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ABSTRACT 

Palynological analysis based on spore and pollen morphology is well established in 10 

the field of palaeo-environmental reconstruction but is currently not fully exploited 

for understanding the history and development of cereal cultivation due to 12 

difficulties in visually differentiating between grass species (Poaceae). Here we 

employ a chemotaxonomic approach, by examining the chemical differences 14 

amongst Poaceae taxa, based on Fourier-transform infrared (FTIR) microspectroscopy 

data to overcome problems associated with morphological similarities across the 16 

Poaceae family. FTIR spectra of untreated and acetolysed pollen from 19 Poaceae 

taxa were used in our study. We used both populations and individual pollen grains 18 

to explore how we can minimize the effect of Mie scattering (spectral distortions 

caused by scattering of the incident IR beam) on spectra from individuals. Random 20 

forest classification algorithms were applied to explore our ability to differentiate 



taxa at the species level. We found that pollen grains treated with acetolysis yield 22 

better classification results (86% for individuals and 97% for populations) compared 

to untreated samples (65.7% for individuals and 83% for populations), since they are 24 

less affected by Mie scattering. The high classification success at species level on 

acetolysed individual pollen grains suggests that our chemotaxonomic method holds 26 

substantial promise in numerous areas of grass and in particular cereal pollen 

research, including elucidating the history of agriculture. 28 
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HIGHLIGHTS 

• Chemotaxonomy applied on Poaceae populations and individual pollen 34 

grains. 

• Chemical spectra of individual pollen grains are comparable to population 36 

spectra. 

• Individual grains of acetolysed pollen were scanned without embedment 38 

matrix. 

• Spectra from individual acetolysed pollen grains. showed minimal Mie 40 

scattering. 

• Chemotaxonomy can be useful tool for fossil pollen classification. 42 

 

 44 



1. INTRODUCTION 

Agricultural tradition came along with the need to manage and adapt cultivation 46 

practices during periods of instability or environmental stress, which is still a major 

challenge for humanity (Altieri et al., 2015; Riehl et al., 2015, 2014). Therefore, 48 

understanding how past societies adapted their cultivation practices can help us 

develop more resilient agricultural systems in the future. In this work, we test a novel 50 

application based on pollen biochemistry to aid discrimination between wild grasses 

and Cerealia-type pollen which would allow us to use pollen records for a more 52 

holistic understanding of cereal cultivation history. 

The study of ancient agriculture has developed alongside the analysis of 54 

archaeobotanical remains preserved in archaeological contexts, primarily charred 

plant microremains and phytoliths (Fuller, 2007; Fuller and Lucas, 2014; Piperno, 56 

2011). Nevertheless, these attempts to reconstruct past agricultural systems are 

usually incomplete, since even the most informative archaeological contexts tend to 58 

represent a limited range of past floral diversity (Fuller & Lucas, 2014). Pollen data 

can however reveal numerous examples of past landscape management, including 60 

clearance for pastoral and agricultural activities (arboriculture, cultivation of cereal 

and legume crops) and the emergence of secondary forests following abandonment 62 

of farmlands (England et al., 2008, Li et al., 2008; Marquer et al., 2017; Morrison et 

al., 2018; Roberts, 2015, 2002; Trondman et al., 2015). Despite the presence of 64 

pollen from cereal crops in sediment cores (e.g., Williams et al., 2018), their use for 

uncovering past agriculture practises is not always straightforward (see Eastwood et 66 

al., 2018). One of the shortcomings of pollen analytical data are the morphological 

similarities among pollen grains of different species within the Poaceae family, which 68 



includes not only domesticated cereal crops but also wild grasses, and causes them 

to be near-indistinguishable under the light microscope and/or scanning electron 70 

microscope (Fægri and Iversen, 1989; Mander et al., 2013; Schüler and Behling, 

2011). However, accurate identification of Poaceae pollen and in particular 72 

discrimination of Cerealia-type pollen in the palaeoenvironmental record is important 

when trying, for example, to reconstruct changes in agricultural practices, the 74 

introduction of new crops into existing farming systems, the adaptation of local 

societies to climate change, understanding the initial exploitation of “proto-76 

domesticated” cereals and tracing the beginning of cereal domestication (de 

Vareilles et al., 2021; Marston, 2021)  78 

1.1 Poaceae palynological studies 

Different analytical approaches have been applied to discriminate between grass 80 

pollen of native wild plants (not cultivated nor exploited by humans) and cereal crops 

(domesticated plants): i) analysis of the morphological characteristics and the size of 82 

the pollen grains under the light microscope (Andersen, 1979; Bottema, 1992; 

Dickson, 1988; Fægri and Iversen, 1989; Hapsari and Ballauff, 2022; Joly et al., 84 

2007; Küster, 1988, Rowley, 1960; Schüler and Behling, 2011), ii) analysis of the 

surface patterns of the pollen grains using observations from scanning electron 86 

microscopy (SEM) (Andersen & Bertelsen, 1972; Grohne, 1951, Köhler & Lange, 

1979; Mander et al., 2013), and iii) confocal microscopy which can be used to study 88 

the sculpture of the exine (Salih et al., 1997). Of those methods, the most commonly 

used considers the size difference between cereals and wild grasses (Eastwood et 90 

al., 2018, Bottema et al., 1992, Küster, 1988) and the eccentrical position of the pore 

in Secale cereale grains (Beug, 1961). The main disadvantage of this approach is 92 



that the distributions of pollen sizes can overlap considerably between some cereals 

and wild grass species (Bottema et al. 1992, Faegri and Iversen, 1989; Joly et al., 94 

2007) and this has resulted in the misclassification of “Cerealia”-type pollen as wild 

grass pollen (Hapsari and Ballauff, 2022). Joly et al. (2007) suggested that up to 96 

41% of “Cerealia”-type species could be misclassified as wild species, while 30% of 

wild grasses could potentially be misclassified as “Cerealia”-type. Köhler & Lange 98 

(1979) introduced broad sub-categories for the cereal crops (e.g., Hordeum-type, 

Triticum-type, Avena-type, Setaria-type, etc.) (see also Wei et al. 2023), when SEM 100 

images of the pollen surface ornamentation patterns are used in combination with 

size/shape criteria. However, those categories include multiple genera and are 102 

therefore not appropriate when investigating the diversification of cereal cultivation, 

which requires species specific identifications. Additionally, exine ornamentation is 104 

not always visible under the light microscope (Mander et al. 2013), while 

preservation issues could be a complicating factor for robust identifications (Bottema 106 

et al. 1992, Eastwood et al., 2018). Computational image-based methods have also 

proven successful (Mander et al. 2013), but SEM microscopy is not only very 108 

expensive and time-consuming, but also requires extensive sample preparation and 

high level of expertise, so its use has been relatively limited in the fossil record 110 

(Julier et al. 2016).  

