ ∈ [0, t0). which is
then sold at t = t1, t1 ∈ [t0, T ].

δ ∗ p(t1) ∗ er(T−t1) −
∫ t1

t̂
h(δ) ∗ er(T−z)dz − δ ∗ p(t̂) ∗ er(T−t̂)

In the above expression, the first term represents the value at time T of revenue earned
by sale of δ quantity at time t1 whereas the third term refers to the value at time T
of revenue lost by not selling it at time t̂. The second term indicates the value at time
T of the additional holding cost incurred for this quantity between time between t̂
and t1. We define ∆ as the marginal increase in the objective function per unit of
additional wheat δ not sold at t = t̂. We can write ∆ as follows.

∆ = p(t1) ∗ er(T−t1) −
∫ t1

t̂

h(δ)

δ
∗ er(T−z)dz − p(t̂) ∗ er(T−t̂). (28)

Using (9) we rewrite (28) as

∆ = p(t1) ∗ λ1(t1)−
∫ t1

t̂

h(δ)

δ
∗ λ1(z)dz − p(t̂) ∗ λ1(t̂). (29)
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Furthermore, we note that for holding cost function linear in the stock of wheat y,
i.e., h(y) = c ∗ y which implies h(δ)/δ = hy(y). Using this relation along with adjoint

equation for λ̇2 in (8), we rewrite (29) as

∆ = p(t1) ∗ λ1(t1)−
∫ t1

t̂
λ̇2(z)dz − p(t̂) ∗ λ1(t̂)

= p(t1) ∗ λ1(t1)− λ̄2(t1) + λ2(t̂)− p(t̂) ∗ λ1(t̂). (30)

Now recall that given the original ban-bang optimal solution, we must have λ2(t̂) <
p(t̂)∗λ1(t̂) and given the shield condition described earlier, we must have p(t1)∗λ1(t1) ≤
λ̄2(t1). Combining these two observations in (30), we conclude that

∆ < 0. (31)

The above result in (31) essentially implies that as long as the shield condition is
satisfied, i.e., λ1(t) ∗ p(t) ≤ λ̄2(t) ∀t ∈ [t0, T ], it is not optimal to deviate from the
original optimal policy of v∗(t) = −V2, ∀t ∈ [0, t0).

3. Wheat Trading Model with a Warehouse Constraint

In this section, we consider the wheat trading model with a warehousing constraint
that limits the maximum inventory of wheat that can be stored at any time. We give
examples which demonstrate the existence of strong forecast horizons, arising due to
this additional constraint. To demonstrate this, we modify the problem of Section 2 by
adding a simple constraint on the upper limit of inventory stock of wheat, as follows.

y(t) ≤ 1, ∀t. (32)

We consider a planning horizon of T = 4, and the following price trajectory of wheat

p(t) =

{
7− 2t for 0 ≤ t < 2,
1 + t for 2 ≤ t ≤ 4.

(33)

The expression for Hamiltonian for this problem is same in (15). Furthermore, same
as in Section 2, we get λ1 = 1. Following similar procedure in Section 2, the optimal
control for this problem can be expressed as follows:

v∗(t) =

 bang[−1, 1;λ2(t)− p(t)] when y ∈ (0, 1),
bang [0, 1;λ2(t)− p(t)] when y = 0,
bang[−1, 0;λ2(t)− p(t)] when y = 1.

(34)

Similar to (18), we define a Lagrange multiplier η1(t) for the derivative of the ware-
house constraint (32), i.e., for −ẏ = −v ≥ 0, to include it in the Lagrangian. We then
write the Lagrangian as follows

L = H + µ1(t)(v(t) + 1) + µ2(t)(1− v(t)) + η(t)v(t) + η1(t)(−v(t)), (35)

11



where µ1(t), µ2(t), and η(t) satisfy (19)–(21) and η1(t) satisfies

η1(t) ≥ 0, η1(t)(1− y(t)) = 0, ∀t. (36)

Furthermore, the optimal solution must satisfy

∂L

∂v
= λ2(t)− p(t) + µ1(t)− µ2(t) + η(t)− η1(t) = 0, ∀t. (37)

Similar to the results in previous section, we get, λ1(t) = 1 ∀t ∈ [0, 4], and λ2(t)
satisfies

λ̇2 = 1/2, λ2(4
−) = p(4) + γ1 − γ2 = 5 + γ1 − γ2, (38)

where

γ1 ≥ 0, γ1y(4) = 0, γ2 ≥ 0, γ2(1− y(4)) = 0. (39)

