Supporting Information

Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS

Waraporn Suvannapruk^{a1}, Leanne E Fisher^a, Jeni C Luckett^b, Max K Edney^c, Anna Kotowska^a, Dong-Hyun Kim^a, David J Scurr^a, Amir M Ghaemmaghami^d and Morgan R Alexander^{a*}

^a Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park Nottingham, NG7 2RD, United Kingdom.

^b School of Life Sciences, Faculty of Medicine and Health Science, University of Nottingham, University Park Nottingham, NG7 2RD, United Kingdom.

^c Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park Nottingham, NG7 2RD, United Kingdom.

^d Immunology & Immuno-bioengineering Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park Nottingham, NG7 2RD, United Kingdom.

¹ National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

Corresponding Author: *E-mail: morgan.alexander@nottingham.ac.uk

в

Figure. S1. Histological analysis of tissue sections following 28 days implantation of polymer coated catheter sections in a murine model of foreign body response. Representative H&E staining images, showing a well-defined inflammatory reaction fibroblast (F), blood vessels (BV), macrophage (M) and catheter (C) captured at × 40 magnification the scale bar = 20 µm. MTC staining image of each tissue section slide for identifying collagen thickness, captured at × 10 magnification. Scale bar = 100 µm. (A-C) show the infiltration count of macrophages, neutrophils and collagen thickness from the site surrounding the foreign body. All data are presented as the mean with ±s.d (N=2, n=3). Significance was calculated by one-way ANOVA with Tukey's post-hoc analysis: *p<0.05, ** p<0.01, *** p<0.001. (D) Representative images show tissue section stained for the M1 marker iNOS in green and M2 marker arginase1 in magenta and C represents the catheter site. (Images were acquired on confocal). Scale bar = 25 µm. (D) The ratio of M2-like macrophages to M1-like macrophages for each polymer. All data are presented as the mean with ±s.d (N = 2 and n = 5). Significance was calculated by one-way ANOVA with Tukey's post-hoc analysis: *** <0.0001

Figure. S2. The mean fluorescescence intensity of iNOS and ARG-1 expression in tissue images. M2-polymer shown high level of the Arg-1 expression.

Figure. S3. Chemical imaging of tissue sample. (A) View of the area where OrbiSIMS optical ion images were acquired (area of 450 μ m × 450 μ m). (B–D) 3D OrbiSIMS ion images were recorded in the negative ion mode, (B) total ion image, (C) ion image of the sum of phospholipid specie ions including PA, PS, PE and PI which are divided by total intensity. (D) The main ion of PI (38:4), showing the contribution of PI (38:4) ion are the signature fragments of PI head group, two fatty acids fragments (FA 18:0 and FA 20:4) and (E) RGB ion images showing nuclear marker (blue) and PA 34:4 (red).

Figure. S4. MS/MS product spectrum of lipids [M-H]-. (A) The structure of CPA (18:0) at m/z 419.2517 was confirmed based on the detection of the PA head-group ions, [C6H10PO8]- at m/z 241.0, and fatty acid moieties from these lipids are F18:0, [C18H35O2]- at m/z 283.2642. (B) The precursor PI (36:2) ion is the signature fragments of PI headgroup, [C6H10PO8]- and two FA18:1 fatty acid moieties are represented by [C18H33O2]-. and other MS/MS of PI (38:4) and (36:4) lipids are reported in Figure C and D).

Table S1. Glycero	lipid fragments in	a 3D OrbiSIMS at a	surrounding implants in ea	ch sample PDMS,
polymer M1-polyn	ner and polymer N	//2-polymer. Monc	glycerides (MG), diglyceri	des (DG)
Mass m/z	Assignment	Glycerolipid	Average normalised	