1.2 Studies of Fourier-transform infrared spectra of pollen 112 

Recent studies (Diehn et al., 2020; Jardine et al., 2021, 2019; Julier et al., 2016) 

have successfully classified modern Poaceae pollen grains using chemical spectra 114 

obtained by Fourier-transform infrared (FTIR) spectroscopy, yielding classification 

accuracies above 80% at the subfamily level. Jardine et al. (2019) and Julier et al. 116 



(2016) used pollen spectra obtained by scanning populations (group of pollen grains 

of the same species) of 8 different extant Poaceae taxa. Their results showed that 118 

the region below 1800cm-1 in the FTIR spectra, known as the “fingerprint region”, 

represented the most information-dense region in terms of chemistry and contained 120 

a disproportionate amount of chemical variation amongst their pollen samples. 

Subfossil sediments, however, contain a mixture of different pollen, and therefore 122 

this necessitates the scanning of individual pollen grains rather than populations. 

One chemotaxonomic study of single pollen grains of modern wild grass species 124 

grown in greenhouses by Diehn et al. (2020), accomplished an 83% success rate at 

the species level. Diehn et al. (2020) reported species-specific classification 126 

successes between 63% and 94% despite complications arising from spectral 

scattering. Their findings showed that chemotaxonomy surpasses the taxonomical 128 

resolution of most optical techniques. However, to obtain “scatter-free” spectra from 

individual pollen grains, which usually exhibit Mie scattering (Bassan et al., 2009) 130 

due to the spherical shape and the small size of the grains that coincides with the 

size of IR beam, the authors embedded the pollen in paraffin. Since the produced 132 

spectra included peaks related to the paraffin the researchers tried to distinguish the 

pollen spectra from the paraffin related signal, which not only complicated the 134 

analysis but also meant that part of the fingerprint region between 1500cm-1 to 

1300cm-1 was omitted. The omitted spectral region is part of the fingerprint which 136 

carries the most variation among Poaceae species and therefore diagnostic potential 

was reduced (Jardine et al. 2019). Additionally, this approach adds an extra time-138 

consuming stage on the analysis undermining the potential of FTIR for high-

throughput data generation. 140 



These previous Poaceae-FTIR studies focused on either a limited number of species 

(Diehn et al. 2020) or untreated pollen (Diehn et al. 2020, Jardine et al. 2019), which 142 

contain organic compounds that do not survive in fossil or sub-fossil samples. 

Additionally, fossil and sub-fossil pollen is routinely treated with acetolysis (a 9:1 144 

mixture of acetic anhydride and sulphuric acid, Erdtman, 1960) to remove any 

extraneous compounds derived from the fossil matrix, isolate the sporopollenin and 146 

stain the grains to facilitate identification. Acetolysis is also used to isolate the 

sporopollenin from fresh pollen. However, acetolysis not only isolates the 148 

sporopollenin by removing protein related peaks (at 1550 cm-1 and 1650 cm-1), 

reducing the height of aliphatic peaks (at 2925 cm-1 and 2850 cm–1) but also alters 150 

the pollen chemistry with respect to “pure” sporopollenin. Those alterations include 

the reduction of non-aliphatic peaks (the 1710 cm–1 carboxyl peak (in Lycopodium), 152 

the 1510 cm–1 aromatic peak, and the aliphatic C–O peaks at 1100 cm-1 and 980 

cm–1), the increase of others (eg. the 1710 cm–1 carboxyl peak (in Angiosperms), 154 

peaks at 1230 cm-1, 1175 cm-1 and 1025 cm–1), while it can add extra peaks in the 

spectra (eg. 1170 cm-1 and 1030 cm-1) (Domínguez et al., 1998; Jardine et al., 2021, 156 

2015). Yet the chemistry of acetolysed sporopollenin itself has been shown to be 

useful for UV-B reconstructions (Jardine et al., 2016) and ideally classifications 158 

(Jardine et al, 2021), and therefore the application of chemotaxonomic methods on 

sub-fossil pollen treated with acetolysis could be beneficial for taxonomic purposes. 160 

Here we compare and contrast the results of chemotaxonomic analyses of untreated 

and acetolysed pollen for the first time.  162 

The FTIR spectra of pollen are inherently high dimensional data where each 

dimension represents transmission or absorbance of infrared at a particular 164 

wavenumber or group of wavenumbers (dependent on the resolution of the scan). 