We work backwards to obtain the solution. We first try γ1 = γ2 = 0. We assume
t̂ to be the time of the last jump of the adjoint variable λ2(t), i.e., the last time the
inventory hits a state constraint before the end of horizon at T = 4. Then, we can
write λ2(t) as

λ2(t) = t/2 + 3 for t ∈ [t̂, 4.) (40)

It can be easily seen that the trajectory of λ2(t) in (40) stays above the price
trajectory for 8/5 < t < 4, implying that the firm would be purchasing wheat in this
time period (from (34)). However, that will violate the warehouse storage constraint.
Thus, we must have t̂ > 8/5. Keeping in mind that λ̇2 = 1/2, and that the λ2(t)
firm can only purchase wheat for a maximum time of 1 unit at a stretch given the
warehouse constraint, we can see that the λ2(t) trajectory will hit the price trajectory
at t = 11/6 and t = 17/6, thus making t̂ = 17/6.

Like Section 2, we apply the jump conditions (25)-(27), and obtain the optimal
trajectory λ2 as

λ2(t) =

 t/2 + 9/2 for 0 ≤ t < 1,
t/2 + 29/12 for 1 ≤ t < 17/6,
t/2 + 3 for 17/6 ≤ t ≤ 4.

(41)

The trajectory in (41) validates the initial assumption of γ1 = γ2 = 0.
Equation (34) along with (41) characterize the optimal policy for the firm, which is

then depicted in Fig. 5. To complete the solution according to the maximum principle,
we compute the Lagrangian in equation (35), verify the complimentary slackness con-
ditions in (19)–(21) and (36), as well as the condition in (35) for all four time intervals
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shown in Fig. 5. We summarize the results below.

t ∈ [0, 1) µ2(t) = η(t) = η1(t) = 0, µ1(t) = p(t)− λ2(t) > 0, v∗(t) = −1, 0 < y∗(t) < 1.

t ∈ [1, 116 ) µ1(t) = µ2(t) = η1(t) = 0, η(t) = p(t)− λ2(t) > 0, v∗(t) = 0, y∗(t) = 0.

t ∈ [116 ,
17
6 ) µ1(t) = η(t) = η1(t) = 0, µ2(t) = λ2(t)− p(t) > 0, v∗(t) = 1, 0 < y∗(t) < 1.

t ∈ [176 , 4] µ1(t) = µ2(t) = η(t) = 0, η1(t) = λ2(t)− p(t) > 0, γ1 = γ2 = 0, v∗(t) = 0, y∗(t) = 1.

For this example, as shown in Fig. 5 we identify t = 1 as a decision horizon and
t̂ = 17/6 as a strong forecast horizon. It implies that given the problem data in
t ∈ [0, 17/6], the optimal policy is to sell wheat at the maximum rate in t ∈ [0, 1], and
it does not depend on the price trajectory p(t) beyond t = 17/6. Since this is a strong
forecast horizon, a price shield as calculated in the case of a weak forecast horizon is
not really relevant in this case. To further illustrate the nature of a strong forecast
horizon, we present two examples of price changes after t = 17/6 and show that they
have no impact on the optimal policy during the decision horizon.

Example 3.1. Consider the problem in Section 3 with the following price trajectory

p(t) =

 7− 2t for 0 ≤ t < 2,
1 + t for 2 ≤ t < 6,
25t−44

7 for 17/6 ≤ t ≤ 4,

as plotted in Fig. 6. Note that while the price in t ∈ [0, 17/6] is same as before, it goes
above the previously computed price shield in Fig. 2 and also depicted in Fig. 5

Solution The optimal policy v∗(t) and the trajectory of adjoint variable λ2(t) is
depicted in Fig. 6. The optimal trajectory of λ2(t) is same as that in Fig. 5 for t ∈
[0, 17/6]. For t > 17/6, we have λ∗2(t) = t/2 + 6. The optimal policy in t ∈ [0, 1) is
same as in Fig. 5.

Example 3.2. Assume the price trajectory to be

p(t) =

 7− 2t for 0 ≤ t < 2,
1 + t for 2 ≤ t < 6,
21
4 −

t
2 for 17/6 ≤ t ≤ 4,

sketched in Fig. 7.