WIG55 11/2	Assignment	Olycerolipid	Intensity (4 areas)	(4 areas)
PDMS				
551.504	C ₃₅ H ₆₇ O ₄ +	MG 32:2	1.18×10 ⁻²	1
575.5038	C ₃₇ H ₆₇ O ₄ +	MG 34:4	5.79×10 ⁻²	0.6
577.5193	C ₃₇ H ₆₉ O ₄ +	MG 34:3	3.92×10 ⁻²	0.4
601.5195	C ₃₉ H ₆₉ O ₄ +	DG 0-36:5	4.94×10 ⁻²	0.6
M1-polymer			· · · ·	
551.504	C ₃₅ H ₆₇ O ₄ +	MG 32:2	1.42×10 ⁻²	0.9
575.5038	C ₃₇ H ₆₇ O ₄ +	MG 34:4	6.53×10 ⁻²	0.8
577.5193	C ₃₇ H ₆₉ O ₄ +	MG 34:3	4.53×10 ⁻²	0.7
601.5195	C ₃₉ H ₆₉ O ₄ +	DG 0-36:5	5.35×10 ⁻²	0.8
M2-polymer				
551.504	C ₃₅ H ₆₇ O ₄ +	MG 32:2	7.50×10 ⁻³	0.6
575.5038	C ₃₇ H ₆₇ O ₄ +	MG 34:4	3.83×10 ⁻²	0.3
577.5193	C ₃₇ H ₆₉ O ₄ +	MG 34:3	2.93×10 ⁻²	0.1
601.5195	C ₃₉ H ₆₉ O ₄ +	DG 0-36:5	3.75×10 ⁻²	0.3

Table S2. Show unique lipids signature for each phenotype; 8 unique for PDMS, 16 unique for M1-polymer and 4 unique for M2-polymer.

Mass <i>m/z</i>	Formula [M-H] ⁻	Name
PDMS		
467.2567	$C_{25}H_{41}O_6P^-$	LPA O-22:6
476.2784	C ₂₃ H ₄₄ NO ₇ P ⁻	LPA 15:2
655.4709	C ₃₇ H ₆₉ O ₇ P ⁻	LPA 34:3
679.4712	C ₃₉ H ₆₉ O ₇ P ⁻	PA O-36:5
681.4867	C ₃₉ H ₇₁ O ₇ P ⁻	PA O-36:4
719.4662	C41H69O8P	PA 38:6
738.5083	C ₄₁ H ₇₄ NO ₈ P ⁻	PE 36:4
745.4819	C ₄₃ H ₇₁ O ₈ P ⁻	PA 40:7
M2-polymer	•	•
795.5743	C ₄₅ H ₈₅ NO ₈ P ⁻	LPI O-33:0
795.6271	C47H89O7P	PA O-44:3
836.5446	C ₄₆ H ₈₀ NO ₁₀ P ⁻	PS O-40:6;O
859.534	C ₄₅ H ₈₁ O ₁₃ P ⁻	PI O-36:4;O
M1-polymer		
421.2728	C ₂₁ H ₄₃ O ₆ P ⁻	LPA O-18:1
475.3195	$C_{25}H_{49}O_6P^{-1}$	LPA O-22:2
537.32	$C_{26}H_{51}O_9P^-$	LPG 20:1
571.2891	C ₂₅ H ₄₉ O ₁₂ P ⁻	LPI 16:0
577.2787	C ₂₇ H ₄₇ O ₁₁ P ⁻	LPI O-18:4
585.3048	$C_{26}H_{51}O_{12}P^{-1}$	PG 21:0;0
670.5186	$C_{38}H_{74}NO_6P^-$	LPC O-30:3
729.5445	$C_{41}H_{79}O_8P^-$	PA 38:1
730.5395	$C_{40}H_{78}NO_8P^-$	PE 35:1
736.5294	C ₄₂ H ₇₆ NO ₇ P ⁻	LPC 34:5
747.5172	C ₄₀ H ₇₇ O ₁₀ P ⁻	PG 34:1
758.4981	$C_{40}H_{74}NO_{10}P^{-1}$	PS 34:2
773.533	C ₄₂ H ₇₉ O ₁₀ P ⁻	PG 36:2
791.5433	C ₄₂ H ₈₁ O ₁₁ P ⁻	LPI O-33:2
793.559	C ₄₂ H ₈₃ O ₁₁ P ⁻	LPI O-33:1
833.5917	C ₄₅ H ₈₇ O ₁₁ P ⁻	PG 39:1;O
837.5489	C ₄₃ H ₈₃ O ₁₃ P	PI 34:0
839.5643	C ₄₃ H ₈₅ O ₁₃ P	LPI 34:0;O
868.608	$C_{48}H_{88}NO_{10}P^{-}$	PS 42:3