Due to the number of dimensions in the data, it quickly becomes inefficient for visual 166 

comparisons to be made between increasing numbers of samples. As such, 

computational methods such as dimensionality reduction techniques and supervised 168 

machine learning algorithms are commonly used for classification purposes 

Supervised machine learning (ML) algorithms, for example k-nearest neighbour (k-170 

NN) (Dell’Anna et al., 2009; Jardine et al., 2019; Julier et al., 2016; Woutersen et al., 

2018) and partial least squares regression (PLS) (Diehn et al., 2020; Zimmermann, 172 

2018, 2010; Zimmermann et al., 2017, 2016, 2015) analyses are widely used for 

chemotaxonomic classification in studies using FTIR spectra of pollen. These 174 

“supervised” algorithms generate predictive models trained on labelled classes of 

observations in training datasets. These models can be used to predict the class of 176 

observations which might otherwise have been withheld or not known. ML-

classification results are usually compared with unsupervised ML methods (e.g., 178 

principal components (PCA) and hierarchical clustering (HCA) analyses) to cross-

reference results. Although both k-NN and PLS models have achieved high 180 

classification accuracies when using pollen spectra, k-NN performs more poorly as 

the dimensionality of the data increase (Murphy, 2012, pp. 18-19), and the PLS 182 

algorithm has been criticized regarding its ability to process multi-class, imbalanced 

data or datasets larger than 200 observations (Lee et al., 2018). Some studies have 184 

highlighted that random forests (RF) is a very robust ML algorithm that performs well 

on multi-dimensional large datasets (Singh et al., 2016; Sobol and Finkelstein, 2018; 186 

Ziegler and König, 2014). Irrespective of which ML algorithm researchers have used, 

the main drawback of these methods was the time spent training the models (Sobol 188 

and Finkelstein, 2018) and there is also the possibility of overfitting a model causing 

an inflation of model accuracy (Murphy, 2012). Yet, the risk of overfitting can be 190 



reduced by training the model with an appropriately large, well-balanced (in terms of 

the number of observations per class) and representative dataset, the use of cross-192 

validation (k-folds, leave-one-out) approaches during training, and by testing the 

prediction accuracy of the algorithm with a separate dataset (Murphy, 2012). Cross-194 

validation is a particularly effective method of assessing the potential performance of 

a model on unseen data. It is a resampling approach that splits the training data into 196 

k folds of approximately the same size and uses all but one fold for training a model, 

and testing the model which predicts values for the last fold. Train and test repeats 198 

are performed k times for each k fold to be tested. Performance measures (such as 

accuracy, precision and recall) indicate how well the model might generalise on 200 

unseen data (Murphy, 2012), reducing the chance of a model overfitting its training 

data and yielding overoptimistic estimates of a model’s utility.  202 

1.3 This study 

Here we expand on previous work by using the largest grass dataset to date, 204 

comprising 19 taxa that grew in a variety of environmental conditions and regions, 

analysing both populations of pollen and individual grains which were analysed as 206 

untreated and acetolysed samples. We test the following hypotheses: a) the 

chemical spectra from sporopollenin (acetolysed samples) contain enough 208 

information for taxonomic classification, similar to chemical spectra from untreated 

pollen grains and b) spectral classification of individual Poaceae pollen grains from 210 

untreated and acetolysed pollen is possible without emending the grains in any 

medium. 212 

 

2. MATERIALS AND METHODS 214 



2.1 Pollen collection 

Anthers of 19 Poaceae taxa were used in this study, comprising 7 domesticated 216 

cereal and 12 wild grass species (Figure S1). Pollen was harvested from plant 

populations in Greece (Larisa), Germany (University of Münster Botanical Garden) 218 

and UK (University of Nottingham Sutton Bonington glasshouses, Sheffield Botanical 

Garden, Wollaton Park in Nottingham and James Hutton Institute in Scotland), 220 

though not all species at each location. For each taxon, at least three plants were 

sampled during their flowering seasons of 2018 and 2019. Additionally, Sorghum 222 

halepense and Secale cereale pollen was purchased from Sigma-Aldrich and Poa 

pratensis pollen from Allergon (Table 1). 224 

2.2 Chemical processing  

For the acetolysis, the standard procedures described by Fægri and Iversen (1989), 226 

with some modifications, were followed: to remove labile compounds from the pollen 

grains, an acetolysis treatment (a solution of 90% of acetic anhydride (C4H6O3) and 228 

10% sulphuric acid (H2SO4)) was added to the pollen samples and heated for 3 

minutes in hot water bath at 80-85oC temperature. Prior to and after acetolysis 230 

samples were treated with glacial acetic acid to remove water from the samples and 

avoid explosive reactions. The samples were then washed with deionised water and 232 

stored in Eppendorf tubes until being scanned. 

2.3 FTIR spectra acquisition  234 

Pollen samples were pipetted directly onto clean CaF2 windows. The FTIR spectra 

were measured using an Agilent Cary 670 FTIR spectrometer fitted with a KBr 236 

beamsplitter coupled with a Cary 610 FTIR imaging microscope with a liquid 



nitrogen-cooled focal plane array detector, at the School of Biosciences, University 238 

of Nottingham. Spectra were collected in transmission mode with a resolution of 

4cm-1 at 128 scans per replicate. Background spectra were collected using 256 240 

scans prior to the data generation for each taxon and every ten replicates thereafter. 

The background scan was automatically subtracted from the sample scan by the 242 

Resolutions Pro software (Agilent Technologies). For the population scans 20 

replicates were scanned per taxon using a 352 x 352 μm2 aperture size, and for the 244 

analysis of individual pollen grains 30 grains per taxon were scanned using a 72 x 72 

μm2 aperture size. Each population scan consisted of a contiguous cluster of at least 246 

20 pollen grains. The scan range was limited to 4000 to 950 cm-1. 

2.4 Spectral analysis and classification 248 

Only the fingerprint region (wavenumbers below 1800 cm-1) which carries most of 

the chemical information useful in taxonomic classification was used in the analysis, 250 

as this decreases model training time approximately 3-fold without significantly 

impacting the achievable taxonomic resolution. The spectra were corrected using 252 

extended multiplicative scatter correction (EMSC) to correct for baseline differences, 

scaling effect, minimise the Mie scattering and aid the classification. EMSC is 254 

frequently used on spectral data to reduce absolute absorbance differences among 

spectra and the variation between samples that could be due to FTIR beam 256 

scattering effects (Rinnan et al., 2009). To examine which species carried the most 

intersample variation in their spectra we plotted the mean spectrum and 258 

corresponding standard deviation for each wavenumber. We also used the pooled 

variance estimate to quantify the variability in the entire spectrum, because the rate 260 

