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Abstract

Background: Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the
last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of
disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent
imputation to address this problem.

Results: Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from
low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of
variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide
polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant
spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele
frequency was advantageous, even when the panel was subsequently used in a population of different geographical
origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation
accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes
were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss
of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different
low-density panels, suggests that a 2K SNP panel would represent good value for money.

Conclusions: Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between
cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in
horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to
combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting
to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of
between-breed differences on imputation accuracy.
Background
The introduction of high-throughput, single nucleotide
polymorphism (SNP) chips that permit the analysis of
large numbers of SNPs in parallel has enabled large-
scale studies of human and livestock populations. A
common feature of genome-wide association studies
(GWAS) is that large sample sizes are needed to ensure
sufficient power to detect what are hypothesised to be
quantitative trait loci (QTL) with relatively small effects.
To validate any detected QTL, both a substantial
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reproduction in any medium, provided the or
number of samples for the initial analysis and a second
independent sample are required. Furthermore, any
underlying data structure, such as that caused by diffe-
rent ancestries, e.g. different breeds in the case of live-
stock, and the presence of environmental factors, has
the potential to reduce power for a given sample size.
In the equine setting, the accumulation of large num-

bers of samples represents a significant challenge. Since
the introduction of the first equine SNP chip by Illumina
in 2007, several GWAS of monogenic diseases have been
successful in identifying associated regions of the ge-
nome and in several cases, causal mutations [1-3]. How-
ever, results for the analysis of complex traits have been
less convincing; some studies have reported QTL, but
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many of these QTL have been defined with ad hoc sig-
nificance thresholds, since authors attempt to balance
the risk of Type I and Type II errors [4,5]. The appa-
rently low signal to noise ratio is an indication of the
low power, caused in part by small sample sizes. More-
over, insufficient validation has been done to confirm
whether or not these initial findings are true associations
or false positives. One of the reasons for small sample
sizes is the cost of genotyping. While the cost of geno-
typing with SNP chips has fallen during the last few
years, the cost relative to potential return remains im-
portant, and within some sectors of the equine industry,
e.g. the UK sport horse sector, the potential to make sig-
nificant returns from breeding superior animals is gene-
rally limited. Therefore, the development of genomic
approaches to breeding in the equine industry requires
more cost-effective genotyping.
One opportunity to reduce genotyping costs is the

development of low-density genotyping. If a reference
population of individuals genotyped at high-density is
available, individuals from a test population or selection
candidates can be genotyped for a subset of these loci
on a low-density panel (LDP), followed by imputation to
fill in the ‘missing’ SNP genotypes [6]. Provided the refe-
rence population and the test population are genetically
similar in origin, population genetic models can use cor-
relations between alleles at neighbouring loci measured
in the former to predict unobserved genotypes in the lat-
ter [6]. The dependence of imputation accuracy on the
SNP density in the LDP means that there will always be
a trade-off between the cost of genotyping and the
accuracy of imputation. Other factors that affect the ac-
curacy of imputation include levels of linkage disequili-
brium (LD) in the population, the degree of similarity
between the reference population and the test popula-
tion and, to some extent, the size of the reference popu-
lation [7-10].
Efforts to develop improved imputation algorithms have

resulted in a wide range of software programs, most of
which have evolved from programs written to infer haplo-
type phase from large-scale genotype data. Commonly
used programs include fastPHASE [11], MACH [12],
IMPUTE [13], AlphaPhase [14] and BEAGLE [15], and
their relative efficacies have been explored under various
scenarios [7,15-18]. Whereas some of these imputation
methods use linkage analysis to exploit known relation-
ships between individuals, in many cases, knowledge of
relationships is not required and population-wide LD
between SNPs is used.
Because the imputation method relies on LD between

SNPs on the LDP and the remaining SNPs on the high-
density panel, the choice of SNPs for the LDP also
affects the accuracy of imputation. A significant effort
has been devoted to optimising LDP SNP selection and
several algorithms have been developed along this vein.
Many programs use LD between pairs or groups of
markers to select LDP SNPs in a so-called block-free ap-
proach, e.g. Tagger [19] or LDSelect [20]. Another com-
mon approach is to use haplotype information in a
block-based approach, e.g. HapBlock [21], while other
more novel algorithms have been developed such as the
neighbourhood graph approach of Halldórsson et al.
[22] or the multiple linear regression approach of He
and Zelikovsky [23]. In situations where LDP SNPs are
selected to predict haplotypes, they are commonly re-
ferred to as ‘tag SNPs’ (see Halldórsson et al. [24] for a
review).
In this study, genotypes from the Illumina Equine SNP50

BeadChip (www.illumina.com/documents/products/data-
sheets/datasheet_equine_snp50.pdf) were used to investi-
gate the accuracy of imputation that can be achieved in
Thoroughbred horses, without pedigree information, and
using a typical imputation program (BEAGLE). Three
methods of LDP SNP selection were tested across six LDP
sizes in order to evaluate the impact of various SNP selec-
tion criteria that involve both information content and LD
of SNPs. The effect of geographical substructure on the
accuracy of imputation was also investigated.

Methods
Sample collection
The data for this study consisted of 853 Thoroughbred
horses originating from the United Kingdom (UK data-
set), and 348 Thoroughbred horses from the United
States (US dataset). The UK dataset had been the subject
of two GWAS, and the US dataset had been the subject
of a further GWAS, and each GWAS was structured as
a case–control study for one of three diseases. None of
the GWAS identified any major QTL for their target dis-
ease [25] and so for the purpose of this study the horses
were treated as population samples from two geograph-
ically distinct regions.