Mass <i>m/z</i>	Assignment	Phospholipids		Area1	Area 2		4	Area 3	Area4	
	[M-H] ⁻		Mass error p.p.m	Norm. intensity	Mass error p.p.m	Norm. intensity	Mass error p.p.m	Norm. intensity	Mas s error p.p. m	Norm. intensity
PDMS			1							
673.4821	C37H71O8P	PA 34:1	0.3	1.54×10 ⁻⁴	-0.1	5.52×10 ⁻⁵	0.8	5.66×10 ⁻⁰⁵	1.0	5.79×10 ⁻⁰⁵
747.498	C43H73O8P	PA 40:6	0.7	4.57×10 ⁻⁴	0.3	7.92×10 ⁻⁵	1.2	9.79×10 ⁻⁰⁵	0.8	1.10×10 ⁻⁰⁴
751.5291	C43H77O8P	PA 40:4	0.3	2.57×10 ⁻⁴	0	4.07×10 ⁻⁵	0.9	5.80×10 ⁻⁰⁵	0.7	7.03×10 ⁻⁰⁵
786.5294	C42H78NO10P	PS 36:2	0.4	5.42×10 ⁻⁴	-0.2	1.18×10 ⁻⁴	0.9	1.40×10 ⁻⁰⁴	0.8	1.65×10 ⁻⁰⁴
788.5451	C42H80NO10P	PS 36:1	0.5	6.03×10 ⁻⁴	-0.1	1.37×10 ⁻⁴	1.3	1.55×10 ⁻⁰⁴	1.0	1.69×10 ⁻⁰⁴
838.5609	C46H82NO10P	PS 40:4	0.6	3.10×10 ⁻⁴	0.2	5.82×10 ⁻⁵	1.2	7.27×10 ⁻⁰⁵	1.0	8.50×10 ⁻⁰⁵
764.5244	C43H76NO8P	PE 38:5	0.4	2.47×10 ⁻⁴	0	4.27×10 ⁻⁵	1.1	5.37×10 ⁻⁰⁵	0.8	5.98×10 ⁻⁰⁵
766.5401	C ₄₃ H ₇₈ NO ₈ P	PE 38:4	0.4	8.32×10 ⁻⁴	0.1	1.81×10 ⁻⁴	1.1	2.31×10 ⁻⁰⁴	0.7	2.49×10 ⁻⁰⁴
790.5402	C45H78NO8P	PE 40:6	0.4	4.20×10 ⁻⁴	0	7.67×10 ⁻⁵	0.9	8.64×10 ⁻⁰⁵	0.7	9.93×10 ⁻⁰⁵
857.5196	C45H79O13P	PI 36:4	0.5	0.87×10 ⁻⁴	0.2	1.79×10 ⁻⁴	1.2	2.28×10 ⁻⁰⁴	1.0	2.66×10 ⁻⁰⁴
861.5511	C45H83O13P	PI 36:2	0.5	1.10×10 ⁻³	0.3	2.11×10 ⁻⁴	1.3	2.37×10 ⁻⁰⁴	1.0	2.87×10 ⁻⁰⁴
885.5508	C47H83O13P	PI 38:4	0.3	8.80×10 ⁻³	0.2	1.54×10 ⁻³	1.1	1.89×10 ⁻⁰³	0.9	2.04×10 ⁻⁰³
M1-polymer										
673.4821	C37H71O8P	PA 34:1	0.7	8.89×10 ⁻⁰⁵	0.3	2.82×10 ⁻⁰⁵	0.7	5.38×10 ⁻⁰⁵	0.6	5.68×10 ⁻⁰⁵
747.498	C43H73O8P	PA 40:6	0.9	9.41×10 ⁻⁰⁵	0.9	3.33×10 ⁻⁰⁵	1.0	5.92×10 ⁻⁰⁵	1.1	6.99×10 ⁻⁰⁵
751.5291	C43H77O8P	PA 40:4	0.7	1.23×10 ⁻⁰⁴	0.6	4.20×10 ⁻⁰⁵	0.6	6.79×10 ⁻⁰⁵	0.8	7.18×10 ⁻⁰⁵
786.5294	C42H78NO10P	PS 36:2	0.7	3.88×10 ⁻⁰⁴	0.6	1.68×10 ⁻⁰⁴	0.9	2.59×10 ⁻⁰⁴	0.8	2.88×10 ⁻⁰⁴
788.5451	C42H80NO10P	PS 36:1	0.7	4.45×10 ⁻⁰⁴	0.8	1.87×10 ⁻⁰⁴	1.0	2.91×10 ⁻⁰⁴	0.9	3.26×10 ⁻⁰⁴
838.5609	C46H82NO10P	PS 40:4	1.0	1.55×10 ⁻⁰⁴	1.0	6.06×10 ⁻⁰⁵	1.1	9.17×10 ⁻⁰⁵	1.1	1.05×10 ⁻⁰⁴
764.5244	C43H76NO8P	PE 38:5	0.6	1.64×10 ⁻⁰⁴	0.7	7.38×10 ⁻⁰⁵	0.9	1.26×10 ⁻⁰⁴	0.8	1.47×10 ⁻⁰⁴
766.5401	C43H78NO8P	PE 38:4	0.6	4.80×10 ⁻⁰⁴	0.6	2.41×10 ⁻⁰⁴	0.9	3.54×10 ⁻⁰⁴	0.8	4.04×10 ⁻⁰⁴
790.5402	C ₄₅ H ₇₈ NO ₈ P	PE 40:6	0.5	1.64×10 ⁻⁰⁴	0.7	7.06×10 ⁻⁰⁵	0.7	1.07×10 ⁻⁰⁴	0.7	1.22×10 ⁻⁰⁴
857.5196	C45H79O13P	PI 36:4	0.8	5.39×10 ⁻⁰⁴	0.7	2.49×10 ⁻⁰⁴	1.0	3.66×10 ⁻⁰⁴	1.1	4.02×10 ⁻⁰⁴
861.5511	C45H83O13P	PI 36:2	0.8	7.32×10 ⁻⁰⁴	0.9	3.43×10 ⁻⁰⁴	1.0	5.06×10 ⁻⁰⁴	1.0	5.52×10 ⁻⁰⁴
885.5508	C47H83O13P	PI 38:4	0.5	4.77×10 ⁻⁰³	0.6	2.11×10 ⁻⁰³	0.7	3.18×10 ⁻⁰³	0.7	3.42×10 ⁻⁰³