of change of mean spectrum was higher than the rate of change of the standard 



deviation (Dodge, 2008). We calculated the pooled variance, by multiplying the 262 

square of species’ standard deviation per wavenumber by the number of samples, 

and dividing them by the number of species multiplied by the number of 264 

wavenumbers with Bessel correction (Dodge, 2008; Radziwill, 2017). Additionally, 

the first derivatives of the spectra were used in order to inspect spectral details from 266 

broad peaks and aid classification (Jardine et al. 2019, Zimmermann and Kohler, 

2013). 268 

We used the random forest (RF) algorithm in each of the four datasets 

(untreated/acetolysed populations and individual pollen grains) for species 270 

classification, creating four sets of classification models; one set of classification 

models for untreated populations, one for acetolysed populations, one for untreated 272 

individual pollen grains and one for acetolysed individual pollen grains. The RF 

algorithm uses multiple decision trees on the training dataset and for each 274 

observation outputs the most popular prediction (Breiman, 2001). Additionally, we 

implemented the varImp() function included in the caret R package that reports the 276 

importance of each wavenumber for data classification (variable importance). For 

each set of models, we randomly split the data (untreated/acetolysed populations or 278 

individual pollen grains) in two groups: a training dataset (80% of the total spectra of 

each species) and a test dataset (20% of the total spectra of each species). For each 280 

of the four sets of classification models we used the default parameters of 500 trees, 

mtry equal to the square root of the number of wavenumbers in the data, a minimum 282 

node size of 1 and which tested both “gini” and “extratrees” split rules. Ten-fold 

cross-validation was used on the training set to establish the model parameters with 284 

the best classification accuracy. This validation process randomly split the training 

dataset into 10 parts. The model was then trained with observations from 9 of the 10 286 



parts and the remaining observations were used as validation data to choose the 

best model parameters. Once the model is trained and validated it was then asked to 288 

predict the class (species) of the test dataset and the accuracy of the predictions 

was reported.  290 

The training, including the ten-fold cross validation, and test procedure was repeated 

100 times for each of the four datasets. Every time a model was repeated it was 292 

trained with a different training dataset randomly subset (80% of the total spectra of 

each species) and tested in a different withheld test subset. Therefore, we generated 294 

4 sets of 100 models per dataset: a) the untreated populations, b) the untreated 

individual pollen grains c) the acetolysed populations, and d) the acetolysed 296 

individual pollen grains. Classification success rates were reported as a range of 

values for each of the four datasets: untreated/acetolysed populations/individual 298 

pollen grains. The median classification success predictions of the test subset for 

each dataset were presented in a confusion matrix. 300 

Principal components analysis (PCA) was used for ordinating the data and evaluate 

differences among pollen spectra of different species (Diehn et al. 2019, Jardine et 302 

al. 2019). Initially we used the whole fingerprint region (1800 to 950 cm-1) for the 

analysis. However, since there were 443 wavenumber divisions in the fingerprint 304 

region, many were autocorrelated, the first two principal components (PCs) typically 

explained approximately 50% of the variation in the four datasets and clustering by 306 

taxon was not particularly pronounced (Supplementary Fig. S4a-d). Instead, we used 

the wavenumbers variable importance(s) greater than 60% respectively for the 100 308 

RF runs of each training dataset. Following this step, the clustering of like-taxa in the 

PCA was clearer for all datasets, and the amount of variation explained by the first 310 



two PCs typically increased by ~30% with respect to the PCA of all fingerprint region 

wavenumbers, so that most of data variation is now explained by the first two 312 

principal components (Anderson, 2003).  

Data analysis was performed in R (R Core Team, 2021) via RStudio version 314 

4.0.4/2023.06.0+421 (RStudio Team 2021), using the packages EMSC version 0.9.2 

(Liland, 2017) for data processing, and the packages gplots version 3.3.4 (Warnes et 316 

al., 2020), scico version 1.2.0 (Pedersen and Crameri, 2020) and corrplot version 

0.89 (Taiyun and Viliam, 2017) for data visualisation. The caret package version 6.0-318 

88 (Kuhn, 2019) was used for training, validating and testing the classification 

models.  320 

 

3. RESULTS 322 

3.1 FTIR spectra 

Spectra from individual pollen grains (either untreated or acetolysed pollen) exhibit 324 

the same main chemical peaks as the respective spectra from the population scans. 

However, spectra from individual pollen grains exhibit more variation than those from 326 

populations (Fig. 1-2 and S2). Acetolysis, through removal of labile compounds, 

results in a change of the pollen chemistry, with several peaks in the FTIR spectra 328 

reducing in size (eg. 1230 cm-1), others appearing much stronger (1705 cm-1), and 

the protein related peaks disappearing (1650cm-1) completely. Spectra from 330 

untreated pollen show absorbance peaks at 1743 cm-1, at 1705 cm-1 and 1460 cm-1 

representing lipids, at 1650 cm-1 identified as proteins and sporopollenin associated 332 

peaks at 1515cm-1, 1230cm-1 and 1161cm-1. While spectra from acetolysed pollen 



exhibit peaks at 1705 cm-1 assigned to carboxylic acid ν(C==O), at 1680 cm-1, 1580 334 

cm-1, 1430 cm-1 and 1230 cm-1 corresponding to sporopollenin-related compounds 

and a very pronounced peak at 1034 cm-1 and one at 1170 cm-1 which have 336 

previously interpreted as artificial peaks formed during acetolysis (Bağcıoğlu et al., 

2017, 2015; Domínguez et al., 1998; Jardine et al., 2021, 2019; Lutzke et al., 2020).  338 

3.2 Classification 

The predictive models trained on population scans performed better than those 340 

trained on scans of individual pollen grains (Fig. 3). Additionally, the models trained 

on acetolysed pollen, in general, performed better than those trained on untreated 342 

pollen spectra. In detail, the classification success values range from 67% to 93% for 

the untreated populations, while the median classification success was 83%. The 344 

untreated individual pollen grains presented a classification range of 48% to 74.5%, 

with 65.7% being its median value. For the acetolysed populations the classification 346 

success range was 91% to 100%, while the median success value was 97%. The 

acetolysed individual pollen grains models yielded classification success values 348 

between 79% to 92%, with median value of 86%.   