UK dataset
In the UK, blood samples were collected by the Animal
Health Trust between 2006 and 2008, from Thorough-
bred horses competing in both flat- and jump-racing
(513 males, 340 females). Horses were from a wide geo-
graphical area and are expected to be relatively un-
related. Samples in the UK dataset were randomly
assigned to one of three subsets: Set A, containing 200
samples, which was used to select LDP SNPs; Set B, con-
taining 490 (75%) of the remaining samples, which was
used as the training reference population; and Set C,
containing the remaining 163 samples (25%), which was
used as the test population, and which were assumed to
be genotyped with the LDP. Genotypes for the LDP were
obtained by masking SNPs that were not selected to be
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in the LDP being tested. A graphical representation of
this data flow is in Figure 1.

US dataset
In the US, blood samples were collected over two years
(2007 and 2008) from 348 Thoroughbreds (159 males,
189 females) admitted to the Rood and Riddle Equine
Hospital, Lexington (Kentucky). Horses originated from
one of 19 surrounding horse farms, with the number of
horses per farm ranging from two to 89. Since sampling
was anonymous, pedigree details for the horses were not
available but the data set was expected to consist of a
mixture of half-sibs (by sire and by dam since data was
collected across two years) and more distantly related
horses. Two analyses were performed using this dataset
along with the UK dataset to investigate imputation
across populations. In the first analysis, the training in-
formation obtained from Set B in the UK dataset was
used for imputation of the entire US dataset, which was
assumed to be genotyped with the LDP. In the second
analysis, samples in the US dataset were randomly
assigned to one of two subsets: Set D, containing 261
samples (75%), which was used as the training reference
population, or Set E, containing the remaining 87 US
samples, which was used as the test population and
which was assumed to be genotyped with the LDP. A
graphical representation of this data flow is in Figure 1.

Genotyping
All blood samples were collected in EDTA, sent to the
Animal Health Trust for further processing, and to Tepnel
for DNA extraction (Tepnel has since been bought by Gen-
Probe). An aliquot of each sample was diluted to 70 ng/μl
Figure 1 Data flow for analysis.
and sent to Cambridge Genomic Services (http://www.cgs.
path.cam.ac.uk/services/genotyping/) for genotyping using
the Illumina Equine SNP50 Genotyping BeadChip, which
comprises 54 602 SNPs across all autosomes and the X
chromosome. These SNPs were selected from a database of
over one million SNPs (http://www.broadinstitute.org/ftp/
distribution/horse_snp_release/v2/) generated during the
sequencing of the horse genome [26,27]. All samples for
this study were genotyped at the same time, along with
samples for several other studies. The full dataset, a batch
of 1342 samples, was checked using the Illumina Geno-
meStudio genotyping module. A series of quality control
metrics identified 3895 poorly performing SNPs (7.1%)
(see Additional file 1: Table S1). Genotypes for these SNPs
were set to missing in all samples, leading to their subse-
quent exclusion during quality control undertaken specif-
ically for this study (see below).

Quality control
Quality control was applied to Set A in order to generate
a list of SNPs that were used in all subsequent stages of
the analysis. SNPs that were genotyped in less than 95% of
samples in the set and those with a minor allele frequency
(MAF) below 0.01 were excluded. The analyses within the
UK dataset focused on four Equus caballus (ECA) chro-
mosomes: ECA1, ECA10, ECA20 and ECA26; these were
chosen to represent the shortest (ECA26), longest (ECA1),
and median length (ECA20) chromosomes (measured in
cM, based on Swinburne et al. [28]), and to include two
centromeric chromosomes (ECA1 and ECA10) and two
acrocentric chromosomes (ECA20 and ECA26). In the
analyses with the US dataset, only ECA1 and ECA26 were
analysed. After quality control, the dataset consisted of
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3581 SNPs on ECA1 (18.0% excluded), 1532 SNPs on
ECA10 (20.0% excluded), 1225 SNPs on ECA20 (17.5%
excluded) and 781 SNPs on ECA26 (18.5% excluded).

Selection of SNPs for the low-density panel
The three methods were used to select LDP SNPs, as de-
tailed below. Genotype data from the 200 UK samples
assigned to Set A were used to generate (i) the MAF of
the SNPs for the algorithm used in Methods 2 and 3 and
(ii) the LD map used in Method 3 (see below). In the
within-population analysis of the UK dataset, the methods
were tested at six different densities, representing ge-
nome-wide panels with 384, 768, 1K, 2K, 3K and 6K
SNPs. The equivalent densities, expressed in terms of Ne

(effective population size) SNPs per Morgan, as described
in Solberg et al. [29], were 0.09, 0.18, 0.24, 0.48, 0.72 and
1.44Ne/Morgan, assuming Ne = 150 and a total genome of
27.72 Morgan [28]. In the subsequent analysis with the US
dataset to assess the efficacy of imputation across popula-
tions, the LDP density tested was 2K, because at this dens-
ity the within-population accuracy was always greater
than 0.8. The number of LDP SNPs to be selected for a
given chromosome (nchr) was proportional to the ratio of
the length of the chromosome (lenchr) to the whole ge-
nome (lengenome) in terms of physical distance in base pairs
(nchr = LDPsize*lenchr/lengenome).