 Table S3.
 Targeted phospholipid analysis in 3D OrbiSIMS spectra.

M2-polymer										
673.4821	C37H71O8P	PA 34:1	0.2	5.44×10 ⁻⁰⁵	0.2	8.07×10 ⁻⁰⁵	0	8.54×10 ⁻⁰⁵	0.3	9.54×10 ⁻⁰⁵
747.498	C ₄₃ H ₇₃ O ₈ P	PA 40:6	0.4	9.36×10 ⁻⁰⁵	0.6	1.54×10 ⁻⁰⁴	0.3	1.70×10 ⁻⁰⁴	0.6	2.70×10 ⁻⁰⁴
751.5291	C ₄₃ H ₇₇ O ₈ P	PA 40:4	0.1	1.04×10 ⁻⁰⁴	0.2	1.72×10 ⁻⁰⁴	0	1.77×10 ⁻⁰⁴	0.2	2.22×10 ⁻⁰⁴
786.5294	C ₄₂ H ₇₈ NO ₁₀ P	PS 36:2	0.1	1.36×10 ⁻⁰⁴	0.3	2.39×10 ⁻⁰⁴	0.2	2.32×10 ⁻⁰⁴	0.3	3.36×10 ⁻⁰⁴
788.5451	C ₄₂ H ₈₀ NO ₁₀ P	PS 36:1	0.3	7.07×10 ⁻⁰⁵	0.5	1.26×10 ⁻⁰⁴	0.3	1.11×10 ⁻⁰⁴	0.4	1.65×10 ⁻⁰⁴
838.5609	C ₄₆ H ₈₂ NO ₁₀ P	PS 40:4	0.3	1.42×10 ⁻⁰⁴	0.4	2.05×10 ⁻⁰⁴	0.4	2.08×10 ⁻⁰⁴	0.5	2.61×10 ⁻⁰⁴
764.5244	C ₄₃ H ₇₆ NO ₈ P	PE 38:5	0.2	2.29×10 ⁻⁰⁵	0.1	4.06×10 ⁻⁰⁵	0	4.36×10 ⁻⁰⁵	0.2	7.48×10 ⁻⁰⁵
766.5401	C43H78NO8P	PE 38:4	0.3	2.31×10 ⁻⁰⁴	0.3	3.72×10 ⁻⁰⁴	0.1	3.65×10 ⁻⁰⁴	0.3	5.03×10 ⁻⁰⁴
790.5402	C45H78NO8P	PE 40:6	0.3	9.42×10 ⁻⁰⁵	0.3	1.62×10 ⁻⁰⁴	0.1	1.65×10 ⁻⁰⁴	0.3	2.10×10 ⁻⁰⁴
857.5196	C45H79O13P	PI 36:4	0.3	1.33×10 ⁻⁰⁴	0.3	2.31×10 ⁻⁰⁴	0.1	2.52×10 ⁻⁰⁴	0.4	4.50×10 ⁻⁰⁴
861.5511	C45H83O13P	PI 36:2	0.4	1.80×10 ⁻⁰⁴	0.4	3.33×10 ⁻⁰⁴	0.2	3.45×10 ⁻⁰⁴	0.5	4.93×10 ⁻⁰⁴
885.5508	C ₄₇ H ₈₃ O ₁₃ P	PI 38:4	0.4	1.76×10 ⁻⁰³	0.3	2.97×10 ⁻⁰³	0.1	3.04×10 ⁻⁰³	0.3	4.78×10 ⁻⁰³