Solution We follow a similar approach as applied in Section 3 (Fig. 5) and try
γ1 = γ2 = 0 to obtain the adjoint variable trajectory in a similar way as in (40). This
gives us λ2(t) = t/2 + 5/4 for t ∈ [t̂1, 4], where once again we assume t̂ to be the time
of the last jump of the adjoint variable λ2(t). We look to take advantage of the price
changes in t ∈ [2, 17/6] by buying and selling some wheat. However, it is also clear
that the λ2(t) trajectory will have to ‘jump down’ in order to satisfy the boundary
condition at t = 4, i.e., λ2(4

−) = p(4). This implies that the inventory stock has to
deplete to 0 sometime between t ∈ [17/6, 4]. It is also apparent that the firm will have
to sell all the stock it buys after t = 1. With these observations, we can compute
that t̂ = 163/54, with the optimal λ2(t) along with the times to purchase and sell
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wheat depicted in Fig. 7. The optimal trajectory for the adjoint variable λ2(t) can be
computed as below

λ2(t) =


t
2 + 9

2 for 0 ≤ t < 1,

t
2 + 241

108 for 1 ≤ t < 163
54 ,

t
2 + 5

4 for 163
54 ≤ t ≤ 4.

It can be easily shown that all other conditions in the maximum principle including
the Lagrange multiplier conditions are satisfied with this solution.

We now present a simple graphical proof to demonstrate existence of forecast
horizon in an optimal control problem with a state variable x(t) and planning horizon
T, where the state variable is constrained between a lower and an upper limit, i.e.,
L ≤ x(t) ≤ U,∀t. Let’s say that given a forecast of an exogenous input parameter
p(t) that impacts the optimal policy (such as for e.g. price forecast in the case of
the wheat trading model) over a horizon 0 to T, the optimal trajectory of the state
variable is the path xo → A → B → C. Suppose the optimal policy from 0 to
T, given the forecast p(t), t ∈ [0, T ] and other input parameters, is such that the
optimal trajectory of x(t) hits the lower limit L as well as the upper limit U at
least once. Specifically, we consider the scenario that the state variable x(t) hits
the lower limit for the first time at point A and then hits upper limit for the first
time at point B. Now suppose the problem is extended to new horizon T̃ , where
T̃ > T, with additional forecast of p(t) for t ∈ [T, T̃ ]. We now make the following claim.

Proposition 1: TA is a decision horizon and T is a strong forecast horizon
Proof: Let xo → D → E be the optimal trajectory on [0, T̃ ], given the added forecast
of p(t) in [T, T̃ ]. It is clear that any trajectory, that is different than xo → A → B
between t ∈ [0, T ] will have to intersect xo → A → B between the points A and B.
Suppose that point is D in a new optimal with an added forecast of p(t) in [T, T̃ ]. To
prove Proposition 1, we first make the following claim.
Claim 1.1: Given the added forecast of p(t) in [T, T̃ ], If xo → D → E is an optimal
trajectory on [0, T̃ ], then xo → A→ D → E is also optimal trajectory in [0, T̃ ].
To prove this claim, lets say the above claim is not true and xo → D → E is the
only optimal given the added forecast of p(t) in [T, T̃ ]. In that case we will clearly
have Jxo→D > Jxo→A→D, where J denotes the profit function corresponding to a
trajectory. We then add JD→B→C to both sides of the inequality and get

Jxo→D + JD→B→C > Jxo→A→D + JD→B→C .

This in turn yields Jxo→D→B→C > Jxo→A→D→B→C , which contradicts the original
setting of the problem that xo → A→ B → C is the optimal trajectory given forecast
of p(t) ∈ [0, T ]. Hence, by using contradiction we are able to prove Claim 1.1. We
note the fact that D will be a point between A and B, i.e., TA ≤ TD ≤ TB. Claim 1.1
then effectively states that regardless of the added forecast of p(t) in [T, T̃ ], and hence
regardless of the exact position of D between A and B, the path x0 → A will always
be optimal given the initial forecast of p(t) in [0, T ]. This effectively proves Proposi-
tion 1, that in this problem, TD is a decision horizon and T is a strong forecast horizon.

Finally, we note that while we have argued this graphical proof in a setting
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where the optimal state trajectory hits lower limit L before it hits the upper limit
U. However, one can easily extend the same arguments to the situation where the
optimal state trajectory in [0, T ] hits the upper limit first followed by hitting the
lower limit.