Method 1: Equidistant in bp (bpEQ)
SNPs for the LDP were selected such that their spacing
along the chromosome was approximately equidistant in
base pairs. This was achieved by dividing the total base
pair length of the chromosome into equally sized seg-
ments, the number of segments being equal to the de-
sired number of LDP SNPs for the given LDP density
(nchr) minus 1. The closest SNP to each segment boun-
dary was then chosen to be a SNP in the LDP, irrespect-
ive of its MAF.

Method 2: Equidistant in bp and optimised for MAF
(bpMAF)
SNPs for the LDP were selected so that their spacing
along the chromosome was approximately equidistant in
base pairs and their MAF was high. In order to meet both
objectives, SNP selection was performed separately for
each chromosome using a custom python program that
applied a genetic algorithm. The cost function to be mini-
mized included two components: the first component
aimed at driving the MAF of the selected SNPs towards

0.5 by applying a penalty equal to 0:5−MAFSNPið Þ2 (1) and
the second component ensured equal spacing. An ideal
distance between SNPs, d, was calculated as: d ¼ lenchr

nchr−1

and then, the spacing between consecutive SNPs i and i +
1 in the LDP was forced to approach d using the function:
((Si − Si + 1) − d)2 (2), where S is the base pair position of
the SNP. The set of nchr SNPs was then derived by itera-
tively minimizing the following function over all SNPs:

∑n 0:5−MAFSNPið Þ2 þ Si−Siþ1ð Þ−dð Þ2� �
:

In order to ensure good coverage at the telomeres,
where recombination events are more frequent and
hence accuracy of imputation is expected to be lower,
the SNPs from the high-density panel that were closest
to the ends of each chromosome were included in the
LDP.

Method 3: Equidistant in LD units and optimised for MAF
(lduMAF)
In the absence of a detailed recombination map for the
horse, an alternative measure of distance was used as a
proxy, such that the assumption of uniformity of LD and
recombination along the length of a chromosome could
be removed. The proxy used was linkage disequilibrium
units (LDU), as calculated using the LDMAP program
described and developed by Maniatis et al. [30]. The the-
ory behind the LDMAP program is based on the Malecot
equation [31], and is described extensively elsewhere [32].
An LD map for each chromosome was constructed, using
the genotypes of samples in Set A (for further details, see
Additional file 2). LD map distance has been shown to
have a close relationship with linkage maps [33] and re-
combination rates, at least to the extent that recombin-
ation hot spots can be identified [34]. Maps for all
chromosomes can be found in Additional file 3: Figure S1.
SNPs for the LDPs were then selected according to the

same algorithm used in Method 2, but with SNP loca-
tions given in LDU instead of base pair positions. In
cases for which SNPs were allocated to the same pos-
ition in the LD map, a small addition was made to sub-
sequent locus positions (10−6) before entering the SNP
locations in the LDP SNP selection algorithm such that
SNP order remained consistent with the physical map.

Imputation
The software program BEAGLE (v 3.3.1) [35] was used
to impute from low- to high-density markers without
pedigree information, since none was available. The de-
fault parameters of the program were used throughout
and the most likely genotype was taken to be the im-
puted genotype at masked loci. For comparison, masked
loci were also imputed by random sampling of geno-
types, conditional on the allele frequencies at the SNPs
observed in the reference populations (Set B or Set D).
Because no other quality control was carried out in the
reference or test populations, at this stage, a small num-
ber of SNPs had a MAF below 0.01 and a very small
number of SNPs were monomorphic.



Table 1 The mean proportion of correctly imputed
genotypes, as calculated in the within-population
analysis of the UK dataset

Number of SNPs1 bpEQ bpMAF lduMAF
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Imputation accuracy was evaluated for the three LDP
SNP selection methods, the six LDP densities and four
chromosomes, and was summarised per SNP and per in-
dividual. For each imputed SNP, imputation accuracy
was assessed using two measures: (i) the proportion of
genotypes for the SNP that were correctly imputed
among samples; and (ii) the correlation between the true
and imputed genotypic allele counts across all samples
(homozygote for allele 1, coded 0; heterozygous, coded
1; homozygous for allele 2, coded 2). The very small
number of loci where true or imputed SNP genotypes
were monomorphic among samples, were excluded from
the correlation calculations. Summary statistics were
then calculated across all SNPs. For each individual, im-
putation accuracy was calculated using the same two
measures: (i) the proportion of all of the horses’ geno-
types that were correctly imputed; and (ii) the correl-
ation between the true and imputed genotypes across all
the horses’ SNPs when coded as above. As before,
monomorphic SNPs were excluded from the correlation.
Summary statistics were then calculated across all
horses.
Finally, an adjustment to the proportion of correctly

imputed genotypes by the expected proportion that
would be correct from random sampling of alleles was

calculated as: accuracy−random accuracy
1−random accuracy [7], where accuracy is

the proportion of correctly imputed genotypes achieved
for the SNP and random_accuracy is the expected pro-
portion using random imputation. The expected propor-
tion is given by p4 + 4p2q2 + q4 [9], where p and q are the
frequencies of the major and minor alleles of the SNP in
the reference population. This statistic adjusts for the
fact that SNPs with a low MAF are likely to be imputed
with high accuracy by chance alone.
Per individual

384 0.66 (0.52,0.93) 0.67 (0.55,0.94) 0.69 (0.55,0.92)

768 0.76 (0.59,0.94) 0.77 (0.62,0.95) 0.78 (0.59,0.96)

1K 0.79 (0.61,0.94) 0.84 (0.66,0.97) 0.83 (0.64,0.98)

2K 0.90 (0.70,0.99) 0.91 (0.71,0.99) 0.89 (0.68,0.99)