In the next section the confusion matrices of the prediction results on the withheld 350 

test subset of each dataset are presented. Most misclassifications in all datasets 

occur within Triticum cereal species and their wild relatives (Figs. 4a-d). Additionally, 352 

on models trained on spectra of individual pollen grains, both untreated and 

acetolysed, Hordeum vulgare was sometimes misclassified as the wild Hordeum 354 

spontaneum (Figs. 4b). In the models that used individual, untreated pollen grains, 

three Avena sativa samples were wrongly predicted as Triticum. crops and Secale 356 

cereale (Fig. 4b). Moreover, in the same model a single S. cereale grain was 



confused as Aegilops caudata. The most misclassifications pertaining to the 358 

untreated, individual pollen grain data were among the wild relatives of Triticum 

cereals, with Thinopyrum elongatum having the lowest classification success of 17%. 360 

The confusion matrix for the acetolysed individual pollen data presents 

misclassifications mainly between Triticum cereals and their wild relatives, among 362 

the wild relatives of Triticum crops, and limited misclassifications of S. cereale 

(towards Triticum timopheevii and Festuca drymeja), Avena sativa (towards Z. mays) 364 

and Z. mays (towards T. durum and H. spontaneum) (Fig. 4d). 

To further visualise and understand how taxa are related chemotaxonomically (Fig. 366 

5) we used the wavenumbers with variable importance(s) greater than 60% on the 

PCA (Fig. S3 a-d). The PCA plots show tighter taxonomic clustering for populations 368 

spectra (both untreated and acetolysed pollen) compared to the spectra of individual 

pollen grains. PCs 1 and 2 of the untreated populations spectra together explain 370 

83.6% of the variation in the dataset. The plot shows broad groups in subfamily level 

(e.g., Triticum cereal species and their wild relatives); Fig. 5a). There is no clear 372 

separation between wild and domesticated species, instead clustering is more 

dictated by species (or genus in the case of most Triticum species). The 374 

compactness of the clusters is variable among taxa: some species like Poa 

pratensis, Avena fatua, Sorghum halepense, T. timopheevii and T. aestivum form 376 

tight clusters, whilst others are more diffuse (e.g., H. spontaneum, A. sativa and Z. 

mays) or split into several sub-clusters (e.g., Ph. pratense and Th. elongatum). The 378 

first two PCs of the untreated, individual pollen grain spectra account for 80.7% of 

the total variation in that dataset (Fig. 5b). In this plot, most taxa overlap and a few 380 

wild grass species spread on the left side of the plot forming diffused taxa clusters 

(H. lanatus, Ph. pratense and P. pratensis). 382 



PCs 1 and 2 account for 76.8% of the total variation in the acetolysed populations 

data (Fig. 5c). In this plot there is a clear separation on species level, while the 384 

Triticum cereals and their wild relatives cluster is also apparent (as it is in the PCA of 

untreated populations; Fig. 5a). The 77.6% of the total variation of the acetolysed, 386 

individual pollen grain dataset is explained by the first two PCs (Fig. 5d). The 

majority of species overlap in ordination space in the centre of the plot making it 388 

difficult to discern any trend in taxonomic clustering at species or subfamily level. 

Exceptions to this undefined clustering were the spectra of Ph. pratense, A. fatua, S. 390 

cereale, S. halepense, P. pratensis, T. dicoccoides and H. vulgare. The “Triticum 

cereal crops and wild relatives” cluster is once again present, however in this 392 

instance, H. lanatus, F, drymeja, H spontaneum, A. sativa and Z. mays are also 

clustered with the aforementioned Triticum group. 394 

 

4. DISCUSSION 396 

4.1 Implications of sample preparation 

To examine the Mie scattering effect on individual pollen grains of untreated and 398 

acetolysed samples we compared those spectra against spectra from population 

samples, which are not susceptible to scattering (Jardine et al., 2019; Muthreich et 400 

al., 2020; Pappas et al., 2003; Zimmermann, 2010). Our study also showed that the 

averaged EMSC-corrected spectra of individual pollen grains exhibited peaks at the 402 

same locations as the spectra obtained from populations of pollen, respectively in 

both untreated and acetolysed samples. However, spectra from individual pollen 404 

grains presented more variation compared to population spectra especially towards 

the lower wavenumbers, between 1750 cm-1 and 1700 cm-1, around 1400 cm-1 and 406 



1200 cm-1 (Figs 1 and 2). Spectral variability on acetolysed individual pollen grains 

compared to population samples was more pronounced on a few species (Z. mays, 408 

T. timopheevii, T. urartu), contrary to untreated samples where variability was 

present in most species. We expect that the Mie scattering likely introduced 410 

unpredictable distortions to varying regions of the spectra of individual pollen grains 

rendering them too randomly variable. Despite this spectral variability, the broadly 412 

consistent taxon-specific chemistries between spectra of individual pollen grains and 

populations indicate that classifying spectra from individual pollen grains can yield 414 

taxonomically meaningful results. 