Mass m/z	Assignment	Amino acids
80.0498	C ₅ H ₆ N ⁺	Leucine
86.0967	C ₅ H ₁₂ N ⁺	Isoleucine
81.045	C ₄ H ₅ N ₂ +	Histidine
82.0528	C ₄ H ₆ N ₂ +	Histidine
93.0449	C ₅ H ₅ N ₂ +	Histidine
94.0527	$C_5H_6N_2^+$	Histidine
95.0605	C ₅ H ₇ N ₂ +	Histidine
110.0713	C ₅ H ₈ N ₃ +	Histidine
156.0768	C ₆ H ₁₀ N ₃ O ₂ +	Histidine
100.087	C ₄ H ₁₀ N ₃ +	Arginine
112.0869	C ₅ H ₁₀ N ₃ +	Arginine
114.1026	C ₅ H ₁₂ N ₃ +	Arginine
120.0444	C7H6NO ⁺	Tryptophan
130.0652	C ₉ H ₈ N ⁺	Tryptophan
131.073	C ₉ H ₉ N ⁺	Tryptophan
132.0808	C ₉ H ₁₀ N ⁺	Tryptophan
143.073	C ₁₀ H ₉ N ⁺	Tryptophan
157.0761	$C_{10}H_9N_2^+$	Tryptophan
158.0839	$C_{10}H_{10}N_2^+$	Tryptophan
159.0917	C ₁₀ H ₁₁ N ₂ +	Tryptophan
84.0447	C ₄ H ₆ NO ⁺	Glutamic acid
84.0811	C ₅ H ₁₀ N ⁺	Lysine
86.0603	C ₄ H ₈ NO ⁺	Hydroxyproline
87.0555	C ₃ H ₇ N ₂ O ⁺	Asparagine
120.0808	C ₈ H ₁₀ N ⁺	Phenylalanine
166.0863	C ₉ H ₁₂ NO ₂ +	Phenylalanine
101.071	C ₄ H ₉ N ₂ O ⁺	Glutamine
130.0499	C ₅ H ₈ NO ₃ +	Glutamine
136.0758	C ₈ H ₁₀ NO ⁺	Tyrosine
104.053	C ₄ H ₁₀ NS ⁺	Methionine
116.0706	$C_5H_{10}NO_2^+$	Proline
82.0654	C₅H ₈ N ⁺	Multiple amino acids
83.0607	$C_4H_7N_2^+$	Multiple amino acids
88.0396	C ₃ H ₆ NO ₂ +	Multiple amino acids
96.0809	C ₆ H ₁₀ N ⁺	Multiple amino acids
98.0966	C ₆ H ₁₂ N ⁺	Multiple amino acids
100.0394	C ₄ H ₆ NO ₂ +	Multiple amino acids
102.055	C ₄ H ₈ NO ₂ +	Multiple amino acids
107.0492	C7H7O ⁺	Multiple amino acids
114.055	C ₅ H ₈ NO ₂ +	Multiple amino acids
117.0573	C ₈ H ₇ N ⁺	Multiple amino acids
118.0651	C ₈ H ₈ N ⁺	Multiple amino acids
119.0492	C ₈ H ₇ O ⁺	Multiple amino acids
128.0706	C ₆ H ₁₀ NO ₂ +	Multiple amino acids
121.0648	C ₈ H ₉ O ⁺	Multiple amino acids
77.0389	C ₆ H ₅ +	Generic fragment
80.0624	C ₆ H ₈ +	Generic fragment
89.0388	C7H5 ⁺	Generic fragment
91.0545	C7H7 ⁺	Generic fragment
102.0465	C ₈ H ₆ +	Generic fragment