3K 0.94 (0.70,0.99) 0.95 (0.73,1.00) 0.92 (0.67,0.99)

6K 0.97 (0.79,1.00) 0.98 (0.78,1.00) 0.95 (0.75,1.00)

Per SNP

384 0.66 (0.30,1.00) 0.67 (0.30,1.00) 0.69 (0.36,1.00)

768 0.76 (0.37,1.00) 0.77 (0.44,1.00) 0.78 (0.50,1.00)

1K 0.79 (0.44,1.00) 0.84 (0.50,1.00) 0.83 (0.53,1.00)

2K 0.90 (0.56,1.00) 0.91 (0.63,1.00) 0.89 (0.53,1.00)
Linkage disequilibrium
In order to explore possible causes of differences in im-
putation accuracy across SNPs, PLINK [36,37] was used
to calculate LD between pairs of SNPs using the squared
correlation based on genotypic allele counts. This is
identical to the r2 measure of LD when mating is at ran-
dom, i.e. assuming genotypic frequencies are in Hardy-
Weinberg equilibrium [38]. However, to denote the
distinction from the true r2, the term r2g will be used.

Values of r2g were calculated between all pairs of SNPs in

Set A. Average pairwise r2g were then calculated for SNPs

in 1 Mb sliding windows, with 0.5 Mb overlaps.

3K 0.94 (0.68,1.00) 0.95 (0.72,1.00) 0.92 (0.66,1.00)

6K 0.97 (0.79,1.00) 0.98 (0.83,1.00) 0.95 (0.72,1.00)

Mean proportion of correctly imputed genotypes per individual or per SNP for
ECA1, with minimum and maximum values in brackets (tables for all
chromosomes are in Additional file 4: Table S2); 1total number of SNPs that
would be on a genome-wide LDP of equivalent density.
Results
Within-population assessment of imputation accuracy
The accuracy of imputation, as measured by the propor-
tion of SNPs correctly imputed, increased as the number
of SNPs in the LDP increased, as shown for ECA1 in
Table 1 and Figure 2 (and in Additional file 4: Table S2
and Additional file 5: Figure S2, for all chromosomes).
For example, using equidistant LDP SNPs (bpEQ), the
mean proportion of correctly imputed genotypes ranged
from 0.59 at the minimum LDP SNP density of 0.09Ne/
Morgan, to 0.97 at a density of 1.44Ne/Morgan. The in-
crease was greatest at the lower densities and showed
diminishing returns with further increases in density. A
large range in the proportion of genotypes correctly im-
puted was observed between animals, particularly when
the density of the LDP was lowest, when the proportion
ranged from an average of 0.54 to an average of 0.93
across the three methods for ECA1. Although the differ-
ence in accuracy between the three LDP SNP selection
methods was small or absent, Methods 2 and 3 reduced
the variation in imputation accuracy across SNPs (see
Figure 2 and Additional file 5: Figure S2). As shown in
Table 2 for ECA1 (and Additional file 6: Table S3, for all
chromosomes), Methods 2 and 3 resulted in an increase
in both the mean MAF of the selected LDP SNPs and
the standard deviation of the distance between the LDP
SNPs.
Random imputation of genotypes at masked loci, based

on allele frequencies in the reference population, quanti-
fies the minimum imputation accuracy that can be ex-
pected. Figure 3 shows the strong dependency of the
accuracy of imputation on MAF with random imputation
and the results follow closely the expectation (see



Figure 2 The mean proportion of correctly imputed genotypes and its variance across SNPs for ECA1. As calculated in the within-
population analysis of the UK dataset and plotted against the total number of SNPs on a genome-wide LDP of equivalent density (figures for all
chromosomes are in Additional file 5: Figure S2).
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Methods). This relationship between MAF and imputation
accuracy was less clear when BEAGLE was used for im-
putation, except at lower densities (Figure 3).
In order to explore possible causes of differences in im-

putation accuracy between SNPs, imputation accuracy
and average pairwise r2g were plotted against SNP position

(bp) (Figure 4). The hypothesised positions of the centro-
meres are also marked on the plots. Based on similarity
with centromeric satellite sequences, it was assumed that
the centromere position of ECA1 was located at 66 Mb or
Table 2 Properties of low density panel SNPs, as calculated in

Number of SNPs1 Method Mean (

384 bpEQ 0.22 (0.

bpMAF 0.25 (0.

lduMAF 0.44 (0.

768 bpEQ 0.25 (0.

bpMAF 0.31 (0.

lduMAF 0.45 (0.

1K bpEQ 0.22 (0.

bpMAF 0.39 (0.

lduMAF 0.45 (0.

2K bpEQ 0.23 (0.

bpMAF 0.28 (0.

lduMAF 0.46 (0.

3K bpEQ 0.23 (0.

bpMAF 0.30 (0.

lduMAF 0.46 (0.

6K bpEQ 0.23 (0.

bpMAF 0.29 (0.

lduMAF 0.43 (0.