4. Concluding Remarks

In this paper, we advance the research in the area of forecast horizons by demonstrating
the existence of weak and strong forecast horizons in a commodity trading model. In
Section 2, in a wheat trading model where short-selling is not allowed, we showed
the existence of a decision horizon and a weak forecast horizon. We note that this
weak forecast horizon arises as the initial wheat stock depleted to 0, i.e., y(t) = 0. We
argued that the existence of this weak forecast horizon is contingent upon the price
of wheat beyond this forecast horizon staying below a ‘price shield’ which was easily
calculated. In Section 3, we extended the model in Section 2 to include an upper limit
on the inventory stock via a warehousing constraint and obtain a decision horizon and
a strong forecast horizon. It can be noted that had we considered a planning horizon
T equal to 17/6, this would have been the smallest planning horizon for which the
optimal state trajectory y∗(t) hits its lower limit (y∗(t) = 0 at t = 1) and its upper
limit and (y∗(t) = 1 at t = 17/6). This is one approach to find a decision horizon
(t = 1) and a forecast horizon (t = 17/6), and we also presented a simple graphical
proof of such an approach. There are other ways as well to find strong forecast horizons,
and for a detailed survey of the literature on decision and forecast horizons in general,
the readers are referred to Chand et al. (2002).

Finally, we would like to comment that our insights on the existence of forecast hori-
zons, even in a deterministic setting, offer helpful knowledge to researchers. It has been
shown in the literature that rolling-horizon optimization of appropriate deterministic
representations is an effective and practical approach to solving stochastic dynamic
optimization problems (see, for e.g. Lai et al. (2010), Wu et al. (2012), Secomandi
(2015), and Nadarajah and Secomandi (2018)).
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Figures

Figure 1. Optimal adjoint variable trajectory and optimal policy for the wheat trading model in Section 2

Figure 2. Decision horizon, weak forecast horizon, and optimal policy for the wheat trading model in Section

2
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Figure 3. Optimal adjoint variable trajectory, optimal policy, and horizons for Example 2.1 with r = 0.1

Figure 4. Optimal adjoint variable trajectory, optimal policy, and horizons for Example 2.2 with r = 0.2
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Figure 5. Optimal adjoint variable trajectory, optimal policy, and horizons under a warehouse constraint

Figure 6. Optimal adjoint variable trajectory, optimal policy, and horizons for Example 3.1
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Figure 7. Optimal adjoint variable trajectory, optimal policy, and horizons for Example 3.2

Figure 8. Graphical proof for existence of horizons in problem with warehousing constraint
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Figure Captions

Figure 1 Caption: Optimal adjoint variable trajectory and optimal policy for the
wheat trading model in Section 2.
Figure 1 Alt Text: Figure 1 shows the optimal policy for the wheat trading model
along with the trajectory of the adjoint variable.

Figure 2 Caption: Decision horizon, weak forecast horizon, and optimal policy for the
wheat trading model in Section 2.
Figure 2 Alt Text: Figure 2 shows a representative picture of optimal policy for a
general price trajectory while still ensuring that the state constraint is not violated.

Figure 3 Caption: Optimal adjoint variable trajectory, optimal policy, and horizons
for Example 2.1 with r = 0.1
Figure 3 Alt Text: Figure 3 shows optimal policy for an example of wheat trading
model with interest rate for cash r = 0.1. It plots the optimal policy and decision and
forecast horizon for this example.

Figure 4 Caption: Optimal adjoint variable trajectory, optimal policy, and horizons
for Example 2.2 with r = 0.2
Figure 4 Alt Text: Figure 4 shows optimal policy for an example of wheat trading
model with interest rate for cash r = 0.2. It plots the optimal policy and decision and
forecast horizon for this example.

Figure 5 Caption: Optimal adjoint variable trajectory, optimal policy, and horizons
under a warehouse constraint.
Figure 5 Alt Text: Figure 5 shows optimal policy for an example of wheat trading
model with warehousing constraint. It plots the optimal policy and decision and
forecast horizon for this example.

Figure 6 Caption: Optimal adjoint variable trajectory, optimal policy, and horizons
for Example 3.1.
Figure 6 Alt Text: Figure 6 shows optimal policy and decision and forecast horizon
for an example with a different price trajectory than Figure 5.

Figure 7 Caption: Optimal adjoint variable trajectory, optimal policy, and horizons
for Example 3.2.
Figure 7 Alt Text: Figure 7 shows optimal policy and decision and forecast horizon
for an example with a different price trajectory than Figures 5 and 6.

Figure 8 Caption: Graphical proof for existence of horizons in problem with warehous-
ing constraint.
Figure 8 Alt Text: Figure 8 shows a simple graphical proof of existence of forecast and
decision horizon for wheat trading problem with warehousing constraint.
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