Table S4. Characteristic molecular ion and fragments of amino acid in 3D OrbiSIMS spectra (positive polarity)

103.0543	C ₈ H ₇ +	Generic fragment
105.0699	C ₈ H ₉ +	Generic fragment

Sample	Area1		Area 2		Α	rea 3	Area4		
	Mass error p.p.m	Norm. intensity	Mass error p.p.m	Norm. intensity	Mass error p.p.m	Norm. intensity	Mass error p.p.m	Norm. intensity	
PDMS	0.4	2.51×10 ⁻⁰⁵	0.6	4.09×10 ⁻⁰⁶	-0.1	2.30×10 ⁻⁰⁶	0.2	2.67×10 ⁻⁰⁵	
M1-polymer	0.2	1.42×10 ⁻⁰⁶	0.3	5.59×10 ⁻⁰⁵	8.7	0	-6	0	
M2-polymer	0.2	1.03×10 ⁻⁰⁴	-0.3	8.89×10 ⁻⁰⁵	-0.1	1.03×10 ⁻⁰⁴	0.2	1.43×10 ⁻⁰⁴	

Table S5. Peak exported from SurfaceLab positive mode from each tissue sample, consisting of ions detected in the spectrum and assigned as RG sequences of lysozyme $[M-H]^+ C_8 H_{16} N_5 O_2^+$, m/z 124.1298.

Table S6. Other small molecules in each sample and search by human metabolome data base.

Mass <i>m/z</i>	Assignment	Metabolites		Area1	Area 2 Area 3		Area 3	Area4		
	[M-H] ⁻		Mass error	Norm. intensity	Mass error	Norm. intensity	Mass error	Norm. intensity	Mass error	Norm. intensity
			p.p.m		p.p.m		p.p.m		p.p.m	
PDMS										
80.0497	C ₅ H ₆ N ⁺	Pyridine	4.1	9.77×10 ⁻⁰⁵	4.1	1.46×10 ⁻⁰⁵	3.9	2.67×10 ⁻⁰⁵	3.7	9.44×10 ⁻⁰⁵
81.0449	$C_4H_5N_2^+$	Pyrimidine	3.9	1.20×10 ⁻⁰⁴	4.2	2.19×10 ⁻⁰⁵	3.9	5.30×10 ⁻⁰⁵	3.6	1.22×10 ⁻⁰⁵
112.0869	C ₅ H ₁₀ N ₃ +	Histamine	-0.1	5.95×10 ⁻⁰⁴	-0.2	1.90×10 ⁻⁰⁴	-0.2	1.96×10 ⁻⁰⁴	-0.4	5.76×10 ⁻⁰⁴
121.051	$C_5H_5N_4^+$	Purine	0.2	4.49×10 ⁻⁰⁵	0.4	5.31×10 ⁻⁰⁶	0.0	2.26×10 ⁻⁰⁵	-0.1	6.79×10 ⁻⁰⁵
M1-polymer										
80.0497	C₅H ₆ N⁺	Pyridine	4.5	5.89×10 ⁻⁰⁵	4.5	2.57×10 ⁻⁰⁵	4.0	5.71×10 ⁻⁰⁵	3.5	1.08×10 ⁻⁰⁵
81.0449	$C_4H_5N_2^+$	Pyrimidine	4.0	5.87×10 ⁻⁰⁵	3.7	6.67×10 ⁻⁰⁵	4.1	5.03×10 ⁻⁰⁵	3.9	1.27×10 ⁻⁰⁵
112.0869	C ₅ H ₁₀ N ₃ +	Histamine	0.0	1.70×10 ⁻⁰⁴	-0.1	7.32×10 ⁻⁰⁵	4.2	6.78×10 ⁻⁰⁵	4.0	3.03×10 ⁻⁰⁵
121.051	$C_5H_5N_4^+$	Purine	-0.1	2.13×10 ⁻⁰⁶	0.2	3.34×10 ⁻⁰⁶	-	0	-	0
M2-polymer										
80.0497	C₅H ₆ N⁺	Pyridine	3.4	1.75×10 ⁻⁰⁴	3.2	9.20×10 ⁻⁰⁵	0	1.80×10 ⁻⁰⁴	0.3	2.61×10 ⁻⁰⁴
81.0449	$C_4H_5N_2^+$	Pyrimidine	3.1	2.39×10 ⁻⁰⁵	3.2	1.35×10 ⁻⁰⁴	3.3	3.36×10 ⁻⁰⁴	3.3	3.67×10 ⁻⁰⁴
112.0869	C ₅ H ₁₀ N ₃ +	Histamine	-0.9	1.54×10 ⁻⁰³	-0.9	1.14×10 ⁻⁰³	-0.7	1.79×10 ⁻⁰³	-0.8	2.07×10 ⁻⁰³
121.051	$C_5H_5N_4^+$	Purine	-0.5	6.25×10 ⁻⁰⁵	-0.6	7.19×10 ⁻⁰⁵	-0.4	1.67×10 ⁻⁰⁴	-0.4	1.09×10 ⁻⁰⁴