In our study, we avoided the time-intensive procedures of sample preparation and 416 

the complicated pre-processing spectral analysis or elimination of wavenumbers 

within the targeted fingerprint region that other studies have employed (Diehn et al., 418 

2020; Zimmermann et al., 2015). The spectra from individual pollen grains were 

generated simply by pipetting the pollen directly onto FTIR microscope (in this case, 420 

CaF2) slides without the use of paraffin or any other mounting medium to reduce 

scattering (Diehn et al. 2019, Zimmerman et al. 2016). We only corrected the spectra 422 

with EMSC and took the 1st derivatives to eliminate spectral inconsistences and aid 

classification. We found that Mie scattering on individual pollen grains was limited 424 

and more pronounced on the untreated individual pollen grains, hence they exhibited 

the lowest classification success of all datasets. As such, minimal sample 426 

preparation or simpler, more commonplace pre-processing techniques that capitalise 

on the high-throughput potential of FTIR do not always appear practicable in terms of 428 

classifying spectra with evidence of some scatter distortion obtained from individual 

(grass) pollen grains. 430 



We believe that the Mie scattering effect was more distinct on untreated grains 

compared to acetolysed ones, because acetolysis removes the labile intercellular 432 

pollen components making the grains slightly deflated and less spherical (and 

frequently collapsed) allowing the IR beam to penetrate them more easily increasing 434 

their spectral resolution. Untreated pollen grains consist of the intercellular material 

and an outer pollen wall that is divided into the inner intine (consisting of cellulose 436 

and pectin) and the outer exine (sporopollenin). The structure of the Poaceae pollen 

wall includes, also, the Zwischenkörper, a thin gel foaming pectin layer around and 438 

below the aperture, between the intine and the exine of the pollen wall as described 

in detail by Heslop-Harrison (1979). The Zwischenkörper along with the rest labile 440 

compounds of the pollen are eliminated after the use of acetolysis (Domínguez 1998, 

Jardine et al. 2021, Heslop-Harrison 1979, Li et al. 2019, Lutzke et al. 2020). These 442 

pollen materials provide structural support to the pollen grain and therefore after their 

removal with acetolysis treatment the sporopollenin could explain the slightly 444 

deflated appearance of the grains (see S1). Objects with less spherical shape result 

in less scatter or scatter free spectra (Bassan et al., 2009), similar to the spectra 446 

from individual pollen grains of acetolysed pollen grains in this study. For this reason, 

the most noticeable change on the classification accuracy between untreated and 448 

acetolysed pollen appears on the individual pollen grains (Fig. 3 and 4), since the 

quality of the spectra from populations- acetolysed or untreated- is generally a lot 450 

better, as they do not suffer from the scattering affect. Therefore, we suggest that 

simplifying the preparation of the samples will not affect our ability to classify 452 

acetolysed pollen, but there are still some challenges when untreated pollen 

individual pollen grains are concerned.  454 

4.2 Chemotaxonomic classification on Poaceae pollen 



We generated 100 RF models per pollen dataset (untreated/acetolysed, 456 

populations/individual grains) which were respectively trained and tested on 

randomly selected subsets. Classification accuracy of the untreated populations 458 

ranged from 67% to 93% (median = 83%) and the individual pollen grains ranged 

from 48% to 74.5% (median = 65.7%). The range of classification accuracies from 460 

the models trained and tested with untreated populations is comparable with the 

classification accuracies of other published studies on the chemotaxonomy of grass 462 

pollen and their spectra (Jardine et al 2019, Julier et al. 2016). However, we 

increased the number of taxa to be classified- from 8 to 19 species- in our study 464 

whereby a correct classification by chance would have been significantly lower, yet 

the methods employed in this study have shown that our approach yields adequate, 466 

comparable results. The classification accuracy range and median using the spectra 

of untreated, individual pollen grains was lower than those of Diehn et al. (2020) in 468 

their study of individual grass pollen grains. In this study, we included 19 species, 

nearly 4-times as many as the 5 species used by Diehn et al. (2020), and this added 470 

dataset complexity and increased difficulty for the RF models might explain our lower 

successful classification rate. In addition to more species in our study, we also used 472 

more closely-related taxa and hence we would expect their spectra to be more 

difficult to distinguish. It is, however, more likely that the higher classification 474 

accuracy in the Diehn et al. (2020) study was because spectral distortions that result 

from IR beam scattering were reduced by using paraffin mounting and corrected 476 

using sophisticated machine learning techniques. As explained above, we did not 

attempt to reduce or control IR beam scatter or its effects beyond using commonly 478 

employed spectral pre-processing techniques and, as a result, limited scatter likely 

affected their correct classification. 480 



To date, there is only one study (Jardine et al., 2021) that has investigated whether 

Poaceae acetolysed pollen grains can be classified below subfamily level, 482 

considering also the possibility that even finer taxonomic levels could be achieved. 

Our results pertaining to individual pollen grains of Poaceae agree with those of 484 

Jardine et al. (2021). With regards to acetolysed pollen, the clustering in the PCA 

plots of populations shows clear taxonomical signal, with the plot of individual pollen 486 

grains presenting a more complicated story. However, the classification success 

rates of both acetolysed individual pollen grains (median = 86%) and populations 488 

(median = 97%) indicates that a strong chemotaxonomic signal is recoverable from 

acetolysed pollen, even for species-level classification. Models trained on spectra 490 

from acetolysed pollen performed considerably better than untreated pollen samples, 

especially on individual pollen grains (Fig. 4c-d). Those results suggest that the 492 

spectra of acetolysed pollen can be reliably classified in a chemotaxonomic 

perspective, despite the chemical alterations to the chemistry involved with 494 

acetolysis which results to removal of peaks related with labile compounds and 

addition of peaks (1170 cm-1 and 1034 cm-1).  496 

Frequent misclassifications among Triticum cereal species and their wild relatives in 

all pollen datasets indicate that more work or sophisticated techniques are needed to 498 

discriminate such closely related taxa. In all the PCA plots (Fig. 5), irrespective of 

using acetolysed or untreated samples, there was a large cluster of Triticum cereal 500 

crops and their wild relatives, whilst other wild grasses usually plotted in the 

periphery of this cluster (Fig. 5b and d). The clustering is clearer on the populations, 502 

where taxon clusters are also more pronounced, while on individual pollen grains a 

more diffused cluster with overlap of various Triticum species is present. The RF 504 

showed very limited misclassifications of wild grasses as cereal crops, although 



there was a lot of confusion among the wild grasses, among cereal crops and 506 

between wild Triticum relatives and domesticated crops. There may be more 

misclassifications among Triticum cereals or between cereals and their wild relatives 508 

because their chemistries are very similar since they belong to the same genus. 