Properties of low density panel SNPs for ECA1 selected using three methods (tables
that would be on a genome-wide LDP of equivalent density.
89 Mb and of ECA10 at 28.2 Mb, although there was a
second region between 81 Mb and 83 Mb that also con-
tained some centromeric satellite-like sequences; ECA20
and ECA26 are not centromeric but regions identified for
these chromosomes may represent regions that contained
centromeres in the past, if the similarity with centromeric
satellite sequences is real (CM Wade 2012, personal com-
munication). Figure 4 shows considerable variation in im-
putation accuracy across the chromosome, which was
often positively correlated with levels of LD. This variation
the within-population analysis of the UK dataset

SD) MAF Mean (SD) distance between SNPs (Mb)

13) 6.40 (0.09)

10) 6.40 (0.66)

06) 6.40 (2.41)

15) 3.14 (0.09)

13) 3.14 (0.57)

04) 3.14 (1.65)

14) 2.41 (0.07)

08) 2.38 (0.61)

04) 2.38 (1.42)

14) 1.19 (0.06)

11) 1.19 (0.30)

04) 1.19 (1.19)

14) 0.79 (0.06)

12) 0.79 (0.23)

03) 0.79 (0.92)

14) 0.39 (0.07)

11) 0.39 (0.17)

05) 0.39 (0.63)

for all chromosomes are in Additional file 6: Table S3); 1total number of SNPs



Figure 3 The proportion of correctly imputed genotypes plotted against the MAF of the SNPs being imputed (calculated in the
reference population) for ECA1 (bpEQ). As calculated in the within-population analysis of the UK dataset. a) 384 panel; b) 1K panel; c) 6K panel.
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was particularly marked for ECA10, for which a peak in
imputation accuracy was observed in the region that
surrounds the proposed centromere. When Method 3
(lduMAF) was used to select LDP SNPs the variation in
accuracy across the chromosome was reduced, which led
to a more consistent level of accuracy and a reduction in
its correlation with LD levels; this corresponds to the de-
creased variance in imputation accuracy across SNPs ob-
served when using this method shown in Figure 2 and
Additional file 5: Figure S2. In general, the decrease in ac-
curacy obtained with Method 3 in regions of high LD
compared to Methods 1 and 2 was greater than the corre-
sponding increase in low LD areas. This explains the in-
ability of this method to improve mean accuracies above
those achieved using Method 2 (bpMAF).
The correlation between true and predicted genotypes
was also calculated as an alternative measure of imput-
ation accuracy. While accuracies were generally lower
when expressed as correlations, considerable differences
between horses and between SNPs remained (Table 3 and
Additional file 7: Table S4). A comparison of the two
accuracy measures showed some correspondence but the
relationship depended upon MAF (Figure 5a). Adjusting
the proportion of correctly imputed genotypes for the
expected proportion achievable by random imputa-
tion resulted in a much stronger relationship with
the correlation between true and imputed genotypes
(Figure 5b), which was almost independent of the MAF,
although SNPs with a lower MAF tended to show more
variation in both measures of accuracy.



Figure 4 The proportion of correctly imputed genotypes by SNP and the mean linkage disequilibrium plotted against SNP position for
the 1K panel. The figure presents Lowess curves, as calculated in R [45-48]; green = bpEQ; blue = bpMAF; red = lduMAF; black = mean linkage
disequilibrium (r2g) in sliding windows of 1 Mb (with 0.5 Mb overlap); yellow = hypothesised position of the centromere. a) ECA1; b) ECA10;

c) ECA20; d) ECA26.
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Between-population assessment of imputation accuracy
When Set B (the UK reference population) was used
as the reference population for imputation in the US
dataset, there was very little change in the mean pro-
portion of correctly imputed genotypes relative to the
within-population results (Table 4). With random im-
putation, there was no difference in accuracy between
the within- and between-population analyses for
ECA1 whereas a small but consistent decrease of 0.01
in the mean was seen for ECA26. This small difference
is presumably due to the high correlation between the
MAF of SNPs in the two populations, which was equal
to 0.91 for ECA1 and 0.90 for ECA26. Imputation using
BEAGLE gave a similar pattern of results, with no dif-
ference in imputation accuracy for ECA1 and a slight
decrease in accuracy for ECA26 when compared to the
within-population results for the UK described above.
When Sets D and E were used as reference and test
populations, respectively, imputation accuracy was
slightly increased compared to that obtained for
within-UK imputation, for both imputation methods
(random and BEAGLE) and for all three LDP SNP
sets (Table 4). This increase is probably due to the
higher average relationship between horses in the US
dataset compared to the UK dataset; when average
genomic relationships were calculated for all samples
using SNPs on ECA1 (as in [25]), the mean relation-
ship between horses was 0.022 in the US dataset and
0.003 in the UK dataset.

Discussion
In this study, the efficacy of imputation from low- to
high-density in Thoroughbred horses was investigated
and three methods for selecting the LDP SNP were



Table 3 The mean correlation between true and predicted
genotypes, as calculated in the within-population analysis
of the UK dataset

Number of SNPs1 Method for selection of low density SNPs

per individual bpEQ bpMAF lduMAF

384 0.46 (0.14,0.89) 0.49 (0.20,0.91) 0.53 (0.22,0.89)

768 0.64 (0.36,0.93) 0.66 (0.38,0.93) 0.69 (0.37,0.94)

1K 0.70 (0.41,0.93) 0.78 (0.51,0.96) 0.75 (0.47,0.98)

2K 0.86 (0.53,0.99) 0.88 (0.62,0.98) 0.85 (0.52,0.99)

3K 0.92 (0.59,0.99) 0.94 (0.60,1.00) 0.88 (0.48,0.99)

6K 0.97 (0.73,1.00) 0.97 (0.71,1.00) 0.93 (0.61,1.00)

per SNP

384 0.30 (−0.17,1.00) 0.32 (−0.14,1.00) 0.36 (−0.08,1.00)

768 0.52 (−0.08,1.00) 0.53 (−0.06,1.00) 0.55 (−0.05,1.00)