Table S7. Chemical structure of the monomers and synthesis of copolymers, CHMA-co-DMAEMA and CHMA-co-iDMA.

Code	Monomer 1 name/structure (66%)	Monomer 2 name/structure (33%)	Copolymers
M1-polymer	Cyclohexyl methacrylate (CHMA)	Dimethylamino- ethylmethacrylate (DMAEMA)	CHMA-co-DMAEMA
M2-polymer	Cyclohexyl methacrylate (CHMA)	Isodecyl methacrylate (iDMA)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

 Table S8. Hematoxylin and Eosin (H&E) staining schedule.

1.	Water rinse to remove OCT	5 min
2.	Haematoxylin solution	5 min
3.	Water rinse	1 min
4.	1 % acetic acid in alcohol	30 s
5.	Water rinse	1 min
6.	Alkine Scott's	1 min
7.	Water rinse	1 min
8.	Eosin	2 min
9.	Water rinse	1 min
10.	50 % alcohol	30 s
11.	70 % alcohol	30 s
12.	90 % alcohol	30 s
13.	100 % alcohol × 2	30 s each
14.	Xylene × 2	2 min each
15.	Mounting media onto tissue slide and covered with a thin coverslip	•

 Table S9. Masson Trichrome Stain Kit (Light Green) Masson 1929 schedule.

1	Eiving 4 %PEA	1 h
2.	Water rinse	5 min
3.	Haematoxylin, mixing equal volumes of Weigerts solution A & B (1:1) as required	20 min
4.	Water rinse	1 min
5.	1 % acetic acid in alcohol	30 s
6.	Water rinse	1 min
7.	Ponceau fuchsin Masson solution for	5 min
8.	Rinse in distilled water	2 min
9.	The light green solution	3 min
10.	Water rinse	30 s
11.	50 % alcohol	30 s
12.	70 % alcohol	30 s
13.	90 % alcohol	30 s
14.	100 % alcohol × 2	30 s each
15	Xylene × 2	2 min each
16.	Mounting media onto tissue slide and covered with a thin coverslip	

 Table S10. Sequential antibody staining for macrophage marker schedule.

1.	Washing in 0.2% Tween 20 in PBS x 3	5 min
2.	0.1% Triton X-100 in PBS	10 min
3.	Washing in 0.2% Tween 20 in PBS × 3	5 min
4.	5% BSA and plus 5% donkey serum in PBS	1 h
5.	0.2% PBS-Tween 20 rinse × 3	5 min
6.	Add diluted primary antibody with 1:50 of rabbit anti-mouse iNOS (Abcam) and 1:50 of goat anti-mouse Arg-1 (Thermo Fisher Scientific) in 5% goat serum at 4°C	Overnight
7.	Washing in 0.2% Tween 20 in PBS × 3	5 min
8.	Add diluted secondary antibodies, donkey anti-goat IgG (H + L), and donkey anti-rabbit IgG (H + L) labelled with Alexa Fluor-594 and -488 (1:200; A11058 and A21206, Thermo Fisher Scientific),	1 h
9.	Washing in 0.2% Tween 20 in PBS × 3	5 min
10.	4',6 Diamidino-2-Phenylindole (DAPI, 20000 ng/ml)	5 min
11.	Washing in 0.2% Tween 20 in PBS × 2	5 min
12.	Final, washing in distilled water	5 min
13.	Mounting media onto tissue slide and covered with a thin coverslip	