Common misclassifications between H. vulgare and H. spondaneum could reinforce 510 

the argument that our data show a phylogenetic signal strong enough to reliably 

distinguish between genera, but only in some cases at the species level. However, 512 

even if we cannot achieve species specific classifications for closely related taxa, our 

results show that Triticum cereals can be distinguished from common wild grasses 514 

and vice versa. Another point highlighted from this study is that misclassifications 

(e.g., of T. aestivum, T. durum and T. dicoccum) did not appear on more chemically 516 

variable taxa (T. urartu, F. drymeja, T. timopheevii and Th. elongatum) (Figs. 1-2 and 

S2), as has been suggested in other studies (Jardine et al. 2019). 518 

4.3 Palaeoecological implications 

Our results have shown that spectra from acetolysed pollen carry a distinct 520 

taxonomic signal and therefore this method could be used on sub-fossil samples that 

are routinely treated with acetolysis. We also showed that it is not necessary to 522 

embed pollen grains in any medium to accomplish meaningful classification results, 

so scanning sub-fossil pollen directly from the CaF2 slides can readily provide 524 

spectra of sufficient quality for chemotaxonomic analysis. Avoiding the use of any 

embedding medium for sub-fossil pollen scanning, will not only simplify the 526 

procedure but also speed the lab work and spectral analysis. 

However, it should be noted that sub-fossil pollen grains are affected by 528 

sedimentation processes that may alter the sporopollenin chemical spectra. A few 



studies suggested that sub-fossil late Quaternary sporopollenin (Jardine et al., 2021) 530 

and even well preserved Pennsylvanian fossil sporopollenin (Fraser et al., 2012) 

presented chemical similarities with spectra from extant plants. Therefore, 532 

chemotaxonomy could benefit at least well preserved fossil sporopollenin or 

relatively recent sub-fossil samples. Additionally, sub-fossil pollen, is treated with 534 

other chemicals (KOH, HCl) apart from acetolysis, which may leave residues on the 

chemical signature of the samples, although a lot less detectable (Wang et al., 536 

2023). It is therefore important to include those chemicals in the treatment of extant 

pollen if we want to create a reference dataset comparable to the sub-fossil chemical 538 

spectra.  

 540 

5. CONCLUSION 

Here we have demonstrated that FTIR spectra from untreated and acetolysed pollen 542 

grains can be used for classification purposes to species level (or genus level for 

some taxa). We showed that acetolysis improves the classification accuracy 544 

especially on individual pollen grains (86% median classification accuracy), without 

embedding the grains in scatter-reducing media. As sub-fossils and fossils are 546 

frequently treated with acetolysis, we suggest our method is particularly suited to 

addressing palynological research questions related to the history of cereal 548 

cultivation. 

 550 
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Figures: 576 

 

Fig. 1 Mean FTIR spectra of pollen of untreated modern species of a) population 578 

scans and b) scans of individual pollen grains. The EMSC-corrected fingerprint 

region of the spectra are plotted. The number of replicate scans used in the analysis 580 

are given as n. The shaded regions represent the mean ± 1 standard deviation. The 

vertical dashed lines show the main peaks and their interpretation (L = lipids, P = 582 

protein and S = sporopollenin) 

 584 



 

Fig. 2 Mean FTIR spectra from acetolysed modern species of a) population scans 586 

and b) scans of individual pollen grains. The EMSC-corrected fingerprint region of 

the spectra are plotted. The number of replicate scans used in the analysis are given 588 

as n. The shaded regions represent the mean ± 1 standard deviation. The vertical 

dashed lines show the main peaks and their interpretation (S = sporopollenin). The 590 

“1170” and “1034” correspond to peaks attributed to acetolysis 

 592 



 

Fig. 3 Classification accuracy range of the test subset from untreated populations, 594 

untreated individual pollen grains, acetolysed populations and individual pollen 

grains after repeating RF models 100 times with different train subsets 596 

 



 598 

Fig. 4 Confusion matrices showing the classification accuracy (%) of each species 

from: a) untreated populations, b) untreated individual pollen grains, c) acetolysed 600 

populations, and d) acetolysed individual pollen grains. The species labelled in red 

are domesticated cereal species and the species labelled in black are wild grasses. 602 

The confusion matrices present the median classification accuracies of the 100 

random forest model runs for each dataset  604 

 



 606 



Fig. 5 Principal components analysis (PCA) plots for 1st-derivative spectra of: a) untreated populations, b) untreated individual 

pollen grains, c) acetolysed populations, and d) acetolysed individual pollen grains. Closed symbols were used for domesticated 608 

crops and open for wild grasses. In this PCA, only wavenumbers with variable importance above 70% (according to the variable 

importance of the random forest runs) were used. The percentage of variance explained by principal components 1 and 2 is 610 

indicated in the axes titles 



Tables: 612 

Table 1: List of species (alphabetical order) included in the analysis and their collection origin. 

Family Genus Species Common name Place of collection 
Number of 
plants sampled 

Wild or 
domesticated 

POACEAE Aegilops Aegilops caudata wild wheat Sutton Bonington (UK) 3 wild 

POACEAE Avena Avena fatua wild oat Greece 3 wild 

POACEAE Avena Avena sativa oat Germany, Greece 3 domesticated 

POACEAE Festuca Festuca drymeja   Germany 3 wild 

POACEAE Holus Holus lanatus 

Yorkshire fog, 
tufted grass, and 
meadow soft 
grass 

Sutton Bonington, 
Nottingham and 
Sheffield (UK) 3 wild 

POACEAE Hordeum 
Hordeum 
spontaneum wild barley 

Greece and James 
Hutton Institute (UK) 4 wild 

POACEAE Hordeum Hordeum vulgare barley 

Greece, Sutton 
Bonington and James 
Hutton Institute (UK) 3 domesticated 



POACEAE Poa Poa pratensis 

Kentucky 
bluegrass, 
smooth meadow-
grass, or common 
meadow-grass Allergon stock pollen   wild 