1K 0.60 (−0.04,1.00) 0.67 (−0.05,1.00) 0.64 (−0.05,1.00)

2K 0.81 (−0.04,1.00) 0.83 (−0.02,1.00) 0.79 (−0.02,1.00)

3K 0.89 (−0.01,1.00) 0.90 (−0.03,1.00) 0.83 (−0.02,1.00)

6K 0.95 (0.25,1.00) 0.96 (0.49,1.00) 0.90 (−0.01,1.00)

Mean correlation between true and predicted genotypes per individual or per
SNP for ECA1, with minimum and maximum values in brackets (tables for all
chromosomes are in Additional file 7: Table S4); 1total number of SNPs that
would be on a genome-wide LDP of equivalent density.
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compared. Two measures were used to assess imput-
ation accuracy, the proportion of correctly imputed ge-
notypes and the correlation between true and imputed
genotypes. While these two measures were correlated,
the proportion of correctly imputed genotypes was re-
lated to the MAF of the imputed SNPs. Adjusting the
proportion of correctly imputed genotypes by the ex-
pected accuracy using random imputation (as in [7])
weakened the relationship with MAF, but emphasized
the greater variation in imputation accuracies for SNPs
with a low MAF. In contrast, the correlation measure
provided an assessment of imputation accuracy that was
less dependent on MAF. This property makes it prefera-
ble for comparing methods, which is a similar conclu-
sion to that of Hickey et al. [8] in their study on maize.
However, because accuracy expressed as the proportion
of correctly imputed genotypes is more easily compared
to results of other studies, it is also presented here. The
haplotype phasing and imputation program used here
(BEAGLE) has been shown to perform similarly to other
available software [7,17,39] and therefore the results pre-
sented are considered to be representative.
Factors affecting imputation accuracy
Increasing the SNP density of the LDP serves to reduce
the considerable range in imputation accuracy between
SNPs and between horses. For example, at the lowest
density, some SNPs were imputed correctly for all horses,
whereas other SNPs were correct in as few as 24% of
horses (ECA10 bpEQ results). Increasing the density of
the LDP led to an increase in the minimum accuracy
across SNPs, so for ECA10 the 6K LDP gave a minimum
accuracy of 83%. A similar effect was observed across
horses. By calculating marker densities normalised by Ne,
results can be compared to those from other studies and
species. Using a 2K low-density panel in Border Leicester
sheep, equivalent to a SNP density of 0.23Ne/Morgan (as-
suming Ne = 242 [40] and a total genome length of 36.3
Morgans [41]), Hayes et al. [7] achieved an imputation
accuracy of approximately 0.73 (measured by the un-
adjusted proportion of correctly imputed genotypes).
Thus, our results using the 0.24Ne/Morgan bpMAF SNP
panel (the 1K panel) compare favourably, with accuracies
that ranged from 0.74 to 0.84 across chromosomes. A
study on Jersey cattle that used equivalent SNP densities
also obtained accuracies in the range of 0.7 to 0.8 [18].
Random imputation resulted in a direct and predic-

table relationship between the MAF of SNPs and the ac-
curacy with which they were imputed. This relationship
was less evident when using BEAGLE for imputation,
except at the lowest LDP SNP densities, for which the
amount of information available from LD was pre-
sumably low. Using a genetic algorithm to preferentially
select LDP SNPs that are more informative, i.e. having a
high MAF, while simultaneously ensuring consistent
coverage across the chromosome (bpMAF), achieved a
small but consistent increase in the proportion of cor-
rectly imputed genotypes, with increases ranging from
0.6% to 5.3% for the 1K SNP panel. Further small im-
provements might be obtained by differential weighting
of the two parts of the objective function used, so ma-
king MAF of greater or lesser importance. Using method
bpMAF to select LDP SNPs also resulted in a decrease
in the variation in imputation accuracy across SNPs
compared to the bpEQ method.
A major source of the variation in imputation accur-

acy across SNPs was the extent of LD, with variation
both between and within chromosomes. There was a
tendency for imputation accuracies to be higher for
the longer chromosomes (ECA1 and ECA10) and this
coincides with the higher average LD of these chromo-
somes, shown by Corbin et al. [42]. Within chromo-
somes, SNPs in regions of high LD were imputed
more accurately than SNPs in regions of low LD. The
strength of this relationship differed between the four
chromosomes and was strongest for ECA10, where the
region of highest LD (and imputation accuracy) coin-
cided with the hypothesised position of the centro-
mere. This relationship between LD and the accuracy
of imputation was not observed for ECA1, which sug-
gests that the processes underlying the observed LD
may be important. When locations of SNPs were
scaled based on LD map distance (as a proxy for



Figure 5 The correlation between true and imputed genotypes by SNP. a) Plotted against the proportion of correctly imputed genotypes;
b) Plotted against the proportion of correctly imputed genotypes, scaled by the proportion expected from random imputation. Black = SNPs with
MAF≥ 0.40; blue = SNPs with 0.30 ≤MAF < 0.40; green = SNPs with 0.20 ≤MAF < 0.30; yellow = SNPs with 0.10≤MAF < 0.20; red = SNPs with
MAF < 0.10; data for ECA1 and 1K panel.
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linkage map distance) prior to their selection for the
LDP, as in Method 3 (lduMAF), this relationship be-
tween LD and imputation accuracy was broken down
(Figure 4). This resulted in a decrease in the variance
of imputation accuracy between SNPs. However, the
change in mean imputation accuracy relative to Method 2
(bpMAF) was small and inconsistent, with an increase in
accuracy for ECA26 and a decrease for ECA1.
Using lduMAF to select LDP SNPs increased impu-
tation accuracy for SNPs that were in low LD regions
due to a greater concentration of SNPs selected in these
regions, but the decrease in accuracy for SNPs in high
LD regions was relatively greater, resulting in a trend for
the mean accuracy to be reduced. The relatively poor
performance of the lduMAF may be due in part to the
use of D′ rather than r2 in the Malecot model.