POACEAE Phleum Phleum pratense Timothy grass Nottingham 3 wild 

POACEAE Secale Secale cereale rye 

Greece, Germany, 
Sigma-Aldrich stock 
pollen 3+ domesticated 

POACEAE Sorghum 
Sorghum 
halepense 

Johnson grass or 
Johnsongrass 

Sigma-Aldrich stock 
pollen   wild 

POACEAE Triticum 
Triticum 
aestivum 

common wheat 
or bread wheat 

Germany, Greece, 
Sheffield (UK) 3 domesticated 

POACEAE Triticum 
Triticum 
dicoccoides wild emmer 

Germany, Sheffield 
(UK) 3 wild 

POACEAE Triticum 
Triticum 
dicoccum emmer wheat 

Germany, Greece, 
Sheffield (UK) 3 domesticated 

POACEAE Triticum Triticum durum 
pasta wheat or 
macaroni wheat 

Germany, Greece, 
Sheffield (UK) 3 domesticated 



POACEAE Triticum 
Triticum 
timopheevii 

Timopheev's 
wheat or Zanduri 
wheat 

Germany, Sutton 
Bonington and 
Sheffield (UK) 3 wild 

POACEAE Triticum Triticum urartu 
wild einkorn 
wheat 

Germany, Sutton 
Bonington and 
Sheffield (UK) 3 wild 

POACEAE Thinopyrum 
Thinopyrum 
elongatum tall wheatgrass Sutton Bonington (UK) 2 wild 

POACEAE Zea Zea mays maize Germany 3 domesticated 



10. SUPPLEMENTARY MATERIAL 614 

Tables 

S2 Table with pooled standard variation values per species for untreated/acetolysed 616 

populations and individual pollen grains. 

  

Pooled SD 
values for 
untreated 
populations 

Pooled SD for 
untreated 
individual pollen 
grains 

Pooled SD for 
acetolysed 
populations 

Pooled SD for 
acetolysed 
individual pollen 
grains 

T. aestivum 0.003148579 0.005238022 0.009991912 0.005232399 
T. dicoccum 0.004435576 0.006206741 0.010528546 0.006200078 
T. durum 0.003678485 0.006442158 0.009601097 0.006432725 
A. sativa 0.004925851 0.009631786 0.006239655 0.009626445 
H. vulgare 0.007960686 0.009868383 0.010851349 0.009862911 
S. cereale 0.005891131 0.008435695 0.008881108 0.008420651 
Z. mays 0.005215815 0.01222964 0.009368466 0.012222383 
Ae. caudata 0.003533944 0.005590626 0.010123889 0.005636001 
T. 
dicoccoides 0.005634411 0.006508374 0.007379908 0.006516387 
Th. 
elongatum 0.004075455 0.012709734 0.011909734 0.012695149 
T. 
timopheevii 0.003431314 0.005749591 0.006538684 0.005769477 
T. urartu 0.005484107 0.008425443 0.015188691 0.008389126 
H. 
spontaneum 0.00492411 0.011691405 - 0.011618033 
A. fatua 0.002585723 0.006420723 0.004855898 0.006433032 
H. lanatus 0.004349624 0.01120298 - 0.011090831 
F. drymeja 0.005774456 0.011051747 - 0.01110348 
P. pratensis 0.00482031 0.011329483 0.005074327 0.011329483 
Ph. pratense 0.006464326 0.010614296 0.004502205 0.010602902 
S. halepense 0.004102461 0.010986219 0.005552432 0.010978108 

 618 

 

 620 

 



Figures 622 

 

Aegilops caudata (untreated) 

 

Aegilops caudata (acetolysed) 

 

Avena fatua (untreated) 

 

Avena fatua (acetolysed) 



 

Avena sativa (untreated) 

 

Avena sativa (acetolysed) 

 

Festuca drymeja (untreated) 

 

Festuca drymeja (acetolysed) 



 

Holus lanatus (untreated) 

 

Holus lanatus (acetolysed) 

 

Hordeum spontaneum (untreated) 

 

Hordeum spontaneum (acetolysed) 



 

Hordeum vulgare (untreated) 

 

Hordeum vulgare (acetolysed) 

 

Poa pratensis (untreated) 

 

Poa pratensis (acetolysed) 



 

Phleum pratense (untreated) 

 

Phleum pratense (acetolysed) 

 

Secale cereale (untreated) 

 

Secale cereale (acetolysed) 



 

Sorghum halepense (untreated) 

 

Sorghum halepense (acetolysed) 

 

Triticum aestivum (untreated) 

 

Triticum aestivum (acetolysed) 



 

Triticum dicoccoides (untreated) 

 

Triticum dicoccoides (acetolysed) 

 

Triticum dicoccum (untreated) 

 

Triticum dicoccum (acetolysed) 



 

Triticum durum (untreated) 

 

Triticum durum (acetolysed) 

 

Triticum timopheevii (untreated) 

 

Triticum timopheevii (acetolysed) 



 

Triticum urartu (untreated) 

 

Triticum urartu (acetolysed) 

 

Thinopyrum elongatum (untreated) 

 

Thinopyrum elongatum (acetolysed) 



 

Zea mays (untreated) 

 

Zea mays (acetolysed) 

S1 Light microscope images from Poaceae pollen used in this study. The left column 

includes the images of untreated pollen grains and the right column the acetolysed 624 

grains of the same species. 

 626 



 

S3 Wavenumbers’ importance for RF classification of a) untreated populations, b) 628 

untreated individual pollen grains, c) acetolysed populations and d) acetolysed 

individual pollen grains.  630 

 



 632 



S4 Principal components analysis (PCA) plots for first derivatives spectra from: a) untreated populations, b) untreated individual 

pollen grains, c) acetolysed populations, d) acetolysed individual pollen grains. For PCA analysis all wavenumbers of the fingerprint 634 

region (1800 cm-1 to 950 cm-1) were used. The diagrams show PC1, PC2 and the percentage of variance explained by each 

principal component. 636 
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