Table 4 The mean proportion of correctly imputed genotypes for ECA1 and ECA26, as calculated in the between-
population analysis of the US dataset with the 2K panel

Chr Imputation
method

LDP SNP selection
method

UK within-population
assessmenta

Between-population
assessment 1b

Between-population
assessment 2c

ECA1 Randomd bpEQ 0.55 0.55 0.56

bpMAF 0.55 0.55 0.56

lduMAF 0.56 0.56 0.57

Beaglee bpEQ 0.90 0.90 0.92

bpMAF 0.91 0.91 0.93

lduMAF 0.89 0.89 0.92

ECA26 Randomf bpEQ 0.51 0.50 0.51

bpMAF 0.52 0.51 0.51

lduMAF 0.52 0.51 0.51

Beagleg bpEQ 0.82 0.81 0.86

bpMAF 0.85 0.84 0.89

lduMAF 0.88 0.85 0.90
areference population B and test population C; breference population B and test population D + E; creference population C and test population D; dSE across SNPs and
samples was equal to 0.003 and 9×10-4 to 2×10−3, respectively; eSE across SNPs and samples was equal to 0.001 and 2×10−3 to 5×10−3, respectively; fSE across SNPs and
samples was equal to 0.006 and 1×10−3 to 3×10−3, respectively; gSE across SNPs and samples was equal to 2×10−3 to 4×10−3 and 4×10−3 to 1×10−2, respectively.
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Constructing an LDP including consideration of r2 may
give better results, although r2 is already low in Thorough-
breds at the densities used for the LDP [42]. An additional
benefit may also be obtained if the lduMAF approach was
applied at a genome-wide level, such that the number of
LDP SNPs per chromosome was proportional to its LD
map distance, rather than its base pair length as in the
current implementation. If pedigree were available and if
genotyping were to become common in the Thorough-
bred, constructing accurate maps of intra-chromosomal
linkage in Morgans derived from the phasing carried out
within the imputation process would be straightforward
(JM Hickey 2012, personal communication). Such maps
could then be used directly to produce an LDP better able
to capture recombination events and hence improve im-
putation accuracy.
The results of analyses presented here suggest that

there is some ambiguity over which properties of impu-
tation are most important when assessing efficacy. Does
the utility for imputation argue for choosing LDP SNPs
to maximise the mean imputation accuracy, or to maxi-
mise a minimum (or low percentile of) imputation ac-
curacy; as judged by SNPs or by horses? Concern over
lower percentiles will place more value on reducing the
variance of imputation errors. While the answer lies in
the intended use of the imputed genotypes, it would be
useful to have some generic assessment of imputation
performance. One solution might be to use a utility
function such as the area under the curve obtained from
plotting SNP correlation against SNP position, as in
Figure 4. The development of a whole-genome measure
of imputation success, integrating location and accuracy,
would allow for a more comprehensive and quantitative
comparison of the different LDP SNP sets used in this
study, in particular the relative usefulness of the novel
lduMAF approach.

Between-population assessment of imputation accuracy
Transferability across breeds and across countries within
breeds is an important consideration when designing a
LDP. Here, data from a cohort of US Thoroughbreds
was used to evaluate the impact of geographical origin
on the efficacy of imputation. While comparisons of
within-UK, within-US and UK to US imputations in-
volved reference and test populations of different sizes,
studies have shown that the size of the reference popula-
tion does not have a major impact on imputation accu-
racy for the sizes used here [7,10]. In this study,
replacing the UK test population with a sample of horses
from a different geographical area (the US) had a negli-
gible impact on imputation accuracy. This implies that
similar LD patterns exist in both populations, which in
turn indicates that the genetic differentiation between
the UK and US populations is small, or that a similar LD
structure exists due to a common recombination back-
ground, or both. The high correlation between MAF of
SNPs in the two populations lends some credence to the
former argument, while the relationship between LD
and the centromere position in ECA10 suggests that the
latter is also relevant. One can assume that the US and
UK populations share some similarity, given the rela-
tively recent breed formation (around 30 generations
ago) combined with cross-border matings and the rela-
tively small number of founders (effective number of
studbook founders of 28.2 [43]). When average genomic
relationships were calculated for all samples using SNPs
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on ECA1 (as in [25]), the mean relationship of horses
from the US with those from the UK was −0.01.
Replacing both the UK reference and test populations

with horses from the US resulted in an increase in im-
putation accuracy for the US test population compared
to using UK horses as the reference population. This
was despite the fact that the LDP SNPs were selected
using a UK population sample. One explanation for this
increase in accuracy is the higher average relationships
in the US dataset, which has been shown to improve im-
putation accuracy [8]. However, the fact that there was
no difference in the relative increase in imputation ac-
curacy between the bpEQ LDPs (which is not population
dependent) and the bpMAF and lduMAF LDPs (which
do depend upon the UK dataset), suggests that the LDP
SNP sets are equally appropriate for both populations.
Whether this result also holds across breeds is more
doubtful. The frequent sharing of major haplotypes be-
tween diverse horse breeds [27] suggests that a certain
degree of accuracy should be maintained, but further in-
dications of the likely efficacy of imputation across
breeds may be sought by comparing allele frequencies of
the breeds in question.

Determining optimal LDP size
The value of imputed genotypes depends on both their
accuracy and their purpose. Daetwyler et al. [44] ob-
served that the accuracy of genomic estimated breeding
values (GEBV) achieved with SNP genotypes imputed
from a sparse set of markers, as a percentage of that
achieved for the dense SNP genotypes, was in all cases
greater than the proportion of correctly imputed geno-
types. Specifically, when 87.8% of missing genotypes
were correctly imputed, the accuracy of GEBV was re-
duced by only 5%. Furthermore, the imputation accuracy
greater than 0.90 that was achieved here for the 3K
panel is very similar to that reported by Weigel et al.
[10] in a study on daughter pregnancy rate, which re-
sulted in a GEBV accuracy of 0.642 when imputation
was used (from a LDP of 2942 SNPs), compared to
0.674 when all SNPs were genotyped (42 552 SNPs).
Given these results, it is likely that an LDP of 2K to 3K
SNPs could lead to sufficiently high imputation accu-
racies to be useful in Thoroughbred horses.
Any loss of accuracy in imputation that occurs as a

result of using lower density SNP panels must also be
considered alongside the cost savings that would be
achieved. Part of the accuracy lost might be recovered if
the pedigrees of genotyped individuals were available
[14]. However, based on estimated genotyping costs for
384 to 2K SNPs, with 1K and 2K SNP panel prices based
on a custom chip construction, and for 3072 to 6K
SNPs, based on the iSelect Infinium Assay, there is no
difference in cost between genotyping 768 and 2K SNPs,
or between genotyping 3072 and 6K SNPs (Source:
GeneSeek representative, 2012). Therefore, the logical
choice is between a 384, a 2K and a 6K SNP panel, with
these options offering 42, 84 and 96% of the accuracy in
imputation for 17%, 29% and 40% of the cost of the
equine 70K SNP chip (used because the Equine SNP50
BeadChip is no longer available to purchase), respec-
tively. Whilst the cost increases by the same amount
(US$20) from 384 to 2K and then from 2K to 6K, the in-
crease in imputation accuracy is more than three times
greater from 384 to 2K than from 2K to 6K, suggesting
that a 2K SNP panel represents better value for money.
However, specific uses may demand specific accuracies,
in which case cost could be less important.

Conclusions
The results of this study show that it is possible to impute
genotypes from low- to high- density in Thoroughbred
horses with reasonable to high accuracy. An investigation
of the source of differences in imputation accuracy re-
vealed dependence on the MAF of the SNPs being
imputed, and on the underlying LD structure. While equi-
distant LDP SNPs worked well, optimising LDP SNP se-
lection to increase their MAF was advantageous leading
to increased imputation accuracy, even when LDPs were
subsequently used in a population of different geograph-
ical origin. By using LD map distance instead of physical
distance to select LDP SNPs, differences in imputation ac-
curacy between SNPs were reduced. Whereas a 1K SNP
panel was generally sufficient to ensure that more than
80% of genotypes were correctly imputed, inference from
other studies suggests that a 2 to 3K SNP panel would en-
sure that the subsequent loss in accuracy for, for example,
genomic prediction was minimal [10,44]. Furthermore,
the relationship between accuracy and genotyping costs
for the different LDPs, suggest that a 2K SNP panel would
represent good value for money for Thoroughbreds. More
work is needed to evaluate the impact of between-breed
differences on imputation accuracy. Imputation makes it
possible to use low-density SNP panels as a low cost alter-
native to high-density genotyping but it also provides a
means to combine datasets from different genotyping
platforms, a possibility that will become necessary as re-
searchers are starting to use the recently developed equine
70K SNP chip.
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LDP SNP selection Method 3, including settings used to run the LDMAP
program.

Additional file 3: Figure S1. LD maps. This document contains figures
showing the relationship between physical map distance (Mb) and map
distance in LDU for chromosomes 1, 10, 20 and 26.

Additional file 4: Table S2. The mean proportion of correctly imputed
genotypes, as calculated in the within-population analysis of the UK
dataset. The data provided represent the results of imputation from LDPs
with SNPs selected by Methods 1 to 3, expressed as the mean proportion
of correctly imputed genotypes, both per individual and per SNP. Results
are shown for chromosomes 1, 10, 20 and 26.

Additional file 5: Figure S2. The mean proportion of correctly imputed
genotypes and its variance across SNPs, as calculated in the within-
population analysis of the UK dataset. The figures provided show the
results of imputation from LDPs with SNPs selected by Methods 1 to 3,
expressed as the mean proportion of correctly imputed genotypes per
SNP and plotted against the total number of SNPs on a genome-wide
LDP of equivalent density. Results are shown for chromosomes 1, 10, 20
and 26.

Additional file 6: Table S3. Properties of low density panel SNPs, as
calculated in the within-population analysis of the UK dataset. The data
represent properties of LDP SNPs as selected by Methods 1 to 3. Results
are shown for chromosomes 1, 10, 20 and 26.

Additional file 7: Table S4. The mean correlation between true and
predicted genotypes, as calculated in the within-population analysis of
the UK dataset. The data provided represent the results of imputation
from LDPs with SNPs selected by Methods 1 to 3, expressed as the mean
correlation between true and predicted genotypes, both per individual
and per SNP. Results are shown for chromosomes 1, 10, 20 and 26.
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